
University of Kiel

Department of Computer Science

Software Engineering Group

Simulating

Cloud Deployment Options

for Software Migration Support

Master’s Thesis

2012-03-26

Written by: B.Sc. Florian Fittkau

born on 1987-01-14 in Kiel

Supervised by: Prof. Dr. Wilhelm Hasselbring

M.Sc. Sören Frey

II

Hiermit versichere ich, Florian Fittkau, dass ich die Masterarbeit selbständig verfasst

und keine anderen als die angegebenen und bei Zitaten kenntlich gemachten Quellen

und Hilfsmittel benutzt habe und die Arbeit in keinem anderen Prüfungsverfahren

eingereicht habe.

Ort, Datum, Unterschrift

III

IV

Abstract

Cloud computing is emerging as a promising new paradigm that aims at

delivering computing resources and services on demand. To cope with the fre-

quently found over- and under-provisioning of resources in conventional data

centers, cloud computing technologies enable to rapidly scale up and down

according to varying workload patterns. However, most software systems are

not built for utilizing this so called elasticity and therefore must be adapted

during the migration process into the cloud. A challenge during migration is

the high number of different possibilities for the deployment to cloud comput-

ing resources. For example, there exist a plethora of potential cloud provider

candidates. Here, the selection of a specific cloud provider is the most obvi-

ous and basic cloud deployment option. Furthermore, the mapping between

services and virtual machine instances must be considered when migrating to

the cloud and the specific adaptation strategies, like allocating a new virtual

machine instance if the CPU utilization is above a given threshold, have to be

chosen and configured. The set of combinations of the given choices form a

huge design space which is infeasible to test manually. Simulating the different

deployment options assists to find the best ratio between high performance

and low costs.

For this purpose, we developed a simulation tool named CDOSim that

can simulate those cloud deployment options. CDOSim integrates into the

cloud migration framework CloudMIG Xpress and utilizes KDM models that

were extracted by a reverse engineering process. Furthermore, it is possible

to use monitored workload profiles as a simulation input. Our evaluation

shows that CDOSim’s simulation results can support software engineers to

sufficiently accurate predict the cost and performance properties of software

systems when deployed to private and real world public cloud environments

such as Eucalyptus and Amazon EC2, respectively. Thus, CDOSim can be

used for the simulation of cloud deployment options and assists to find the

best suited cloud deployment option for existing software systems.

V

VI

CONTENTS CONTENTS

Contents

List of Figures XI

List of Tables XIII

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 1

1.3 Goals . 3

1.4 Document Structure . 4

2 Foundations and Technologies 5

2.1 Foundations . 5

2.2 Involved Technologies . 12

3 Simulation Input 21

3.1 Overview . 21

3.2 MIPIPS . 22

3.3 Instruction Count . 27

3.4 Weights per Statement . 40

3.5 Network Traffic . 41

3.6 SMM Workload Profile . 43

3.7 Enriched KDM Model . 43

3.8 Adaptation Rules . 44

3.9 Configuration . 44

4 Simulation Output 47

4.1 Costs . 47

4.2 Response Times . 47

4.3 SLA Violations . 47

4.4 Rating . 48

5 CloudSim Enhancements 49

5.1 Overview . 49

5.2 Enhanced CloudSim Meta-Model . 49

5.3 CPU Utilization Model per Core . 51

VII

CONTENTS CONTENTS

5.4 Starting and Stopping Virtual Machine Instances on Demand 51

5.5 Delayed Cloudlet Creation . 52

5.6 Delayed Start of Virtual Machines . 52

5.7 Timeout for Cloudlets . 52

5.8 Improved Debt Model . 53

5.9 Enhanced Instruction Count Model 53

5.10 History Exporter . 53

5.11 Dynamic Host Addition at Runtime 54

5.12 Method Calls and Network Traffic between Virtual Machine Instances 54

6 MIPIPS and Weights Benchmark 57

6.1 Features . 57

6.2 Design . 57

6.3 Example Output . 59

7 CDOSim 61

7.1 Features . 61

7.2 The Simulation Process . 62

7.3 Design . 63

8 Evaluation of CDOSim 65

8.1 Goals of the Evaluation . 65

8.2 Methodology . 66

8.3 Basic Experiment Setup . 67

8.4 E1: MIPIPS Benchmark Evaluation 74

8.5 E2: Accuracy Evaluation for Single Core Instances 80

8.6 E3: Accuracy Evaluation for Multi Core Instances 99

8.7 E4: Accuracy Evaluation for Adaptation Strategy Configurations . . 104

8.8 E5: Inter-Cloud Accuracy Evaluation 109

8.9 Summary . 112

9 Related Work 115

9.1 GroudSim . 115

9.2 Palladio . 115

9.3 SLAstic.SIM . 115

9.4 iCanCloud . 116

9.5 Byte Instruction Count for Java . 116

VIII

CONTENTS CONTENTS

9.6 Measuring Elasticity . 117

9.7 Dhrystone Benchmark . 117

9.8 Cloudstone Toolkit . 118

10 Conclusions and Future Work 119

10.1 Conclusions . 119

10.2 Future Work . 119

References 121

A Glossary i

B Ecore Model for MIPIPS and Weights Benchmark iii

C KDM example v

D Rating Algorithm xi

E Attachments xv

IX

CONTENTS CONTENTS

X

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Users and providers of cloud computing taken from Armbrust et al. [2] 8

2 CloudMIG approach taken from Frey et al. [19] 10

3 CloudSim architecture taken from Calheiros et al. [10] 13

4 CloudMIG Xpress overview taken from Frey et al. [19] 14

5 Extracted CloudSim meta-model . 15

6 Layers of KDM taken from Pérez-Castillo et al. [54] 16

7 Example of determining the median of response times during phases

of low CPU utilization in the dynamic approach 30

8 Enhanced CloudSim meta-model . 50

9 CPU utilization model example . 52

10 New scheduling example . 55

11 Java packages of the MIPIPS and weights benchmark 58

12 GUI of the MIPIPS and weights benchmark 58

13 Activities in CDOSim’s simulation process 62

14 Java packages of CDOSim . 63

15 GUI of CDOSim . 64

16 Deployment configuration for Eucalyptus 70

17 Deployment configuration for Amazon EC2 72

18 The used day-night-cycle workload intensity 73

19 Average CPU utilization of allocated nodes in SingleCore.1 experiment 83

20 Median of response times in SingleCore.1 experiment 84

21 Average CPU utilization of allocated nodes in SingleCore.2 experiment 84

22 Median of response times in SingleCore.2 experiment 85

23 Average CPU utilization of allocated nodes in SingleCore.3 experiment 86

24 Median response times in SingleCore.3 experiment 87

25 Average CPU utilization of allocated nodes in SingleCore.4 experiment 87

26 Median response times in SingleCore.4 experiment 88

27 Average CPU utilization of allocated nodes in SingleCore.5 experiment 89

28 Median response times in SingleCore.5 experiment 90

29 Average CPU utilization of allocated nodes in SingleCore.6 experiment 91

30 Median response times in SingleCore.6 experiment 92

31 Average CPU utilization of allocated nodes in SingleCore.7 experiment 92

32 Median response times in SingleCore.7 experiment 93

33 Average CPU utilization of allocated nodes in SingleCore.8 experiment 94

XI

LIST OF FIGURES LIST OF FIGURES

34 Median response times in SingleCore.8 experiment 95

35 Average CPU utilization of allocated nodes in MultiCore.1 experiment101

36 Median response times in MultiCore.1 experiment 101

37 Average CPU utilization of allocated nodes in MultiCore.2 experiment102

38 Median response times in MultiCore.2 experiment 103

39 Average CPU utilization of allocated nodes in Adaptation.1 experiment105

40 Median response times in Adaptation.1 experiment 106

41 Average CPU utilization of allocated nodes in Adaptation.2 experiment107

42 Median response times in Adaptation.2 experiment 107

43 Average CPU utilization of allocated nodes in PredictionAmazon.1

experiment . 110

44 Median response times in PredictionAmazon.1 experiment 111

45 Ecore model for MIPIPS and weights benchmark as UML class diagram iii

XII

LIST OF TABLES LIST OF TABLES

List of Tables

1 Overview of the preconditions for each instruction count derivation

approach . 28

2 Example weights . 37

3 Contained weight benchmarks . 42

4 Simulation configuration parameters 44

5 Our Eucalyptus server . 69

6 Our Eucalyptus configuration . 69

7 Used instance types in Amazon EC2 experiments 71

8 Default simulation configuration . 74

9 Results for comparison MIPIPS.1 . 76

10 Results for comparison MIPIPS.2 . 76

11 Results for comparison MIPIPS.3 . 77

12 Results for comparison MIPIPS.4 . 77

13 Results for comparison MIPIPS.5 . 78

14 Overview of the relative error values for each scenario 113

XIII

LIST OF TABLES LIST OF TABLES

XIV

1 INTRODUCTION

1 Introduction

1.1 Motivation

Cloud computing is emerging as a promising new paradigm that aims at deliv-

ering computing resources and services on demand. To cope with the frequently

found over- and under-provisioning of resources in conventional data centers, cloud

computing technologies enable to rapidly scale up and down according to varying

workload patterns. However, most software systems are not built for utilizing this

so called elasticity and therefore must be adapted during the migration process into

the cloud [46].

Here, the selection of a specific cloud provider is the most obvious and basic

cloud deployment option. Furthermore, the mapping between services and virtual

machine instances must be considered when migrating to the cloud and the specific

adaptation strategies, like allocating a new virtual machine instance if the CPU

utilization is above a given threshold, have to be chosen and configured. The set

of combinations of the given choices form a huge design space which is infeasible to

test manually [25].

The simulation of a cloud deployment option can assist in solving this problem.

A simulation is often faster than executing real world experiments. Furthermore,

the adaptation to the software system, that shall be migrated, requires less effort

at a modeling layer. The simulation can be utilized by an automatic optimization

algorithm to find the best ratio between high performance and low costs.

1.2 Approach

We begin with defining the fundamental concept of a cloud deployment option and

describe our simulation approach.

Definition 1 In the context of a deployment of software on a cloud platform, a

cloud deployment option is a combination of decisions concerning the selection of

a cloud provider, the deployment of components to virtual machine instances, the

virtual machine instances’ configuration, and specific adaptation strategies.

Definition 1 shows our definition of a cloud deployment option. The deployment

of components to virtual machine instances includes the case that new components

might be formed of parts of already existing components. By a virtual machine

1

1 INTRODUCTION 1.2 Approach

instances’ configuration, we refer to the instance type, as m1.small in the case of

Amazon EC2, of virtual machine instances, for instance. Furthermore, an example

for an adaptation strategy is “start a new virtual machine instance when for 60

seconds the average CPU utilization of allocated nodes stays above 70 %.”

For simulating a cloud deployment option, we basically need a cloud environment

simulator. For this purpose, we utilize CloudSim [10]. There are various inputs that

are required by CloudSim. For modeling a computation like an application call,

named Cloudlet in CloudSim, CloudSim mainly requires the instruction count of

the computation. The instruction count of a Cloudlet is a measure for the work that

has to be conducted by the CPU. As a central input for modeling the capacity of

virtual machine instances, CloudSim needs the mega instructions per second (MIPS)

of the virtual machine instance. MIPS are a measure for the computing performance

of the virtual machine instance. CloudSim does neither define a method for deriving

the instruction count nor the MIPS. Furthermore, CloudSim does not specify which

instructions are meant.

We assume that CloudSim requires instructions on a language level, e.g., double

divide and integer minus, and that these instructions all equally flow into the MIPS

value. Hence, we consider MIPS as too coarse grained because different instructions

have different runtimes in general. Therefore, we define the measure mega integer

plus instructions per second (MIPIPS). The measurement of MIPIPS should be

separate from the actual simulation software because it has to be run on the virtual

machine instances to measure their MIPIPS, for example. In accordance to MIPIPS,

the instruction count unit of a Cloudlet has to be in integer plus instructions. Other

instruction types must be converted to these integer plus instructions by weights

that will also be measured separately from the actual simulation software.

To rate the suitability of a specific cloud deployment option, the simulation

has to compute some information like costs for the given cloud deployment option.

Furthermore, the outputs of a simulation run have to be comparable to the outputs

of other simulation runs. This leads to the need for a rating approach.

A further requirement for the simulation results from the wide range of program-

ming languages supported by different cloud providers. Infrastructure-as-a-Service

(IaaS) providers typically support all programming languages because they are only

providing the infrastructure computing resources. Therefore, we need a language in-

dependent simulation. For this purpose, we utilize the Knowledge Discovery Meta-

Model (KDM) that provides information about the existing software system in a

language independent way.

2

1.3 Goals 1 INTRODUCTION

CloudMIG [15] provides a promising approach to assist in a migration project to

a cloud environment. There also exists a prototype implementation, called Cloud-

MIG Xpress [18], that implements this approach. Our software, named Cloud De-

ployment Options Simulator (CDOSim), for realizing the simulation contributes to

CloudMIG Xpress as a plug-in. It utilizes workload profiles that can be modeled

by the user or can be imported from monitoring data that were recorded by, for

instance, Kieker [70].

1.3 Goals

Our main objective is a software that enables the simulation of cloud deployment

options on a language independent basis. For this purpose, we define the following

goals.

1.3.1 G1: Definition of the Simulation Input

The definition of the simulation input should be accomplished by goal G1. MIPIPS

and instruction count was already described as an input. However, there are more.

Furthermore, where appropriate, derivation methods for the input parameter should

be developed or defined.

1.3.2 G2: Definition of the Simulation Output

In goal G2 the output of the simulation should be defined. Furthermore, a metric

for comparing the cloud deployment options in respect to the output should be

developed.

1.3.3 G3: Development of a Benchmark for Measuring the Computing

Performance of a Node in MIPIPS

In G3 a benchmark for measuring the computing performance of a node in MIPIPS,

that can be easily adapted to new programming languages, shall be developed. It

shall include a GUI and a console interface because virtual machine instances can

often only be accessed via a command shell.

3

1 INTRODUCTION 1.4 Document Structure

1.3.4 G4: Development of CDOSim

The last goal is the development of a software that realizes the simulation. Fur-

thermore, it shall be integrated into CloudMIG Xpress as a plug-in. We name this

software CDOSim. To achieve the programming language independence, CDOSim

shall operate on KDM instances.

1.4 Document Structure

The remainder of the thesis is structured as follows. Section 2 outlines the founda-

tions and utilized technologies. Afterwards, Section 3 presents the simulation inputs

and how they can be derived (G1). Then, Section 4 describes the simulation out-

put (G2) and a rating approach for rating simulation runs relatively to each other.

The enhancements we needed to conduct for CloudSim are listed in Section 5. The

following Section 6 describes our MIPIPS and weights benchmark (G3). Our devel-

oped tool for simulating cloud deployment options, named CDOSim, is discussed in

Section 7 (G4). The following Section 8 evaluates the functionality and accuracy of

CDOSim. Then, Section 9 describes related work. The final Section 10 concludes

the thesis and defines the future work.

4

2 FOUNDATIONS AND TECHNOLOGIES

2 Foundations and Technologies

Sections 2.1 to 2.2 provide an overview of the foundations and technologies that will

be used in later sections.

2.1 Foundations

The following Sections 2.1.1 to 2.1.5 describe the foundations.

2.1.1 Cloud Computing

Cloud computing is a relatively new computing paradigm. Therefore, many defini-

tions for cloud computing exist. Here, we use the National Institute of Standards

and Technology (NIST) definition by Mell and Grance [42] because this definition

has become a de-facto standard.

The NIST definition for cloud computing defines five essential characteristics

that a service must fulfill in order to be a cloud service, for example, on-demand

self-service. Furthermore, it describes three different service models. These are IaaS,

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). They differ in the

levels of abstraction with regard to configuration and programming options. Clouds

can be deployed according to four different deployment models. These are public

clouds, private clouds, hybrid clouds, and community clouds. In addition, Armbrust

et al. [2] define different role models for users and providers of cloud computing

services.

Essential Characteristics

The NIST definition for cloud computing defines five essential characteristics that

a service must fulfill in order to be a cloud service. These are listed and described

below.

1. On-demand self-service

A user can rent computing capabilities like storage and computing time on demand

in an automatic way without human interaction of the service provider.

5

2 FOUNDATIONS AND TECHNOLOGIES 2.1 Foundations

2. Broad network access

The capabilities can be accessed over the network by standard mechanisms. These

standard mechanisms are available on heterogeneous platforms like mobile phones

and laptops.

3. Resource pooling

The cloud provider’s computing resources are pooled to serve multiple cloud users.

The location, where the physical or virtual resources are allocated, is not exactly

known by the cloud users.

4. Rapid elasticity

Virtually unlimited resources can be rapidly and elastically allocated to enable quick

scale up and down. It can be purchased by the cloud users in any quantity at any

time.

5. Measured Service

By monitoring the usage, the cloud system automatically controls and optimizes the

used resources. For the cloud provider and cloud users, transparency is provided by

monitoring, controlling, and reporting the resource usage data.

Service Models

The cloud providers can offer their service at different levels of abstraction with

regard to configuration and programming options. The different kinds of service

models are described in the following three paragraphs.

Infrastructure-as-a-Service (IaaS)

Infrastructure-as-a-Service provides the lowest level of abstraction with a maximum

of configuration options compared to the other service models. In IaaS, the cloud

user setups and runs instances of previously created or provided virtual machine

images. Therefore, the cloud user can create the full software stack by himself. A

popular cloud provider that offers IaaS is, for instance, Amazon with its Elastic

Compute Cloud (EC2).

Platform-as-a-Service (PaaS)

Considering the PaaS model, the cloud provider defines and maintains the program-

ming environment for the cloud user. Many PaaS providers only support specific

6

2.1 Foundations 2 FOUNDATIONS AND TECHNOLOGIES

programming languages with even more constraints to meet the environment spec-

ifications. Examples for PaaS providers are Google App Engine [21] and Microsoft

Azure [45].

Software-as-a-Service (SaaS)

SaaS provides the highest level of abstraction with no configuration options apart

from the rented software. The cloud user rents access to the software in the cloud.

The cloud user advantages can be avoided installation and maintenance effort, for

instance. Examples for SaaS-based products are Google Docs or Microsoft Office

Live.

Deployment Models

Clouds can be deployed using four different deployment models. These are public

clouds, private clouds, hybrid clouds, and community clouds. These deployment

models are briefly outlined in the next four paragraphs.

Public Clouds

In a public cloud, the cloud infrastructure can be accessed by the general public.

For instance, Amazon provides a public cloud named Amazon EC2.

Private Clouds

Public clouds can have disadvantages for some users. First, there might be legal

aspects that prohibit to use public clouds for data protection reasons. Furthermore,

cloud providers can go bankrupt. For avoiding those disadvantages, private cloud

software can be deployed on the own servers. An example for a private cloud software

is Eucalyptus.

Hybrid Clouds

In this deployment model, private and public cloud providers are used together by a

cloud user. Companies often use this kind to combine the advantages of public and

private clouds. The privacy-critical applications are executed in a private cloud and

the rest of the applications are run in a public cloud.

Community Clouds

The last deployment model is a community cloud. This kind of a cloud provides

access only to a special community.

7

2 FOUNDATIONS AND TECHNOLOGIES 2.1 Foundations

Role Models

Armbrust et al. [2] define the role models cloud provider, SaaS provider, cloud user,

and SaaS user. The associations between them is shown in Figure 1. A cloud

provider offers the cloud users the resources in terms of utility computing. Thus,

he provides the resources on an IaaS or PaaS service basis. A special kind of cloud

user is a SaaS providers. The SaaS provider makes SaaS services available to SaaS

users through web applications. The NIST defines similar role models [41].

Figure 1: Users and providers of cloud computing taken from Armbrust et al. [2]

2.1.2 Software Modernization

Jha and Maheshwari [32] propose a classification of current modernization approaches.

They identified three main approaches, i.e., redevelopment, wrapping, and migra-

tion. Redevelopment includes the rewriting from scratch approach and the reverse

engineering approach. For reverse engineering of the legacy code, it often has to be

understood first before rewriting it [12]. For representing the extracted information

about the legacy source code and architecture a language independent meta-model

like the KDM can be used [31]. The wrapping approach is divided into user inter-

face wrapping, data wrapping, and function wrapping. In each wrapping approach

the corresponding issue is wrapped so that the new system can access them. The

migration approach is divided into component migration and system migration. In

component migration, each component is migrated separately. In system migration,

the whole legacy system is migrated at once.

There are different studies that researched which criteria lead to a software mod-

ernization decision [1, 38]. The three most relevant criteria are system usability,

ending of technological support, and changes in business processes according to

Koskinen et al. [38].

8

2.1 Foundations 2 FOUNDATIONS AND TECHNOLOGIES

2.1.3 CloudMIG Approach

CloudMIG is a migration approach for software systems into the cloud developed

by Frey et al. [15, 16, 17, 18, 19]. It comprises of six steps that are illustrated in

Figure 2. These steps are described in the following.

A1 - Extraction

This step extracts architectural and utilization models of the legacy software sys-

tem. The extraction utilizes KDM and Structured Metrics Meta-Model (SMM) as

a language independent representation of a legacy software system and its quality

attributes.

A2 - Selection

In the selection step an appropriate cloud profile candidate is chosen. Criteria for

the decision can be a preference towards one cloud provider or a feature that has to

be supported.

A3 - Generation

The output of the generation step is a generated target architecture and mapping

model. In addition, the cloud environment constraint violations are detected in this

step. A violation describes the breaking of a limitation of a specific cloud provider,

for instance.

A4 - Adaptation

A reengineer might disagree with some aspects of the generated target architecture.

Therefore, he can adjust them manually in this step.

A5 - Evaluation

The evaluation step simulates the performance and costs of the generated target

architecture and evaluates it basing on the results.

A6 - Transformation

The actual transformation towards the generated target architecture. Currently,

CloudMIG does not provide further support for performing this step. Thus, the

source code and other artifacts have to be adopted manually.

9

2 FOUNDATIONS AND TECHNOLOGIES 2.1 Foundations

Figure 2: CloudMIG approach taken from Frey et al. [19]

� �
1 <s0 , (e0 , t0) , s1 , (e1 , t1) , s2 , (e2 , t2) . . . >� �

Listing 1: Evolution of a system

2.1.4 Simulation

A computer simulation is a program that attempts to emulate a particular system.

One type of simulation is discrete-event simulation [57]. In discrete-event simulation

the evolution of a system is viewed as a sequence of the form shown in Listing 1. A

system starts in the state s0. Then, the event e0 occurs at the timestamp t0 which

results the system to be in the state s1 and so on. The timestamps ti, where i is

larger than 0, have to be nonnegative numbers and the ti’s have to be nondecreasing.

With such a sequence representing an evolution of a given system, we can conclude

properties of the system, e.g., if it reaches a steady state. Thus, we can draw

conclusions about the real system.

10

2.1 Foundations 2 FOUNDATIONS AND TECHNOLOGIES

Entities

Entities are models of real world objects. In CloudSim (see Section 2.2.1), for

example, a data center is an entity. The former mentioned state of the simulation

model is the state of all entities’ attributes. If an attribute changes due to the

occurrence of an event, a new state is entered. Furthermore, an entity can provide

methods for triggering the change of its attributes or to generate new events.

Events

While the simulation is active, external or internal events are produced and sent to

the entities at a specific timestamp. If the timestamp lies in the future in respect to

the actual simulation time, the event is scheduled until the simulation time reaches

the specific timestamp. The scheduler maintains a queue of pending events. The

events in the queue are processed successively. When the queue is empty, the simula-

tion typically terminates, if it does not expect further external events. In CloudSim,

for instance, the triggering for the creation of a virtual machine instance is an event.

Time

In a simulation, we typically use a model time for representing the real time. Using

a model time has different advantages. It provides more control over time because

we need not care about execution time of calculations. Furthermore, with this

abstraction from the real world, we conduct simulations faster than in real time in

most cases. A simulation can take 10 minutes in real time for simulating a real world

system evolution for, e.g., 24 hours. The model time advances while processing the

events from the event scheduler.

2.1.5 Model Transformation

Czarnecki and Helsen [13] state two different kinds of model transformation, i.e.,

model-to-code and model-to-model transformations. In model-to-code transfor-

mations the authors distinguish visitor-based approaches and template-based ap-

proaches. Visitor-based approaches provide a visitor mechanism that generates code.

Template-based approaches use templates to generated code. The templates typ-

ically consist of target text with metacode to access information from the source

model. The authors distinguish model-to-model transformations by six different

kinds. These are direct-manipulation approaches, relational approaches, graph-

11

2 FOUNDATIONS AND TECHNOLOGIES 2.2 Involved Technologies

transformation-based approaches, structure-driven approaches, hybrid approaches,

and other model-to-model approaches. For further details of these approaches refer

to Czarnecki and Helsen [13].

Mens and Van Gorp [44] mention important characteristics of a model transfor-

mation. These are the level of automation, complexity of the transformation, and

preservation. The level of automation should be classified as manually, often manual

intervention needed, or automated. Considering the complexity of the transforma-

tion, the classification can range from small to heavy-duty transformations which

require other tools and techniques. A model transformation should define the preser-

vation that it keeps. For example, refactoring preserves the behavior but alters the

structure.

Query/View/Transformation (QVT) [23, 53] is a standard for model transforma-

tions established by the Object Management Group (OMG). It defines three related

model transformation languages. These are Relations, Operational Mappings, and

Core. The QVT specification integrates Object Constraint Language (OCL) 2.0 and

is a hybrid of declarative and imperative. It requires Meta Object Facility (MOF)

2.0 models to operate on. Atlas Transformation Language (ATL) is a QVT-like

transformation language and is described in Section 2.2.5.

2.2 Involved Technologies

The following sections provide an overview of the technologies that are relevant in

the context of our work.

2.2.1 CloudSim

CloudSim is a cloud computing system and application simulator developed by Cal-

heiros et al. [7, 9, 10]. It provides different novel features. The first feature is the

support of modeling and simulating large cloud computing environments with a sin-

gle computer. The second feature is a self-contained platform for modeling clouds,

the service brokers, and different policies for allocation, for instance. CloudSim also

provides support for network connection simulation between nodes as the third main

feature. Finally, it offers a facility for simulation of a federated cloud environment.

CloudSim has been successfully used by other researchers for simulating task

scheduling in the cloud or power aware cloud computing [4, 8, 36, 58, 60], for instance.

The architecture of CloudSim is illustrated in Figure 3. The basis is formed by

the CloudSim core simulation engine. It is used by the network, cloud resources,

12

2.2 Involved Technologies 2 FOUNDATIONS AND TECHNOLOGIES

Figure 3: CloudSim architecture taken from Calheiros et al. [10]

cloud services, VM services and user interface structure. Here, so called Cloudlets

constitute an important concept. CloudSim uses Cloudlets to simulate the appli-

cation’s execution by defining the total instruction count the application runtime

would need. On the top, the user can specify the scheduling type (space-shared or

time-shared) and other custom configurations.

CloudSim Meta-Model

We extracted the meta-model of CloudSim because there was no Ecore [65] model

available. Figure 5 shows this meta-model as a Unified Modeling Language (UML)

class diagram. The classes and associations left besides the class link mostly model

the physical resources and the right side contains classes for modeling the virtual

machines and Cloudlets. The link class provides a network link with a specific

latency and bandwidth between data centers and data center brokers.

We start by describing the left part. A data center has storage and specific

data center characteristics like the timezone or the virtual machine monitor. Fur-

thermore, a data center has a virtual machine allocation policy that determines on

which host a new virtual machine should be created. The virtual machine alloca-

tion policy and the data center characteristics share a list of available hosts that

in the real world would be part of the data center. An important part of a host is

a list of processing elements (PE). A PE has a PE provisioner that provides the

13

2 FOUNDATIONS AND TECHNOLOGIES 2.2 Involved Technologies

MIPS, which is a measure for the computing performance. Furthermore, a host has

a bandwidth provisioner, RAM provisioner, and virtual machine scheduler.

In the right part of Figure 5, the data center broker has a major role. It is re-

sponsible for the creation of Cloudlets and triggers the creation of virtual machine

instances. Therefore, it maintains a list of created Cloudlets and virtual machine

instances. A virtual machine instance has different attributes like MIPS and RAM.

