Fittkau, F., Frey, S. and Hasselbring, W. (2012) CDOSim: Simulating Cloud Deployment Options for Software Migration Support [Paper] In:
Proceedings of the 6th IEEE International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA
2012), 24. Sep. 2012, Riva del Garda, Italy.

CDOSim: Simulating Cloud Deployment Options for Software Migration Support

Florian Fittkau, Soren Frey, and Wilhelm Hasselbring
Software Engineering Group
Kiel University
24118 Kiel, Germany
{ffi, sfy, wha} @informatik.uni-kiel.de

Abstract—The evaluation of competing cloud deployment op-
tions (CDOs) forms a major challenge when migrating software
systems to cloud environments. For example, there exists a
plethora of potential cloud provider candidates, components
must be mapped to suitable virtual machine instances, and,
to exploit elasticity, appropriate runtime adaptation strategies
for specific usage profiles have to be defined. But analyzing
potential CDOs manually is intractable, costly, and time-
consuming due to the heterogeneity of the cloud environments
and the overall combinatorial design space complexity.

We present the simulation tool CDOSim that can simulate
cost and performance properties of those CDOs. It builds upon
and significantly extends the cloud simulator CloudSim and
integrates into our cloud migration framework CloudMIG.
Additionally, we created a cloud benchmark to augment
CloudMIG’s cloud environment models with provider-specific
performance characteristics. Along with this simulation input,
CDOSim utilizes reverse-engineered architectural models and
can employ actual monitored workload. We report on extensive
experiments incorporating Eucalyptus and Amazon EC2 which
show that CDOSim can sufficiently accurate predict the cost
and performance properties of CDOs.

Keywords-cloud deployment options, CDOSim, simulation,
cloud migration, cloud benchmark.

I. INTRODUCTION

Cloud computing is emerging as a promising new
paradigm that aims at delivering computing resources and
services on demand. Finding the best suited cloud deploy-
ment option (CDO) during a migration is a complex task [1].
The most obvious and basic CDO is the selection of a
cloud provider. Due to the heterogeneity of current cloud
environments, this choice can have a significant impact
on the deployed application’s performance characteristics
and operational expenditures [2]. Furthermore, the mapping
between services and virtual machine (VM) instance types
and quantities must be considered and the specific adaptation
strategies, like allocating a new virtual machine instance if
the CPU utilization is above a given threshold, have to be
chosen and configured, for instance. The set of combinations
of the given choices forms a huge design space which is
infeasible to test manually. Simulating a CDO can assist in
solving this problem.

We present the simulation tool CDOSim [3] that can
simulate the response times, SLA violations, and costs of a
CDO. Besides these core simulation capabilities, CDOSim is

designed to address the major shortcomings of other existing
cloud simulators in the context of simulating CDOs:

(1) It is consequently oriented towards the cloud user
perspective instead of exposing fine-grained internals of a
cloud platform when following the cloud provider perspec-
tive. (2) We developed an accompanying benchmark that
mitigates the cloud user’s lack of knowledge and control
concerning an underlying cloud platform structure and it’s
impact on an application’s overall performance. (3) CDOSim
uses application models that follow the Knowledge Dis-
covery Meta-Model (KDM) [4] of the OMG. Hence, the
simulation is independent of concrete programming lan-
guages in the case appropriate KDM extractors exist for a
particular language. Therefore, application models often can
be created using automated reverse-engineering techniques.
(4) Workload profiles from production monitoring data can
be used to replay actual user behavior for simulating CDOs.

For these purposes, we built upon and substantially ex-
tended the cloud simulator CloudSim [5]. CloudSim em-
ploys the notion of million instructions per second (MIPS)
to model computational complexity and the capacity of
virtual machine instances. However, it lacks a description of
practicable derivation mechanisms. We refine the MIPS unit
to the mega integer plus instructions per second (MIPIPS)
unit. Our benchmark calculates a MIPIPS score and weights
that allow to derive MIPIPS values for other instruction and
data types. Furthermore, CDOSim integrates in our cloud
migration framework CloudMIG [6]. The corresponding tool
CloudMIG Xpress ' incorporates CDOSim as a plug-in.

We conducted extensive experiments using our private
cloud Eucalyptus and the public cloud Amazon EC2. The
evaluation shows that CDOSim can sufficiently accurate
predict the cost and performance characteristics of CDOs.

The remainder of the paper is structured as follows.
Section II describes the fundamentals. Then, Section III
introduces the MIPIPS and weights benchmark. CDOSim is
presented in Section IV in conjunction with the simulation
inputs and outputs. Afterwards, Section V evaluates the
benchmark’s and CDOSim’s accuracy, before the related
work is described in Section VI. The final Section VII draws
the conclusions and outlines the future work.

Thttp://www.cloudmig.org, last accessed 2012-07-05

http://www.cloudmig.org
hc
Schreibmaschinentext
Fittkau, F., Frey, S. and Hasselbring, W. (2012) CDOSim: Simulating Cloud Deployment Options for Software Migration Support [Paper] In: Proceedings of the 6th IEEE International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems (MESOCA 2012), 24. Sep. 2012, Riva del Garda, Italy.

hc
Rechteck

II. FUNDAMENTALS

This section lists basic concepts and used technologies.

A. Cloud Deployment Option
We define the fundamental concept of a CDO as follows:

Definition 1: In the context of deploying software on a
cloud platform, a cloud deployment option (CDO) is a
combination of decisions concerning the selection of a cloud
provider, the deployment of components to a number of
virtual machine instances, the virtual machine instances’
configuration, and specific runtime adaptation strategies.

The deployment of components to virtual machine in-
stances includes the possibility of forming new components
of parts of already existing components. By a virtual ma-
chine instances’ configuration, we refer to the instance type
of virtual machine instances. For example, the ml.small
instance type in the case of Amazon EC2, Furthermore, an
example for a runtime adaptation strategy is “’start a new
virtual machine instance when for 60 seconds the average
CPU utilization of allocated nodes stays above 70 %.”

B. CloudSim

We build upon and significantly extend CloudSim [5],
which is a cloud computing system and application simula-
tor. It supports modeling and simulating large cloud com-
puting environments with a single computer and is a self-
contained platform for modeling clouds, the service brokers,
and different policies for resource allocation, for instance.
CloudSim also provides support for network connection
simulation between nodes and offers a facility for the simu-
lation of a federated cloud environment. CloudSim has been
successfully used by other researchers for simulating task
scheduling in the cloud or power aware cloud computing.