In addition, it is associated with a Cloudlet scheduler which is responsible for pro-

cessing Cloudlets. The most important attribute of a Cloudlet is the length. In

combination with the MIPS of a virtual machine instance, this attribute determines

how long the Cloudlet is processing. In addition, a Cloudlet has other attributes

and utilization models for RAM, CPU, and bandwidth.

In CloudSim, only data centers and data center brokers are simulation entities,

i.e., all events can only be processed by those classes.

2.2.2 CloudMIG Xpress

CloudMIG Xpress [19] is a prototype implementation of the CloudMIG approach

which was described in Section 2.1.3. It bases on the Eclipse Rich Client Platform.

Figure 4 illustrates an overview of CloudMIG Xpress. It exhibits a plug-in based

architecture and defines different interfaces for plug-ins that realize the steps A1, A3,

and A5 of CloudMIG. CloudMIG’s internal data format is the Cloud Environment

Model (CEM). Currently, CloudMIG Xpress only supports the steps A1, A2, and

partly A3. Our work contributes the step A5.

Figure 4: CloudMIG Xpress overview taken from Frey et al. [19]

14

2.2 Involved Technologies 2 FOUNDATIONS AND TECHNOLOGIES

-i
d
 :
 i
n
t

-l
e
n
g
th
 :
 l
o
n
g

-f
ile
S
iz
e
 :
 l
o
n
g

-o
u
tp
u
tS
iz
e
 :
 l
o
n
g

-P
E
c
o
u
n
t
:
in
t

-r
e
c
o
rd
 :
 b
o
o
le
a
n

C
lo
u
d
le
t

-i
d
 :
 i
n
t

-i
m
a
g
e
S
iz
e
 :
 l
o
n
g

-R
A
M
 :
 i
n
t

-P
E
c
o
u
n
t
:
in
t

-M
IP
S
 :
 d
o
u
b
le

-b
a
n
d
w
id
th
C
o
n
n
e
c
ti
o
n
 :
 l
o
n
g

-v
m
M
o
n
it
o
r
:
S
tr
in
g

V
m

C
lo
u
d
le
tS
c
h
e
d
u
le
r

C
lo
u
d
le
tS
c
h
e
d
u
le
rT
im
e
S
h
a
re
d

C
lo
u
d
le
tS
c
h
e
d
u
le
rS
p
a
c
e
S
h
a
re
d

C
lo
u
d
le
tS
c
h
e
d
u
le
rD
y
n
a
m
ic
W
o
rk
lo
a
d

-n
a
m
e
 :
 S
tr
in
g

-s
c
h
e
d
u
lin
g
In
te
rv
a
l
:
d
o
u
b
le

D
a
ta
c
e
n
te
r

<
<
In
te
rf
a
c
e
>
>

U
ti
li
z
a
ti
o
n
M
o
d
e
l

U
ti
li
z
a
ti
o
n
M
o
d
e
lF
u
ll

U
ti
li
z
a
ti
o
n
M
o
d
e
lS
to
c
h
a
s
ti
c

-i
d
 :
 i
n
tP
E

-i
d
 :
 i
n
t

-s
to
ra
g
e
 :
 l
o
n
g

H
o
s
t

-a
rc
h
it
e
c
tu
re
 :
 S
tr
in
g

-O
S
 :
 S
tr
in
g

-v
m
M
o
n
it
o
r
:
S
tr
in
g

-t
im
e
Z
o
n
e
 :
 d
o
u
b
le

-c
o
s
tP
e
rS
e
c
 :
 d
o
u
b
le

-c
o
s
tP
e
rM
e
m
 :
 d
o
u
b
le

-c
o
s
tP
e
rS
to
ra
g
e
 :
 d
o
u
b
le

-c
o
s
tP
e
rB
w
 :
 d
o
u
b
le

D
a
ta
c
e
n
te
rC
h
a
ra
c
te
ri
s
ti
c
s

-M
IP
S
 :
 d
o
u
b
le

P
e
P
ro
v
is
io
n
e
r

P
e
P
ro
v
is
io
n
e
rS
im
p
le

-r
a
m
 :
 i
n
t

R
a
m
P
ro
v
is
io
n
e
r

-b
w
 :
 l
o
n
g

B
w
P
ro
v
is
io
n
e
r

V
m
S
c
h
e
d
u
le
r

R
a
m
P
ro
v
is
io
n
e
rS
im
p
le

B
w
P
ro
v
is
io
n
e
rS
im
p
le

V
m
S
c
h
e
d
u
le
rS
p
a
c
e
S
h
a
re
d

V
m
S
c
h
e
d
u
le
rT
im
e
S
h
a
re
d

<
<
In
te
rf
a
c
e
>
>

S
to
ra
g
e

V
m
A
ll
o
c
a
ti
o
n
P
o
li
c
y

V
m
A
ll
o
c
a
ti
o
n
P
o
li
c
y
S
im
p
le

-n
a
m
e
 :
 S
tr
in
g

D
a
ta
c
e
n
te
rB
ro
k
e
r

-b
w
 :
 d
o
u
b
le

-l
a
te
n
c
y
 :
 d
o
u
b
le

L
in
k

0
..
1

u
s
e
rI
d

1
..
*

1
..
*

1
..
*

1
..
*

0
..
*

0
..
*

s
rc
Id

d
s
tI
d

v
m
Id

c
lo
u
d
le
tL
is
t

v
m
L
is
t

h
o
s
tL
is
t

v
m
A
llo
c
a
ti
o
n
P
o
lic
y

s
to
ra
g
e
L
is
t

c
h
a
ra
c
te
ri
s
ti
c
s

h
o
s
tL
is
t

v
m
S
c
h
e
d
u
le
r

p
e
L
is
t

ra
m
P
ro
v
is
io
n
e
r

b
w
P
ro
v
is
io
n
e
r

p
e
P
ro
v
is
io
n
e
r

u
ti
liz
a
ti
o
n
M
o
d
e
lB
w

u
ti
liz
a
ti
o
n
M
o
d
e
lR
a
m
u
ti
liz
a
ti
o
n
M
o
d
e
lC
p
u

u
s
e
rI
d

s
c
h
e
d
u
le
r

Figure 5: Extracted CloudSim meta-model

15

2 FOUNDATIONS AND TECHNOLOGIES 2.2 Involved Technologies

2.2.3 Knowledge Discovery Meta-Model

KDM [22] was created by the OMG and was defined as an ISO standard in 2011 [54].

KDM maps information about software assets, their associations, and operational

environments into one common data interchange format. Then, different analysis

tools have a common base for interchanging information. Thereby, the different ar-

chitectural views, which can be extracted by various analysis tools, can be kept in

one meta-model. For this purpose KDM provides various levels of abstraction repre-

sented by entities and relations. This section provides an overview of the structure

and organization of KDM.

Figure 6: Layers of KDM taken from Pérez-Castillo et al. [54]

Figure 6 shows the four layers of KDM. These four layers are split into several

packages. The remainder of the section describes the different layers and packages

of KDM.

Infrastructure Layer

This layer describes the core components of KDM with the core and kdm packages.

Every model in other layers inherits directly or indirectly from these components.

The source package is also contained in this layer. It models the physical resources

like source code files and images.

Program Layer

The program layer defines a language-independent representation of the existing

source code with the code and action package. The former defines model elements

16

2.2 Involved Technologies 2 FOUNDATIONS AND TECHNOLOGIES

for representing the logical structure, dependencies, classes, and methods. The latter

models behavioral aspects of the software system by describing the control and data

flow.

Resource Layer

Higher-level knowledge about the existing software system is represented in this

layer. It contains the data, event, UI, and platform package. The data package

handles persistent data aspects of an application. With the event package the dif-

ferent events that might occur can be modeled. The UI package contains elements

to model aspects of the user interface. Last, the platform package provides means

for modeling the artifacts that relate to the runtime platform.

Abstraction Layer

This layer contains the highest level of abstractions about the existing software

system. The contained packages are the conceptual, build, and structure package.

They represent knowledge about the conceptual perspective of the software system,

the build system, and the higher level structure like a UML component diagram of

the software system.

2.2.4 Structured Metrics Meta-Model

SMM [24] was developed in the context of the architecture-driven modernization

(ADM) taskforce by the OMG. The specification defines an extensible meta-model

for representing information regarding measurements relating to any structured

model that is MOF-conform. Furthermore, SMM includes elements that can be

used to express a wide range of software measures. Static and dynamic aspects of a

software system can be modeled with the metrics in SMM. The SMM specification

includes a minimal library of software measures for illustrative purposes.

2.2.5 Atlas Transformation Language

The Atlas Transformation Language (ATL) [33, 34] is a model-to-model transfor-

mation language. It is developed by the ATLAS INRIA and LINA research group.

There exists also a tool called ATL IDE [35, 50] that is a toolkit on the basis of

the Eclipse Modeling Framework (EMF). ATL can be used declaratively and im-

peratively, and is a QVT similar language. The preferred style of transformation

17

2 FOUNDATIONS AND TECHNOLOGIES 2.2 Involved Technologies

� �
1 r u l e Attribute2Column {
2 from a t t r : UML! Att r ibute
3 to
4 c o l : DB! Column (
5 name <− a t t r . name
6)
7 }� �

Listing 2: ATL declarative example taken from Bézivin et al. [5]

� �
1 �IMPORT c l a s s d e f i n i t i o n�
2 �DEFINE javamain FOR Model�
3
4 �FILE ”benchmarks/ java / ” + t h i s . c l a s s . name + ” . java ”�
5 pub l i c c l a s s � t h i s . c l a s s . name� {
6 pub l i c s t a t i c void main (St r ing [] a rgs) {
7 System . out . p r i n t l n (”He l lo World ”) ;
8 }
9 }

10 �ENDFILE�
11 �ENDDEFINE�� �

Listing 3: Xpand hello world template for Java

is writing in the declarative way. However, for transformations that are hard to

express in a declarative way, it also provides the imperative style.

An ATL transformation is composed of rules. These rules define on which ele-

ments they are executed and what elements are created from the input.

Listing 2 shows a declarative example of ATL. The example rule takes a UML

attribute in line 2 and transforms this attribute into a column of a database in line 4

by naming the column with the attribute name in line 5.

2.2.6 Xpand

Xpand [66] is a statically-typed template language which is available as an Eclipse

plug-in. It is specialized on code generation based on EMF models. Xpand requires

a meta-model, an instance of this meta-model, a template, and a workflow for the

generation. The Xpand language is a domain-specific language (DSL) that has a

small but sufficient vocabulary like FOR and FOREACH for applying templates. An

integrated editor provides syntax coloring, error highlighting, and code completion.

Xpand was originally developed as part of the openArchitectureWare [51] project.

18

2.2 Involved Technologies 2 FOUNDATIONS AND TECHNOLOGIES

Listing 3 shows an example template for the generation of a Hello World program

in Java. Line 1 imports the — omitted for shortness — meta-model classdefinition

which contains a class Model which has an attribute class of type Class. The Class

class has an attribute name. In line 2, a template for the type Model is started.

Afterwards, line 4 expresses that the output of the enclosing FILE tag should be

written to a file named benchmarks/java/class.name.java. Line 5 to 9 define a

Java class with the name class.name and a main method that prints Hello World

on the console. Line 10 closes the FILE tag and line 11 closes the started template

for the type Model.

19

2 FOUNDATIONS AND TECHNOLOGIES 2.2 Involved Technologies

20

3 SIMULATION INPUT

3 Simulation Input

This section describes the input for simulation of a cloud deployment option with

CloudSim including our conducted enhancements. Section 3.1 provides an overview

of the required input parameters. Afterwards, Sections 3.2 to 3.9 describe the re-

quired input parameters and the approaches for deriving them.

3.1 Overview

The input parameters MIPIPS and instruction count are related to instructions.

The MIPIPS serve as a measure for the performance of a CPU. They are described

in Section 3.2. The instruction count of a method serves as an indicator for the work

that has to be conducted by the CPU if the method is called. Section 3.3 describes

three different approaches for the derivation of the instruction count of a method.

Instructions in general can be instructions on a low level machine language like

Assembler, on an intermediate level like Java bytecode, or on the level of a high

level language like Java. For this thesis, we define instructions as a well defined set

of statements that lies between the intermediate level and the high level language

definition. As instructions we define declarations of a variable, assignments with

at least one operation on the right hand side like x = 3 + 2, comparisons, field

accesses, and class creations.

Most of the time when we talk about instructions, we mean integer plus in-

structions. We define an integer plus instruction as the assignment to a variable

and on the right hand side of the assignment two integer types are combined with

a plus statement, e.g., x = y + 3 where y is an integer variable. For simplicity

and shortness, we omit integer plus and simply write instructions, if the meaning is

unambiguous.

Section 3.4 describes weights that are used to convert, for instance, a double

minus instruction to integer plus instructions. In Section 3.5 the size of a data

type or class in bytes is derived. This is needed for the simulation of network

traffic. Section 3.6 describes the input of an SMM workload profile which is required

for creating the Cloudlets. In Section 3.7 the enriched KDM model is described.

Then, Section 3.8 presents the adaptation rules which are used for starting and

terminating virtual machine instances during runtime. Finally, Section 3.9 describes

the simulation configuration parameters.

21

3 SIMULATION INPUT 3.2 MIPIPS

3.2 MIPIPS

This section describes what mega integer plus instructions per second (MIPIPS) are

and why we need them. Furthermore, our benchmark for derivation of MIPIPS is

explained in Section 3.2.2.

3.2.1 Description

CloudSim requires MIPS as a measure for the computing performance of virtual

machine instances. However, we consider MIPS as too coarse grained. Most CPUs

need different times for different low level instructions. For example, a division of

two doubles typically takes longer than an addition of two integers on current CPUs.

Furthermore, CloudSim does not suggest how to measure MIPS.

We introduce MIPIPS as the measure for describing the computing performance

and express instructions like double plus as integer plus instructions through a con-

version. Notably, we could have used, e.g., mega double plus instructions per second

(MDPIPS) as the measure for computing performance and normalized all other in-

structions to double plus instructions (see Section 3.4 for details). However, we

wanted an underlying instruction type that is faster than most other instructions

because the conversion factors become more readable. For example, if we would have

used a class creation instruction, mostly all other instructions would be between 0

and 1, and saying that one integer plus can be performed in 0.0004 class creation

instructions is improper.

We do not use already existing benchmarks like Dhrystone (see Section 9.7) or

Cloudstone (see Section 9.8) because we need an easily adaptable to new program-

ming languages benchmark and we later describe an approach for counting instruc-

tions that bases on static analysis which needs an association between statements

and the measure for computing performance.

Our MIPIPS benchmark measures the computing performance of a single core.

Hence, a computer with one core will have the same MIPIPS value as a computer

with 64 cores, if the performance of the one core on the first computer equals the

performance of one core on the second computer. This is motivated by the fact

that a program which is single-threaded is not faster on a computer with 64 cores.

Furthermore, if the program has, e.g., two threads for processing, the performance

depends on the synchronization method used in the program. However, the core

count is also considered in the simulation. CloudSim defines the value TotalMIPS

22

3.2 MIPIPS 3 SIMULATION INPUT

which is calculated by multiplying the core count with the MIPS. In accordance to

this definition, we define TotalMIPIPS as the product of the core count and the

MIPIPS value.

3.2.2 Derivation

The basic idea for deriving MIPIPS is a benchmark that measures the runtime of a

defined amount of integer plus instructions.

The runtime of a single instruction cannot be measured accurately because mea-

surement techniques like the usage of System.currentTimeMillis() in Java have

a resolution of one millisecond. Even CPU cycle counters are not sufficient accu-

rate. Hence, we use a loop which runs our integer plus instructions at least for ten

seconds on current CPUs. Measuring the runtime of the whole loop would include

more instructions like jumps and comparisons being measured. Therefore, we do a

calibration run (see Listing 4) for running the loop and then do a second run with our

integer plus instructions added to the loop’s body (see Listing 5). Afterwards, we

subtract the runtime of the second run from the first run. This reveals the execution

time of the added integer plus instructions.

Our runtime measuring technique is a program that acts as master and starts

the benchmark run in a slave on the same machine. The runtime measurement is

conducted by the slave program due to exclusion of initialization time. After the

execution, the slave returns the measured runtime for the benchmark run to the

master. According to Georges et al. [20], this measurement must be done at least

30 times. Hence optimally, the master starts the slave 30 times for each benchmark.

The number of runs can be configured by parameters or from a GUI (see Section 6

for details). Afterwards, the master calculates the median of the response times.

An important part is the disablement of optimizations for the compiler and

interpreter when the slave program is called by the master program. Depending on

the selected language and optimization settings, the optimization can cause our loop

to have constant runtime.

Listing 4 shows the calibration run in Java. Line 1 declares an integer variable

named x that is incremented by 2 in the loop body at line 7. The variable x is

incremented by 2 because an increment of 1 can be optimized in many languages.

This integer variable is printed to the console in line 14. The purpose of this variable

and printing of it is that the compiler cannot easily omit the loop. Line 3, and 11 to

13 show the applied runtime measurement of the loop. In line 6 to 9 the actual loop

23

3 SIMULATION INPUT 3.2 MIPIPS

� �
1 int x = 0 ;
2
3 long startTime = System . cur rentT imeMi l l i s () ;
4
5 int i = −2147483647;
6 while (i < 2147483647) {
7 x = x + 2 ;
8 i += 1 ;
9 }

10
11 long endTime = System . cur r entT imeMi l l i s () ;
12 long d i f f t i m e = endTime − startTime ;
13 System . out . p r i n t l n (d i f f t i m e) ;
14 System . out . p r i n t l n (x) ;� �

Listing 4: Calibration for running the loop without added integer plus instructions
in Java

is displayed. Notably, this is a direct translation from a for loop to a while loop. Our

first approach contained a for loop. However, at least the Microsoft C# compiler in

version 4.0.30319.1 optimizes for loops, though we disabled optimization. With this

compiler, a while loop is not optimized when optimization is disabled.

Listing 5 shows the MIPIPS counter. Compared to the calibration, line 2, 9, and

17 are added. These lines declare a variable y, add 3 to y in the while loop, and

finally print the value of y. y is incremented by 3 because otherwise the compiler

can use the value of x and does not need to calculate y.

For the derivation of the added instruction count of the benchmark, the bench-

mark reads in the instruction count from a comment at the top of the class. Sub-

sequently, the instruction count is divided by the median of the runtime in seconds.

This value is the derived MIPIPS for the platform. Notably, the derivation needs

to be rerun whenever a new software is installed that should act as a permanent

service on the machine because the runtime of the benchmark can be larger due to

the changed workload on the CPU.

Benchmark Generation with Xpand

For supporting easy adaptability for new programming languages, we utilize Xpand

to generate the benchmark for different target languages. Xpand requires a meta-

model definition, an instance of the meta-model, and a language-specific generation

template.

24

3.2 MIPIPS 3 SIMULATION INPUT

� �
1 int x = 0 ;
2 int y = 0 ;
3
4 long startTime = System . cur rentT imeMi l l i s () ;
5
6 int i = −2147483647;
7 while (i < 2147483647) {
8 x = x + 2 ;
9 y = y + 3 ;

10 i += 1 ;
11 }
12
13 long endTime = System . cur r entT imeMi l l i s () ;
14 long d i f f t i m e = endTime − startTime ;
15 System . out . p r i n t l n (d i f f t i m e) ;
16 System . out . p r i n t l n (x) ;
17 System . out . p r i n t l n (y) ;� �

Listing 5: MIPIPS counter in Java

The meta-model, following the Ecore definition, for representation of a bench-

mark class is shown in Appendix B. It contains the basic elements of an imperative

programing language. It enables the modeling of classes, methods, expressions, vari-

able declarations, loops, class creations, and concrete method calls. Furthermore, it

contains a class for an empty line, which supports the readability of the generated

output. Two special classes are included in the meta-model. These are SystemOut

which represents the statement for printing Strings to the console and MeasureTime

which represents the statement for getting the current value of a time counter. These

two classes are mapped by the generation template to individual statements for each

target language and can be quite different like System.out.println() for Java and

puts for Ruby.

Listing 6 shows the MIPIPS counter in the language independent XML repre-

sentation which is an instance of the class definition meta-model. A generated code

example for Java was already presented in Listing 5 and described before. Hence,

we only describe the special facts about this example in XML representation. The

class definition contains a instructionCount attribute in line 5. This attribute is

included in the concrete language representation as a comment at the beginning of

the class and only required by the master program. From this comment the master

program gets the information about the instruction count of the benchmark which

25

3 SIMULATION INPUT 3.2 MIPIPS

� �
1 <?xml version=”1 .0 ” encoding=”ASCII ”?>
2 <c l a s s d e f i n i t i o n : M o d e l xmi :ve r s i on=”2 .0 ”
3 xmlns:xmi=”h t tp : //www. omg . org /XMI” xmlns :x s i=”h t tp : //www. w3 . org /2001/

XMLSchema−i n s t anc e ”
4 x m l n s : c l a s s d e f i n i t i o n=”h t tp : //www. example . org / c l a s s d e f i n i t i o n ”

xs i : s chemaLocat ion=”h t t p : //www. example . org / c l a s s d e f i n i t i o n . . /
metamodel/ c l a s s d e f i n i t i o n . e co re ”>

5 <c l a s s name=”MIPIPSCounter ” namespace=”benchmarks ” ins t ruct ionCount=”
4294967295 ”>

6 <methods exporttype=”pub l i c ” mod i f i e r=” s t a t i c ” returntype=”void ”
name=”main ”>

7 <parameters name=”args ” type=”St r ing [] ”/>
8 <statements x s i : t y p e=” c l a s s d e f i n i t i o n : V a r i a b l e D e c l a r a t i o n ”

variablename=”x ” i n i t i a l i z e r=”0 ”>
9 <type x s i : t y p e=” c l a s s d e f i n i t i o n : D a t a t y p e ” name=” i n t ”/>

10 </ statements>
11 <statements x s i : t y p e=” c l a s s d e f i n i t i o n : V a r i a b l e D e c l a r a t i o n ”

variablename=”y ” i n i t i a l i z e r=”0 ”>
12 <type x s i : t y p e=” c l a s s d e f i n i t i o n : D a t a t y p e ” name=” i n t ”/>
13 </ statements>
14 <statements x s i : t y p e=”c l a s s d e f i n i t i o n : E m p t y L i n e ”/>
15 <statements x s i : t y p e=”c l a s sde f i n i t i on :Mea su r eT ime ” type=”long ”

variablename=”startTime ”/>
16 <statements x s i : t y p e=”c l a s s d e f i n i t i o n : E m p t y L i n e ”/>
17 <statements x s i : t y p e=” c l a s s d e f i n i t i o n : F o r L o o p ” v a r i a b l e ty p e=” i n t ”

variablename=” i ” i n i t i a l i z e r=”−2147483647 ” condit ionCheck=”&
l t ; ” condi t ionValue=”2147483647 ” stepFunct ion=”+=1”>

18 <statements x s i : t y p e=” c l a s s d e f i n i t i o n : E x p r e s s i o n ” l e f t S i d e=”x ”
r i g h t S i d e=”x + 2 ”/>

19 <statements x s i : t y p e=” c l a s s d e f i n i t i o n : E x p r e s s i o n ” l e f t S i d e=”y ”
r i g h t S i d e=”y + 3 ”/>

20 </ statements>
21 <statements x s i : t y p e=”c l a s s d e f i n i t i o n : E m p t y L i n e ”/>
22 <statements x s i : t y p e=”c l a s sde f i n i t i on :Mea su r eT ime ” type=”long ”

variablename=”endTime ”/>
23 <statements x s i : t y p e=” c l a s s d e f i n i t i o n : V a r i a b l e D e c l a r a t i o n ”

variablename=” d i f f t i m e ” i n i t i a l i z e r=”endTime − startTime ”>
24 <type x s i : t y p e=” c l a s s d e f i n i t i o n : D a t a t y p e ” name=”long ”/>
25 </ statements>
26 <statements x s i : t y p e=”c l a s s d e f i n i t i o n : S y s t e m O u t ” text=” d i f f t i m e ”/

>
27 <statements x s i : t y p e=”c l a s s d e f i n i t i o n : S y s t e m O u t ” text=”x ”/>
28 <statements x s i : t y p e=”c l a s s d e f i n i t i o n : S y s t e m O u t ” text=”y ”/>
29 </methods>
30 </ c l a s s>
31 </ c l a s s d e f i n i t i o n : M o d e l>� �

Listing 6: MIPIPS counter in language independent XML representation

26

3.3 Instruction Count 3 SIMULATION INPUT

is used for the MIPIPS calculation. The instruction count is derived by calculat-

ing the iteration count and taking this as the instruction count because only one

instruction is added and this instruction is executed only once in every loop iteration.

If a new language shall be supported by the whole benchmark, the programmer

simply has to add a generation template for the desired language. He does not need

to change the declarations of each benchmark. Currently, we support the languages

Java, C, C++, C#, Python, and Ruby.

3.3 Instruction Count

Section 3.3.1 describes our approaches for deriving the instruction count from an

application which is represented as a KDM instance. Then, Section 3.3.2 provides

an overview of the different approaches for derivation. In Sections 3.3.3 to 3.3.5 the

approaches are described.

3.3.1 Description

The instruction count is needed as a representation of the work that must be con-

ducted for a call to a program or web service. In combination with the MIPIPS,

the instruction count approximates the runtime on the computer that has the cor-

responding MIPIPS. For example, assume 2 MIPIPS and 100,000 instructions for

a call to a web service. Then, the runtime of the call to the web service will be

approximately 50 milliseconds.

3.3.2 Derivation Overview

We consider different possible preconditions for the derivation on which a specific

approach can be chosen. The first approach, named dynamic approach, requires

an instance of the code package of KDM, results of a dynamic analysis with con-

tained response times, and the MIPIPS of the computer where the dynamic analysis

took place. It is described in Section 3.3.3 and utilizes the method definitions in

the KDM instance and response times from the dynamic analysis. The second ap-

proach, named static approach, requires instances of the code and action package of

KDM. The action package contains statements like variable declarations and con-

dition blocks. The contained statements are counted in the static approach (see

Section 3.3.4). Both approaches have shortcomings which we address and describe

27

3 SIMULATION INPUT 3.3 Instruction Count

in our third approach, named hybrid approach, in Section 3.3.5, which has the pre-

conditions of the dynamic approach and static approach. Table 1 shows an overview

for the preconditions for each approach.

Approach Preconditions
dynamic approach 1. Instance of the code package of KDM

2. Response times from a dynamic analysis
3. MIPIPS of the node of the dynamic analysis

static approach 1. Instance of the code and action package of KDM
hybrid approach 1. Instance of the code and action package of KDM

2. Response times from a dynamic analysis
3. MIPIPS of the node of the dynamic analysis

Table 1: Overview of the preconditions for each instruction count derivation ap-
proach

3.3.3 Dynamic Approach

One precondition of the dynamic approach is the availability of response times from

a dynamic analysis. This means, that response times have to be monitored at run-

time of the software under study. Optimally, there exists a phase of only low CPU

utilization in the dynamic analysis such that the response times result from the exe-

cution of the method’s instructions without major scheduling effects. Furthermore,

the MIPIPS of the computer, where the dynamic analysis took place, have to be

available. First, the dynamic approach computes the median response times for each

method in the workload. The method for determining the median of response times

during phases of low CPU utilization is described in the following section. The in-

struction count of each method in millions is calculated by multiplying the median

response time with the MIPIPS of the platform that measured the response time.

For example, the median of response time is 20 milliseconds and the MIPIPS is 200.

The resulting instruction count in millions is 0.020 · 200 = 4.

Notably, often not all methods are contained in the monitored workload. These

methods get a −1 instruction count which indicates that those methods have no

instruction count and that an error must be thrown when they are accessed in the

simulation.

28

3.3 Instruction Count 3 SIMULATION INPUT

Determining the Median of Response Times during phases of Low CPU

Utilization

The dynamic approach requires the median of response times that result from the

execution of the methods. Typically, the response time depends on many factors

like disk writing latency and other method executions that have a higher priority

in a time-shared scheduler. A high influence factor is the availability of CPU time,

i.e., whether the method can directly be processed and does not need to wait for

execution. Figure 7 shows the response times of an example run with two peeks in

hour 7 and 17. Most likely, the two peeks in Figure 7 are caused by the high CPU

utilization at the corresponding time. However, our simulation should simulate these

peeks by simulating the CPU utilization. Hence, we need the response time that

the method has during phases of low CPU utilization.

In Figure 7, the set of response times that best suits our needs is marked by a

red rectangle. Notably, there are lower response times. Hence, the response time we

seek is not the minimum of the response times. Our approach is to find the group of

smallest response times with n elements. Therefore, we traverse the response times

minute for minute and insert each found response time in its corresponding group.

A group is formed by its basic value plus and minus a threshold of 1 millisecond.

The basic value is the first value that is inserted into the group. For example, the

first value in Figure 7 is about 47 milliseconds. This value opens a new group that

has the basic value 47 milliseconds. All new response times that lie between 46 and

48 milliseconds are inserted in this group. If a group reaches n group elements,

the group is treated as a candidate for the response times during phases of low

CPU utilization. Now, only response times that are smaller than this group must

be inserted into new groups. If there are no further response times available, the

algorithm terminates and returns the median of the candidate group. If no candidate

group was found, the algorithm returns the median value of the group that has the

smallest response times values. We set n to 30 in our tool. This value performed

best in our tests.

3.3.4 Static Approach

The static approach requires KDM instances that contain the code and action pack-

age of the software under analysis. It iterates over all methods and counts the in-

structions in an accumulator variable for each method. Then, the instruction count

is annotated to each method. In the following, we describe the counting method

29

3 SIMULATION INPUT 3.3 Instruction Count

Median of Response Times of Operation
com.ibatis.jpetstore.web.DispatcherServlet.doGet

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

12
.1

24
.2

36
.3

48
.4

60
.5

72
.6

84
.7

96
.8

10
8.

9
M

ed
ia

n
of

 r
es

po
ns

e
tim

es
 [m

ill
is

ec
on

ds
]

Median of response times

Figure 7: Example of determining the median of response times during phases of
low CPU utilization in the dynamic approach

for the most used control flow statements in programming languages, i.e., condition

blocks, loops, try-catch-finally, and calls. For simplicity and easier understanding,

every statement in these sections is counted with a weight of 1. The last section

abolishes this restriction.

Condition Blocks

The instruction count for each path i (icpathi
) of n paths in the condition block is

calculated. Here, we define a path as the condition body of the branch, for instance

in if (x > 0) then y = 0 the y = 0 is the path. The instructions are counted

in the condition clause (icclausei) and the other condition clauses’ instructions, that

were calculated before, are added. This instruction count is then added to the

instruction count of the path with was multiplied before with the probability of the

path (probpathi
). The final result of the instruction count for the condition block

is the sum of those factors. The resulting calculation formula for derivation of the

instruction count of a condition block (iccondition block) is displayed in Equation 1.

(1) iccondition block =
n−1∑
i=0

(
i∑

j=0

icclausej) + icpathi
· probpathi

30

3.3 Instruction Count 3 SIMULATION INPUT

� �
1 i f (i == 5) {
2 i = 3 ;
3 x = 5 ;
4 y = x + i ;
5 } else i f (i == 6) {
6 i = 9 ;
7 } else {
8 i = 10 ;
9 }� �

Listing 7: Example of deriving the instruction count from a condition block

Without a data flow analysis, it is hard to predict how often a specific path in

a condition block will be taken. This motivates the basic assumption that every

path of the condition block is taken with a specific probability of 1 divided by the

number of paths n of the condition block. A missing else statement is interpreted

as an empty path. Hence, an if statement without an else has the probability of
1
2
. With means of a data flow analysis, the probability can, of course, be further

refined. However, we did not implement data flow analysis due to a lack of time.

Listing 7 shows an example. The instruction count for each path is calculated.

The first condition body has three instructions (line 2 to 4), the second condition

body has one instruction (line 6), and the last condition body has one instruc-

tion (line 8). The first condition clause has one instruction (line 1), the second

condition clause has one instruction (line 5) plus the one instruction for the first

condition clause (line 1), and the last condition clause has no instructions (line

7) plus two instructions of the prior condition clauses. The probability of each

path is assumed to be 1
3
. The resulting instruction count for the condition block is

(1 + 3 · 1
3
) + ((1 + 1) + 1 · 1

3
) + ((1 + 1 + 0) + 1 · 1

3
) = 6 2

3
.

Appendix C shows the KDM representation of the class IfClass which is displayed

in Listing 8 in Java. The ClassUnit in line 6 represents the IfClass. In line 11 the

main method is defined. Lines 32 to 42 represent the int i = 5 statement. The

condition block ranges from line 44 to line 81. The condition clause is shown in the

lines 48 to 60. The condition body is displayed in the lines 61 to 80. For instruction

counting, it is first searched for an if statement which begins in line 44. Then, the

instructions in the condition clause are counted. The algorithm finds the EQUALS

element which is one instruction. Hence, the condition clause has one instruction.

Then, the instructions in the condition body are counted. The ASSIGN element

31

3 SIMULATION INPUT 3.3 Instruction Count

� �
1 package examplepackage ;
2
3 public class I f C l a s s {
4 public stat ic void main (St r ing [] a rgs) {
5 int i = 5 ;
6 i f (i == 5) {
7 i = 3 ;
8 }
9 }

10 }� �
Listing 8: Example class for deriving the instruction count from a condition block
from a KDM instance

represents one instruction. An else if statement is not found and hence there

are two paths. Thus, the instruction count for the condition block sums up to

1 + 1 · 1
2

= 1 1
2
.

For Loops

In for loops with a static analyzable bound, the iterating count (itercount) can be

derived by the absolute value of the bound minus the initial value and then divided

by the absolute value of the changing step of the iterating variable in each loop,

which is 1 in i++, for example. In most for loops, there is an initialization of the

iterating variable that exhibits an own instruction count (icinit), an end condition

with an instruction count (iccondend
), and a change of the iterating variable with an

instruction count (iciterchange
). The sum of the later values is added to the instruction

count of the loop (icloop). Then, the sum is multiplied with the iteration count.

Finally, the instruction count of the initialization is added to the resulting value.

The formula for calculation of a for statement (icfor loop). is displayed in Equation 2.

If there is no static analyzable bound like in for each loops, for instance, it cannot

simply be determined how often the loop will be executed. In this case, we assume

a configurable constant value which is provided by the user for the iteration count.

The same is done for while and do while loops, if there is no direct translation to a

for loop.

Break, continue, return, goto statements, and explicit changing of the iteration

variable can influence the iteration count. In order to support those statements

in instruction count derivation, there has to be some data flow analysis. We did

not implement data flow analysis due to lack of time and thus, break and continue

statements are simply ignored.

32

3.3 Instruction Count 3 SIMULATION INPUT

� �
1 for (int i = 0 ; i < 10 ; i++) {
2 x = i + 3 ;
3 }� �

Listing 9: Example of deriving the instruction count from a for loop

(2) icfor loop = icinit + (itercount · (iccondend
+ iciterchange

+ icloop))

Listing 9 displays an example for a simple for loop instruction count derivation.

The initialization of the iterating variable i takes 1 instruction. The iteration count is

calculated by |(10−0)|/|1| and hence it is 10. The body of the loop has 1 instruction

(line 2). The step change in each iteration takes 1 instruction and the condition also

takes 1 instruction (line 1). This results in 1 + (10 · (1 + 1 + 1)) = 31 instructions.

Try-catch-finally Statements

Our approach assumes that catch statements are used for unexpected exceptions

that might happen. The try block with its instruction count (ictry) is called every

time the try-catch-finally statement is executed. However, the catch block with the

instruction count (iccatchi
) for each catch statement i of n catch statements is only

executed, if an error occurs which happens with a specific probability (probcatchi
).

The occurrence of an error is assumed to be independent from the occurrence of

other errors. The probability of an unexpected exception highly depends on, for

example, the runtime environment. In an environment with rather unreliable wire-

less connection a network exception can be thrown many times, for instance. We

assume that errors only occur in one percent of the cases. This number is motivated

by assuming a normal distribution with α = 0.01 for an occurrence of an error. The

finally block with its instruction count (icfinally) is by definition called every time

the try-catch-finally statement is executed. Equation 3 shows the resulting formula

for calculation of a try-catch-finally statement (ictry−catch−finally).

(3) ictry−catch−finally = ictry + (
n−1∑
i=0

probcatchi
· iccatchi

) + icfinally

33

3 SIMULATION INPUT 3.3 Instruction Count

� �
1 try {
2 stream . open () ;
3 stream . wr i t e () ;
4 } catch (IOException e) {
5 e . pr intStackTrace () ;
6 } catch (FileNotFoundException e) {
7 e . pr intStackTrace () ;
8 x = 3 ;
9 } f ina l ly {

10 stream . c l o s e () ;
11 x = 0 ;
12 }� �

Listing 10: Example of deriving the instruction count from a try-catch-finally
statement

Listing 10 displays an example for deriving the instruction count from a try-

catch-finally statement. The try block in line 1 to 3 has 2 instructions. The first

catch block in line 4 and 5 has 1 instruction and probability 0.01, and the second

catch block in 6 to 8 takes 2 instructions and probability 0.01. The final block in line

9 to 11 has 2 instructions. The instruction count for the try-catch-finally-statement

is then 2 + (0.01 · 1 + 0.01 · 2) + 2 = 4.03.

Calls

The instructions of a method call are counted with the annotated instruction count

plus the instructions of the concrete parameters, if the method was already counted.

If this annotation does not exist, the instructions in the called method (iccalled method)

are counted at first. This approach may lead to a cycle which would result in an

endless loop. Hence, we mark a method that is currently counted and check before

counting, whether it is already counting. If this mark exists, we detected a cyclic

dependency and approximate the called method by a constant number of instructions

which is provided by the user. Notably, a method implementing recursion contains

a cycle. Instruction counts of the concrete parameters must be also considered.

For each parameter the instruction count (icparameteri) must be derived because the

parameter might be a statement like x + 4 or even a call to another method. The

formula for deriving the instruction count for method calls (icmethod call) is shown

in Equation 4. A special method call is the creation of a new object which has

its own deriving method for its instruction (icobject creation) (see Equation 5). The

instruction counting for the creation of an object is the counting of the constructor

34

3.3 Instruction Count 3 SIMULATION INPUT

� �
1 public void method1 () {
2 x = method2 (3 , ”example ” , method3 ()) ;
3 }
4
5 public int method2 (int i , S t r ing x , long y) {
6 System . out . p r i n t l n (x) ;
7 return i −1;
8 }
9

10 public long method3 () {
11 return 3 ;
12 }� �

Listing 11: Example of deriving the instruction count from a method call

call (icconstructorown) and its parameters (icparameteri) and the initialization of declared

attributes (icattributesown). Notably, the instruction count of the constructor includes

the instruction count of its possible parent constructor.

Method calls to, e.g., libraries can only be counted if the source code is available.

Otherwise the instruction count of those methods is a constant configurable by the

user.

(4) icmethod call = iccalled method +
n−1∑
i=0

icparameteri

(5) icobject creation = icattributes + icconstructor +
n−1∑
i=0

icparameteri

Listing 11 displays an example for deriving the instruction count from a method

calls’ statements. It starts with counting the instructions of method1 which results in

1 instruction for the assignment plus the instructions of the method call to method2

in line 2. method2 has 1 instruction for line 7 plus the call to System.out.println

in line 6, which is unknown and assumed with a constant instruction count provided

by the user. We assume here 100 instructions as an example. Thus, the instruction

count of method2 is 101. The parameters of the method call to method2 have the

instruction count 1 + 1 + 1 = 3 which results from the fact that method3 has 1

instruction. The instruction count of the call to method2 in method1 totals up to

101 + 3 = 104.

35

3 SIMULATION INPUT 3.3 Instruction Count

� �
1 new Class2 (2 + 3) ;
2
3 class Class2 {
4 private int a t t r i b 1 = 0 ;
5 private int a t t r i b 2 = 3 ;
6
7 public Class2 (int x) {
8 a t t r i b 1 = x ;
9 }

10 }� �
Listing 12: Example of deriving the instruction count from a new object creation

� �
1 int x1 = 0 ;
2 int x2 = 3 ;
3 int x3 = x1 − x2 ;
4 int x3 = x1 / x2 ;
5
6 long y1 = 4000 ;
7 long y2 = 1000 ;
8 long y3 = y1 + y2 ;
9 long y4 = y1 ∗ y2 ;� �

Listing 13: Example of deriving the instruction count with weights

Listing 12 displays an example for deriving the instruction count from a new

object creation. In line 1 a new object of Class2 is created. The instruction count

for this class creation is the instruction count of the constructor body which is 1

(line 8) plus the initializations of the attributes (line 4 and 5) which take in sum

2 instructions. The parameter to the constructor has 1 instruction. Thus, the

instruction count is 1 + 2 + 1 = 5.

Weight per Specific Statement

In most environments adding two, for example, double values will consume more

time than adding two integer values. In general, a plus in the code on different data

types can have a significant difference in the performance. For satisfaction of this

issue, we propose a special weight per specific statement. With this weight, a plus

instruction can count four integer plus instructions for double values instead of only

one integer plus instruction, for instance. The derivation of the weights for each

platform is discussed in Section 3.4.

36

3.3 Instruction Count 3 SIMULATION INPUT

Data type Statement Weight
int - 2
int / 3

long + 4
long * 8

Table 2: Example weights

Listing 13 shows an example for instruction counting with different weights. The

weights for the example are listed in Table 2. Line 1 and 2 declare two integer

variables. In line 3 the static approach searches for an integer minus statement

in the weight table and finds the weight 2 which is the instruction count for the

expression in line 3. For line 4 it searches for an integer divide statement in the

weight table and finds the weight 3. Line 6 and 7 declare two long variables. Again,

the static approach searches for the expression in line 8 in the weight table but now

for a long plus statement and finds 4. The resulting instruction count of line 8 is thus

4 instructions. For line 9 the static approach searches for a long multiply statement

and finds the weight 8 which is the resulting instruction count.

3.3.5 Hybrid Approach

This approach combines the advantages of the dynamic approach and static approach

and thus rules out some disadvantages of the former ones. The dynamic approach

considers the real runtime of a method and thus can predict the runtime of a method

very closely. However, it cannot derive an instruction count for every method because

data from dynamic analysis is often incomplete. The static approach often results

in wrong instruction counts because it does not consider optimization from the

compiler, for instance. However, it can derive an instruction count for every method.

To combine the advantages, we take the instruction counts from the dynamic

approach and try to correct the instruction counts from the static approach. Fur-

thermore, the missing values for the instruction count of methods in the dynamic

approach are filled with the instruction count from the static approach.

Determining the Probability of a Path for a Condition Block

The static approach assumes even distribution for all paths in a condition block.

However, in most cases this assumption proves wrong. With the instruction counts

from the dynamic approach, we can calculate a better approximation for the prob-

37

3 SIMULATION INPUT 3.3 Instruction Count

� �
1 i f (x == 0) then
2 method1 () ;
3 else i f (x == 1) then
4 method2 () ;
5 else
6 method3 () ;� �

Listing 14: Example of determining the probability of a path for a condition block

abilities (pi) of each path. The probability is important when we want to explicitly

model separate submethods for the derivation of how often the submethod is called.

The probability is calculated with the support of the instruction count (ictarget) for

the whole condition block and the instruction counts for each path (icpathi
) from

the static approach. The two formulas are shown in Equation 6 and Equation 7

for n paths. The first equation reflects the condition that the instruction count of

the condition block is the sum of instruction count for each path multiplied with

its probability. The second equation describes the condition that probabilities sum

up to 1 which results from the mathematical probability axioms. Notably, there is

in general no unique solution for the variables pi, if n is larger than 2. Therefore,

we defined an auxiliary condition which is shown in Equation 8. This condition

states that one probability pi with a fixed i is larger than the other probabilities and

the other probabilities must be equal to each other. Hence, only one probability is

incremented at a time and all other probabilities decrement by the same decrement

step. We defined this condition because it was the simplest condition in respect to

programming effort and finding a unique solution for each probability.

(6) ictarget =
n−1∑
i=0

pi · icpathi

(7) 1 =
n−1∑
i=0

pi

(8) Let i ∈ [0..n− 1] : p1 = ... = pj = ... = pn−1 <= pi (j 6= i)

38

3.3 Instruction Count 3 SIMULATION INPUT

In Listing 14 an example application of the approach is shown. We assume that

the path with method1 has 5 instructions, the path with method2 has 10 instructions,

and the path with method3 has 15 instructions. The instruction count determined

by the dynamic approach for the condition block is assumed with 12 instructions.

We start with 1
3

as probability for each path which reveals 10 instructions for the

conditional block. We add 0.01 to the first path and subtract 0.005 from the second

and third path. The resulting instruction count for this combination is 9.925. Since

the instruction count is lower than the instruction count for even distribution which

was 10, the approach passes to the second path for factor change. The probabilities

are reset to 1
3
. The changing of the second probability also results in 9.925 instruc-

tions and hence the approach passes to the third path for changing the probabilities.

The probabilities are reset to 1
3
. The probability of the first and the second path is

now 0.328333 and for the third path it is 0.343333 which results in 10.074 instruc-

tions. This is repeated until the approach finishes with probability of 0.2 for the

first and second path, and 0.6 for the third path.

Correcting Wrong Instruction Count of Static Approach

The static approach mostly overestimates the instruction count because compiler

and runtime optimization techniques like JIT can reduce the required instruction

count. If a method has an instruction count assigned by the dynamic approach,

the instruction count represents the possibly optimized method. If this method

surely calls another method, which its instruction count resulted from the static

approach, the instruction count of the called method cannot be higher than the

instruction count of the caller. Hence, we set the instruction count of the called

method to the instruction count of the caller method. If the caller method contains

further statements, those statements are counted first and then subtracted from the

instruction count that the called method is assigned.

Listing 15 shows an example where the static approach performs bad in practice.

We assume that method1 and method2 are called at the top level and hence their

instruction count is derived with the dynamic approach. It attributes 50 instructions

to method1 and 100 instructions to method2. The instruction count of method3 can

only be derived by the static approach. The static approach counts 3001 instructions

for method3. Now all methods are searched for method calls that are conducted

without being nested in a condition, i.e., where the probability of a call is 1.0.

Method1 calls method3. However, it calls method3 with a probability of about 0.016

which is calculated by the former described approach for determining the probability

39

3 SIMULATION INPUT 3.4 Weights per Statement

� �
1 public void method1 () {
2 i f (x == 0) then
3 method3 () ;
4 }
5
6 public void method2 () {
7 method3 () ;
8 }
9

10 public void method3 () {
11 for (int i = 0 ; i < 1000 ; i++) {
12 x = i + 3 ;
13 }
14 }� �

Listing 15: Example of correcting a wrong instruction count of the static approach

of a condition block. Method2 also calls method3. This time the calling probability

is 1.0. Hence, method3 can not take more time than method2 and thus method3 ’s

instruction count is set to 100 which is the instruction count of method2.

3.4 Weights per Statement

This section describes how the weights for each statement are derived.

3.4.1 Description

The static approach requires weights for different statements such that it can con-

vert the instruction count of a statement into an integer plus instruction count. By

measuring the times an integer plus instruction and, e.g., a double plus instruction

consumes, we can approximate that in the period of time of one double plus instruc-

tion the CPU could have performed x integer plus instructions. For instance, we

measure 5 nanoseconds for a double plus instruction and we measure 2 nanoseconds

for an integer plus instruction. Then, in the time where one double plus instruction

took place 2.5 integer plus instructions could have been performed.

3.4.2 Derivation

For derivation of the weights, we utilize the same approach which was described

in Section 3.2 for MIPIPS. Instead of running a MIPIPS counter, the approach

calculates the mega instructions per second for each statement, e.g. for double minus.

40

3.5 Network Traffic 3 SIMULATION INPUT

� �
1 int x = 0 ;
2 double y = 0 . 0 ;
3
4 long startTime = System . cur rentT imeMi l l i s () ;
5
6 int i = −2147483647;
7 while (i < 2147483647) {
8 x = x + 2 ;
9 y = y − 3 . 0 ;

10 i += 1 ;
11 }
12
13 long endTime = System . cur r entT imeMi l l i s () ;
14 long d i f f t i m e = endTime − startTime ;
15 System . out . p r i n t l n (d i f f t i m e) ;
16 System . out . p r i n t l n (x) ;
17 System . out . p r i n t l n (y) ;� �

Listing 16: Double minus weight benchmark in Java

Afterwards, it divides the MIPIPS value by the corresponding mega instructions per

second for each statement.

Listing 16 lists an example for calculating the mega instructions per second for

a double minus statement in Java. It equals the MIPIPS counter except that line

2 declares y as a double and in line 9 y is subtracted by 3. Like the MIPIPS,

the runtime of the weight benchmark is measured and with the runtime of the

calibration run mega double plus instruction per second (MDMIPS) are calculated.

For example, we assume MIPIPS to be 200 and MDMIPS to be 50. Thus, the weight

for double minus is 200/50 = 4.

Our benchmark program contains a set of weight benchmarks for most used

statements. These are integer, float, double, long and for each the operations plus,

minus, divide, multiply. Furthermore, benchmarks for boolean and, boolean or,

boolean not, class creation, field access, function call, and String plus are avail-

able. Table 3 shows an overview of the contained weight benchmarks. More weight

benchmarks can be added by creating language independent instances of our class

definition meta-model to the benchmark generator and using Xpand for the gener-

ation of the source code.

3.5 Network Traffic

This section describes the derivation of the quantity of network traffic between nodes.

41

3 SIMULATION INPUT 3.5 Network Traffic

Data type Operations
Integer plus, minus, divide, multiply
Float plus, minus, divide, multiply
Double plus, minus, divide, multiply
Long plus, minus, divide, multiply
Boolean and, or, not
Internal class creation, field access, function call
String plus

Table 3: Contained weight benchmarks

� �
1 class Class1 {
2 private int a t t r i b 1 = 0 ;
3 private Class2 a t t r i b 2 = new Class2 () ;
4 }
5
6 public Class2 {
7 private int a t t r i b 3 = 3 ;
8 }� �

Listing 17: Example of determining the size of a class

3.5.1 Description

If methods are called on other nodes, they produce network traffic through the

parameters that must be serialized and sent. We want to simulate the network

traffic between nodes because it adds to the costs of a simulated run. Therefore, we

need the size of types that are sent over the network. Primitive types are looked up

in a language dependent size table. The size of a class has to be derived which is

described in the following section.

3.5.2 Derivation

A static approach for the derivation of the size of a class is counting the size of

the attributes of the class. Each attribute, that is declared as a primitive type, is

counted with the value from a language dependent size table. If an attribute has

the type of a class, the class is counted first. The counted attributes are summed

up and this value forms the size of the class in bytes.

Listing 17 shows an example. The type size for Class1 shall be determined.

Therefore, its attributes are counted. attrib1 is a primitive type and we assume that

the language dependent table contains 4 bytes as the value for integers. attrib2 has

42

3.6 SMM Workload Profile 3 SIMULATION INPUT

the type Class2 and thus the size of Class2 must be counted first. The size of Class2

is 4 bytes because it only contains attrib3 which is of the type integer. Summing

up, Class1 has the size 4 + 4 = 8 bytes.

Considering a dynamic analysis, the derivation can, for instance, be conducted

with a Kieker probe that determines the size of the parameters for the called method.

3.6 SMM Workload Profile

This section describes the components of an SMM workload profile and which types

of SMM workload profiles are provided by CloudMIG Xpress.

3.6.1 Description

We need a workload profile that describes the usage model of the system that should

be simulated. During simulation, Cloudlets are created from it. Therefore, a work-

load profile should contain a set of measurements. A single measurement should

include the measurement timestamp, the measured response time, and the method

that was measured. SMM provides an easy way to include those attributes.

3.6.2 Derivation

CloudMIG Xpress provides two different types of SMM workload profile. The first

is a synthetic SMM workload profile. The user can create synthetic SMM workload

profiles by specifying a workload function and other parameters like the associated

method. Alternatively, the user can create an SMM workload profile by importing

monitoring data from a dynamic analysis. Currently, CloudMIG Xpress supports

importing monitoring data from Kieker traces.

3.7 Enriched KDM Model

A further input is an enriched KDM model which is described in this section.

3.7.1 Description

The KDM model contains a representation of the source code. The enrichments

include a mapping between source code elements and cloud code models, and in-

formation about the cloud provider that the simulation should be conducted with.

Cloud code models represent a logical composition of source code elements in the

context of a specific cloud deployment option.

43

3 SIMULATION INPUT 3.8 Adaptation Rules

3.7.2 Derivation

The enriched KDM model is provided by CloudMIG Xpress.

3.8 Adaptation Rules

This section describes the input adaptation rules.

3.8.1 Description

Adaptation rules are required for starting and terminating instances on the basis

of occurring events or thresholds. An example for an adaptation rule is “start a

new virtual machine instance when for 60 seconds the average CPU utilization of

allocated nodes stays above 70 %.” The rules follow the reconfiguration model of

CloudMIG Xpress and have the form of an action, i.e., start or terminate, a scope,

i.e., all or only specific allocated nodes, a time period like 60 seconds, an utilization

field like 70 %, and a relation like above or below.

3.8.2 Derivation

The user of CloudMIG Xpress creates the adaption rules using the GUI.

3.9 Configuration

In this section the simulation configuration parameters are specified and described.

3.9.1 Description

Parameter Data type
Timeout Double
Instruction counting method Enumeration{dynamic, static, hybrid}
Approximate array size Integer
Runtime of unknown methods Double
Separate submethod mode Boolean

Table 4: Simulation configuration parameters

Table 4 shows an overview of the simulation configuration parameters and their

data types. The first parameter is the timeout for Cloudlets. Its data type is double

in order to model arbitrary times. The instruction counting method parameter

44

3.9 Configuration 3 SIMULATION INPUT

specifies, which approach for instruction counting should be used by the simulation.

The three approaches were described in Section 3.3. The parameter approximate

array size is used for determining the iteration count in the static approach when

the iteration count cannot be derived. When the source code of a called method

is not available in the static approach, the parameter runtime of unknown methods

provides an approximation of the runtime. Its data type is double to model arbitrary

runtimes. The separate submethod mode is described in detail in Section 5.12.

3.9.2 Derivation

The user of CloudMIG Xpress provides the configuration by defining values for them

using the GUI.

45

3 SIMULATION INPUT 3.9 Configuration

46

4 SIMULATION OUTPUT

4 Simulation Output

This section describes the output of the simulation. Sections 4.1 to 4.3 describe the

different output components. The outputs for different cloud deployment options

have to be comparable to propose which deployment option is more suitable. Hence,

we describe our rating approach in Section 4.4. Elasticity is a further output that

we plan to integrate as a future feature. How elasticity can be measured is described

in Section 9.6.

4.1 Costs

The first output of the simulation are the costs of the simulated cloud deployment

option. It represents an overall cost which is the sum of the costs for the used

bandwidth and virtual machine instances. The overall cost is the primary attribute

of this category that is incorporated in the overall rating.

For example, assume one virtual machine instance running for 23 hours and one

virtual machine instance running for 6 hours. Furthermore, the costs for running

one virtual machine instance is assumed with 0.095$ per hour. Then, the output for

the costs is 23 · 0.095$ + 6 · 0.095$ = 2.755$.

4.2 Response Times

Another output of the simulation is the median of the response times for each called

method. Each method is then rated by our rating approach. Based on the method

ratings, an overall rating for the response times is calculated. This overall rating for

the response times is the primary attribute that is included in the overall rating.

4.3 SLA Violations

The third output is the number of violations for each SLA. Currently, only the SLA

“a call will not timeout” is implemented. The GUI provides the possibility to change

the timeout value. However, we plan to support a generic definition and processing

of SLAs.

47

4 SIMULATION OUTPUT 4.4 Rating

4.4 Rating

For comparing different simulation runs that cover different cloud deployment op-

tions, we do a rating for each run. The rating scale ranges from 1 as the best to 5

as the worst performance. Our rating approach searches for the best performance

of all runs in each category and sets this performance as a 1. The same is done for

the worst performance and the corresponding run is set as a 5. The other runs are

rated relatively to the best and worst run with the following method. The median

of all runs is calculated and set as a 3. The median divides the runs into a left set

and a right set, where the values that already got a rate are not included. The left

set is taken, the median is calculated, and then set as a 2. The same is done for

the right set and the median is set as a 4. After this, the values that have not been

associated to a rating, are members of four groups, namely the group between 1 and

2, between 2 and 3, between 3 and 4, and between 4 and 5. These members are

assigned a rating according to linear approximation. If there is only one run, the

rating is 1. The algorithm for the rating approach is shown in Appendix D.