C. MIPIPS

CloudSim requires MIPS as a measure for the computing
performance of virtual machine instances. However, we
consider MIPS values as too coarse grained. Most CPUs
need different durations for different low level instruction
types. For example, a division of two double values typically
takes longer than an addition of two integer values on current
CPUs. Furthermore, CloudSim does not specify the intended
instruction type and how to measure the MIPS.

We introduce MIPIPS as the measure for describing
the computing performance and express instructions like
double plus as integer plus instructions through a conversion.
Notably, we could have used, for example, mega double
plus instructions per second (MDPIPS) as the measure for
computing performance and normalized all other instructions
to double plus instructions (see III-B for details).

We do not utilize existing software profiling methodology
because we wanted an easy to adapt benchmark and a
measure that correlates with the executed static statements.

D. Weights per Statement

An instruction counting approach that is described later
in Section IV-C1 bases on static analysis and requires
weights for different statements such that it can convert the
instruction count (IC) of a statement into an integer plus
IC. By measuring the times an integer plus instruction and,
for example, a double plus instruction consumes, we can
approximate that in the period of time of one double plus
instruction the CPU could have performed x integer plus
instructions. For instance, we measure 5 nanoseconds for
a double plus instruction and we measure 2 nanoseconds
for an integer plus instruction. Then, in the time where
one double plus instruction took place 2.5 integer plus
instructions could have been performed.

III. MIPIPS AND WEIGHTS BENCHMARK

Our benchmark provides the calculation of MIPIPS and
weights for different programming languages. Virtual ma-
chine instances typically provide only command line access.
For this purpose, the interaction can be handled through
a console as well as through a GUIL In the following the
derivation of MIPIPS and weights per statement is described.

A. MIPIPS

1) Derivation: The basic idea for deriving MIPIPS is a
benchmark that measures the runtime of a defined amount
of integer plus instructions.

We use a loop which runs our integer plus instructions
at least for ten seconds on current CPUs. Measuring the
runtime of the whole loop would include more instructions
like jumps and comparisons being measured. Therefore, we
conduct a calibration run (see Listing 1 without the bold
statements) for running the loop and then do a second run
with our integer plus instruction added (see Listing 1 with
the bold statements) to the loop’s body. Afterwards, we
subtract the runtime of the first run from the runtime of
the second run. This reveals the execution time of the added
integer plus instruction.

Our runtime measuring technique is a program that acts
as a master and starts the benchmark run in a slave on the
same machine. The runtime measurement is conducted by
the slave program due to exclusion of initialization time.
After the execution, the slave returns the measured runtime
for the benchmark run to the master. According to [7],
this measurement must be conducted at least 30 times. The
number of runs can be configured by parameters or from
a GUI. Afterwards, the master calculates the median of the
response times.

An important part is the disablement of optimizations for
the compiler and interpreter when the slave program is called
by the master program. Depending on the selected language
and optimization settings, the optimization could cause our
loop to have constant runtime.

Listing 1. Calibration run (without bold statements) and MIPIPS counter
(with bold statements) in Java

int x = 0;
2 int y = 0;
3 long start = System.currentTimeMillis();
4 int 1 = -2147483647;
5 while (i < 2147483647) {
6 X = x + 2;
7T y=y+3;
8 i 4= 1;
9

}
10 long end = System.currentTimeMillis();
11 long difftime = end - start;
12 System.out.println(difftime);
13 System.out.println(x);
14 System.out.println(y);

2) Generation: For supporting easy adaptability for new
programming languages, we utilize Xpand ? to generate the
benchmark for different target languages. Xpand requires a
meta-model definition, an instance of the meta-model, and
a language-specific generation template.

We developed an Ecore-based meta-model for the rep-
resentation of a benchmark class. It contains the basic
elements of an imperative programing language and enables
the modeling of classes, methods, expressions, variable dec-
larations, loops, class creations, and concrete method calls.
Two special classes are included in the meta-model. These
are SystemOut which represents the statement for printing
Strings to the console and MeasureTime which represents
the statement for getting the current value of a time counter.
These two classes are mapped by the generation template
to individual statements for each target language and can
be quite different like System.out .println () for Java
and puts for Ruby.

If a new language shall be supported by the whole
benchmark, the programmer simply has to add a generation
template for the desired language. He does not need to
change the declarations of each benchmark. Currently, we
support the languages Java, C, C++, C#, Python, and Ruby.

B. Weights per Statement

1) Derivation: For deriving the weights, we utilize the
same approach which was described in Section III-Al
for measuring the MIPIPS. Instead of running a MIPIPS
counter, the approach calculates the mega instructions per
second for each statement, e.g., for double minus. After-
wards, it divides the MIPIPS value by the corresponding
mega instructions per second for each statement.

Our benchmark program contains a set of weight bench-
marks for the most used statements. The considered data
types are integer, float, double, long and for each the opera-
tions plus, minus, divide, multiply. Furthermore, benchmarks
for boolean and, boolean or, boolean not, class creation, field

Zhttp://wiki.eclipse.org/Xpand, last accessed 2012-07-05

access, function call, and String plus are available. More
weight benchmarks can be added by creating language-
independent instances of our class definition meta-model to
the benchmark generator and using Xpand for the generation
of the source code.

IV. THE SIMULATOR CDOSIM

CDOSim can simulate cloud deployments of software
systems that were reverse-engineered to KDM models. This
section gives an overview of basic components and the
integration with CloudMIG Xpress, presents the general
simulation approach, describes the simulation input and
output, as well as our CloudSim enhancements.

A. Overview

The integration with CloudMIG Xpress is depicted in
Figure 1. Here, CloudMIG Xpress’ cloud profiles represent
cloud environment models. They are enriched with results
from benchmark runs that were executed on virtual machines
of the selected cloud environment and can be reused in
several cloud migration projects. Here, a central online
repository is planned for future work. A CDOSim user has to
execute the benchmark on his status quo computing infras-
tructure (or a similar system) where the regarding software
system is deployed. Monitoring data and extracted KDM
models are also used by CloudMIG Xpress to build work-
load profiles and mapping models, respectively. A mapping
model determines, for example, which KDM code models
have to be deployed on specific virtual machine instances
as well as the costs of those instances. CDOSim utilizes
the mapping models and workload profiles for its simula-
tion. Here, three basic instruction counting mechanisms are
employed, they are described further in Section IV-CI.