For example, assuming the six runs with the costs of 10$, 20$, 40$, 50$, 90$, and

100$. The 10$ run is rated as 1 and the 100$ run is rated as a 5. Then the median

of the set is calculated which is 45$, which would be the value for a 3. The left set

contains 20$ and 40$ and the right set contains 50$ and 90$. The median of the

left set is 30$ which is the value for a 2 and the median of the right set is 70$ which

is the value for a 4. 20$ gets the rating 1.5. 40$ gets the rating 2.66. 50$ gets the

rating 3.2. 90$ gets the rating 4.66.

The overall rating, that considers each output, forms a combined rating by multi-

plying the output rating with a weight, summing the resulting values, and rounding

it at the second decimal place. It can be configured which output is more important

by specifying other weights than the default weight of 0.33 for each output rating.

48

5 CLOUDSIM ENHANCEMENTS

5 CloudSim Enhancements

Section 5.1 provides an overview of our enhancements to CloudSim. Then, Sec-

tion 5.2 shows the enhanced CloudSim meta-model. Finally, Sections 5.3 to 5.12

describe the accomplished extensions to CloudSim.

5.1 Overview

CloudSim simulates cloud systems following a cloud provider perspective. How-

ever, we require the cloud user perspective for the simulation of cloud deployment

options. For a cloud provider the workload on the nodes is rather random in gen-

eral. Therefore, we needed to implement a CPU utilization model that is not basing

on randomness (see Section 5.3). Furthermore, CloudSim provides no comfortable

way of conditionally starting and terminating virtual machine instances at runtime.

Hence, we implemented a rule-based system for this purpose which we describe in

Section 5.4. In CloudSim, all Cloudlets start processing at the beginning of the sim-

ulation. However, we need an easy way of specifying a start time of a Cloudlet (see

Section 5.5). The initialization time of virtual machine instances is most often not

negligible. Hence, we implemented a delayed virtual machine instance start which

is further described in Section 5.6. In most real systems, requests can timeout. We

model this circumstance with a configurable timeout for Cloudlets (see Section 5.7).

CloudSim only provides a very basic debt model. For advanced debt modeling, we

improved the debt model (see Section 5.8). In addition, we enhanced the modeling

of the instruction count of Cloudlets (see Section 5.9). Section 5.10 presents our

history exporter for easier traceability of conducted simulations. In order to have

a virtual unlimited amount of virtual machine instances, we needed dynamic host

addition at runtime which is described in Section 5.11. Our new Cloudlet scheduler

is presented in Section 5.12.

5.2 Enhanced CloudSim Meta-Model

Figure 8 displays the enhanced CloudSim meta-model. The enhancements are

marked with a gray background. Here, we only describe the enhancements. The

rest of the diagram was already described in paragraph 2.2.1. We added classes for

representing the network price function for each datacenter, i.e., NetworkPrice and

NetworkStepPrice. In addition, the virtual machine instance price is modeled by the

class VMInstancePrice. Those three classes are part of the improved debt model

49

5 CLOUDSIM ENHANCEMENTS 5.2 Enhanced CloudSim Meta-Model

-i
d
 :
 i
n
t

-l
e
n
g
th
 :
 d
o
u
b
le

-f
ile

S
iz
e
 :
 l
o
n
g

-o
u
tp
u
tS
iz
e
 :
 l
o
n
g

-P
E
c
o
u
n
t
:
in
t

-r
e
c
o
rd
 :
 b
o
o
le
a
n

-d
e
la
y
 :
 d
o
u
b
le

C
lo
u
d
le
t

-i
d
 :
 i
n
t

-i
m
a
g
e
S
iz
e
 :
 l
o
n
g

-R
A
M
 :
 i
n
t

-P
E
c
o
u
n
t
:
in
t

-M
IP
S
 :
 d
o
u
b
le

-b
a
n
d
w
id
th
C
o
n
n
e
c
ti
o
n
 :
 l
o
n
g

-v
m
M
o
n
it
o
r
:
S
tr
in
g

-s
ta
rt
D
e
la
y
 :
 d
o
u
b
le

-t
y
p
e
N
a
m
e
 :
 S
tr
in
g

-i
m
a
g
e
ID

 :
 S
tr
in
g

-t
y
p
e
ID

 :
 S
tr
in
g

-m
a
x
N
rO

fV
M
s
 :
 i
n
t

V
m

C
lo
u
d
le
tS

c
h
e
d
u
le
r

C
lo
u
d
le
tS

c
h
e
d
u
le
rT

im
e
S
h
a
re
d

C
lo
u
d
le
tS

c
h
e
d
u
le
rS

p
a
c
e
S
h
a
re
d

C
lo
u
d
le
tS

c
h
e
d
u
le
rD

y
n
a
m
ic
W
o
rk
lo
a
d

-n
a
m
e
 :
 S
tr
in
g

-s
c
h
e
d
u
lin

g
In
te
rv
a
l
:
d
o
u
b
le

D
a
ta
c
e
n
te
r

<
<
In
te
rf
a
c
e
>
>

U
ti
li
z
a
ti
o
n
M
o
d
e
l

U
ti
li
z
a
ti
o
n
M
o
d
e
lF
u
ll

U
ti
li
z
a
ti
o
n
M
o
d
e
lS
to
c
h
a
s
ti
c

-i
d
 :
 i
n
tP
E

-i
d
 :
 i
n
t

-s
to
ra
g
e
 :
 l
o
n
g

H
o
s
t

-a
rc
h
it
e
c
tu
re
 :
 S
tr
in
g

-O
S
 :
 S
tr
in
g

-v
m
M
o
n
it
o
r
:
S
tr
in
g

-t
im

e
Z
o
n
e
 :
 d
o
u
b
le

-c
o
s
tP
e
rS

e
c
 :
 d
o
u
b
le

-c
o
s
tP
e
rM

e
m
 :
 d
o
u
b
le

-c
o
s
tP
e
rS

to
ra
g
e
 :
 d
o
u
b
le

-c
o
s
tP
e
rB

w
 :
 d
o
u
b
le

D
a
ta
c
e
n
te
rC

h
a
ra
c
te
ri
s
ti
c
s

-M
IP
S
 :
 d
o
u
b
le

P
e
P
ro

v
is
io
n
e
r

P
e
P
ro

v
is
io
n
e
rS

im
p
le

-r
a
m
 :
 i
n
t

R
a
m
P
ro

v
is
io
n
e
r

-b
w
 :
 l
o
n
g

B
w
P
ro

v
is
io
n
e
r

V
m
S
c
h
e
d
u
le
r

R
a
m
P
ro

v
is
io
n
e
rS

im
p
le

B
w
P
ro

v
is
io
n
e
rS

im
p
le

V
m
S
c
h
e
d
u
le
rS

p
a
c
e
S
h
a
re
d

V
m
S
c
h
e
d
u
le
rT

im
e
S
h
a
re
d

<
<
In
te
rf
a
c
e
>
>

S
to
ra
g
e

V
m
A
ll
o
c
a
ti
o
n
P
o
li
c
y

V
m
A
ll
o
c
a
ti
o
n
P
o
li
c
y
S
im

p
le

-n
a
m
e
 :
 S
tr
in
g

D
a
ta
c
e
n
te
rB

ro
k
e
r

-b
w
 :
 d
o
u
b
le

-l
a
te
n
c
y
 :
 d
o
u
b
le

L
in
k

-c
lo
u
d
C
o
d
e
M
o
d
e
lI
D
 :
 S
tr
in
g

C
lo
u
d
C
o
d
e
M
o
d
e
l

-r
e
s
e
tA
ft
e
rH

o
u
rs
 :
 d
o
u
b
le

-p
e
rU

n
it
In
M
B
y
te
 :
 l
o
n
g

N
e
tw

o
rk
P
ri
c
e

-u
p
p
e
rB

o
u
n
d
 :
 i
n
t

-p
ri
c
e
P
e
rU

n
it
 :
 d
o
u
b
le

N
e
tw

o
rk
S
te
p
P
ri
c
e

-n
a
m
e
 :
 S
tr
in
g

V
M
Im

a
g
e

-p
e
rT
im

e
In
S
e
c
o
n
d
s
 :
 d
o
u
b
le

-p
ri
c
e
P
e
rU

n
it
 :
 d
o
u
b
le

-b
a
s
e
F
e
e
 :
 d
o
u
b
le

V
M
In
s
ta
n
c
e
P
ri
c
e

-l
a
n
g
u
a
g
e
 :
 S
tr
in
g

-v
e
rs
io
n
 :
 S
tr
in
g

-m
ip
ip
s
 :
 d
o
u
b
le

In
s
tr
u
c
ti
o
n
C
o
u
n
tW

e
ig
h
t

T
a
b
le

-d
a
ta
ty
p
e
 :
 S
tr
in
g

-s
ta
te
m
e
n
t
:
S
tr
in
g

-w
e
ig
h
t
:
d
o
u
b
le

In
s
tr
u
c
ti
o
n
C
o
u
n
tW

e
ig
h
t

1
..
*

u
s
e
rI
d

10
..
*

1
..
*

1
..
*

1
0
..
*

0
..
1

0
..
*

0
..
*

1
..
*

0
..
*

1
..
*

1
..
*

in
s
tr
u
c
ti
o
n
C
o
u
n
tW

e
ig
h
tT
a
b
le
s

in
s
tr
u
c
ti
o
n
C
o
u
n
tW

e
ig
h
ts p
ri
c
e

v
m
Im

a
g
e
L
is
t

n
e
tw

o
rk
P
ri
c
e

s
te
p
s

c
lo
u
d
C
o
d
e
M
o
d
e
lL
is
t

v
m
L
is
t

u
ti
liz
a
ti
o
n
M
o
d
e
lB
w

u
ti
liz
a
ti
o
n
M
o
d
e
lC
p
u

u
s
e
rI
d

p
e
L
is
t

p
e
P
ro
v
is
io
n
e
r

u
ti
liz
a
ti
o
n
M
o
d
e
lR
a
m

d
s
tI
d

v
m
Id

b
w
P
ro
v
is
io
n
e
r

s
rc
Id

s
c
h
e
d
u
le
r

v
m
S
c
h
e
d
u
le
r

h
o
s
tL
is
t

c
h
a
ra
c
te
ri
s
ti
c
s

v
m
A
llo

c
a
ti
o
n
P
o
lic
y

ra
m
P
ro
v
is
io
n
e
r

c
lo
u
d
le
tL
is
t

h
o
s
tL
is
t

s
to
ra
g
e
L
is
t

Figure 8: Enhanced CloudSim meta-model

50

5.3 CPU Utilization Model per Core 5 CLOUDSIM ENHANCEMENTS

which is described in Section 5.8. In order to support the improved instruction

count model (see Section 5.9), we had to change the data type of the attribute

length from the Cloudlet class to double. For delayed Cloudlet sending (see Sec-

tion 5.5), we added the attribute delay to the class Cloudlet. The new classes

VMImage and CloudCodeModel and the new attributes typeName, imageID, typeID,

and maxNrOfVMs of the class Vm are used for the creation and termination of vir-

tual machine instances which is described in Section 5.4. Furthermore, the static

approach utilizes the two new classes InstructionCountWeightTable and Instruc-

tionCountWeight. We added the new attribute startDelay to the class Vm for the

delayed virtual machine instance creation which is described in Section 5.6.

5.3 CPU Utilization Model per Core

CloudSim only provides a pure random-based CPU utilization model because the

CPU utilization is rather random for a cloud provider. However, from the cloud

user perspective we know the approximate CPU utilization and it is a major pre-

dictor indicator for the performance of the virtual machine instance. Hence, we

implemented a CPU utilization model that follows the conducted work. Our CPU

utilization model is motivated by the fact that a 50 % CPU utilization in one second

means that the CPU had work in 500 milliseconds and was idle in 500 milliseconds.

Figure 9 shows an example. The gray boxes indicate when the CPU was active.

From 0 to 0.22 seconds and 0.43 to 0.72 seconds the CPU was working. From 0.23

to 0.42 seconds and from 0.73 to 1.0 seconds the CPU was idle. Our CPU utilization

model only queries at discrete timestamps whether the CPU is active or idle. In

Figure 9, the queries for the CPU utilization are sketched by the vertical lines at

each 0.1 seconds. Notably, our CPU utilization model has a discretization error

and we can construct cases where the actual CPU utilization is 99 % and the CPU

utilization in our model is 0 %. However, our tests have shown that the error of our

CPU utilization model is negligible for most workloads. The CPU utilization model

in our simulation queries the CPU action every 10 milliseconds in simulation time.

5.4 Starting and Stopping Virtual Machine Instances on

Demand

In CloudSim the virtual machine instances cannot be started on demand. They have

to be created before the simulation begins. Hence, there is no possibility to simulate

automatic elasticity in CloudSim. The CloudSim authors provide a way to stop the

51

5 CLOUDSIM ENHANCEMENTS 5.5 Delayed Cloudlet Creation

[s]

Figure 9: CPU utilization model example

simulation and then change the configuration. However, using this way for elasticity

would mean that we stop the simulation each minute and test if the configuration

must be changed. This activity should be an internal function and as cloud users

we should only need to define adaptation rules. We implemented this feature into

CloudSim. The adaptation rules were described in Section 3.8.

5.5 Delayed Cloudlet Creation

CloudSim needs all Cloudlets to be started at the beginning, if we ignore the in-

tractable method of stopping the simulation at a defined timestamp. With this

behavior web applications cannot be modeled in a realistic way because all requests

would be at the beginning of the simulation and parallel. Hence, we extended

CloudSim such that Cloudlets have an attribute delay which corresponds to the

time when the Cloudlet should be sent for processing.

5.6 Delayed Start of Virtual Machines

In CloudSim a creation of a virtual machine results in instant availability of the

virtual machine instance. Our conducted tests showed that, for example, there is an

average delay of one minute on our private cloud which is not negligible. Therefore,

we implemented an event for the delayed creation of virtual machines. The old

creation method is triggered from this event.

5.7 Timeout for Cloudlets

In web applications there is typically a response timeout. After this timeout, an

answer is useless because the client closed the connection. Most real web applications

would recognize when a user closes the connection by timeout and would terminate

52

5.8 Improved Debt Model 5 CLOUDSIM ENHANCEMENTS

the corresponding task that calculates the answer. This results in a saving of CPU

time. Hence, we also implemented a timeout for calls. Every Cloudlet that is

executing, paused, or waiting, gets canceled after a defined timeout.

5.8 Improved Debt Model

The debt model in CloudSim is kept coarse grained. In particular, our tests have

shown that it counts the used memory and bandwidth, multiplies these with a con-

stant, and returns the resulting value. Modeling the current debt model of Amazon

EC2 is not possible with this debt model. Hence, we implemented a debt model that

follows the pricing model of CloudMIG Xpress and takes a time span for which the

debts are calculated. For instance, for modeling the virtual machine instance debt

model of Amazon EC2 every begun hour the price for the running instance is added

to the debts. Furthermore, the debt model for bandwidth usage is modeled as a step

function like done by Amazon EC2. For example, the first gigabyte of traffic is free

of charge, above one gigabyte till 10,000 gigabyte every gigabyte costs 0.12$ at the

time of this writing.

5.9 Enhanced Instruction Count Model

Cloudlets in CloudSim have an attribute called length with the data type long. This

length is assumed to be in mega instructions. Assuming, for instance, a MIPIPS of

200, the shortest execution of a Cloudlet that can be modeled is five milliseconds.

In the web application domain this value might be too high. We wanted to model

also short calls. Therefore, we changed the data type to double and hence, enabled

a modeling of arbitrary small call durations.

5.10 History Exporter

CloudSim only has a function for recording the actions of Cloudlets as a String.

These actions include starting and finishing, for instance. All other events are logged,

but only on the console for a human user. We extended CloudSim by a history

exporter for the CPU utilizations, arrival rates, and response times. The CPU

utilizations are written on a per core basis. The arrival rates and response times are

written on a per method basis. After exporting, the resulting CSV files can be read

in by an included R script and plotted such that the run of the simulation is easily

traceable.

53

5 CLOUDSIM ENHANCEMENTS 5.11 Dynamic Host Addition at Runtime

5.11 Dynamic Host Addition at Runtime

In a Cloud environment like Amazon EC2, a virtually unlimited amount of virtual

machine instances can be started. Modeling this circumstance with CloudSim would

mean that we must limit the amount because we can only add a limited amount of

hosts upfront. We made an extension to CloudSim that with every virtual machine

instance a new host, that fits the needs of the virtual machine instance, is added

dynamically at runtime.

5.12 Method Calls and Network Traffic between Virtual

Machine Instances

In CloudSim, a Cloudlet runs on one virtual machine instance and it can be moved

to other virtual machine instances but a Cloudlet cannot “call” other Cloudlets.

We wanted to simulate the explicit calling of methods between different virtual

machine instances and on the same instance. We call this separate submethods

mode (S2M). For example, a use case for this is the calling of web services on

other virtual machine instances. For this purpose, we had to implement a new

Cloudlet scheduler. Figure 10 shows an example for the new scheduler. There exists

method1 which should execute on VM1 and should call method2 on VM2. Method1

is represented by Cloudlet1. Before Cloudlet1 is executed, the scheduler searches

in the source code of method1 for methods that are called by method1. A call to

method2 is found and the Index Service is queried for the location where method2 is

running. The Index Service returns VM2 and for method2 Cloudlet2 is created on

VM2. Then, Cloudlet1 pauses itself, meaning other Cloudlets can process on VM1.

Method2 conducts no method calls. Therefore, Cloudlet2 processes and then wakes

up Cloudlet1 on finish. Cloudlet1 can now process or call other methods.

The previously mentioned Index Service tracks which method is available on

which virtual machine instance. This service also implements a basic load balancer

on a per method basis. It saves an index and outputs the different virtual machine

instances circularly.

54

5.12 Method Calls and Network Traffic
between Virtual Machine Instances 5 CLOUDSIM ENHANCEMENTS

Index Service VM2VM1

2: VM2

1: whereIs(method2)

5: wakeup()

4: pause()

3: create(method2)

Figure 10: New scheduling example

55

5 CLOUDSIM ENHANCEMENTS
5.12 Method Calls and Network Traffic

between Virtual Machine Instances

56

6 MIPIPS AND WEIGHTS BENCHMARK

6 MIPIPS and Weights Benchmark

We implemented our approach for the derivation of MIPIPS (see Section 3.2) and

weights (see Section 3.4) as a benchmark software in Java. Section 6.1 provides a

list of the main features and Section 6.2 presents the design of the software. Finally,

Section 6.3 shows an example of the output.

6.1 Features

The purpose of the MIPIPS and weights benchmark is the determination of MIPIPS

and weights for different programming languages. It provides the following main

features:

- Determination of MIPIPS and weights for different programming languages

- Configuration of which programming language to benchmark and the number

of runs for measuring MIPIPS and weights

- Interaction through the Console or GUI

- Output the results as a CSV file

6.2 Design

The design of the MIPIPS and weights benchmark follows the Model-View-Controller

(MVC) design pattern, i.e., the software is separated into logic, model, and view.

In Figure 11, the Java packages for the MIPIPS and weights benchmark are dis-

played. The package mipipsandweightscounter contains the logic that implements

the master which starts the single benchmarks. mipipsandweightscounter.console

and mipipsandweightscounter.view provide the console and graphical user interface.

The package mipipsandweightscounter.command includes classes for starting the sin-

gle benchmarks.

In Figure 12, the GUI of the MIPIPS and weights benchmark is shown. The left

part enables the configuration of the benchmark and provides a start button for the

benchmark. Furthermore, the lower left part displays information about the last

benchmark run. The right part of the GUI is used for showing logging events.

57

6 MIPIPS AND WEIGHTS BENCHMARK 6.2 Design

Figure 11: Java packages of the MIPIPS and weights benchmark

Figure 12: GUI of the MIPIPS and weights benchmark

58

6.3 Example Output 6 MIPIPS AND WEIGHTS BENCHMARK

� �
1 #MIPIPS = 1993.949533426184
2 #Language = CSharp
3 #Vers ion = 4 . 0 . 3 0 3 1 9 . 1
4 #Datatype , Statementtype , Weight
5 Boolean , And , 0.8546889507892294
6 Boolean , Not , 3 .505571030640669
7 Boolean , Or , 0.9419684308263695
8 Class , Creation , 16.77251622931359
9 Double , Divide , 19.76462395543176

10 Double , Minus , 2 .846332404828227
11 Double , Plus , 2 .9986072423398324
12 Double , Times , 2 .976787372330548
13 Fie ld , Access , 1 .0649953574744664
14 Float , Divide , 17.055710306406688
15 Float , Minus , 2 .8681522748375117
16 Float , Plus , 2 .6727019498607243
17 Float , Times , 2 .904363974001857
18 Function , Cal l , 2 .2307335190343545
19 Integer , Divide , 4.1861652739090065
20 Integer , Minus , 1.0069637883008358
21 Integer , Times , 0.8040854224698235
22 Long , Divide , 4 .758124419684309
23 Long , Minus , 1 .043175487465181
24 Long , Plus , 1.0649953574744664
25 Long , Times , 1.0793871866295266
26 Str ing , Plus , 84.93964706917666� �

Listing 18: Example output of the MIPIPS and weights benchmark

6.3 Example Output

Listing 18 shows an example output of the MIPIPS and weights benchmark. The

first line contains the measured MIPIPS. Then, line 2 and 3 determine the language

and the corresponding version. Afterwards, the weights are displayed in the form:

data type, statement type, and weight.

59

6 MIPIPS AND WEIGHTS BENCHMARK 6.3 Example Output

60

7 CDOSIM

7 CDOSim

CDOSim is a software, which we developed within the scope of this thesis to enable

the simulation of different cloud deployment options. We implemented CDOSim as

a plug-in for ClougMIG Xpress [18]. The source code is available on the attached

DVD. The future work for CDOSim is described in Section 10.2. Section 7.1 and 7.3

show an overview of the features and the design of CDOSim and Section 7.2 presents

the fundamental activities that are performed by CDOSim during the simulation.

7.1 Features

CDOSim enables the simulation of different cloud deployment options. Currently,

the following main features are implemented:

- Simulation of software systems in the context of CloudMIG’s cloud profiles

- Simulation of costs, response times, and SLA violations

- Simulation of software systems that were reverse-engineered to KDM code

models

- Simulation of SMM models that represent workload profiles and enrich KDM

models

- Start or shutdown of virtual machine instances based on the average CPU

utilization of allocated virtual machine instances corresponding to arbitrary

workload patterns

- Configurable timeout for service calls

- Export of runs as CSV files for CPU utilization, response times, and arrival

rate

- Configuration of the start instance type and how many instances are running

at start

- Integration of adaptation rules and pricing package from CloudMIG Xpress

For the planned features, we refer to the description of the future work in Sec-

tion 10.2.

61

7 CDOSIM 7.2 The Simulation Process

7.2 The Simulation Process

Instruction Count Derivation

Transformation from Mapping Model

to CloudSim Meta-Model

Simulation with CloudSim

Rating

Type Size Derivation

Figure 13: Activities in CDOSim’s simulation process

Figure 13 shows the different activities performed by CDOSim during simulation.

The first activity is instruction count derivation. In this activity CDOSim conducts

the instruction count derivation with the approach, which was selected by the user.

The derived instruction counts are written as attributes into the KDM instances,

that were passed to the simulation. Secondly, the type size is derived as described in

Section 3.5. We need the type size to approximate the bandwidth that is used when

there are distributed calls to other virtual machine instances. The next activity is

the transformation from the mapping model provided by CloudMIG Xpress to our

CloudSim Meta-Model. The mapping model contains the meta-information about,

for instance, the available instance types and costs of the selected cloud provider.

Furthermore, it describes which code models have to be deployed on specific virtual

machine instances. Then, the actual simulation with CloudSim takes place. Finally,

the new simulation result is rated relative to the other runs. In non-GUI mode,

the runs, which should be ranked relatively, can be passed to CDOSim. The rating

approach was described in Section 4.4.

62

7.3 Design 7 CDOSIM

7.3 Design

We designed CDOSim with the MVC design pattern, i.e., we separated the logic,

model, and view. Furthermore, every activity (see Section 7.2) has its own package.

Figure 14: Java packages of CDOSim

In Figure 14 the Java packages of CDOSim are shown. The cdosim package con-

tains an activator class which is called when the plug-in is started from within Cloud-

MIG Xpress. The models, e.g., a class for the simulation results, are included in the

model package. The CloudSim meta-model is contained in the metamodel.CloudSim

package. The interface for CloudMIG Xpress is provided by the main package.

Furthermore, it invokes the different activities which reside in their own package.

These packages are instructioncount, typesizecount, transformation, and simulation.

The view package is responsible for displaying the GUI and the exporter package is

responsible for saving data like the CPU utilization during the simulation into CSV

files.

Figure 15 shows the GUI of CDOSim. The GUI is divided into two parts. The

upper part shows the configuration for the next simulation run and provides a button

for starting the simulation. The lower part of the GUI displays the past simulation

runs and their rated results.

63

7 CDOSIM 7.3 Design

Figure 15: GUI of CDOSim

64

8 EVALUATION OF CDOSIM

8 Evaluation of CDOSim

This section evaluates the functionality and accuracy of CDOSim. Furthermore, the

MIPIPS benchmark is evaluated because it represents an important precondition for

CDOSim. Section 8.1 describes the goals of the five different evaluations, which we

refer to by E1 to E5, and the rationale for conducting them. Afterwards, Section 8.2

presents the methodology that we used in E1 to E5. In Section 8.3, the basic

experiment setup for the different evaluations is described. Then, Sections 8.4 to 8.8

detail the conducted evaluations. Finally, Section 8.9 summarizes the results of the

evaluations.

8.1 Goals of the Evaluation

E1, which is described in Section 8.4, evaluates the validity of the MIPIPS bench-

mark. The MIPIPS value should correlate with the performance that the underlying

node provides. Furthermore, it should be approximately constant on the same node.

The MIPIPS value is important when there is a run on one cloud provider or a local

server, and we want to simulate which performance and costs the workload would

induce on a specific cloud provider or cloud provider in general.

In E2 the validity of the simulation results in comparison to real, measured runs

on Eucalyptus and Amazon EC2, that are conducted with single core instances, are

evaluated. This evaluation is important to assess the basic validity of the simulation.

In addition, it evaluates which simulation approach, that were described in Section 3,

reveals the most accurate result.

E3 also evaluates the validity of the simulation by determining the accuracy

of the simulation referred to the measured runs on Eucalyptus and Amazon EC2.

However, E3 utilizes a multi core instance type instead of a single core instance type.

E4 evaluates whether the simulation accurately simulates a wider range of adap-

tation strategies.

Evaluation E5 combines E1, E2, and E3. It evaluates whether the prediction of

the performance of a cloud provider basing on the data from another cloud provider

is accurate, i.e., we do a run on Amazon EC2 with a multi core instance type and

predict the performance of this workload on Eucalyptus with a single core instance

type. Then, the run is conducted on Eucalyptus and compared to the simulated

run. The MIPIPS values of the multi core instance type and the single core instance

65

8 EVALUATION OF CDOSIM 8.2 Methodology

type are an important part of this evaluation. If they are wrong, the prediction will

under- or overestimate the performance on Eucalyptus relative to the Amazon EC2

run.

Following the three types of validity for simulation models by Zeigler [56, 68, 69,

77], E2, E3, and E4 evaluate the replicative validity of our simulation model and E5

addresses the predictive and structural validity. A reproduction is in some way also

a prediction. However, we refer to a prediction only if it corresponds to input values

that are recorded on a different system than the system that should be simulated.

8.2 Methodology

This section describes our methodology used in the evaluations E1 to E5.

8.2.1 Comparison Method in E1

In evaluation E1, we want to show that the MIPIPS values stay approximately con-

stant on the same node. Furthermore, the MIPIPS value should correlate with the

performance that the underlying node provides, i.e, if there exists a large difference

in other performance measures, it should be likely that the MIPIPS values express

this circumstance.