B. Simulation approach

Five activities are conducted for a simulation. The first
activity is IC derivation. In this activity, CDOSim conducts
the derivation with one of the IC mechanisms that are
described in Section IV-C. The derived ICs are written as
attributes into the KDM instances that were wrapped by
the mapping model and passed to the simulation. Secondly,
the size of included types is derived. We need the type
size to approximate the bandwidth that is used when there
are distributed calls to other virtual machine instances. The
next activity is the transformation from the mapping model
provided by CloudMIG Xpress to our extended CloudSim
meta-model. Then, the actual simulation with CloudSim
takes place. Finally, the new simulation result is rated
relative to the other runs.

Our approach assumes that approximately constant com-
puting resources are available to virtual machines. Hence,
it is not directly applicable for cloud providers that allow
regular CPU bursting when resources are available.

http://wiki.eclipse.org/Xpand

CloudMIG Xpress El
Status Quo Deployment Node <<Cloud provider X>>
<<VM instance type Y>>
VM Instance
"—,_‘:i: MIPIPS and Weights
———— enrich Benchmark El
MIPIPS and Weights] Mapping Model [
L AN =»
1 CDOSIm g]
Software System El KDM Model D -
Instruction Counting Approaches El
|
1 f rom saticg]| [Dynamic]| ["Hybra a‘

sources) ~
Workload Profile [
Monitoring Log Data D
— L

Figure 1.

Integration of CDOSim with CloudMIG Xpress. The CDOSim and benchmark components are colored gray. Dark gray arrows indicate basic

data the user needs to provide for simulating CDOs. Data marked with light gray arrows is only needed for dynamic and hybrid instruction counting.

C. Simulation Input

The simulation requires a mapping model that contains
the previously described MIPIPS value and weights per
statement measured by our benchmark as well as the actual
KDM code deployment model. Furthermore, it needs the IC
for each method call. The derivation method for the IC is
illustrated in the following.

1) Instruction Count: The IC is required as a represen-
tation of the work that must be conducted for a call to a
program or web service. For approximating the different in-
puts for each method, we utilize a mean value of instructions
that should be executed. In combination with the MIPIPS,
the IC approximates the runtime on a computer with the
corresponding MIPIPS. For example, assuming 2 MIPIPS
and 100,000 instructions for a call to a web service, the
runtime of the call to the web service will be approximately
50 milliseconds.

We consider different possible preconditions for the
derivation on which a specific approach can be chosen.
The first approach, named dynamic approach, requires an
instance of the code package of KDM, results of a dynamic
analysis with contained response times, and the MIPIPS
of the computer where the dynamic analysis took place.
It utilizes the method definitions in the KDM instance
and response times from the dynamic analysis. The second
approach, named static approach, requires instances of the
code and action package of KDM. The action package con-
tains statements like condition blocks. The contained state-
ments are counted in the static approach. Both approaches
have shortcomings which we address in our third approach,
named hybrid approach, which requires the preconditions of
both the dynamic approach and static approach.

Dynamic Approach: One precondition of the dynamic
approach is the availability of response times from a dy-
namic analysis, i.e., response times have to be monitored at
runtime of the software under study. Optimally, there exists
a phase of only low CPU utilization in the dynamic analysis
such that the response times result from the execution of the
method’s instructions without major scheduling effects. Fur-

thermore, the MIPIPS of the computer, where the dynamic
analysis took place, have to be available. First, the dynamic
approach computes the median response times during phases
of low CPU utilization for each method in the workload. The
IC of each method in millions is calculated by multiplying
the median response time with the MIPIPS of the platform
that measured the response time. For example, assuming the
median of response times is 20 milliseconds and the MIPIPS
is 200. Then, the resulting IC in millions is 0.020 - 200 = 4.

Notably, often not all methods are contained in the moni-
tored workload. These methods get a —1 IC which indicates
that those methods have no IC and that an error must be
thrown when they are accessed in the simulation.

Static Approach: The static approach requires KDM
instances that contain the code and action package of the
software under analysis, but no monitoring data. It iterates
over all methods and counts the instructions, according
to defined equations for each control flow element, in an
accumulator variable for each method. Then, the IC is
annotated to each method. When no monitoring data is
available, a synthetic workload profile can be defined using
CloudMIG Xpress that is then used for the simulation.

Hybrid Approach: This approach combines the advan-
tages of the dynamic approach and static approach and
thus rules out some disadvantages of the former ones.
The dynamic approach considers the real runtime of a
method and thus can predict the runtime of a method very
closely. However, it cannot derive an IC for every method
because data from dynamic analysis is often incomplete. The
static approach often results in wrong ICs because it does
not consider optimization from the compiler, for instance.
However, it can derive an IC for every method.

To combine the advantages, we take the ICs from the
dynamic approach and try to correct the ICs from the static
approach. Furthermore, the missing values for the IC of
methods in the dynamic approach are filled with the ICs
from the static approach.

D. Simulation Output

At first, we describe the different output components. The
outputs for different cloud deployment options have to be
comparable to propose which deployment option is more
suitable. Hence, we describe our rating approach at the end
of this section.

1) Cost: The first output of the simulation are the costs
of the simulated cloud deployment option. It represents an
overall cost which is the sum of the costs for the used
bandwidth and virtual machine instances.

2) Response Times: The second output of the simulation
is the median of the response times for each called method.
Each method is then rated by our rating approach. Based on
the method ratings, an overall rating for the response times
is calculated.

3) SLA Violations: The third output is the number of
violations for each SLA. Currently, only the SLA “a call
will not timeout” is implemented. The GUI provides the
possibility to change the timeout value. However, we plan
to support a generic definition and processing of SLAs.

4) Rating: For comparing different simulation runs that
cover different cloud deployment options, we conduct a
rating for each run. The rating scale ranges from 1 as the best
to 5 as the worst performance. Our rating approach searches
for the best performance of all runs in each category and
sets this performance as 1. The same is done for the worst
performance and the corresponding run is set as 5. The other
runs are rated relatively to the best and worst run with the
following method. The median of all runs is calculated and
set as 3. The same is conducted for the left and right set
formed by the median of the whole set. Then, unassigned
values are approximated linearly.

The overall rating forms a combined rating by multiplying
each output rating with a weight, summing the resulting
values, and rounding it at the second decimal place. It can
be configured which output is more important by specifying
other weights than the default weight of 0.33 for each output.

E. CloudSim Enhancements

CloudSim simulates cloud systems following a cloud
provider perspective and uses so called Cloudlets to model
abstract computations. However, we require the cloud user
perspective for the simulation of CDOs. Hence, we extended
CloudSim by the required features. These features range
from the implementation of a CPU utilization model that
is not basing on randomness to a new Cloudlet scheduler
that enables Cloudlets to call other Cloudlets. Furthermore,
virtual machines can be started and stopped during runtime.

V. EVALUATION

We conducted three evaluations which we name El to
E3. El evaluates the validity of the MIPIPS benchmark.
The MIPIPS value should correlate with the performance

of the underlying node. Furthermore, it should stay ap-
proximately constant on the same node. The MIPIPS value
is important when there is a conducted run on a cloud
provider or a local server and we want to simulate which
performance and costs the workload would induce regarding
a specific cloud provider. Due to space limitations, we
have to restrict the evaluations incorporating the instruction
counting approaches in E2 and E3 to the dynamic approach.
Detailed analyses covering the static approach and the
hybrid approach can be found in [3]. In E2, the validity
of the simulation results in a comparison to real, measured
runs on Eucalyptus and Amazon EC2, that were conducted
with single core instances, are evaluated. This evaluation
is important to assess the basic validity of the simulation.
Evaluation E3 combines E1 and E2. It evaluates whether the
prediction of the performance of a cloud provider basing on
the data from another cloud provider is sufficiently accurate.

Following the three types of validity for simulation models
by Zeigler [8], E2 evaluates the replicative validity and E3
addresses the predictive and structural validity.

First, we describe our methodology. Afterwards, the basic
experiment setup is shown. Then, E1 to E3 are illustrated.

A. Methodology

For determining if the MIPIPS stay approximately con-
stant on the same platform, we calculate the mean value
and the standard deviation over the MIPIPS values resulting
from the conducted runs. Then, we compare the standard
deviation to a predefined threshold. The correlation between
the performance of the underlying host and the MIPIPS
is evaluated by comparing the MIPIPS with the available
performance attribute and checking if the difference between
the MIPIPS values is lower than a given threshold. The mean
MIPIPS value should only differ by a small factor, which is
lower than 2.5 %, if the benchmark is conducted again on the
same instance type. The 2.5 % are motivated by the typical
alpha level of o = 0.05. For the evaluations E2 and E3,
we compare the simulated values with the measured values
per minute. The values are CPU utilization, instance count,
costs, and response times. The following metric describes the
relative error for each aspect of the simulation. All percent
values will be truncated after the second decimal place.

Let T be the set of all minutes in the measurement
duration. Let m(t) be the measured value at timestamp ¢t € T
and s(t) the simulated value at timestamp ¢ € 7. When m(t)
equals O, ¢ is removed from the set 7". (1) shows the formula
to calculate the relative error for a timestamp ¢.

_ Im@® — s@)]
Xy re(t)
RE = 7| (@)

(2) displays the formula for the calculation of the relative
error (RE) for the whole simulation run. We feature four
different REs. REqcpy is the relative error of the CPU
utilization. RE;¢ stands for the relative error of the VM
instance count. RE¢,sts marks the relative error of the costs
output. RER7 is the relative error of the response times.

OverallRE — REcpu + RE|C —ZRECOSts + REgRt 3

To enable a consolidated comparison between the results,
we introduce the overall relative error (Overall RE), which
is shown in (3). Overall RE should remain below 30 % to
have results that are sufficiently accurate [9].

B. Basic Experiment Setup

This section describes the common setup for our evalu-
ations. We use iBatis JPetStore 5.0° for the evaluations E2
and E3, which is a web store for pets. Also for E2 and
E3, new VM instances are spawned when the average CPU
utilization of all allocated nodes is higher than 70 % for at
least 1 minute. VM instances are terminated if it is below
30 % for at least 1 minute.

1) JPetStore Adaptation: Most calls to JPetStore are
processed in less than 2 milliseconds, which results in only
a small CPU utilization. In our evaluation, we want to
use capacity adaption based on CPU utilization. Hence, we
decided to generate additional CPU utilization for each call.

2) Amazon EC2: This section describes our deployment
and utilized cost model for the experiments conducted on
Amazon EC2.

Deployment: Our experiment environment incorporates
one node, denoted the SLAstic node, and a Tomcat image.
In the Amazon EC2 cloud, instances of the Tomcat image
can be started. The Tomcat image includes Tomcat 6.0.18
with JPetStore 5.0, its own database, and the monitoring
framework Kieker 1.4.* Kieker is included for monitoring
the CPU utilization and response times of the annotated
methods in JPetStore. It sends the monitored data to an
ActiveMQ 5.5.1 queue on the SLAstic node. SLAstic [10]
analyzes the CPU utilization obtained from the ActiveMQ
queue and calculates if a new instance of the Tomcat image
should be allocated or if an instance can be released. The
workload is generated by JMeter 2.5.1 with Markov4JMeter
on the SLAstic node. The JMeter profile fetches the des-
tination IPs from the load balancer servlet at the start of a
new web application call. The load balancer servlet manages
a list that tracks virtual machine instances of the Tomcat
image and passes a random IP to JMeter. SLAstic updates
the server list by itself.

For the SLAstic node, we utilized an Amazon EC2
m2.2xlarge instance. This instance type provides 34.2 GB

3http://sf.net/projects/ibatisjpetstore/, last accessed 2012-07-05
“http://www.kieker-monitoring.net/, last accessed 2012-07-05

Workload Intensity

4712.8

Method call rate [number of method calls/min]
29455
T N T O I B

0.0 11782

TTTTTT T T T T T T I T T T T TTT 77T
0100:00 0107:00 0114:00 0121:00
Experiment time [day hour:minute]

Figure 2. The used day-night-cycle workload intensity

RAM and 13 EC2 Compute Units (4 virtual cores with 3.25
EC2 Compute Units each).