For determining if the MIPIPS stay approximately constant on the same plat-

form, we calculate the mean value and the standard deviation over the MIPIPS

values resulting from the conducted runs. Then, we compare the standard deviation

to a predefined threshold.

The correlation between the performance of the underlying host and the MIPIPS

will be evaluated by comparing the MIPIPS with the available performance attribute

and checking if the difference between the MIPIPS values is statistically significant.

8.2.2 Calculation of Relative Error for E2 to E5

For the evaluations E2 to E5 we compare the simulated values with the measured

values per minute. The values are CPU utilization, instance count, costs, and re-

sponse times. The following metric describes the relative error for each aspect of

the simulation. All percent values will be truncated after the second decimal place.

T is the set of all minutes in the measurement duration. m(t) is the measured

value at timestamp t ∈ T and s(t) is the simulated value at timestamp t ∈ T .

When m(t) equals 0, t is removed from the set T . Equation 9 shows the formula to

calculate the relative error for a timestamp t.

66

8.3 Basic Experiment Setup 8 EVALUATION OF CDOSIM

(9) re(t) =
|m(t) − s(t)|

m(t)
, m(t) 6= 0, t ∈ T

(10) RE =
Σt re(t)

|T |

Equation 10 displays the formula for calculation of the relative error (RE) for

the whole simulation run. We have four different REs. RECPU is the relative error

of the CPU utilization. REInstanceCount stands for the relative error of the instance

count. RECosts marks the relative error of the costs output. RERT is the relative

error of the response times.

(11) OverallRE =
RECPU +REInstanceCount +RECosts +RERT

4

To enable a consolidated comparison between the results, we introduce the overall

relative error (OverallRE), which is shown in Equation 11. The overall relative error

(OverallRE) should be below 30 % to have results that are sufficiently accurate [37,

43].

As a further comparison value, the overall difference of instance minutes and

absolute costs will be provided. Instance minutes is the sum of the runtime of all

virtual machine instances in minutes. For example, two virtual machine instances

are running for one minute. Then, they consumed two instance minutes.

8.3 Basic Experiment Setup

This section describes the common setup for our evaluations. We use iBatis JPet-

Store 5.0 [27] for the evaluations E2 to E5, which is a web store for pets. The

program is widely used for evaluation purposes.

8.3.1 SLAstic and SLAstic Adaptations

The online-adaptation framework SLAstic [73] provides means for architectural run-

time reconfiguration. It can change component deployments and server allocations

at runtime according to defined metrics and thresholds.

67

8 EVALUATION OF CDOSIM 8.3 Basic Experiment Setup

We extended SLAstic to function with Amazon EC2 by implementing an inter-

face provided by SLAstic. SLAstic can now start and terminate virtual machine

instances automatically on Amazon EC2. Furthermore, we implemented a CPU

utilization based adaptation strategy. When the average CPU utilization of all

allocated nodes is constantly above a configurable threshold value for a configurable

amount of time, SLAstic triggers the creation of a new instance. Conversely, if the

average CPU utilization of all allocated nodes is below a configurable threshold, the

program triggers the shutdown of a running instance.

8.3.2 JPetStore Adaptation

Most calls to JPetStore are processed in less than 2 milliseconds, which results in

only a small CPU utilization. In our evaluation, we want to use capacity adaption

based on CPU utilization. We could generate a high call rate such that the CPU

utilization raises over our threshold value for the starting of a new virtual machine

instance. However, we would need different servers to generate the necessary work-

load intensity. Hence, we decided to generate additional CPU utilization for each

call. Listing 19 shows the method that generates the CPU utilization. This method

is called by every service method before processing its actual code.

We did not implement data flow analysis in the static approach. However, we

needed line 6 and 7 such that the JIT did not optimize the while loop. With those

two lines in the static approach and without data flow analysis, the instruction

count will be about 50 % larger. With data flow analysis, those two lines would only

increase the instruction count by far below 1 %. Hence, we omitted line 6 and 7

in the evaluations with the static approach because they are negligible if we would

have implemented data flow analysis.

8.3.3 Eucalyptus

First, the private cloud software Eucalyptus, which is deployed on our own server, is

part of the evaluations. This way, we can control the overall workload intensity on

the underlying hosts, which in contrast is not possible on Amazon EC2. This section

describes our Eucalyptus server and the experiment setup concerning Eucalyptus.

Configuration

Table 5 presents the hardware configuration for our Eucalyptus server. The two

AMD Opteron 2384 processors provide 8 CPU cores in sum. The server has 24 GB

DDR2-667 RAM and a 1 Gigabit/s network connection.

68

8.3 Basic Experiment Setup 8 EVALUATION OF CDOSIM

� �
1 public f ina l int compute () {
2 int retVal = 0 ;
3 int i = 0 ;
4
5 while (i < 12582912) {
6 i f (i == 0)
7 retVal = new Random() ;
8
9 retVal = retVal + 2 ;

10 i ++;
11 }
12
13 return retVal ;
14 }� �

Listing 19: JPetStore adaptation

CPU 2x AMD Opteron 2384 with 2.7 GHz
RAM 24 GB DDR2-667
Network 1 Gigabit/s

Table 5: Our Eucalyptus server

Instance type
Maximum number

of instances
CPU cores

per instance
RAM per
instance

m1.small 8 1 1 GB

c1.medium 8 1 2 GB

m1.xlarge 4 2 2 GB

m1.large 2 4 2 GB

c1.xlarge 1 6 2 GB

Table 6: Our Eucalyptus configuration

Table 6 shows the instance type configuration for our Eucalyptus setup. m1.small

has a single CPU core and 1 GB RAM. c1.medium has likewise one CPU core and

2 GB RAM. Two CPU cores and 2 GB of RAM are assigned to m1.xlarge. m1.large

features four CPU cores and 2 GB RAM. At last, c1.xlarge has the highest CPU

core count with 6 CPU cores and has 2 GB RAM.

Deployment

Figure 16 shows the deployment of the used components in Eucalyptus. Our test

environment incorporates two nodes, namely the Eucalyptus node and the blade2

69

8 EVALUATION OF CDOSIM 8.3 Basic Experiment Setup

blade2

<<executionEnvironment>>
Eucalyptus

<<component>>
<<VM>>

TomcatInstance

<<component>>
Tomcat

<<component>>
SLAstic

<<component>>
ActiveMQ

<<component>>
JMeter

<<component>>
Tomcat

<<component>>
LoadBalancer

<<component>>
JPetStore

<<component>>
Kieker

<<component>>
Eucalyptus controller

<<DataTransfer>>
<<HTTP>>

<<DataTransfer>>
<<JMS>>

<<DataTransfer>>
<<JMS>>

<<DataTransfer>>
<<HTTP>>

<<DataTransfer>>
<<HTTP>>

<<DataTransfer>>
<<TCP/IP>>

Figure 16: Deployment configuration for Eucalyptus

node. In the Eucalyptus node, instances of the Tomcat image can be started. The

Tomcat image includes a Tomcat 6.0.18 [64] with JPetStore 5.0, its own database

namely HSQLDB 1.8 [67], and Kieker 1.4 [70]. Kieker is included for monitoring

the CPU utilization and response time of the annotated methods in JPetStore. It

sends the monitored data to the ActiveMQ 5.5.1 [62] queue on the blade2 node.

SLAstic 0.01a is deployed on the blade2 node. It analyzes the CPU utilization

obtained from the ActiveMQ queue and calculates if a new instance of the Tomcat

image should be allocated or if an instance can be released. If this circumstance

holds, it communicates with the controller of Eucalyptus. The workload is generated

by JMeter 2.5.1 [63] with Markov4JMeter [71] on the blade2 node. The JMeter

profile fetches the destination IPs from the load balancer servlet at the start of a

new web application call. The load balancer servlet manages a list that tracks virtual

machine instances of the Tomcat image and passes a random IP to JMeter. SLAstic

updates the server list.

Cost Model

Our Eucalyptus configuration has no cost model because it is a private cloud. Thus,

we assume the cost model of Amazon EC2 EU (Irland) that applies at the time of

this writing. We only list the used instance types. We assume for m1.small the costs

70

8.3 Basic Experiment Setup 8 EVALUATION OF CDOSIM

of 0.095$ per started hour and for m1.xlarge, which is comparable to c1.medium from

Amazon EC2, 0.19$ per started hour.

Cloud Profile

To simulate our Eucalyptus private cloud, we had to create a cloud profile for it in

CloudMIG Xpress.

8.3.4 Amazon EC2

In addition to Eucalyptus, we conduct our evaluations on Amazon EC2 to include

a realistic cloud environment that is widely used in industrial production settings.

As with most public cloud providers, we can not control the workload intensity of

the underlying host and which particular host we are spawning instances on. This

section describes the specific deployment configuration for our evaluations done with

Amazon EC2.

Used instance types

Instance type
CPU cores

per instance
EC2 compute
units per core

RAM per
instance

t1.micro 1 Up to 2 613 MB

m1.small 1 1 1.7 GB

m1.large 2 2 7.5 GB

c1.medium 2 2.5 1.7 GB

m2.xlarge 2 3.25 17.1 GB

Table 7: Used instance types in Amazon EC2 experiments

Table 7 shows the used instance type configuration in our Amazon EC2 experi-

ments. One EC2 compute unit provides the computing performance of a 1.0 to 1.2

GHz Opteron or Xeon processor from the year 2007. t1.micro has a single CPU

core, up to 2 EC2 compute units, and 613 MB RAM. m1.small has a single CPU

core, one EC2 compute unit, and 1.7 GB RAM. m1.large has 2 CPU cores, 2 EC2

compute units, and 7.5 GB RAM. Two CPU cores and 1.7 GB of RAM are assigned

to c1.medium. m2.xlarge features two CPU cores, 3.25 EC2 compute units, and 17.1

GB RAM.

71

8 EVALUATION OF CDOSIM 8.3 Basic Experiment Setup

<<executionEnvironment>>
Amazon EC2

<<component>>
<<VM>>

TomcatInstance

<<component>>
<<VM>>

SLAsticInstance

<<component>>
Tomcat

<<component>>
SLAstic

<<component>>
Tomcat

<<component>>
ActiveMQ

<<component>>
JMeter

<<component>>
JPetStore

<<component>>
LoadBalancer

<<component>>
Kieker

<<component>>
Amazon EC2 controller

<<DataTransfer>>
<<HTTP>>

<<DataTransfer>>
<<JMS>>

<<DataTransfer>>
<<HTTP>>

<<DataTransfer>>
<<JMS>>

<<DataTransfer>>
<<HTTP>>

<<DataTransfer>>
<<TCP/IP>>

Figure 17: Deployment configuration for Amazon EC2

Deployment

Figure 17 shows the deployment for Amazon EC2. The communication types be-

tween the components are the same as in the Eucalyptus deployment. However,

our server that is running SLAstic and the workload generator in Eucalyptus is not

reachable from the Internet. Hence, we used an Amazon EC2 m2.2xlarge instance.

This instance type has 34.2 GB RAM and 13 EC2 Compute Units (4 virtual cores

with 3.25 EC2 Compute Units each).

Cost Model

We started all virtual machine instances in the region EU-West-1. Hence, we use

the corresponding cost model. For a m1.small instance we payed 0.095$ per started

hour and for a c1.medium instance we payed 0.19$ per started hour.

8.3.5 Workload Profile

Figure 18 presents the workload intensity function that is used in the evaluations

E2 to E5. The workload intensity function origins from a service provider for digital

photos [55]. It conforms to a typical day-night-cycle workload intensity often found

72

8.3 Basic Experiment Setup 8 EVALUATION OF CDOSIM

Workload Intensity

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

58
9.

1
17

67
.3

29
45

.5
41

23
.7

53
01

.9
M

et
ho

d
ca

ll
ra

te
 [n

um
be

r
of

 m
et

ho
d

ca
lls

/m
in

]

Method call rate

Figure 18: The used day-night-cycle workload intensity

on regional websites. In the morning the workload intensity increases until there is

a first peak at noon and a second higher peak in the evening. Then, the workload

intensity decreases until there are only few requests at night. The intensity of the

used workload varies by each evaluation because our JMeter configuration takes a

maximum value for the arrival rate at each minute but does not assert that this value

is reached. The maximum value of the workload intensity for each evaluation E2 to

E5 is described in the experiment setting of each evaluation. The evaluations E2 to

E4 only reproduce the results and hence, the different workloads do not influence

the results. In E5 the performance is predicted from a conducted run. Here, we

conducted several runs for the control run to have approximately the same workload

intensity.

8.3.6 Default Simulation Configuration

Table 8 shows the default simulation configuration for the evaluations E2 to E5.

The configuration parameters were described in Section 3.9. If the value is not

described in the evaluation, the value is set according to this table. The default

value for approximate array size and runtime of unknown methods resulted from

tests that performed best in this context. Further, they have a negligible influence

73

8 EVALUATION OF CDOSIM 8.4 E1: MIPIPS Benchmark Evaluation

Setting Value
Start instance type m1.small
Running instances at start 1 instance
Minimum running instances 1 instance
Timeout 30 seconds
Start new instance when average CPU utilization above 70 % for 60 seconds
Terminate instance when average CPU utilization below 30 % for 60 seconds
Instruction counting method dynamic approach
Approximate array size 30 elements
Runtime of unknown methods 0.01 milliseconds
Separate submethod mode off

Table 8: Default simulation configuration

because JPetStore has only short service calls and only these are influenced by the

two parameters. The largest part of the response time and work is produced by our

JPetStore addition.

8.4 E1: MIPIPS Benchmark Evaluation

This section evaluates the MIPIPS benchmark. Section 8.4.1 to 8.4.6 describe the

experiment and its results, discuss the results, and show the threats to validity.

8.4.1 Goals

The goal is to evaluate the MIPIPS benchmark by considering the plausibility of the

resulting MIPIPS values in comparison to each other (validation) and the stability

of the resulting MIPIPS values using the same instance type (verification).

We expect that, if there is a large difference in the performance of the CPU, the

MIPIPS value of the slower CPU is smaller than the MIPIPS value of the faster

CPU. In addition, we expect the MIPIPS value differs from the mean MIPIPS value

by a small factor, which is lower than 2.5 %, if the benchmark is run again on the

same instance type. The 2.5 % are motivated by the typical alpha level of α = 0.05.

8.4.2 Experimental Setting

The evaluation takes place on Eucalyptus and Amazon EC2. On Eucalyptus we

use the instance types m1.small, m1.xlarge, m1.large, and c1.large. These instances

differ in the number of cores. We use solely these instance types because the MIPIPS

74

8.4 E1: MIPIPS Benchmark Evaluation 8 EVALUATION OF CDOSIM

benchmark measures CPU performance and always needs around 3 MB of memory.

Hence, we omit instance types that differ only in the memory amount.

The MIPIPS benchmark on Amazon EC2 is run on the instance types t1.micro,

m1.small, m1.large, c1.medium, and m2.xlarge. These instance types are the types

where the EC2 Compute Units differ. Again, we omit instance types that distinguish

solely in memory amount. The instances are started in the region EU-West-1.

All benchmark runs are started with the parameters for console mode, Java as

benchmarked language, and 30 passes for the MIPIPS determination.

8.4.3 Comparisons

The evaluation includes five comparisons. MIPIPS.1 and MIPIPS.3 compare the

MIPIPS values between the different instance types and MIPIPS.2, MIPIPS.4, and

MIPIPS.5 compare the MIPIPS values of repeated runs on identical instance types.

Comparison MIPIPS.1: Different Eucalyptus instance types

This comparison analyzes the relationship of MIPIPS values of different Eucalyptus

instance types, which are generated by one benchmark run on each instance type.

The corresponding instance is the only instance that is running on our Eucalyptus

server while performing each benchmark run.

Comparison MIPIPS.2: Eucalyptus m1.small instance

MIPIPS.2 compares the MIPIPS values of an Eucalyptus m1.small instance for

5 runs. For every run, a new instance is started and only one instance is running on

our Eucalyptus setup at a time.

Comparison MIPIPS.3: Different Amazon EC2 instance types

In this comparison, we compare the MIPIPS values of different Amazon EC2 instance

types. Each benchmark is started only once for each instance type. The instances

are started in parallel on Amazon EC2.

Comparison MIPIPS.4: Amazon EC2 m1.small instance

MIPIPS.4 analyzes the MIPIPS values of an Amazon EC2 m1.small instance for

5 runs. For every new benchmark run a new instance is started. The first run

is taken from MIPIPS.3 and the other four instances are started in parallel on

Amazon EC2.

75

8 EVALUATION OF CDOSIM 8.4 E1: MIPIPS Benchmark Evaluation

Comparison MIPIPS.5: Amazon EC2 c1.medium instance

MIPIPS.5 has the same procedure like MIPIPS.4. However, the underlying instance

type is c1.medium instead of m1.small.

8.4.4 Results

The following subsections describe the results of comparison MIPIPS.1 to MIPIPS.5.

Comparison MIPIPS.1

Eucalyptus
instance type

MIPIPS GHz per core Cores

m1.small 217.19 2.7 1
m1.xlarge 192.10 2.7 2
m1.large 173.77 2.7 4
c1.large 155.84 2.7 6

Table 9: Results for comparison MIPIPS.1

In Table 9 the results for the comparison between the MIPIPS of different Euca-

lyptus instance types are displayed. The MIPIPS value for m1.small is the highest

value with 217.19 MIPIPS in the comparison. It is followed by the m1.xlarge with

192.10 MIPIPS, which is a difference of 15.09 MIPIPS to m1.small. m1.large has

a MIPIPS value of 173.77, resulting in a difference of 18.33 MIPIPS to m1.xlarge.

The lowest MIPIPS value is 155.84 for c1.large and it differs by 17.93 MIPIPS to

its predecessor.

Comparison MIPIPS.2

Run MIPIPS
1 217.19
2 218.10
3 217.48
4 217.58
5 216.39

Table 10: Results for comparison MIPIPS.2

Table 10 shows the results for five runs of the MIPIPS benchmark on an Eucalyp-

tus m1.small instance. The mean MIPIPS value of the five runs is 217.34 MIPIPS.

76

8.4 E1: MIPIPS Benchmark Evaluation 8 EVALUATION OF CDOSIM

The standard deviation amounts to 0.62 MIPIPS. The highest absolute deviation

from the mean is 0.95 MIPIPS, which is about 0.44 %.

Comparison MIPIPS.3

Amazon EC2
instance type

MIPIPS
EC2 compute
units per core

Runtime of
benchmark

t1.micro 4.11 up to 2 1,169.43 hours
m1.small 20.65 1 171.28 hours
m1.large 142.13 2 79.34 hours
c1.medium 148.81 2.5 52.89 hours
m2.xlarge 235.57 3.25 47.66 hours

Table 11: Results for comparison MIPIPS.3

Table 11 displays the results for MIPIPS.3. The t1.micro instance has the lowest

MIPIPS value with 4.11 MIPIPS. The m1.small instance follows with 20.65 MIP-

IPS. Then, the m1.large instance comes with 142.13 MIPIPS. After the m1.large

instance, the c1.medium instance has 148.81 MIPIPS. At last, the m2.xlarge in-

stance has the highest MIPIPS value with 235.57 MIPIPS. The number of cores for

each Amazon EC2 instance type are not shown in the table because in contrast to

Eucalyptus we do not know the maximum number of cores that can be allocated on

a physical node and how many cores are allocated at the physical node. Thus, it

the showing of the number of cores would have no benefit.

Comparison MIPIPS.4

Run MIPIPS
Runtime of
benchmark

1 20.65 171.28 hours

2 62.34 123.91 hours

3 20.82 170.92 hours

4 62.46 124.29 hours

5 95.18 135.90 hours

Table 12: Results for comparison MIPIPS.4

The results for five runs of the MIPIPS benchmark on an Amazon EC2 m1.small

instance are shown in Table 12. The mean MIPIPS value amounts to 52.29 MIPIPS

and the standard deviation is 31.76 MIPIPS. The highest absolute MIPIPS value

77

8 EVALUATION OF CDOSIM 8.4 E1: MIPIPS Benchmark Evaluation

deviates from the mean by 42.89 MIPIPS, which is about 82.02 %. The consumed

time by the benchmark decreases with higher MIPIPS, except in the fifth run where

it is between the runs with 20 MIPIPS and 62 MIPIPS.

Comparison MIPIPS.5

Run MIPIPS
Runtime of
benchmark

1 148.81 52.89 hours

2 148.88 53.17 hours

3 150.05 52.73 hours

4 148.39 53.10 hours

5 148.19 52.26 hours

Table 13: Results for comparison MIPIPS.5

In Table 13 the results for five runs of the benchmark on an Amazon EC2

c1.medium instance are displayed. 148.86 MIPIPS is the mean MIPIPS value. The

standard deviation equals 0.72 MIPIPS. The highest absolute deviation from the

mean is 1.18 MIPIPS, which is about 0.8 %. The total runtimes of the benchmarks

range from 52.26 hours to 53.17 hours.

8.4.5 Discussion of the Results

The following subsections discuss the results for the comparisons MIPIPS.1 to MIP-

IPS.5.

Comparison MIPIPS.1

The results show that the more cores are allocated on our Eucalyptus server, the

less the MIPIPS value becomes. We had excepted that the MIPIPS values stays

constant because the benchmark only runs on one single core and all other cores are

idle. The decreasing performance on Eucalyptus, when more cores are allocated,

suggests, that there is a considerable penalty for more allocated cores. However,

if we assume that the more cores are allocated, the lower the performance gets,

the results show that the MIPIPS values are plausible, i.e. they decrease. This

assumption is not applicable to Amazon EC2 because we do not know how many

cores are allocated on the underlying physical node.

78

8.4 E1: MIPIPS Benchmark Evaluation 8 EVALUATION OF CDOSIM

Comparison MIPIPS.2

All MIPIPS values differ by at most 0.44 % from the mean value. This value is

below our 2.5 % threshold and hence, the calculated MIPIPS value is approximately

constant for an m1.small instance on Eucalyptus.

Comparison MIPIPS.3

From m1.small to m2.xlarge, the MIPIPS values increase and the EC2 Compute

Units, that can be seen as a form of performance indicator, also increase. Thus, the

MIPIPS benchmark produces plausible results for those instance types.

t1.micro is a special case. The full 2 EC2 Compute Units are only available, if

there is free CPU time that can be used by the t1.micro instance. In our benchmark

run, we observed that most CPU time (more than 90 %) is spent in steal mode. This

mode represents the CPU time, where the hypervisor scheduled another instance

for computing. Therefore, it is reasonable to assume that there were less than

1 EC2 Unit available to our t1.micro instance. Hence, the lower MIPIPS value in

comparison to the m1.small instance is plausible.

Furthermore, the results show that the more MIPIPS, the less time the bench-

mark consumed. The decreasing of benchmark time is sufficient for a higher MIPIPS

value but not necessary because we measure the difference between the calibration

passes and the passes with the added integer plus statement. Therefore, the cali-

bration run might have taken a longer time then it normally does and the MIPIPS

counting run was faster than normally.

Comparison MIPIPS.4

The resulting MIPIPS values for each m1.small run deviate by at most 82.02 %,

which is a large difference to our 2.5 % threshold. We attribute the large difference

to the way m1.small instances are treated in Amazon EC2. While benchmarking,

we observed that the CPU spends some arbitrary time in steal mode. Thus, the

performance of the instance depends not negligible on the workload of other instances

running on the host, which leads to no constant MIPIPS value. Thus, the results

show that the performance of m1.small instances is non-deterministic from the cloud

user perspective.

The fourth benchmark run took 124.29 hours and the fifth run took 135.90 hours,

although the fourth run benchmarked less MIPIPS than the fifth run. Probably,

while the calibration pass there was some workload on the host of the fifth run and

79

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

in the measuring passes there was less workload on the host, resulting in a higher

MIPIPS value but increased benchmark runtime.

Comparison MIPIPS.5

The MIPIPS values deviate by at most 0.8 % from the MIPIPS mean value and

0.8 % lies below our 2.5 % threshold. Therefore, the calculated MIPIPS value stays

approximately constant for an c1.medium instance on Amazon EC2.

All benchmark runs consumed approximately the same time, which aligns with

the approximately constant MIPIPS values.

8.4.6 Threats to Validity

Performing only one run in comparison MIPIPS.1 and MIPIPS.3 might have pro-

duced MIPIPS values that largely differ from the mean value, which would result by

performing more runs. However, most MIPIPS results differ by more than 10 %, and

the deviation for instances that negligibly depend on the workload intensity of other

instances run on the same host was lower than 1 %. Thus, it is unlikely that those

MIPIPS results are not valid. The m1.large and c1.medium instance types differ by

4 % in MIPIPS.3. Here, the measured value for m1.large might be by chance too

small and thus a mean value for m1.large should be determined in future work.

On Amazon EC2, the performance of the instances can differ from the location

where the virtual machine instances are spawned and how large the workload inten-

sity on the running host is. For instance, Iosup et al. [29] showed this circumstance.

Furthermore, the workload intensity on the node might have changed during the

run [6]. We can not control these factors and thus, they stay as a threat to validity.

8.5 E2: Accuracy Evaluation for Single Core Instances

This section describes the accuracy evaluation for the simulation of single core in-

stances.

8.5.1 Goals

The goal of this evaluation is the replicative validation of the simulation results by

comparing the simulation results with the real cloud provider runs. Furthermore,

the evaluation exams the different approaches that were described in Section 3 in

respect to their relative error in comparison to the measured values.

80

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

We expect that in no S2M the dynamic approach achieves the most accurate

results. In the S2M, the dynamic approach can not be applied because our test

application, JPetStore, is not fully instrumented. Hence, the hybrid approach is

assumed to be the most accurate approach.

8.5.2 Experimental Setting

The experiment setup was described in Section 8.3. For the Eucalyptus run, we

use instance type m1.small and the maximal arrival rate amounts to 6,085 calls per

minute. On Eucalyptus, m1.small has only one single core. For the Amazon EC2

run, we also use instance type m1.small. Here, the maximal arrival rate is 4,480

calls per minute and m1.small also has just one single core. Both runs start with

one instance, which will not be terminated.

8.5.3 Scenarios

The evaluation includes eight scenarios. The hybrid approach in no S2M is omitted

because in this mode it behaves like the dynamic approach. The dynamic approach

in S2M is excluded because one precondition for it is not satisfied. The unsatisfied

precondition is that not all methods are monitored and thus response times are not

available for all methods.

Scenario SingleCore.1: Dynamic approach in no S2M for Eucalyptus run

with m1.small

The workload from a run, that is conducted on Eucalyptus with m1.small, is taken

and on the basis of it, the simulation takes place. The simulation is configured to

use the dynamic approach and to not simulate separate submethod calls.

Scenario SingleCore.2: Static approach in no S2M for Eucalyptus run

with m1.small

This is the same scenario like SingleCore.1 except that it uses the static approach.

Scenario SingleCore.3: Static approach in S2M for Eucalyptus run with

m1.small

This is the same scenario like SingleCore.1 except that it uses the static approach

and the simulation is configured to simulate separate submethod calls.

81

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

Scenario SingleCore.4: Hybrid approach in S2M for Eucalyptus run with

m1.small

This is the same scenario like SingleCore.1 except that it uses the hybrid approach

and the simulation is configured to simulate separate submethod calls.

Scenario SingleCore.5: Dynamic approach in no S2M for Amazon EC2

run with m1.small

The simulation takes place on the basis of the workload from a run, that is conducted

on Amazon EC2 with m1.small. The simulation is configured to use the dynamic

approach and to not simulate separate submethod calls.

Scenario SingleCore.6: Static approach in no S2M for Amazon EC2 run

with m1.small

This is the same scenario like SingleCore.5 except that it uses the static approach.

Scenario SingleCore.7: Static approach in S2M for Amazon EC2 run with

m1.small

This is the same scenario like SingleCore.5 except that it uses the static approach

and the simulation is configured to simulate separate submethod calls.

Scenario SingleCore.8: Hybrid approach in S2M for Amazon EC2 run

with m1.small

This is the same scenario like SingleCore.5 except that it uses the hybrid approach

and the simulation is configured to simulate separate submethod calls.