Cost Model: We started all virtual machine instances in
the region EU-West-1. Hence, we utilize the corresponding
cost model. At the time of writing, an m/.small instance
costs 0.095$ per started hour and a cl.medium instance costs
0.19$ per started hour.

3) Eucalyptus: The private cloud software Eucalyptus,
which is deployed on our own server, is part of the eval-
uations. This way, we can control the overall workload
intensity of the underlying hosts, which in contrast is not
possible on Amazon EC2.

Our Eucalyptus server features two AMD Opteron 2384
processors that provide 8 CPU cores in sum. The server
features 24 GB DDR2-667 RAM and a 1 Gigabit/s network
connection. The instance type ml.small is configured to use
a single CPU core and 1 GB RAM. The deployment is
analogous to the one in Amazon EC2 and we use the same
cost model which we utilize for Amazon EC2. Furthermore,
we align VM instance type capacities to Amazon EC2.

4) Workload Profile: Figure 2 presents the workload
intensity function that is used in the evaluations E2 and
E3. The workload intensity function origins from a service
provider for digital photos. It conforms to a typical day-
night-cycle workload intensity often found on regional web-
sites. In the morning the workload intensity increases until
there is a first peak at noon and a second higher peak in the
evening. Then, the workload intensity decreases until there
are only few requests at night.

C. El: MIPIPS Benchmark Evaluation

1) Comparisons:

Comparison MIPIPS.1: Eucalyptus ml.small instance:
MIPIPS.1 compares the MIPIPS values of an Eucalyptus
ml.small instance for 5 runs. For each run, a new instance
is started and only one instance is running on our Eucalyptus
setup at a time.

Comparison MIPIPS.2: Different Amazon EC2 instance
types: In this comparison, we compare the MIPIPS values
of different Amazon EC2 instance types. Each benchmark is

http://sf.net/projects/ibatisjpetstore/
http://www.kieker-monitoring.net/

{&mazon EC2 MIPIPS EQZ compute

instance type units per core

ml.small 20.65 1

ml.large 142.13 2

cl.medium 148.81 2.5

m?2.xlarge 235.57 3.25
Table I

RESULTS FOR MIPIPS EVALUATION WITH AMAZON EC2

started only once for each instance type. The instances are
started in parallel on Amazon EC2.

Comparison MIPIPS.3: Amazon EC2 cl.medium in-
stance: MIPIPS.3 analyzes the MIPIPS values of an Ama-
zon EC2 cl.medium instance for 5 runs. For each new
benchmark run a new instance is started. The first run is
taken from MIPIPS.2 and the other four instances are started
in parallel on Amazon EC2.

2) Results:

Comparison MIPIPS.1: The mean MIPIPS value of the
five runs is 217.34 MIPIPS. The standard deviation amounts
to 0.62 MIPIPS. The highest absolute deviation from the
mean is 0.95 MIPIPS, which is about 0.44 %.

Comparison MIPIPS.2: Table I displays the results for
MIPIPS.2. The ml.small instance is assigned with 20.65
MIPIPS. 142.13 MIPIPS are measured for the ml.large
instance. After the ml.large instance, the cl.medium instance
has 148.81 MIPIPS. At last, the m2.xlarge instance has the
highest MIPIPS value with 235.57 MIPIPS.

Comparison MIPIPS.3: The mean MIPIPS value
amounts to 148.86 MIPIPS. The standard deviation equals
0.72 MIPIPS. The highest absolute deviation from the mean
is 1.18 MIPIPS, which is about 0.8 %.

3) Discussion of the Results:

Comparison MIPIPS.1: All MIPIPS values differ by
at most 0.44 % from the mean value. This value is below
our 2.5 % threshold and hence, the calculated MIPIPS
value is approximately constant for an mi.small instance
on Eucalyptus.

Comparison MIPIPS.2: From ml.small to m2.xlarge,
the MIPIPS values increase and the EC2 Compute Units,
that can be seen as a form of performance indicator, also
increase. Thus, the MIPIPS benchmark produces plausible
results for those instance types.

Comparison MIPIPS.3: The MIPIPS values deviate by
at most 0.8 % from the MIPIPS mean value and 0.8 % lies
below our 2.5 % threshold. Therefore, the calculated MIP-
IPS value stays approximately constant for an cl.medium
instance on Amazon EC2.

4) Threats to Validity: Performing only one run in com-
parison MIPIPS.2 might have produced MIPIPS values that
largely differ from the mean value, which would result by
performing more runs. However, most MIPIPS results differ
by more than 10 %, and the deviation for instances that neg-
ligibly depend on the workload intensity of other instances

Average CPU Utilization Average CPU Utilization

—— Average CPU utilization
—— Number of allocated nodes

—— Average CPU utilization
—— Number of allocated nodes

90
90

70
T

70
T

30
T
30
I O S B
T

Number of allocated nodes

T
0o 1 2 3 4 5 6 7 8
Number of allocated nodes

0 10

o
=]
o

Average CPU utilization over all allocated nodes [%)]
50
T Y T Y IO N N |
T
0 1 2 3 4 5 6 7 8

Average CPU utilization over all allocated nodes [%]
5

0100:00 0107:00 0114:00 0121:00
Experiment time [day hour:minute]

TTTT T T T T T T T T I T T T T T77T
0100:00 0107:00 0114:00 0121:00
Experiment time [day hour:minute]

(a) Measured CPU utilization (b) Simulated CPU utilization

Figure 3. Average CPU utilization of allocated nodes in SingleCore.1

run on the same host was lower than 1 %. The ml.large
and cl.medium instance types differ by 4 % in MIPIPS.2.
Here, the measured value for m1.large might result from the
circumstance that EC2 compute units include other factors
like L2 cache and the modernity of the processor chip set.
In future work, more runs and statistical methods should be
conducted to evaluate the size and shape of the distribution
of results.

On Amazon EC2, the performance of the instances can
differ from the location where the virtual machine instances
are spawned and how large the workload intensity on the
running host is. For instance, this circumstance is described
in [2]. Furthermore, the workload intensity on the node
might have changed during the run. We cannot control these
factors and thus, they stay as a threat to validity.