8.5.4 Results

The following subsections describe the results of scenario SingleCore.1 to SingleCore.8.

Every figure includes the measured values and the simulated values for easier com-

parison. For reasons of simplicity, only the major differences between the measured

and simulated values are described. The response times are displayed for the method

addItemToCart from com.ibatis.jpetstore.presentation.CartBean because in contrast

to other classes, the addItemToCart class does not depend on the input and thus

the response times produced by the variation of the CPU utilization can be seen

clearer.

82

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

Scenario SingleCore.1

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (dynamic
approach, no S2M)

Figure 19: Average CPU utilization of allocated nodes in SingleCore.1 experiment

Figure 19 displays the average CPU utilization of the allocated nodes and the

instance count for SingleCore.1 utilizing the dynamic approach in no S2M. The first

peak at the beginning has a lower CPU utilization in the simulated run. The rest

of the experiment time, the simulation and the conducted run are roughly equal or

only deviate by below 5 % CPU utilization. The instance count is approximately

the same between the conducted run and the simulation.

The relative error for the CPU utilization is RECPU = 29.18 %. The average

difference per minute is 5.93 % CPU utilization. The relative error of the instance

count is REInstanceCount = 0.64 %. The overall difference of the instance minutes

amounts to 25 instance minutes. The incurred costs account for 5.985$ for the

Eucalyptus run. The simulation costs result in 6.365$, which is RECosts = 6.34 %.

In Figure 20, the median of response times for SingleCore.1 are shown. The

first peak in the response times of the conducted run at the beginning is smaller

and not as long in the simulation. The peak in hour 8 is smaller in the simulation

by about 10 milliseconds. The peak in hour 9 is also smaller in the simulation by

about 60 milliseconds. After this peak, the simulated response times approximately

follow the response times in the conducted run but they differ by an offset of about

20 milliseconds. An exception is the peak in hour 17. The simulated response times,

here, differ by 70 milliseconds.

83

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

14
.5

29
.0

43
.5

58
.0

72
.5

87
.0

10
1.

5
13

0.
5

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

10
.4

20
.8

31
.2

41
.6

52
.0

62
.4

72
.8

83
.2

93
.6

10
4.

0
M

ed
ia

n
of

 r
es

po
ns

e
tim

es
 [m

ill
is

ec
on

ds
]

Median of response times

(b) Simulated response times (dynamic
approach, no S2M)

Figure 20: Median of response times in SingleCore.1 experiment

The relative error for the response times is RERT = 24.85 %. The average

difference per minute is 19.03 milliseconds.

The overall relative error for this scenario amounts to OverallRE = 15.25 %.

Scenario SingleCore.2

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (static ap-
proach, no S2M)

Figure 21: Average CPU utilization of allocated nodes in SingleCore.2 experiment

The CPU utilization and instance count for SingleCore.2 are displayed in Fig-

ure 21. At the beginning, the first peak in the simulated CPU utilization is twice as

84

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

large as the CPU utilization in the conducted run. The instance count in the simu-

lation rises to 4 while the instance count in the conducted run stays at 1. Till hour

6 the CPU utilization is about 25 % larger in the simulation than in the conducted

run. The instance count is 1 for the conducted run and ranges between 3 and 4 for

the simulation in this time period. In hour 7 the CPU utilization in the simulation

increases to 100 % and stays at this utilization till hour 23. In this time frame, the

instance count is 8 for the simulation. The CPU utilization of the conducted run

ranges from 40 % to 70 % in this period and the instance count is between 2 and 4.

At the end, the CPU utilization in the simulation drops to 50 % and the instance

count goes down to 4 instances. The conducted run has 20 % CPU utilization and

1 instance in the end.

The relative error for the CPU utilization is RECPU = 122.42 %. The average

difference per minute is 38.41 % CPU utilization. The relative error for the instance

count amounts to REInstanceCount = 203.92 %. The overall difference of instance

minutes is 6,174 instance minutes. Again, the costs for the scenario are 5.985$. The

simulated run costs 16.815$, which is a relative error of RECosts = 180.95 %.

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

14
.5

29
.0

43
.5

58
.0

72
.5

87
.0

10
1.

5
13

0.
5

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
30

92
61

84
92

76
15

46
0

21
64

4
27

82
8

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (static ap-
proach, no S2M)

Figure 22: Median of response times in SingleCore.2 experiment

Figure 22 displays the median of response times for SingleCore.2. While the

response times of the conducted run range between 40 milliseconds and 140 millisec-

onds, the simulation only has these values between short after the beginning and

hour 6, and at the end. At the beginning and between hour 7 and 23 the response

times of the simulation are 30 seconds.

85

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

RERT = 27, 597.42 % is the relative error for the response times and the average

difference comes to 20,435.93 milliseconds per minute.

The overall relative error results in OverallRE = 7, 026.17 %.

Scenario SingleCore.3

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (static ap-
proach, S2M)

Figure 23: Average CPU utilization of allocated nodes in SingleCore.3 experiment

Figure 23 shows the average CPU utilization of allocated nodes in SingleCore.3

scenario. The run is approximately equal to the scenario SingleCore.2. The differ-

ence is that the simulated CPU utilization from hour 1 to 7 is about 30 % higher

than the CPU utilization in the conducted run. The instance count is also higher

than in the scenario SingleCore.2. It ranges from 4 to 5 in the interval from hour 1

to 7.

The measured values and the simulated values differ by 37.88 % CPU utilization

each minute in average. The relative error calculates to RECPU = 119.66 %. The

overall difference of instance minutes is 6,528 instance minutes and the relative error

is REInstanceCount = 228.32 %. The simulated costs are 17.48$ and the calculated

costs for the Eucalyptus run are 5.985$. The relative error for the costs is RECosts =

192.06 %.

The median response times for scenario SingleCore.3 are displayed in Figure 24.

In the beginning, the response times in the simulation are 30 seconds. After this

and to hour 7, they are approximately equal to the response times of the conducted

run. From hour 7 to 17, the response times of the simulation range between 60

86

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

14
.5

29
.0

43
.5

58
.0

72
.5

87
.0

10
1.

5
13

0.
5

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
15

00
0

45
00

0
75

00
0

10
50

00
13

50
00

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (static ap-
proach, S2M)

Figure 24: Median response times in SingleCore.3 experiment

seconds and 90 seconds. Then, from hour 17 to 21 they range from 90 seconds to

150 seconds. Afterwards, they slowly drop to 40 milliseconds.

The relative error is RERT = 70, 415.88 %. The average difference between the

simulated and measured response times is 53,994.16 milliseconds per minute.

The overall relative error is OverallRE = 17, 738.98 %.

Scenario SingleCore.4

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (hybrid
approach, S2M)

Figure 25: Average CPU utilization of allocated nodes in SingleCore.4 experiment

87

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

Figure 25 shows the average CPU utilization of the Eucalyptus run and the

simulated values that were produced with the hybrid approach and the S2M for

SingleCore.4. From the first hour to hour 6, the response times of the simulation

and the conducted run are approximately the same. In hour 7, the CPU utilization

drops to 40 % in the simulation as opposed to the 50 % CPU utilization of the

conducted run. In this hour, the instance count ranges from 1 to 2 which changes

every 5 minutes in the simulation and the instance count of the conducted run is

2. In hour 8, the instance count of the conducted run increases to 3. However, the

simulated instance count stays at 2. In hour 16, the instance count of the simulation

increases to 3. Afterwards, it stays at 3 and decreases to 1 in hour 23. In hour 23,

the simulation starts and stops one instance every 5 minutes for half an hour. The

instance count of the conducted run increases to 4 in hour 17 and stays till hour 23

where it drops to 1 instance.

The relative error for the CPU utilization is RECPU = 41.76 %. The average

difference per minute is 10.65 % CPU utilization. The relative error of the instance

count is REInstanceCount = 17.79 %. The overall difference of the instance minutes

amounts to 821 instance minutes. The incurred costs account for 5.985$ for the

Eucalyptus run. The simulation costs result in 7.03$, which is RECosts = 17.46 %.

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

14
.5

29
.0

43
.5

58
.0

72
.5

87
.0

10
1.

5
13

0.
5

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
30

00
60

00
90

00
15

00
0

21
00

0
27

00
0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (hybrid ap-
proach, S2M)

Figure 26: Median response times in SingleCore.4 experiment

Figure 26 shows the median response times for the scenario SingleCore.4. The

response times of the simulation range between 39 milliseconds and 130 milliseconds

except in hour 7 and hour 23, the simulated response times are 30 seconds.

88

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

RERT = 311.57 % is the relative error for the response times and the average

difference comes to 213.81 milliseconds per minute.

The overall relative error results in OverallRE = 97.14 %.

Scenario SingleCore.5

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (dynamic
approach, no S2M)

Figure 27: Average CPU utilization of allocated nodes in SingleCore.5 experiment

Figure 27 displays the average CPU utilization of allocated nodes and the in-

stance count for SingleCore.5 utilizing the dynamic approach in no S2M. The peak

in the CPU utilization at the beginning is 10 % larger in the simulation than in

the conducted run. Afterwards, it drops to 20 % in the conducted run and to 30

% in the simulation. In the simulation, there is a peak at hour 3 with 70 % CPU

utilization. The instance count in the simulation increases to 2 in this hour. In

contrast, the conducted run reaches 50 to 60 % CPU utilization from hour 3 to 5

and the instance count stays at 1 instance. From hour 4 to 5, the simulation has

about 35 % CPU utilization. The instance count in the simulation decreases to 1 in

hour 5. The rest of the experiment time the CPU utilization and instance count is

approximately equal in the simulation and conducted run.

The relative error for the CPU utilization is RECPU = 30.86 %. The average

difference per minute is 9.06 % CPU utilization. The relative error for the instance

count amounts to REInstanceCount = 7.89 %. The overall difference of instance min-

utes is 178 instance minutes. The costs for the scenario are 8.93$ and the simulated

run costs are 9.785$, which is a relative error of RECosts = 9.57 %.

89

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

44
.7

89
.4

13
4.

1
22

3.
5

31
2.

9
40

2.
3

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

16
.6

33
.2

49
.8

66
.4

83
.0

99
.6

11
6.

2
14

9.
4

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (dynamic
approach, no S2M)

Figure 28: Median response times in SingleCore.5 experiment

Figure 28 displays the median of response times for SingleCore.5. At the be-

ginning the response times of the simulation are about 116 milliseconds and the

response times of the conducted run are about 160 milliseconds. Then, both drop

to 89 milliseconds till hour 3. In hour 3, the simulation shortly peaks to 150 mil-

liseconds and then drops to 89 milliseconds. The response times of the simulated

run increase to 160 milliseconds till hour 4 and then drop to 89 milliseconds again.

In hour 6, the response times of the simulation peak at 170 milliseconds and the

response times of the conducted run peak at 370 milliseconds. The rest of the time

the simulated response times follow the response times of the conducted run with

an offset of about 100 milliseconds to 200 milliseconds. An exception is made by

hour 17, where the response times of the simulated run do not have a high peak

with 120 milliseconds but the response times of the conducted run have a peak with

450 milliseconds. Shortly before the end, the simulated response times range from

0 to 89 milliseconds. However, the response times in the conducted run are about

89 milliseconds.

The relative error for the response times is RERT = 42.71 %. The average

difference per minute is 91.16 milliseconds.

The overall relative error for this scenario amounts to OverallRE = 22.75 %.

Scenario SingleCore.6

The CPU utilization and instance count for SingleCore.6 are displayed in Figure 29.

At the beginning, the simulated CPU utilization is about 100 % and drops to 38 %

90

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (static ap-
proach, no S2M)

Figure 29: Average CPU utilization of allocated nodes in SingleCore.6 experiment

in hour 1 and the instance count increases to 10 instances. The CPU utilization of

the conducted run starts at 60 % and drops to 18 % in hour 2. In hour 3 and 4, the

simulated CPU utilization ranges from 65 % to 75 % and the instance count increases

to 13. In this period, the CPU utilization of the conducted run ranges between 50

% and 60 % and the instance count is 1 instance. The rest of the experiment time,

the CPU utilization of the simulation and the conducted run are approximately the

same. However, the instance count is different. From hour 7 to hour 9, the instance

count of the simulation increases to 45 instances. In this time period, the instance

count of the conducted run increases to 4 instances. From hour 16 to hour 20, the

simulated instance count increases to 74 instances and at hour 23 it decreases to 30.

The instance count of the conducted run increases from 4 to 7 in hour 17 and hour

18. In hour 23, it drops to 1.

The measured values and the simulated values differ by 12.97 % CPU utilization

per minute in average. The relative error calculates to RECPU = 39.53 %. The

overall difference of instance minutes is 53,895 instance minutes and the relative

error is REInstanceCount = 1, 059.85 %. The simulated costs are 103.17$ and the

calculated costs for the Amazon EC2 run are 8.93$. The relative error for the costs

is RECosts = 1, 055.31 %.

Figure 30 shows the median response times in SingleCore.6 experiment. In the

first hour, the simulated response times are 30 seconds. Afterwards, they range

between 90 milliseconds and 1.6 seconds.

91

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

44
.7

89
.4

13
4.

1
22

3.
5

31
2.

9
40

2.
3

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

31
00

.2
93

00
.6

15
50

1.
0

21
70

1.
4

27
90

1.
8

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (static ap-
proach, no S2M)

Figure 30: Median response times in SingleCore.6 experiment

The relative error is RERT = 997.32 %. The average difference between the

simulated and measured response times is 1,551.99 milliseconds per minute.

The overall relative error is OverallRE = 788.00 %.

Scenario SingleCore.7

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (static ap-
proach, S2M)

Figure 31: Average CPU utilization of allocated nodes in SingleCore.7 experiment

Figure 31 shows the average CPU utilization of allocated nodes in the Sin-

gleCore.7 scenario. The simulated CPU utilization is approximately the same as

in in the SingleCore.6 scenario. The only difference is the simulated instance count.

92

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

From hour 9 to hour 17, the instance count is 47. The highest instance count is 76

in hour 20 to hour 22.

The relative error for the CPU utilization is RECPU = 38.78 %. The average

difference per minute is 12.82 % CPU utilization. The relative error of the instance

count is REInstanceCount = 1, 118.98 %. The overall difference of the instance minutes

amounts to 56,297 instance minutes. The incurred costs account for 8.93$ for the

Amazon EC2 run. The simulation costs result in 107.16$, which is RECosts =

1, 100.00 %.

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

44
.7

89
.4

13
4.

1
22

3.
5

31
2.

9
40

2.
3

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
30

00
60

00
90

00
15

00
0

21
00

0
27

00
0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (static ap-
proach, S2M)

Figure 32: Median response times in SingleCore.7 experiment

The median response times for scenario SingleCore.7 are displayed in Figure 32.

The simulated response times are 30 seconds at the beginning. Then, the response

times in the simulation range between 90 milliseconds and 3 seconds.

RERT = 1, 442.79 % is the relative error for the response times and the average

difference comes to 2,272.51 milliseconds per minute.

The overall relative error results in OverallRE = 925.13 %.

Scenario SingleCore.8

The CPU utilization and the instance count for SingleCore.8 are displayed in Fig-

ure 33. In the first hour, the simulated CPU utilization starts with 95 % and drops

to 30 % in hour 2. 4 instances are started and terminated sequentially in the simu-

lation in this time period. The CPU utilization of the conducted run is about 60 %

in the first hour and decreases to 18 % until hour 3. The instance count in the con-

ducted run stays at 1 instance. In hour 3, the simulation starts a new instance and

93

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (hybrid
approach, S2M)

Figure 33: Average CPU utilization of allocated nodes in SingleCore.8 experiment

only peaks at 50 % CPU utilization. Then, the CPU utilization decreases to 30 %.

In hour 4, the instance count changes to 1. From hour 3 to 5, the CPU utilization of

the conducted run ranges from 48 % to 60 % and the instance count stays 1 instance.

At hour 6, the simulated CPU utilization changes to 70 % and 2 new instances are

started and 1 instance is terminated sequentially. Then, the CPU utilization drops

to 32 %. In hour 7, the instance count of the simulation increases to 3 instances

and to 4 instances in hour 9. The instance count in the conducted run changes to

2 instances in hour 6. In hour 7 and hour 8, it changes to 3 instances and then

to 4 instances. The simulation increases the instance count to 3 in hour 9. From

hour 9 to hour 17, the CPU utilization of the simulation and the conducted run are

approximately equal but differ by an offset of 10 % CPU utilization. In hour 17, the

simulation increases the instance count to 5 instances. In hour 23, the simulation

terminates 4 instances. In hour 17 and 18, the instance count of the conducted run

changes from 4 instances to 7 instances. The 7 instances are terminated in hour 23.

The measured values and the simulated values differ by 13.93 % CPU utilization

per minute on average. The relative error calculates to RECPU = 40.17 %. The

difference of the instance count is 921 instance minutes and the relative error is

REInstanceCount = 19.66 %. The simulated costs are 9.405$ and the calculated costs

for the Amazon EC2 run are 8.93$. The relative error for the costs is RECosts =

5.31 %.

Figure 34 displays the median of response times for SingleCore.8. At the begin-

ning, the response times in the simulation are 30 seconds. Until hour 1, they are

94

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

44
.7

89
.4

13
4.

1
22

3.
5

31
2.

9
40

2.
3

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
30

00
60

00
90

00
15

00
0

21
00

0
27

00
0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (hybrid ap-
proach, S2M)

Figure 34: Median response times in SingleCore.8 experiment

decreasing to 500 milliseconds. At hour 3, the simulated response times are 30 sec-

onds for a short duration of 3 minutes. In hour 6, the simulated response times again

rise to 30 seconds for 30 minutes. The rest of the experiment time, the response

times range between 90 milliseconds and 500 milliseconds in the simulation.

The relative error for the response times is RERT = 291.93 %. The average

difference per minute is 396.79 milliseconds.

The overall relative error for this scenario amounts to OverallRE = 89.26 %.

8.5.5 Discussion of the Results

This section discusses the results for the scenarios SingleCore.1 to SingleCore.8.

Scenario SingleCore.1

The relative error of the CPU utilization is 29.18 % which is relatively high for the

nearly equal looking CPU utilization curve. We attribute this high value to the

differences when then CPU utilization is low, i.e. about 16 % in the simulation in

contrast to 20 % in the conducted run.

The low instance count relative error shows that the reproduction of the number

of used instances of the conducted run is good and is nearly equal to it.

The relative error for the costs is a bit higher than expected from the instance

count relative error. The costs for the conducted run and the simulation differ by

95

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

4 paid instance hours. These difference probably occurred because the instances at

the end were terminated a few minutes too late.

The relative error of about 25 % for the response times is good because we do

not simulate initializations of classes. These initializations typically increase the

response times when a new virtual machine is started. This is the reason for the

third peak to be not visible in the simulated response times.

A value of 15.25 % in the overall relative error is below our threshold of 30 %

and hence the simulation provides a sufficiently well reproduction of the conducted

run.

Scenario SingleCore.2

In the second scenario, the relative error for the CPU utilization is 122.42 %. This

value is too large and does not reproduce the real CPU utilization sufficiently. In

most hours, the simulation has twice as large CPU utilization as the conducted run.

This fact is founded in the nature of the static approach. It typically overestimates

the instruction count because it does not consider techniques like JIT. Hence, the

workload on the simulated CPU is higher and thus the CPU utilization is larger.

The overestimation of workload on the CPU is also represented in the relative

error of the instance count. With 203.92 %, it is large and does not reproduce the

conducted run sufficiently. This value would be even larger if our Eucalyptus setup

would provide more than 8 instances.

As a consequence of the large difference in the instance count, the relative error

for the costs with 180.95 % is also high and not sufficient for reproduction.

The large relative error for the response times of 27,597.42 % results from the

timeouts while the CPU utilization is about 100 %.

The overall error amounts to 7,026.17 % which is far beyond our 30 % threshold

and hence the static approach does not reproduce the conducted run sufficiently.

Scenario SingleCore.3

The results are equally high as in the SingleCore.2 scenario. The relative error for

the response times is about 3 times larger than the one of SingleCore.2 because the

S2M resulted in more timeouts. The runtime of the entry method increased because

most of its submethods timed out.

Given that the overall relative error is 17,738.98 %, the static approach in S2M

does not reproduce the conducted run sufficiently.

96

8.5 E2: Accuracy Evaluation for Single
Core Instances 8 EVALUATION OF CDOSIM

Scenario SingleCore.4

The value 41.76 % for the relative error for CPU utilization is high. We attribute

this circumstance to not starting the third instance in hour 8 in the simulation,

which resulted from a CPU utilization just slightly under 70 %.

Due to not starting a fourth instance, the relative error for the instance count is

17.79 %.

The relative error for the costs is 17.46 %. For not starting a fourth instance,

one would expect that the costs are lower in the simulation. However, the starting

and terminating of instances in hour 6 and hour 23 resulted in increased costs. This

circumstance could be fixed by an adaptation strategy that is aware of the underlying

cost model.

The high value for the relative error of the response times results from the timeout

of calls in hour 6 and hour 23 where the simulation started and terminated instances.

The overall relative error for this scenario is 97.14 %. This is over our threshold

and hence it does not reproduce the conducted run sufficiently. However, it can be

optimized by an adaption strategy that is aware of the cost model.

Scenario SingleCore.5

The relative error of 30.86 % for the CPU utilization mainly results from the time

interval between the beginning and hour 7. Here, the CPU utilization in the simu-

lation is larger than in the conducted run. Furthermore, the second instance, which

is only started in the simulation, reduces the overall CPU utilization.

The second instance from hour 3 to 5 also caused the relative error for the

instance count and the costs to be higher than what could have been expected of

the nearly equal looking instance count.

At the high relative error for the response times we can see that the response

times do not sufficiently reproduce the response times of the conducted run. From

hour 7 to hour 22 the response times in the conducted run are about twice as large

as the simulation. We attribute this circumstance to the potentially large range of

MIPIPS on m1.small instances in the Amazon EC2 run. Like E1 has shown, the

newly started instances might have a lower MIPIPS value than the first m1.small

instance which results in higher response times.

Since the overall relative error is 22.75 %, the scenario reproduces the conducted

run sufficiently.

97

8 EVALUATION OF CDOSIM
8.5 E2: Accuracy Evaluation for Single

Core Instances

Scenario SingleCore.6

39.53 % is the relative error for the CPU utilization which is mainly the consequence

of the time interval between the beginning and hour 9. In this time period, the CPU

utilization of the simulation is twice as large as the CPU utilization in the conducted

run. Again, the static approach mostly overestimates the instruction count of the

methods. Hence, the simulated CPU utilization was higher than in the conducted

run.

The large difference from maximal 75 instances in the simulation to 7 instances

in the conducted run results in a high relative error of 1,059.85 % for the instance

count and a high relative error of 1,055.31 % for the costs.

The relative error for the response times is also high with 997.32 %. Most of the

time, the simulated CPU utilization was higher than the one in the conducted run.

In this case, this results in higher response times. Furthermore, the CPU utilization

of about 100 % in the beginning in the simulation resulted in timeouts of service

calls.

The overall relative error amounts to 788 % which is larger than 30 % and

thus the static approach without separate submethod calls does not reproduce the

conducted run sufficiently in Amazon EC2.

Scenario SingleCore.7

The relative error for the CPU utilization is approximately equal to SingleCore.6.

However, the relative error for the instance count and costs are about 60 % higher

than in SingleCore.6. The simulation with separate submethods is not accurate

which submethod should be called due to if-statements. Thus, the instance count

was higher with 2 additional instances.

The response times’ relative error of 1,442.78 % is about 450 % larger than in

SingleCore.6. We attribute this circumstance to the former described larger workload

on the nodes. In addition, scheduling effects might have influenced the response

times because there are more Cloudlets to be processed in the S2M.

The overall relative error is 925.13 %. This is over our threshold of 30 % and

hence the scenario does not reproduce the conducted run sufficiently.

Scenario SingleCore.8

The relative error for the CPU utilization is 40.17 %. This mainly results because

at the beginning until hour 8 the simulation differs from the conducted run which

is the result of starting new instances at the beginning and in hour 3.

98

8.6 E3: Accuracy Evaluation for Multi
Core Instances 8 EVALUATION OF CDOSIM

The value for the relative error of instance count is 19.66 % which results from

the starting of new instances in the beginning and in hour 3 in the simulation.

Furthermore, the simulation does not start 2 instances in hour 17 which is done by

the conducted run.

The relative error for the costs amounts 5.31 %. The instances started at the

beginning add to the costs. From hour 17 to hour 23, the simulation has only

5 started instances in contrast to 7 instances in the conducted run. This reduces

the costs. Hence, the relative error for the costs is low because the former described

circumstances result in a small difference of the costs.

The high value for the relative error of 291.93 % for the response times results

from the timeouts that are created by the starting and terminating instances in a

small time period in the beginning, in hour 3, and hour 6.

89.26 % is the overall relative error. It lies above our threshold of 30 % and thus

is too high to reproduce the conducted run sufficiently. However, like in the scenario

SingleCore.4 this can be improved by using a cost model aware adaptation strategy.

8.5.6 Threats to Validity

For Amazon EC2, the threats we described under E1 also hold for this evaluation.

An evaluation with one program is not necessarily generalizable. With JPetStore,

our simulation performs well at least with the dynamic approach. However, with

other applications this is not necessarily the fact and should be further researched.

8.6 E3: Accuracy Evaluation for Multi Core Instances

This section describes the accuracy evaluation for the simulation of multi core in-

stances.

8.6.1 Goals

This evaluation has the same goal as E2. Though, it evaluates the accuracy validity

of CDOSim for multi core instances.

8.6.2 Experimental Setting

The experiment setup was described in Section 8.3. For the Eucalyptus run, we use

the instance type m1.xlarge and the maximal arrival rate amounts to 6,709 calls per

minute. On Eucalyptus, m1.xlarge has two cores. For the Amazon EC2 run, we

99

8 EVALUATION OF CDOSIM
8.6 E3: Accuracy Evaluation for Multi

Core Instances

use the instance type c1.medium. Here, the maximal arrival rate is 6,472 calls per

minute and c1.medium also has two cores. Both runs start with one instance, which

will not be terminated.

8.6.3 Scenarios

The evaluation includes two scenarios.

Scenario MultiCore.1: Simulate with dynamic approach in no S2M for

Eucalyptus run with m1.xlarge

The simulation takes place on the basis of a workload from a run that was conducted

on Eucalyptus with m1.xlarge. The simulation is configured to use the dynamic

approach and to not simulate separate submethod calls.

Scenario MultiCore.2: Simulate with dynamic approach in no S2M for

Amazon EC2 run with c1.medium

The simulation takes place on the basis of a workload from a run that was conducted

on Amazon EC2 with c1.medium. The approach for instruction counting is the

dynamic approach and the simulation does not model separate submethod calls.

8.6.4 Results

In this sections the results for E3 are shown.

Scenario MultiCore.1

The CPU utilization and instance count for MultiCore.1 are displayed in Figure 35.

The CPU utilization and instance count in the simulation approximately equal the

CPU utilization and instance count of the conducted run.

The relative error for the CPU utilization is RECPU = 26.53 %. The average

difference per minute is 5.44 % CPU utilization. The relative error of the instance

count is REInstanceCount = 1.37 %. The overall difference of the instance minutes

amounts to 39 instance minutes. The incurred costs account for 6.84$ for the Euca-

lyptus run. The simulation costs result in 7.22$, which is RECosts = 5.55 %.

In Figure 36 the median of response times for MultiCore.1 are shown. From the

beginning until hour 8, the simulation and the conducted run have the response times

38 milliseconds. The first peak in hour 8 is smaller in the simulation by a difference of

about 22 milliseconds. From hour 12 to hour 15, the simulated response times range

100

8.6 E3: Accuracy Evaluation for Multi
Core Instances 8 EVALUATION OF CDOSIM

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (dynamic
approach, no S2M)

Figure 35: Average CPU utilization of allocated nodes in MultiCore.1 experiment

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

7.
8

15
.6

23
.4

31
.2

39
.0

46
.8

54
.6

62
.4

70
.2

78
.0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

4.
8

9.
6

14
.4

19
.2

24
.0

28
.8

33
.6

38
.4

43
.2

48
.0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (dynamic
approach, no S2M)

Figure 36: Median response times in MultiCore.1 experiment

from 38 to 48 milliseconds. The conducted run’s response times range from 38 to

78 milliseconds in this time interval. The rest of the experiment time, the response

times of the simulation are between 38 milliseconds and 43 milliseconds. In this time

period, the conducted run has response times between 38 and 60 milliseconds.