D. E2: Accuracy Evaluation for Single Core Instances

1) Scenarios:

Scenario SingleCore.1: Dynamic approach for Euca-
lyptus run with ml.small: The workload from a run, that
is conducted on Eucalyptus with ml.small, is used and on
the basis of it, the simulation takes place. The simulation is
configured to use the dynamic approach.

Scenario SingleCore.2: Dynamic approach for Amazon
EC2 run with ml.small: The simulation takes place on
the basis of the workload from a run, that is conducted
on Amazon EC2 with ml.small. Again, the simulation is
configured to use the dynamic approach.

2) Results:

Scenario SingleCore.1: Figure 3 displays the average
CPU utilization of the allocated nodes and the instance
count for SingleCore.1 utilizing the dynamic approach. The
first peak at the beginning has a lower CPU utilization in
the simulated run. The rest of the experiment time, the
simulation and the conducted run are roughly equal or only
deviate by below 5 % CPU utilization. The instance count
is approximately the same between the conducted run and
the simulation.

The relative error for the CPU utilization is REcpy =
29.18 %. The relative error of the instance count is RE;c =

Median of Response Times of Operation
CartBean.addltemToCart

Median of Response Times of Operation
CartBean.addItemToCart

290 580 870 1160 1450
208 416 624 832 1040

Median of response times [milliseconds]

Median of response times [milliseconds]
0.0

0.0

TTT T T T T T T T T T T T T T T T77TT
0100:00 0107:00 0114:00 0121:00
Experiment time [day hour:minute]

TTTT T T T T T T T T T T T T I T TT7T
0100:00 0107:00 0114:00 0121:00
Experiment time [day hour:minute]

(a) Measured response times (b) Simulated response times

Figure 4. Median of response times in SingleCore.1

0.64 %. The incurred costs account for 5.985$ for the
Eucalyptus run. The simulation costs result in 6.365$, which
is REcosts = 6.34 %.

In Figure 4, the median of response times per minute for
SingleCore.1 are shown. The first peak in the response times
of the conducted run at the beginning is smaller and is not
as long as in the simulation. The peak in hour 8 is smaller in
the simulation by about 10 milliseconds. The peak in hour
9 is also smaller in the simulation by about 60 milliseconds.
After this peak, the simulated response times approximately
follow the response times in the conducted run but they differ
by an offset of about 20 milliseconds. An exception is the
peak in hour 17. Here, the simulated response times differ
by 70 milliseconds.

The relative error for the response times is REpr =
24.85 %. The overall relative error for this scenario amounts
to OverallRE = 15.25 %.

Scenario SingleCore.2: Figure 5 displays the average
CPU utilization of allocated nodes and the instance count
for SingleCore.2 utilizing the dynamic approach. The peak
in the CPU utilization at the beginning is 10 % larger in the
simulation than in the conducted run. Afterwards, it drops
to 20 % in the conducted run and to 30 % in the simulation.

In the simulation, there is a peak at hour 3 with 70 % CPU
utilization. The instance count in the simulation increases to
2 in this hour. In contrast, the conducted run reaches 50 to
60 % CPU utilization from hour 3 to 5 and the instance
count stays at 1 instance. From hour 4 to 5, the simulation
has about 35 % CPU utilization. The instance count in the
simulation decreases to 1 in hour 5.

The rest of the experiment time the CPU utilization and
instance count is approximately equal in the simulation and
conducted run.

The relative error for the CPU utilization is REcpy =
30.86 %. The relative error for the instance count amounts
to RE;c = 7.89 %. The costs for the scenario are 8.93$ and
the simulated run costs are 9.785$, which is a relative error
of REcosts = 9.57 %. The relative error for the response
times is REgr = 42.71 %. The overall relative error for
this scenario amounts to Qverall RE = 22.75 %.

Average CPU Utilization Average CPU Utilization

8

—— Average CPU utilization
—— Number of allocated nodes |

—— Average CPU utilization
—— Number of allocated nodes |

90
90
7

T

6
T
6

70
T
70
Number of allocated nodes

T T
3 4 5

30
30
T

Number of allocated nodes
2 3 4 5

2

T

1
T
1

0 10

o
=]
o

T
0
T
0

0100:00 0107:00 0114:00 012100
Experiment time [day hour:minute]

(a) Measured CPU utilization

0100:00 0107:00 0114:00 0121:00
Experiment time [day hour:minute]

(b) Simulated CPU utilization

Average CPU utilization over all allocated nodes [%)]
50
T Y T Y IO N N |
Average CPU utilization over all allocated nodes [%]
0
T R Y T T T R N |
T

Figure 5. Average CPU utilization of allocated nodes in SingleCore.2

3) Discussion of the Results:

Scenario SingleCore.1: The relative error of the CPU
utilization is 29.18 % which is relatively high for the nearly
equal looking CPU utilization curve. We attribute this high
value to the differences when the CPU utilization is low,
i.e. about 16 % in the simulation in contrast to 20 % in the
conducted run. The low instance count relative error shows
that the reproduction of the number of used instances of the
conducted run is good and is nearly equal to it. The relative
error for the costs is a bit higher than expected from the
instance count relative error. The costs for the conducted
run and the simulation differ by 4 paid instance hours. These
difference probably occurred because the instances at the end
were terminated a few minutes too late. The relative error of
about 25 % for the response times is good because we do
not simulate initializations of classes. These initializations
typically increase the response times when a new virtual
machine is started. This is the reason for the third peak to
be not visible in the simulated response times. A value of
15.25 % in the overall relative error is below our threshold
of 30 % and hence the simulation provides a sufficiently
well reproduction of the conducted run.

Scenario SingleCore.2: The relative error of 30.86 %
for the CPU utilization mainly results from the time in-
terval between the beginning and hour 7. Here, the CPU
utilization in the simulation is larger than in the conducted
run. Furthermore, the second instance, which is only started
in the simulation, reduces the overall CPU utilization. The
second instance from hour 3 to 5 also caused the relative
error for the instance count and the costs to be higher than
what could have been expected of the nearly equal looking
instance counts. From the high relative error for the response
times we can see that the response times do not sufficiently
reproduce the response times of the conducted run. From
hour 7 to hour 22, the response times in the conducted run
are about twice as large as in the simulation. However, since
the overall relative error is 22.75 %, the scenario altogether
reproduces the conducted run sufficiently.

4) Threats to Validity: For Amazon EC2, the threats
we described under E1 also hold for this evaluation. An

Average CPU Utilization

Average CPU Utilization

Average CPU Utilization

8

—— Average CPU utilization
—— Number of allocated nodes |

90
7
90

30 70
LI R —]
2 3 4 5 6
Number of allocated nodes
30 70

T
1

0 10
0 10

T
0

—— Average CPU utilization
—— Number of allocated nodes |

8

—— Average CPU utilization
—— Number of allocated nodes |

LI R
3 4 5 6
70 90
T
5 6 7

30

Number of allocated nodes
T
2 3 4

T
2
Number of allocated nodes

T
1
T
1

o
=]
o

T
0
T
0

Average CPU utilization over all allocated nodes [%]
50
Average CPU utilization over all allocated nodes [%)]
50
T Y T Y IO N N |

TTT T T T T T T T T T T T T I T ITTT7 77T
0100:00 0107:00 0114:00 0121:00
Experiment time [day hour:minute]

(a) Measured CPU utilization
in Amazon EC2 run

Figure 6.

evaluation with one program is not necessarily generalizable.
With JPetStore, our simulation performs well. However, with
other applications this is not necessarily the fact and should
be further researched.

E. E3: Inter-Cloud Accuracy Evaluation

1) Scenario PredictionAmazon.1: Simulate with dynamic
approach an Eucalyptus run from a real Amazon EC2 run:
The workload is recorded with cl.medium instances on
Amazon EC2. Then, on the basis of this workload, the simu-
lation predicts the CPU utilization, instance count, costs, and
response times for the case that the run would be conducted
with Eucalyptus and m/.small instances. Afterwards, a run
with the approximately same workload intensity is done on
Eucalyptus. The simulation uses the dynamic approach.

2) Results: The CPU utilization and instance count for
PredictionAmazon.1 are displayed in Figure 6. The left
subfigure shows the conducted run on Amazon EC2. We
describe the predicted CPU utilization in comparison to
the afterwards conducted run on Eucalyptus. The CPU
utilization of the predicted run and the Eucalyptus run
are approximately the same. However, they differ at the
beginning and from hour 3 to hour 5. At the beginning,
the simulated CPU utilization is 30 % but the run has 52 %.
From hour 3 to 5, the CPU utilization of the simulation is
32 % while the conducted run has about 40 % in this interval.
The instance count is also approximately the same for both
except in hour 23 where the Eucalyptus run terminates the
third instance 10 minutes later than the simulation.

The relative error for the CPU utilization is REcpy =
21.60 %. The relative error of the instance count is RE;c =
1.32 %. The incurred costs account for 6.175$ for the
Eucalyptus run. The simulation costs result in 6.27$, which
iS REcosts = 1.53 %. REpT = 38.62 % is the relative error
for the response times. The overall relative error results in
OverallRE = 15.76 %.

3) Discussion of the Results: The relative error for the
CPU utilization is 21.60 % and thus the simulation suffi-
ciently well predicts the CPU utilization. The relative error

0100:00 0107:00 0114:00 01 21:00
Experiment time [day hour:minute]

(b) Simulated CPU utilization

Average CPU utilization over all allocated nodes [%]
5l

TTTTTTTTI T T T T T T I T I T I TTIT T
0100:00 0107:00 0114:00 01 21:00
Experiment time [day hour:minute]

(c) Measured CPU utilization
in Eucalyptus run

Average CPU utilization of allocated nodes in PredictionAmazon.1

of 1.32 % for the instance count shows that the prediction
of the number of used instances of the Eucalyptus run is
nearly equal to it. The same applies for the relative error of
1.53 % for the costs. The response times relative error of
38.62 % is rather high in comparison to the other low values.
We attribute this circumstance mainly to not modeling the
initialization time of Java classes. The overall relative error
of 15.76 % is below our 30 % threshold and thus the
simulation sufficiently predicts the run using Eucalyptus.

4) Threats to Validity: The threats to validity from E2
also are applicable in this evaluation. Furthermore, we only
conducted a prediction from a run with c¢/.medium instances
on Amazon EC2 to ml.small instances on Eucalyptus.

VI. RELATED WORK

Like CloudSim [5], GroudSim [11] is a tool for simulating
clouds environments. In contrast to CloudSim, GroudSim
also provides support for the simulation of Grids. Fur-
thermore, GroudSim utilizes an event-based simulator that
requires only one thread per simulation, while CloudSim
follows a process-based approach that runs a separate thread
for each entity. The equivalent to Cloudlets in CloudSim
are GroudJobs in GroudSim. A further feature of GroudSim
is the definition of failures. Failures can be generated in a
defined interval for a specific registered resource.

SLAstic.SIM [10] is a performance simulator for runtime
configurable component-based software systems utilizing
SLAstic. The system, that should be simulated, must be
modeled as an instance of the Palladio Component Model
(PCM) for SLAstic.SIM. Furthermore, SLAstic.SIM re-
quires external workload traces and reconfiguration plans for
simulation. SLAstic.SIM helps to predict the performance
impact of specific reconfiguration actions and thus it can
support the evaluation of different adaptation strategies.

iCanCloud [12] is a simulation platform for modeling
and simulating cloud computing architectures. It is mainly
aimed for the prediction of the trade-off between costs and
performance of a specific application in a specific cloud
environment and configuration. Furthermore, it bases on the

SIMCAN simulation framework. With iCanCloud, the user
can model applications using traces of real applications,
using state graphs, and by programming new applications
directly in the simulation platform. However, it does not
provide support for importing existing software systems
easily. These must be modeled manually.

The Cloudstone toolkit [13] includes a multi-platform,
multi-language benchmark, and measurement tools for Web
2.0. It has three components. The first component comprises
of Olio and Faban. Olio consists of two implementations of a
social-event calendar web application. Both implementations
feature user-generated content, social networking functions,
and an AJAX-based user interface. Faban is an open source
performance workload creation and execution framework.
The second component is a set of automation tools for, e.g.,
database population and metric gathering for testing Olio. A
recommended method for calculation of the metric dollars
per user per month forms the third component.