The relative error is RERT = 12.41 %. The average difference between the

simulated and measured response times is 6.90 milliseconds per minute.

The overall relative error is OverallRE = 11.46 %.

101

8 EVALUATION OF CDOSIM
8.6 E3: Accuracy Evaluation for Multi

Core Instances

Scenario MultiCore.2

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (dynamic
approach, no S2M)

Figure 37: Average CPU utilization of allocated nodes in MultiCore.2 experiment

The CPU utilization and instance count for MultiCore.2 are displayed in Fig-

ure 37. The instance count of the simulation approximately equals the instance

count of the conducted run. The only difference occurs in hour 22. Here, the con-

ducted run terminates the third instance. In contrast, the simulation terminates

the third instance in the hour 23. The CPU utilization curve is also approximately

the same in the simulation and the conducted run. However, most of the time they

differ by an offset of 10 % CPU utilization.

The relative error for the CPU utilization is RECPU = 46.86 %. The average

difference per minute is 9.87 % CPU utilization. The relative error for instance count

amounts to REInstanceCount = 4.37 %. The overall difference of instance minutes is

102 instance minutes. Again, the costs for the scenario are 5.32$. The simulated

run costs 5.70$, which is a relative error of RECosts = 7.14 %.

In Figure 38 the median of response times for MultiCore.2 are shown. The first

peak in hour 8 and the second peak in hour 17 is contained in the simulation and

the conducted run. However, the first peak is 109 milliseconds in the conducted run

and 62 milliseconds in the simulation. The second peak is 120 milliseconds in the

conducted run and 50 milliseconds in the simulation. The rest of the experiment

time, the simulated response times stay at 49 milliseconds while the response times

of the conducted run range between 49 milliseconds and 74 milliseconds.

102

8.6 E3: Accuracy Evaluation for Multi
Core Instances 8 EVALUATION OF CDOSIM

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

12
.2

24
.4

36
.6

48
.8

61
.0

73
.2

85
.4

97
.6

10
9.

8
M

ed
ia

n
of

 r
es

po
ns

e
tim

es
 [m

ill
is

ec
on

ds
]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

6.
2

12
.4

18
.6

24
.8

31
.0

37
.2

43
.4

49
.6

55
.8

62
.0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times (dynamic
approach, no S2M)

Figure 38: Median response times in MultiCore.2 experiment

The relative error is RERT = 18.79 %. The average difference between the

simulated and measured response times is 13.32 milliseconds per minute.

The overall relative error is OverallRE = 19.29 %.

8.6.5 Discussion of the Results

This section discusses the results for E3.

Scenario MultiCore.1

The relative error for the CPU utilization is 26.53 % which is below our 30 %

threshold and thus the simulation sufficiently reproduces the CPU utilization of the

conducted run.

The low relative error of 1.37 % for the instance count shows that the repro-

duction of the number of used instances of the conducted run is good and is nearly

equal to it.

The relative error for the costs of 5.55 % is a bit higher than expected from the

low instance count relative error. This results from the increased price for a multi

core instance.

The relative error of about 12.41 % for the response times is the lowest of all

experiments and below our threshold. Thus, the response times are also sufficiently

well reproduced.

The overall relative error of 11.46 % is below our 30 % threshold and thus the

simulation sufficiently reproduces the conducted run.

103

8 EVALUATION OF CDOSIM
8.7 E4: Accuracy Evaluation for

Adaptation Strategy Configurations

Scenario MultiCore.2

The relative error for the CPU utilization is 46.86 % which is a rather high value.

We attribute this circumstance to the constant offset of about 10 % CPU utilization

most of the time which might have occurred from a too low MIPIPS value.

In accordance to the low relative error of the instance count, the relative error

for the costs is also low.

The relative error for the response times is 18.79 % which is below our threshold.

A value of 19.29 % in the overall relative error is below our threshold of 30 %

and hence the simulation provides a sufficiently well reproduction of the conducted

run.

8.6.6 Threats to Validity

All described threats for validity in E2 are applicable in this evaluation. In ad-

dition, we only conducted runs with m1.xlarge on Eucalyptus and c1.medium on

Amazon EC2 and thus the results might be different if we would use other multi

core instances.

8.7 E4: Accuracy Evaluation for Adaptation Strategy Con-

figurations

In this section the evaluation for adaption strategy configurations is described.

8.7.1 Goals

E2 and E3 used 70 % and 30 % CPU utilization thresholds for adaptation of nodes.

This evaluation shows that the simulation reproduces a conducted run with other

adaptation strategies sufficiently.

8.7.2 Experimental Setting

The experiment setup was described in Section 8.3. For the Eucalyptus run, we use

the instance type m1.small and the maximal arrival rate amounts 5,564 calls per

minute. For the Amazon EC2 run, we use the instance type m1.small. Here, the

maximal arrival rate is 3,832 calls per minute. The adaptation strategy is 90 % CPU

utilization for starting a new instance and 10 % CPU utilization for terminating a

running instance. Both runs start with one instance, which will not be terminated.

104

8.7 E4: Accuracy Evaluation for
Adaptation Strategy Configurations 8 EVALUATION OF CDOSIM

8.7.3 Scenarios

Two scenarios are part of this evaluation.

Scenario Adaptation.1: Simulate with dynamic approach in no S2M for

Eucalyptus run with 90 % and 10 % CPU utilization adaptation strategy

The workload is recorded with m1.small instances on Eucalyptus with a 90 % and 10

% CPU utilization adaptation strategy. The simulation uses the dynamic approach

and does not simulate separate submethod calls.

Scenario Adaptation.2: Simulate with dynamic approach in no S2M for

Amazon EC2 run with 90 % and 10 % CPU utilization adaptation strat-

egy

This is the same scenario like Adaptation.1 except that the workload is recorded

with m1.small instances on Amazon EC2.

8.7.4 Results

The results for E4 are described in the following.

Scenario Adaptation.1

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (dynamic
approach, no S2M)

Figure 39: Average CPU utilization of allocated nodes in Adaptation.1 experiment

The CPU utilization and the instance count for Adaptation.1 are displayed in

Figure 39. Both are approximately equal in the simulation and conducted run.

105

8 EVALUATION OF CDOSIM
8.7 E4: Accuracy Evaluation for

Adaptation Strategy Configurations

The measured values and the simulated values differ by 6.56 % CPU utilization

per minute on average. The relative error calculates to RECPU = 17.66 %. The

difference regarding the instance count is 8 instance minutes and the relative error is

REInstanceCount = 0.24 %. The simulated costs are 4.845$ and the calculated costs for

the Eucalyptus run are 4.655$. The relative error for the costs is RECosts = 4.08 %.

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

38
.4

76
.8

11
5.

2
19

2.
0

26
8.

8
34

5.
6

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

61
4.

9
18

44
.7

30
74

.5
43

04
.3

55
34

.1
M

ed
ia

n
of

 r
es

po
ns

e
tim

es
 [m

ill
is

ec
on

ds
]

Median of response times

(b) Simulated response times (dynamic
approach, no S2M)

Figure 40: Median response times in Adaptation.1 experiment

Figure 40 shows the median response times for scenario Adaptation.1. The two

peaks of the response times in the conducted run are also included in the simulation.

However, the first peak in the simulation is at 6,149 milliseconds. In the conducted

run, the first peak is at 268 milliseconds. The second peak is at 315 milliseconds

in the simulation and at 383 milliseconds in the conducted run. The rest of the

experiment time, the response times of the conducted run range between 38 mil-

liseconds and 192 milliseconds and the simulated response times range between 38

milliseconds and 300 milliseconds.

The relative error is RERT = 40.06 %. The average difference between the

simulated and measured response times is 46.59 milliseconds per minute.

The overall relative error is OverallRE = 15.51 %.

Scenario Adaptation.2

Figure 41 shows the average CPU utilization of the allocated nodes in the Adap-

tation.2 scenario. The instance count in the simulation and the conducted run is

approximately equal. The CPU utilization is also roughly equal except from the

106

8.7 E4: Accuracy Evaluation for
Adaptation Strategy Configurations 8 EVALUATION OF CDOSIM

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization (dynamic
approach, no S2M)

Figure 41: Average CPU utilization of allocated nodes in Adaptation.2 experiment

beginning to hour 6. In this time period, the simulated CPU utilization differs by

an offset of about 10 % CPU utilization.

The relative error for the CPU utilization is RECPU = 30.64 %. The average

difference per minute is 12.04 % CPU utilization. The relative error of the instance

count is REInstanceCount = 1.32 %. The overall difference of the instance minutes

amounts to 28 instance minutes. The incurred costs account for 6.745$ for the

Amazon EC2 run. The simulation costs result in 7.125$, which is RECosts = 5.63 %.

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

73
.2

14
6.

4
29

2.
8

43
9.

2
58

5.
6

73
2.

0
M

ed
ia

n
of

 r
es

po
ns

e
tim

es
 [m

ill
is

ec
on

ds
]

Median of response times

(a) Measured response times

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

29
5.

8
88

7.
4

14
79

.0
20

70
.6

26
62

.2
M

ed
ia

n
of

 r
es

po
ns

e
tim

es
 [m

ill
is

ec
on

ds
]

Median of response times

(b) Simulated response times (dynamic
approach, no S2M)

Figure 42: Median response times in Adaptation.2 experiment

107

8 EVALUATION OF CDOSIM
8.7 E4: Accuracy Evaluation for

Adaptation Strategy Configurations

The median response times for scenario Adaptation.2 are displayed in Figure 42.

In hour 6, there is a peak in the simulated response times with 295 milliseconds and in

the response times this peak is 390 milliseconds. The high peak of response times in

the conducted run in hour 7 does not show up as a peak in the simulated response

times. In hour 20, the simulation has a peak in the response times with 2,903

milliseconds. The rest of the experiment time, the simulated response times range

from 80 milliseconds to 210 milliseconds and the response times in the conducted

run range from 80 milliseconds to 439 milliseconds.

The relative error for the response times is RERT = 37.57 %. The average

difference per minute is 120.29 milliseconds.

The overall relative error for this scenario amounts to OverallRE = 18.79 %.

8.7.5 Discussion of the Results

In this section the results for E4 are discussed.

Scenario Adaptation.1

17.66 % is the relative error for the CPU utilization which is rather low in comparison

to the other evaluations. Furthermore, it is under our threshold of 30 % and thus

sufficiently accurate.

The low relative error of 0.24 % for the instance count and the low relative error

of 4.08 % for the costs show that the reproduction is sufficient well in respect to

these attributes and also nearly equal to the conducted run.

The relative error for the response times is 40.06 %. We attribute this rather

high value to the high simulated response times in hour 8.

Since the overall relative error is 15.51 %, the scenario reproduces the conducted

run sufficiently.

Scenario Adaptation.2

The relative error for the CPU utilization is 30.64 % which we attribute mainly to

the differences from hour 1 to hour 6.

The relative error of 1.32 % for the instance count shows that the reproduction

of the number of used instances of the conducted run is sufficiently good.

The relative error of 5.63 % for the costs is also low and shows that the repro-

duction is sufficiently accurate.

108

8.8 E5: Inter-Cloud Accuracy Evaluation 8 EVALUATION OF CDOSIM

The relative error for the response times is 37.57 %. We attribute this rather

high value to the high response times that were simulated in hour 20.

The overall relative error of 18.79 % is below our 30 % threshold and thus the

simulation sufficiently reproduces the conducted run.

8.7.6 Threats to Validity

All described threats for validity from E2 also are applicable in this evaluation.

Furthermore, only one adaptation strategy was tested. Thus, it is not generalizable

but shows that the 90 % and 10 % CPU utilization adaptation strategy provides

good results.

8.8 E5: Inter-Cloud Accuracy Evaluation

In this section the evaluation for inter-cloud accuracy is described.

8.8.1 Goals

This evaluation has the goal of predicting the run for a cloud provider platform,

for example Eucalyptus, on the basis of a run, that was conducted with a different

cloud provider platform, for example Amazon EC2.

8.8.2 Experimental Setting

The experiment setup was described in Section 8.3. First, a run on Amazon EC2

with c1.medium instances is conducted. The workload intensity is 6,472 calls per

minute at the maximum. For the Eucalyptus run, we use the instance type m1.small

and the maximal arrival rate amounts 6,402 calls per minute.

8.8.3 Scenario

The evaluation includes one scenario.

Scenario PredictionAmazon.1: Simulate with dynamic approach in no

S2M an Eucalyptus run from a real Amazon EC2 run

The workload is recorded with c1.medium instances on Amazon EC2. Then, the sim-

ulation predicts on the basis of this workload the CPU utilization, instance count,

109

8 EVALUATION OF CDOSIM 8.8 E5: Inter-Cloud Accuracy Evaluation

costs, and response times for the case that the run would be conducted with Euca-

lyptus and m1.small instances. Afterwards, a run with the same workload intensity

is carried out on Eucalyptus. The simulation uses the dynamic approach and does

not simulate separate submethod calls.

8.8.4 Results

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(a) Measured CPU utilization
in Amazon EC2 run

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(b) Simulated CPU utilization
(dynamic approach, no S2M)

Average CPU Utilization

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0
10

20
30

40
50

60
70

80
90

10
0

A
ve

ra
ge

 C
P

U
 u

til
iz

at
io

n
ov

er
 a

ll
al

lo
ca

te
d

no
de

s
[%

]

0
1

2
3

4
5

6
7

8
N

um
be

r
of

 a
llo

ca
te

d
no

de
s

Average CPU utilization
Number of allocated nodes

(c) Measured CPU utilization
in Eucalyptus run

Figure 43: Average CPU utilization of allocated nodes in PredictionAmazon.1 ex-
periment

The CPU utilization and instance count for PredictionAmazon.1 are displayed

in Figure 43. The left subfigure shows the conducted run on Amazon EC2. We

describe the predicted CPU utilization in comparison to the afterwards conducted

run on Eucalyptus. The CPU utilization of the predicted run and the Eucalyptus

run are approximately the same. However, they differ at the beginning and from

hour 3 to hour 5. At the beginning, the simulated CPU utilization is 30 % but the

conducted run has 52 %. From hour 3 to 5, the CPU utilization of the simulation is

32 % while the conducted run has about 40 % in this interval. The instance count is

also approximately the same for both except in hour 23 where the Eucalyptus run

terminates the third instance 10 minutes later than the simulation.

The relative error for the CPU utilization is RECPU = 21.60 %. The average

difference per minute is 6.53 % CPU utilization. The relative error of the instance

count is REInstanceCount = 1.32 %. The overall difference of the instance minutes

amounts to 62 instance minutes. The incurred costs account for 6.175$ for the

Eucalyptus run. The simulation costs result in 6.27$, which is RECosts = 1.53 %.

In Figure 44 the median of response times for PredictionAmazon.1 are shown.

The first two small peaks in the first hour and hour 4 are not contained in the sim-

110

8.8 E5: Inter-Cloud Accuracy Evaluation 8 EVALUATION OF CDOSIM

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

12
.2

24
.4

36
.6

48
.8

61
.0

73
.2

85
.4

97
.6

10
9.

8
M

ed
ia

n
of

 r
es

po
ns

e
tim

es
 [m

ill
is

ec
on

ds
]

Median of response times

(a) Measured response times in
Amazon EC2 run

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

6.
2

12
.4

18
.6

24
.8

31
.0

37
.2

43
.4

49
.6

55
.8

62
.0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(b) Simulated response times
(dynamic approach, no S2M)

Median of Response Times of Operation
com.ibatis.jpetstore.presentation.CartBean.addItemToCart

Experiment time [day hour:minute]
01 00:00 01 04:00 01 08:00 01 12:00 01 16:00 01 20:00 02 00:00

0.
0

13
.8

27
.6

41
.4

55
.2

69
.0

82
.8

96
.6

11
0.

4
13

8.
0

M
ed

ia
n

of
 r

es
po

ns
e

tim
es

 [m
ill

is
ec

on
ds

]

Median of response times

(c) Measured response times in
Eucalyptus run

Figure 44: Median response times in PredictionAmazon.1 experiment

ulation. The third and fourth peak in hour 7 and 8 are contained in the simulation.

However, they differ by about 76 milliseconds from the ones in the conducted run.

The fifth peak at hour 19 is again contained in the simulation but is 83 milliseconds

lower. The following hill is about 65 milliseconds lower than in the conducted run.

RERT = 38.62 % is the relative error for the response times and the average

difference comes to 29.51 milliseconds per minute.

The overall relative error results in OverallRE = 15.76 %.

8.8.5 Discussion of the Results

The relative error for the CPU utilization is 21.60 % and thus the simulation suffi-

ciently well predicts the CPU utilization.

The relative error of 1.32 % for the instance count shows that the prediction of

the number of used instances of the Eucalyptus run is good and is nearly equal to

it. The same applies for the relative error of 1.53 % for the costs.

38.62 % is the relative error for the response times. This value is rather high in

comparison to the other low relative errors. We attribute this circumstance mainly

to not modeling the initialization time of Java classes.

The overall relative error of 15.76 % is below our 30 % threshold and thus the

simulation sufficiently predicts the run using Eucalyptus.

8.8.6 Threats to Validity

The threats to validity from E2 also are applicable in this evaluation. Further-

more, we only conducted a prediction from a run with c1.medium instances on

111

8 EVALUATION OF CDOSIM 8.9 Summary

Amazon EC2 to m1.small instances on Eucalyptus. The simulation might not yield

good results if we conduct predictions for other instance types or cloud providers.

8.9 Summary

E2, E3, and E4 evaluated the replicative validity of our simulation. They showed

that the dynamic approach without S2M provides sufficiently good results for single

core instances, multi core instances, and other adaptation strategies. The static

approach produced insufficient results. The hybrid approach proved insufficient with

our threshold of 30 %. However, it can be further enhanced with a cost model

aware adaptation strategy. This is an important improvement to make because the

hybrid approach is the only applicable approach for S2M. This results from the fact

that the dynamic approach in most cases does not have its preconditions satisfied,

i.e., not all methods have associated response times from dynamic analysis, and the

static approach produces insufficient results that differ by a large factor from the

conducted runs.

E5 addressed the predictive and structural validity. It showed that the inter-cloud

prediction is possible and provides sufficient predictive accuracy. The structural

validity is also fulfilled because the simulated prediction follows approximately the

CPU utilization of the conducted run, although the CPU utilization was recorded

with a multi core instance and MIPIPS are per core. Hence, the simulation follows

the structure of real runs.

Therefore, all three validities are fulfilled and thus the simulation model is valid

and provides useful results.

Table 14 shows an overview of the relative errors for each scenario. The relative

errors were already discussed in the corresponding evaluation.

112

8.9 Summary 8 EVALUATION OF CDOSIM

Scenario RECPU REInstanceCount RECosts RERT OverallRE

SingleCore.1 29.18 % 0.64 % 6.34 % 24.85 % 15.25 %

SingleCore.2 122.42 % 203.92 % 180.95 % 27,597.42 % 7,026.17 %

SingleCore.3 119.66 % 228.32 % 192.06 % 70,415.88 % 17,738.98 %

SingleCore.4 41.76 % 17.79 % 17.46 % 311.57 % 97.14 %

SingleCore.5 30.86 % 7.89 % 9.57 % 42.71 % 22.75 %

SingleCore.6 39.53 % 1,059.85 % 1,055.31 % 997.32 % 788.00 %

SingleCore.7 38.78 % 1,118.98 % 1,100.00 % 1,442.79 % 925.13 %

SingleCore.8 40.17 % 19.66 % 5.31 % 291.93 % 89.26 %

MultiCore.1 26.53 % 1.37 % 5.55 % 12.41 % 11.46 %

MultiCore.2 46.86 % 4.37 % 7.14 % 18.79 % 19.29 %

Adaptation.1 17.66 % 0.24 % 4.08 % 40.06 % 15.51 %

Adaptation.2 30.64 % 1.32 % 5.63 % 37.57 % 18.79 %

Prediction.1 21.60 % 1.32 % 1.53 % 38.62 % 15.76 %

Table 14: Overview of the relative error values for each scenario

113

8 EVALUATION OF CDOSIM 8.9 Summary

114

9 RELATED WORK

9 Related Work

This section lists and describes the related work that ranges from other simulators

(Sections 9.1 to 9.4), over another instruction counting method (Section 9.5), over

another output metric (Section 9.6), to other benchmarks (Sections 9.7 and 9.8).

9.1 GroudSim

Like CloudSim, GroudSim is a tool for simulating clouds environments. It is devel-

oped by Ostermann et al. [52]. In contrast to CloudSim, GroudSim also provides

support for the simulation of Grids. Furthermore, GroudSim utilizes an event-based

simulator that requires only one thread per simulation, while CloudSim follows a

process-based approach that runs a separate thread for each entity. The equiv-

alent to Cloudlets in CloudSim are GroudJobs in GroudSim. A further feature of

GroudSim is the definition of failures. Failures can be generated in a defined interval

for a specific registered resource.

For us, GroudSim was no alternative to CloudSim because we did not discover

an official release of GroudSim on the web. GroudSim is only available as an SVN

version and seems to be not under active development due to the last conducted

commit in the year 2010.

9.2 Palladio

Palladio [3] was started in 2003 at the University of Oldenburg and is a well-

validated, tool-supported software architecture simulation approach. Its main ob-

jective is the prediction of Quality of Service (QoS) properties of component-based

software architectures. Thus, helping to create a high quality software architecture

with dependable quality properties. The tool support is named Palladio Bench. It

is integrated into Eclipse and enables the usage of R. Palladio supports four quality

dimensions. These are performance, reliability, maintenance, and costs. A central

role in Palladio has the Palladio Component Model (PCM) which models different

aspects of a component.

9.3 SLAstic.SIM

SLAstic.SIM [72] is a performance simulator for runtime configurable component-

based software systems utilizing SLAstic. The online-adaptation framework SLAstic

115

9 RELATED WORK 9.4 iCanCloud

was already described in Section 8.3.1. The system, that should be simulated, must

be modeled as an instance of the PCM for SLAstic.SIM. Furthermore, SLAstic.SIM

requires external workload traces and reconfiguration plans for simulation. SLA-

stic.SIM helps to predict the performance impact of specific reconfiguration actions

and thus it can support the evaluation of different adaptation strategies.

Our CDOSim software has similarities to SLAstic.SIM in some aspects. SLA-

stic.SIM’s main objective is to find the best performance in respect to response

times. CDOSim has the main objective to find the best trade off between high

performance and low costs. Furthermore, SLAstic.SIM differs in the preconditions

for the simulation. It requires to have a PCM instance available that is typically

built with the support of system specialists. In contrast to SLAstic.SIM, CDOSim

requires the availability of the source code represented as a KDM instance. KDM

instances of the source code can be generated automatically and thus CDOSim

requires less human effort. SLAstic.SIM and CDOSim can simulate and evaluate

different adaptation strategies. Though, this aspect is only one part of a cloud

deployment option. CDOSim can also simulate the other parts of a cloud deployment

option which are only partly supported by SLAstic.SIM.

9.4 iCanCloud

iCanCloud [47, 48] is a simulation platform for modeling and simulating existing and

non-existing cloud computing architectures. It is mainly aimed for the prediction

of the trade off between costs and performance of a specific application in a specific

cloud environment and configuration. Furthermore, it bases on the SIMCAN simu-

lation framework [49]. In iCanCloud, the user can model applications using traces of

real applications, using state graphs, and programming new applications directly in

the simulation platform. However, it does not provide support for importing existing

software systems easily. These must be modeled manually.

9.5 Byte Instruction Count for Java

The Java Resource Accounting Framework 2 (J-RAF2) [26], that’s first version was

originally developed by Yaksic̀ [76], provides a portable bytecode instruction count-

ing scheme for Java applications. J-RAF2 instruments the bytecode instructions of

Java classes which makes the executed instructions explicit. At runtime, each thread

maintains its own bytecode instruction count, which is afterwards summed up with

the ones of other threads for an overall bytecode instruction count. A special feature

116

9.6 Measuring Elasticity 9 RELATED WORK

of J-RAF2 is that it also instruments JDK methods. Camesi et al. [11] discovered

that there exists a stable, application-specific ratio of bytecodes per unit of CPU

time on the platforms that were tested by them.

Another approach for byte instruction counting in Java is ByCounter by Kuper-

berg [39, 40]. This approach is aimed at being light-weight. It only instruments

the application bytecode and not the JVM. Hence, it can be used on every available

JVM.

We assume that byte instruction counting for Java applications can improve our

approaches for instruction counting. However, it is only applicable for Java and not

for other programming languages. Hence, we first developed language independent

instruction counting approaches. Applying language specific instruction counting

methods might optimize the precision of the simulation.

9.6 Measuring Elasticity

Elasticity is an additional metric that CDOSim could produce as an output. Islam

et al. [30] propose a method for measuring the elasticity of an application on a specific

cloud provider which is motivated by a paper of Weinman [75]. They measure costs

that result from over-provisioning and under-provisioning [28]. Over-provisioning is

a state when resources are available but are not used. Under-provisioning occurs

when there is a higher demand of resources than are available. The costs for over-

provisioning result from unused resources that must be paid for. Under-provisioning

costs have their native in the users that stay absent due to the slow reaction of the

system and thus not buying the offered products, for instance. While the costs for

over-provisioning are clearly defined by the price model of the corresponding cloud

provider, the costs for under-provision vary from the application domain and have

to be researched empirically.

9.7 Dhrystone Benchmark

Dhrystone is a benchmark for the CPU performance like our MIPIPS benchmark

and was originally developed by Weicker [74] in 1984. The first version was written in

ADA and later translated to C. The name is an analogy to the Whetstone benchmark

for floating point operations. In contrast, Dhrystone provides a measure of integer

performance. Its output is the number of Dhrystones per second. Two versions

of Dhrystone are available. These are 1.1 and 2.1. The second version tries to

117

9 RELATED WORK 9.8 Cloudstone Toolkit

address the issue that optimizations of the compiler can be easily conducted and

thus distorting the results.

Weicker gathered meta-data from a broad range of available software in 1984.

The Dhrystone benchmark corresponds to a representative mix of instructions of

the analyzed softwares. Therefore, Dhrystone is a synthetic benchmark.

9.8 Cloudstone Toolkit

Sobel et al. [59] developed the Cloudstone toolkit because they state that existing

web benchmarking tools like SPECWeb are becoming less relevant in Web 2.0. The

Cloudstone toolkit includes a multi-platform, multi-language benchmark, and mea-

surement tools for Web 2.0. It has three components. The first component comprises

of Olio [61] and Faban [14]. Olio consists of two implementations of a social-event

calendar web application. These use Ruby on Rails and PHP, respectively. Both

implementations feature user-generated content, social networking functions, and an

AJAX-based user interface. Faban is an open source performance workload creation

and execution framework. The second component is a set of automation tools for

database population and metric gathering for testing Olio, for instance. A recom-

mended methodology for calculation of the metric dollars per user per month, which

was also developed by Sobel et al. [59], forms the third component.

118

10 CONCLUSIONS AND FUTURE WORK

10 Conclusions and Future Work

The remainder of this section concludes the main aspects of the thesis in Section 10.1

and describes the future work in Section 10.2.

10.1 Conclusions

During a cloud migration a cloud user has to assess a wide range of different cloud

deployment options. For example, a selection of a cloud provider must be conducted.

Furthermore, the mapping between services and virtual machine instances must be

considered. The virtual machine instances’ configuration and adaptation strategies

must be also specified. Rewriting and testing the software with the different cloud

deployment options is infeasible. Simulating the different deployment options assists

to find the best ratio between high performance and low costs.

The thesis showed how cloud deployment options can be simulated. First, the

diverse inputs and outputs of the simulation were described. Thus, accomplishing

the goals G1 and G2. Three approaches for instruction count derivation and an

approach for derivation of MIPIPS, a new measure for the computing performance

of nodes, were developed. Furthermore, an approach for the derivation of the size

of data types was described. Afterwards, the CloudSim enhancements, the MIPIPS

and weights benchmark, and CDOSim were described which corresponds to the goals

G3 and G4. The evaluation showed that CDOSim’s simulation results are reasonable

near to the conducted runs concerning accruing costs and performance. Especially,

we demonstrated that CDOSim can sufficiently accurate predict the execution on a

different cloud provider. Furthermore, the evaluation revealed that the performance

on our Eucalyptus deployment decreases when more CPU cores are allocated and

that the performance of m1.small instances on Amazon EC2 strongly varies.