SMICloud [14] is a framework for comparing different
cloud providers based on the requirements of the user. It
utilizes different measures that form a Service Measurement
Index (SMI) for each cloud provider. With SMICloud a
user can compare between different cloud provider offerings
basing on his priorities and requirements.

VII. CONCLUSION AND FUTURE WORK

During a cloud migration a cloud user has to assess a
wide range of different cloud deployment options (CDOs).
For example, a selection of a cloud provider must be
conducted. Furthermore, the mapping between services and
virtual machine instances must be considered. The virtual
machine instances’ configuration and adaptation strategies
must be also specified. Rewriting and testing the software
with the different cloud deployment options is infeasible.
Simulating the different deployment options can assist to
find the best ratio between high performance and low costs.

The article showed how CDOs can be simulated. First,
the diverse inputs and outputs of the simulation were de-
scribed. An approach for the derivation of MIPIPS, a new
measure for the computing performance of nodes, and three
approaches for instruction count (IC) derivation were pre-
sented. The MIPIPS and weights benchmark and CDOSim
were described. The evaluation showed that CDOSim’s
simulation results are reasonable near to the conducted runs
concerning accruing costs and performance. Especially, we
demonstrated that CDOSim can sufficiently accurate predict
the execution on a different cloud provider.

Most future work lies in further adaptations to CDOSim.
In order to perform an automatic optimization of cloud
deployment options efficiently, it should be possible that
simulations can run in parallel. Hence, CloudSim should
be extended to support parallel simulations. Furthermore, it
should be possible to simulate other attributes of the cloud

like the I/O performance. In addition, the elementary model
for computing network costs should be extended.

REFERENCES

[1] J. Grundy, G. Kaefer, J. Keong, and A. Liu, “Guest Editors’
Introduction: Software Engineering for the Cloud,” IEEE
Software, vol. 29, pp. 26-29, 2012.

[2] P. Brebner and A. Liu, “Performance and Cost Assessment of
Cloud Services,” in Service-Oriented Computing, ser. Lecture
Notes in Computer Science, E. Maximilien, G. Rossi, S.-T.
Yuan, H. Ludwig, and M. Fantinato, Eds. ~Springer Berlin/
Heidelberg, 2011, vol. 6568, pp. 39-50.

[3] F. Fittkau, “Simulating Cloud Deployment Options for Soft-
ware Migration Support,” Master’s thesis, Software Engineer-
ing Group, University of Kiel, Kiel, Germany, March 2012.

[4] R. Pérez-Castillo, I. G.-R. de Guzman, and M. Piattini,
“Knowledge Discovery Metamodel-ISO/IEC 19506: A stan-
dard to modernize legacy systems,” Computer Standards and
Interfaces, vol. 33, no. 6, pp. 519-532, 2011.

[5] R.N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose,
and R. Buyya, “CloudSim: a toolkit for modeling and simu-
lation of cloud computing environments and evaluation of
resource provisioning algorithms,” Software: Practice and
Experience, vol. 41, pp. 23-50, Jan. 2011.

[6] S. Frey, W. Hasselbring, and B. Schnoor, “Automatic Con-
formance Checking for Migrating Software Systems to
Cloud Infrastructures and Platforms,” Journal of Software
Maintenance and Evolution: Research and Practice, doi:
10.1002/smr.582, 2012.

[7] A. Georges, D. Buytaert, and L. Eeckhout, “Statistically rig-
orous java performance evaluation,” SIGPLAN Not., vol. 42,
pp. 57-76, Oct. 2007.

[8] B. P. Zeigler, Theory of Modelling and Simulation. Malabar:
Krieger, 1985.

[9] D. A. Menasce and V. A. F. Almeida, Capacity Planning for
Web Services: Metrics, Models, and Methods. Prentice Hall
International, Sep. 2001.

[10] R. von Massow, A. van Hoorn, and W. Hasselbring, “Per-
formance simulation of runtime reconfigurable component-
based software architectures,” in Software Architecture, ser.
Lecture Notes in Computer Science, I. Crnkovic, V. Gruhn,
and M. Book, Eds. Springer Berlin / Heidelberg, 2011, vol.
6903, pp. 43-58.

[11] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer,
“GroudSim: An Event-based Simulation Framework for Com-
putational Grids and Clouds,” in CoreGRID/ERCIM Work-
shop on Grids, Clouds and P2P Computing. Springer, 2010.

[12] A. Nufiez, J. Vazquez-Poletti, A. Caminero, J. Carretero, and
I. Llorente, “Design of a new cloud computing simulation
platform,” in Computational Science and Its Applications
- ICCSA 2011, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2011, vol. 6784, pp. 582-593.

[13] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,
H. Wong, A. Klepchukov, S. Patil, O. Fox, and D. Patterson,
“Cloudstone: Multi-platform, multi-language benchmark and
measurement tools for web 2.0,” in Proceedings of the Ist
Workshop on Cloud Computing (CCA 08), Oct. 2008.

[14] S. Garg, S. Versteeg, and R. Buyya, “SMICloud: A Frame-
work for Comparing and Ranking Cloud Services,” in Pro-
ceedings of the 4th IEEE International Conference on Utility
and Cloud Computing (UCC 11), Dec. 2011, pp. 210-218.

	Introduction
	Fundamentals
	Cloud Deployment Option
	CloudSim
	MIPIPS
	Weights per Statement

	MIPIPS and Weights Benchmark
	MIPIPS
	Derivation
	Generation

	Weights per Statement
	Derivation

	The Simulator CDOSim
	Overview
	Simulation approach
	Simulation Input
	Instruction Count

	Simulation Output
	Cost
	Response Times
	SLA Violations
	Rating

	CloudSim Enhancements

	Evaluation
	Methodology
	Basic Experiment Setup
	JPetStore Adaptation
	Amazon EC2
	Eucalyptus
	Workload Profile

	E1: MIPIPS Benchmark Evaluation
	Comparisons
	Results
	Discussion of the Results
	Threats to Validity

	E2: Accuracy Evaluation for Single Core Instances
	Scenarios
	Results
	Discussion of the Results
	Threats to Validity

	E3: Inter-Cloud Accuracy Evaluation
	Scenario PredictionAmazon.1: Simulate with dynamic approach an Eucalyptus run from a real Amazon EC2 run
	Results
	Discussion of the Results
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