10.2 Future Work

Most future work lies in enhancing and addition of features to CDOSim. In order

to perform automatic optimization of cloud deployment options efficiently, it should

be possible that simulations can run in parallel. However, CloudSim does not en-

able parallel simulations. Hence, CloudSim should be changed to support parallel

simulations.

119

10 CONCLUSIONS AND FUTURE WORK 10.2 Future Work

The conducted evaluations solely used the JPetStore application. Further eval-

uations with programs written in other programming languages should be carried

out to see if the simulation works with these programs, too.

The static approach should be further enhanced with data flow analysis. The

evaluation showed that the hybrid mode performs not as well as expected. However,

it is the only reasonable approach when the separate submethod modeling mode is

enabled. Hence, future work is to enhance the hybrid mode.

We derived the type size count by static counting. This should be improved

by using dynamic analyses that log the size of the passed parameters in method

invocations.

To give a quick overview of the simulation run, the run should be plotted on the

GUI of CDOSim.

Considering elasticity as a further output can be useful for having a metric con-

cerning the costs when resources are under-provisioned. This circumstance is only

implicitly contained in the response times.

CDOSim lacks the feature to simulate availability zones and region concepts as

for example used by Amazon EC2. In practice, these are important to make the

software system, that shall be run in the cloud, more fault-tolerant to datacenter

failures. Hence, availability zones and regions should be supported and a further

desirable feature is to implement a way to simulate failures of datacenters.

Further adaptation strategies, especially cost-aware strategies, should be imple-

mented because the current utilization-based adaptation strategy simply terminates

an instance after, e.g., 60 seconds. In Amazon EC2, the virtual machine instance

price is paid for full hours. Thus, the adaption strategy should wait until minute 59

passed and only then terminate the virtual machine instance.

120

REFERENCES REFERENCES

References

[1] Jarmo Ahonen, Henna Sivula, Jussi Koskinen, Heikki Lintinen, Tero Tilus, Irja

Kankaanpää, and Päivi Juutilainen. Defining the Process for Making Soft-

ware System Modernization Decisions. In Product-Focused Software Process

Improvement, volume 4034 of Lecture Notes in Computer Science, pages 5–18.

Springer Berlin / Heidelberg, 2006. doi: 10.1007/11767718 5.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H.

Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion

Stoica, and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Com-

puting. Technical Report UCB/EECS-2009-28, EECS Department, University

of California, Berkeley, February 2009.

[3] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio component

model for model-driven performance prediction. The Journal of Systems and

Software, 82:3–22, January 2009. doi: 10.1016/j.jss.2008.03.066.

[4] Anton Beloglazov and Rajkumar Buyya. Energy Efficient Allocation of Vir-

tual Machines in Cloud Data Centers. pages 17–20, May 2010. doi: 10.1109/

CCGRID.2010.45.

[5] Jean Bézivin, Grégoire Dupé, Frédéric Jouault, Gilles Pitette, and Jamal Ed-

dine Rougui. First experiments with the ATL model transformation language:

Transforming XSLT into XQuery. In 2nd OOPSLA Workshop on Generative

Techniques in the context of Model Driven Architecture, October 2003.

[6] Paul Brebner and Anna Liu. Modeling Cloud Cost and Performance. In Cloud

Computing and Virtualization (CCV 2010), pages 79–86, Singapore, May 2010.

[7] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. Modeling and Sim-

ulation of Scalable Cloud Computing Environments and the CloudSim Toolkit:

Challenges and Opportunities. IEEE Press, June 2009. doi: 10.1109/HPCSIM.

2009.5192685.

[8] Rodrigo N. Calheiros, Rajkumar Buyya, and César A. F. De Rose. A Heuristic

for Mapping Virtual Machines and Links in Emulation Testbeds. September

2009. doi: 10.1109/ICPP.2009.7.

121

REFERENCES REFERENCES

[9] Rodrigo N. Calheiros, Rajiv Ranjan, César A. F. De Rose, and Rajkumar

Buyya. CloudSim: A Novel Framework for Modeling and Simulation of Cloud

Computing Infrastructures and Services. CoRR, abs/0903.2525, 2009.

[10] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose,

and Rajkumar Buyya. CloudSim: a toolkit for modeling and simulation of cloud

computing environments and evaluation of resource provisioning algorithms.

Software: Practice and Experience, 41:23–50, January 2011. doi: 10.1002/spe.

995.

[11] Andrea Camesi, Jarle Hulaas, and Walter Binder. Continuous Bytecode In-

struction Counting for CPU Consumption Estimation. In QEST 2006 (3rd

International Conference on the Quantitative Evaluation of Systems, pages 11–

14. IEEE Computer Society, 2006.

[12] Chia-Chu Chiang and Coskun Bayrak. Legacy Software Modernization. In

SMC ’06 IEEE International Conference on Systems, Man and Cybernetics,

volume 2, pages 1304–1309. IEEE Computer Society, October 2006. doi: 10.

1109/ICSMC.2006.384895.

[13] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transformation

Approaches. In OOPSLA 2003 Workshop on Generative Techniques in the

Context of Model-Driven Architecture, 2003.

[14] Faban. Faban. http://java.net/projects/faban/, last visited 2012-03-26.

[15] Sören Frey and Wilhelm Hasselbring. Model-Based Migration of Legacy Soft-

ware Systems to Scalable and Resource-Efficient Cloud-Based Applications:

The CloudMIG Approach. In Proceedings of the First International Con-

ference on Cloud Computing, GRIDs, and Virtualization (Cloud Computing

2010), pages 155–158, 2010.

[16] Sören Frey and Wilhelm Hasselbring. Model-Based Migration of Legacy Soft-

ware Systems into the Cloud: The CloudMIG Approach. In Proceedings of the

12th Workshop Software-Reengineering (WSR 2010), pages 59–60, 2010.

[17] Sören Frey and Wilhelm Hasselbring. An Extensible Architecture for Detect-

ing Violations of a Cloud Environment’s Constraints During Legacy Software

System Migration. In Proceedings of the 15th European Conference on Software

122

http://java.net/projects/faban/

REFERENCES REFERENCES

Maintenance and Reengineering (CSMR 2011), pages 269–278, Oldenburg, Ger-

many, March 2011. IEEE Computer Society. doi: 10.1109/CSMR.2011.33.

[18] Sören Frey and Wilhelm Hasselbring. The CloudMIG Approach: Model-Based

Migration of Software Systems to Cloud-Optimized Applications. 2011. (to

appear).

[19] Sören Frey, Wilhelm Hasselbring, and Benjamin Schnoor. Automatic Con-

formance Checking for Migrating Software Systems to Cloud Infrastructures

and Platforms. Journal of Software Maintenance and Evolution: Research and

Practice, 2012. doi: 10.1002/smr.582.

[20] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous

java performance evaluation. SIGPLAN Not., 42:57–76, October 2007. doi:

10.1145/1297105.1297033.

[21] Google. Google App Engine. http://code.google.com/intl/de-DE/

appengine/, last visited 2012-03-26.

[22] Object Management Group. Knowledge Discovery Meta-Model v1.3. http:

//www.omg.org/spec/KDM/1.3/, last visited 2012-03-26.

[23] Object Management Group. Meta Object Facility (MOF) 2.0 Query/View/-

Transformation v1.1. http://www.omg.org/spec/QVT/1.1/, last visited 2012-

03-26.

[24] Object Management Group. Structured Metrics Meta-Model. http://www.

omg.org/spec/SMM/, last visited 2012-03-26.

[25] John Grundy, Gerald Kaefer, Jacky Keong, and Anna Liu. Guest Editors’

Introduction: Software Engineering for the Cloud. IEEE Software, 29:26–29,

2012. doi: 10.1109/MS.2012.31.

[26] Jarle Hulaas and Walter Binder. Program transformations for light-weight CPU

accounting and control in the Java virtual machine. Higher Order Symbol.

Comput., 21:119–146, June 2008. doi: 10.1007/s10990-008-9026-4.

[27] iBATIS team. JPetstore. http://archive.apache.org/dist/ibatis/

binaries/ibatis.java/JPetStore-5.0.zip, last visited 2012-03-26.

123

http://code.google.com/intl/de-DE/appengine/
http://code.google.com/intl/de-DE/appengine/
http://www.omg.org/spec/KDM/1.3/
http://www.omg.org/spec/KDM/1.3/
http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/SMM/
http://www.omg.org/spec/SMM/
http://archive.apache.org/dist/ibatis/binaries/ibatis.java/JPetStore-5.0.zip
http://archive.apache.org/dist/ibatis/binaries/ibatis.java/JPetStore-5.0.zip

REFERENCES REFERENCES

[28] J. Idziorek. Discrete event simulation model for analysis of horizontal scaling

in the cloud computing model. In Proceedings of the 2010 Winter Simulation

Conference (WSC), pages 3004 –3014, December 2010. doi: 10.1109/WSC.

2010.5678994.

[29] A. Iosup, N. Yigitbasi, and D. Epema. On the Performance Variability of

Production Cloud Services. In 11th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing (CCGrid 2011), pages 104–113, may 2011.

doi: 10.1109/CCGrid.2011.22.

[30] Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How A Consumer Can

Measure Elasticity for Cloud Platforms. Technical Report 680, University of

Sydney, August 2011.

[31] Javier Luis Cánovas Izquierdo and Jesus Molina. An Architecture-Driven Mod-

ernization Tool for Calculating Metrics. IEEE Software, 27:37–43, 2010. doi:

10.1109/MS.2010.61.

[32] Meena Jha and Piyush Maheshwari. Reusing Code for Modernization of Legacy

Systems. In Proceedings of the 13th IEEE International Workshop on Software

Technology and Engineering Practice, pages 102–114. IEEE Computer Society,

2005. doi: 10.1109/STEP.2005.21.

[33] Frédéric Jouault and Ivan Kurtev. On the Architectural Alignment of ATL and

QVT. In Proceedings of the 2006 ACM symposium on applied computing, SAC

’06, pages 1188–1195. ACM, 2006. doi: 10.1145/1141277.1141561.

[34] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick

Valduriez. ATL: a QVT-like transformation language. In Companion to the

21st ACM SIGPLAN symposium on object-oriented programming systems, lan-

guages, and applications, OOPSLA ’06, pages 719–720. ACM, 2006. doi:

10.1145/1176617.1176691.

[35] Frédéric Jouault, F. Allilaire, J. Bézivin, and Ivan Kurtev. ATL: A model

transformation tool. Science of computer programming, 72:31–39, June 2008.

doi: 10.1016/j.scico.2007.08.002.

[36] Kyong Hoon Kim, Anton Beloglazov, and Rajkumar Buyya. Power-aware

Provisioning of Cloud Resources for Real-time Services. ACM, 2009. doi:

10.1145/1657120.1657121.

124

REFERENCES REFERENCES

[37] Jack P. C. Kleijnen. Verification and validation of simulation models. European

Journal of Operational Research, 82(1):145–162, April 1995.

[38] Jussi Koskinen, Jarmo J. Ahonen, Henna Sivula, Tero Tilus, Heikki Lintinen,

and Irja Kankaanpää. Software Modernization Decision Criteria: An Empirical

Study. In Proceedings of the Ninth European Conference on Software Mainte-

nance and Reengineering CSMR 2005, pages 324–331. IEEE Computer Society,

March 2005. doi: 10.1109/CSMR.2005.50.

[39] Michael Kuperberg. Quantifying and Predicting the Influence of Execution Plat-

form on Software Component Performance. PhD thesis, Univeristy of Karl-

sruhe, Karlsruhe, 2010.

[40] Michael Kuperberg, Martin Krogmann, and Ralf Reussner. ByCounter:

Portable Runtime Counting of Bytecode Instructions and Method Invocations.

In Proceedings of the 3rd International Workshop on Bytecode Semantics, Veri-

fication, Analysis and Transformation (ETAPS 2008, 11th European Joint Con-

ferences on Theory and Practice of Software), 2008.

[41] F. Liu, J. Tong, J. Mao, R. B. Bohn, J. V. Messina, M. L. Badger, and D. M.

Leaf. NIST Cloud Computing Reference Architecture. http://www.nist.gov/

manuscript-publication-search.cfm?pub_id=909505, last visited 2012-03-

26. NIST SP - 500-292.

[42] Peter Mell and Timothy Grance. The NIST Definition of Cloud Comput-

ing. http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.

pdf. NIST SP - 800-145.

[43] Daniel A. Menasce and Virgilio A. F. Almeida. Capacity Planning for Web

Services: Metrics, Models, and Methods. Prentice Hall International, September

2001.

[44] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation

and its Application to Graph Transformation. http://win.ua.ac.be/~lore/

refactoringProject/publications/Mens2004MtransTaxoGT.pdf, 2004. last

visited 2012-03-26.

[45] Microsoft Corporation. Windows Azure Platform. http://www.windowsazure.

com/en-us/, last visited 2012-03-26.

125

http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909505
http://www.nist.gov/manuscript-publication-search.cfm?pub_id=909505
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://win.ua.ac.be/~lore/refactoringProject/publications/Mens2004MtransTaxoGT.pdf
http://win.ua.ac.be/~lore/refactoringProject/publications/Mens2004MtransTaxoGT.pdf
http://www.windowsazure.com/en-us/
http://www.windowsazure.com/en-us/

REFERENCES REFERENCES

[46] John Murphy. Performance engineering for cloud computing. In Nigel Thomas,

editor, Computer Performance Engineering, volume 6977 of Lecture Notes in

Computer Science, pages 1–9. Springer Berlin / Heidelberg, 2011. doi: 10.1007/

978-3-642-24749-1 1.

[47] A. Nuñez, G.G. Castane, J.L. Vazquez-Poletti, A.C. Caminero, J. Carretero,

and I.M. Llorente. Design of a flexible and scalable hypervisor module for

simulating cloud computing environments. In 2011 International Symposium on

Performance Evaluation of Computer Telecommunication Systems (SPECTS),

pages 265 –270, June 2011.

[48] A. Nuñez, J. Vázquez-Poletti, A. Caminero, J. Carretero, and I. Llorente. De-

sign of a new cloud computing simulation platform. In Beniamino Murgante,

Osvaldo Gervasi, Andrés Iglesias, David Taniar, and Bernady Apduhan, editors,

Computational Science and Its Applications - ICCSA 2011, volume 6784 of Lec-

ture Notes in Computer Science, pages 582–593. Springer Berlin / Heidelberg,

2011. doi: 10.1007/978-3-642-21931-3 45.

[49] Alberto Nuñez, Javier Fernández, José Daniel Garćıa, Laura Prada, and Jesús

Carretero. SIMCAN: a SIMulator framework for computer architectures and

storage networks. In SimuTools, pages 73–81. ICST, 2008.

[50] Obeo. ATL - a model transformation technology. http://eclipse.org/atl/,

last visited 2012-03-26.

[51] openArchitectureWare.org. openArchitectureWare. http://www.

openarchitectureware.org/, last visited 2012-03-26.

[52] Simon Ostermann, Kassian Plankensteiner, Radu Prodan, and Thomas

Fahringer. GroudSim: An Event-based Simulation Framework for Computa-

tional Grids and Clouds. In CoreGRID/ERCIM Workshop on Grids, Clouds

and P2P Computing. Springer, August 2010.

[53] Ricardo Pérez-Castillo, Ignacio Garćıa-Rodŕıguez De Guzmán, and Mario Piat-

tini. Implementing business process recovery patterns through QVT transfor-

mations. In Proceedings of the Third international conference on Theory and

practice of model transformations, ICMT’10, pages 168–183. Springer-Verlag,

2010. doi: 10.1007/978-3-642-13688-7 12.

126

http://eclipse.org/atl/
http://www.openarchitectureware.org/
http://www.openarchitectureware.org/

REFERENCES REFERENCES

[54] Ricardo Pérez-Castillo, Ignacio Garćıa-Rodŕıguez de Guzmán, and Mario Piat-

tini. Knowledge Discovery Metamodel-ISO/IEC 19506: A standard to modern-

ize legacy systems. Computer Standards and Interfaces, 33(6):519–532, 2011.

doi: 10.1016/j.csi.2011.02.007.

[55] Matthias Rohr, André van Hoorn, Wilhelm Hasselbring, Marco Lübcke, and

Sergej Alekseev. Workload-intensity-sensitive timing behavior analysis for dis-

tributed multi-user software systems. In 1st Joint WOSP/SIPEW International

Conference on Performance Engineering (WOSP/SIPEW 2010), pages 87–92.

ACM, January 2010.

[56] Robert G. Sargent. Verification and validation of simulation models. In Pro-

ceedings of the 30th conference on Winter simulation, WSC ’98, pages 121–130,

Los Alamitos, CA, USA, 1998. IEEE Computer Society Press.

[57] A. Udaya Shankar. Discrete-Event Simulation. Department of Computer Sci-

ence, University of Maryland, January 1991.

[58] S. Sindhu and Saswati Mukherjee. Efficient Task Scheduling Algorithms

for Cloud Computing Environment. In High Performance Architecture and

Grid Computing, volume 169 of Communications in Computer and Informa-

tion Science, pages 79–83. Springer Berlin Heidelberg, 2011. doi: 10.1007/

978-3-642-22577-2 11.

[59] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hu-

bert Wong, Arthur Klepchukov, Sheetal Patil, O Fox, and David Patter-

son. Cloudstone: Multi-platform, multi-language benchmark and measure-

ment tools for web 2.0. http://radlab.cs.berkeley.edu/w/upload/2/25/

Cloudstone-Jul09.pdf, July 2009. Abstract Paper.

[60] M. Sudha and M. Monica. Investigation on Efficient Management of workflows

in cloud computing Environment. International Journal on Computer Science

and Engineering (IJCSE), 2:1841–1845, 2010.

[61] Sun Microsystems Inc. and U.C. Berkeley RAD Lab. Olio. http://incubator.

apache.org/olio/, last visited 2012-03-26.

[62] The Apache Software Foundation. ActiveMQ. http://activemq.apache.

org/, last visited 2012-03-26.

127

http://radlab.cs.berkeley.edu/w/upload/2/25/Cloudstone-Jul09.pdf
http://radlab.cs.berkeley.edu/w/upload/2/25/Cloudstone-Jul09.pdf
http://incubator.apache.org/olio/
http://incubator.apache.org/olio/
http://activemq.apache.org/
http://activemq.apache.org/

REFERENCES REFERENCES

[63] The Apache Software Foundation. JMeter. http://jakarta.apache.org/

jmeter/, last visited 2012-03-26.

[64] The Apache Software Foundation. Tomcat. http://tomcat.apache.org/, last

visited 2012-03-26.

[65] The Eclipse Foundation. Eclipse Modeling Framework Project (EMF). http:

//www.eclipse.org/modeling/emf/, last visited 2012-03-26.

[66] The Eclipse Foundation. Xpand. http://www.eclipse.org/modeling/m2t/

?project=xpand, last visited 2012-03-26.

[67] The hsql Development Group. HSQLDB. http://www.hsqldb.org/, last vis-

ited 2012-03-26.

[68] Klaus G. Troitzsch. Validating simulation models. In Proceedings of 18th Eu-

ropean Simulation Multiconference on Networked Simulation and Simulation

Networks, SCS Publishing House, pages 265–270, 2004.

[69] Cor van Dijkum, Dorien DeTombe, and Etzel van Kuijk. Validation of simula-

tion models. J. Artificial Societies and Social Simulation, 3(1), 2000.

[70] André van Hoorn, Matthias Rohr, Wilhelm Hasselbring, Jan Waller, Jens

Ehlers, Sören Frey, and Dennis Kieselhorst. Continuous Monitoring of Soft-

ware Services: Design and Application of the Kieker Framework. Technical

Report 0921, 2009.

[71] André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring. Generating prob-

abilistic and intensity-varying workload for Web-based software systems. In

Samuel Kounev, Ian Gorton, and Kai Sachs, editors, Performance Evaluation

— Metrics, Models and Benchmarks: Proceedings of the SPEC International

Performance Evaluation Workshop 2008 (SIPEW ’08), volume 5119 of Lecture

Notes in Computer Science, pages 124–143. Springer, June 2008.

[72] Robert von Massow. Performance simulation of runtime reconfigurable software

architectures. Diploma thesis, University Oldenburg, Oldenburg, April 2010.

[73] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring. Performance

simulation of runtime reconfigurable component-based software architectures.

128

http://jakarta.apache.org/jmeter/
http://jakarta.apache.org/jmeter/
http://tomcat.apache.org/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.hsqldb.org/

REFERENCES REFERENCES

In Ivica Crnkovic, Volker Gruhn, and Matthias Book, editors, Software Ar-

chitecture, volume 6903 of Lecture Notes in Computer Science, pages 43–58.

Springer Berlin / Heidelberg, 2011. doi: 10.1007/978-3-642-23798-0 5.

[74] Reinhold P. Weicker. Dhrystone: a synthetic systems programming benchmark.

Commun. ACM, 27:1013–1030, October 1984. doi: 10.1145/358274.358283.

[75] Joe Weinman. Time is Money: The Value of ”On-Demand”. http:

//joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf, January

2011. last visited 2012-03-26.

[76] Vladimir Omar Calderón Yaksic̀. J-RAF - The Java Resource Accounting Fa-

cility. Master’s thesis, University of Geneva, June 2002.

[77] B. P. Zeigler. Theory of Modelling and Simulation. Krieger, Malabar, 1985.

129

http://joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf
http://joeweinman.com/Resources/Joe_Weinman_Time_Is_Money.pdf

REFERENCES REFERENCES

130

A GLOSSARY

Appendices

A Glossary

ADM

architecture-driven modernization

ATL

Atlas Transformation Language

CDOSim

Cloud Deployment Options Simulator

CEM

Cloud Environment Model

EMF

Eclipse Modeling Framework

IaaS

Infrastructure-as-a-Service

KDM

Knowledge Discovery Meta-Model

MIPIPS

mega integer plus instructions per second

MIPS

mega instructions per second

MOF

Meta Object Facility

MVC

Model-View-Controller

NIST

National Institute of Standards and Technology

i

A GLOSSARY

OCL

Object Constraint Language

OMG

Object Management Group

PaaS

Platform-as-a-Service

PCM

Palladio Component Model

QVT

Query/View/Transformation

S2M

separate submethods mode

SaaS

Software-as-a-Service

SMM

Structured Metrics Meta-Model

UML

Unified Modeling Language

XMI

XML Metadata Interchange

ii

B ECORE MODEL FOR MIPIPS AND WEIGHTS BENCHMARK

B Ecore Model for MIPIPS and Weights Bench-

mark

Figure 45: Ecore model for MIPIPS and weights benchmark as UML class diagram

iii

B ECORE MODEL FOR MIPIPS AND WEIGHTS BENCHMARK

iv

C KDM EXAMPLE

C KDM example

� �
1 <?xml version=”1 .0 ” encoding=”ASCII ”?>

2 <xmi:XMI xmi :ve r s i on=”2 .0 ” xmlns:xmi=”ht t p : //www. omg . org /XMI” xmlns :x s i

=”h t tp : //www. w3 . org /2001/XMLSchema−i n s t anc e ” xmlns :ac t i on=”h t tp : //

www. e c l i p s e . org /MoDisco/kdm/ ac t i on ” xmlns:code=”h t tp : //www. e c l i p s e .

org /MoDisco/kdm/ code ” xmlns:kdm=”h t tp : //www. e c l i p s e . org /MoDisco/kdm

/kdm” xmlns : source=”h t t p : //www. e c l i p s e . org /MoDisco/kdm/ source ”>

3 <kdm:Segment name=”CloudMIGXpressTmpJavaProject1332585344928 ”>

4 <model x s i : t y p e=”code:CodeModel ” name=”Example ”>

5 <codeElement x s i : t y p e=”code:Package ” name=”examplepackage ”>

6 <codeElement x s i : t y p e=”code :C la s sUn i t ” name=” I f C l a s s ” i sAbs t r a c t=”

f a l s e ”>

7 <a t t r i b u t e tag=”export ” va lue=”pub l i c ”/>

8 <source language=”java ”>

9 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”/>

10 </ source>

11 <codeElement x s i : t y p e=”code:MethodUnit ” name=”main ” type=”/0/@model

. 0/ @codeElement .0/ @codeElement .0/ @codeElement .0/ @codeElement . 0 ”

>

12 <a t t r i b u t e tag=”export ” va lue=”pub l i c ”/>

13 <source language=”java ”>

14 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”/>

15 </ source>

16 <codeElement x s i : t y p e=”code :S i gna tu re ” name=”main ”>

17 <parameterUnit type=”/0/@model . 0/ @codeElement .1/ @codeElement . 5 ”

kind=”return ”>

18 <source language=”java ”>

19 <r eg i on language=”java ”/>

20 </ source>

21 </ parameterUnit>

22 <parameterUnit name=”args ” type=”/0/@model . 1/ @codeElement . 1 ” kind

=”unknown ”>

23 <source language=”java ”>

24 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”/

>

25 </ source>

26 </ parameterUnit>

27 </codeElement>

28 <codeElement x s i : t y p e=”act i on :B lockUn i t ”>

29 <source language=”java ”>

v

C KDM EXAMPLE

30 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”/>

31 </ source>

32 <codeElement x s i : t y p e=”act ion :Act ionElement ” name=”v a r i a b l e

d e c l a r a t i o n ” kind=”v a r i a b l e d e c l a r a t i o n ”>

33 <source language=”java ”>

34 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”/

>

35 </ source>

36 <codeElement x s i : t y p e=”code :S to rab l eUn i t ” name=” i ” type=”/0/

@model . 0/ @codeElement .1/ @codeElement . 0 ” kind=” l o c a l ”>

37 <a t t r i b u t e tag=”export ” va lue=”none ”/>

38 <source language=”java ”>

39 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”

/>

40 </ source>

41 <codeRe lat ion x s i : t y p e=”code:HasValue ” to=”/0/@model . 1/

@codeElement . 2 ” from=”/0/@model . 0/ @codeElement .0/

@codeElement .0/ @codeElement .0/ @codeElement .1/ @codeElement

.0/ @codeElement . 0 ”/>

42 </codeElement>

43 </codeElement>

44 <codeElement x s i : t y p e=”act ion :Act ionElement ” name=” i f ” kind=” i f ”>

45 <source language=”java ”>

46 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”/

>

47 </ source>

48 <codeElement x s i : t y p e=”act ion :Act ionElement ” name=”EQUALS” kind=

” i n f i x exp r e s s i on ”>

49 <source language=”java ”>

50 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”

/>

51 </ source>

52 <codeElement x s i : t y p e=”act ion :Act ionElement ” name=”v a r i a b l e

a c c e s s ” kind=”v a r i a b l e a c c e s s ”>

53 <ac t i onRe l a t i on x s i : t y p e=”act ion :Reads ” to=”/0/@model . 0/

@codeElement .0/ @codeElement .0/ @codeElement .0/ @codeElement

.1/ @codeElement .0/ @codeElement . 0 ” from=”/0/@model . 0/

@codeElement .0/ @codeElement .0/ @codeElement .0/ @codeElement

.1/ @codeElement .1/ @codeElement . 0 ”/>

54 </codeElement>

55 <codeElement x s i : t y p e=”code:Value ” name=”number l i t e r a l ” type=”

/0/@model . 0/ @codeElement .1/ @codeElement . 0 ” ext=”5 ”>

56 <source language=”java ”>

vi

C KDM EXAMPLE

57 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java

”/>

58 </ source>

59 </codeElement>

60 </codeElement>

61 <codeElement x s i : t y p e=”act i on :B lockUn i t ”>

62 <source language=”java ”>

63 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”

/>

64 </ source>

65 <codeElement x s i : t y p e=”act ion :Act ionElement ” name=”expr e s s i o n

statement ” kind=”expr e s s i on statement ”>

66 <source language=”java ”>

67 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java

”/>

68 </ source>

69 <codeElement x s i : t y p e=”act ion :Act ionElement ” name=”ASSIGN”

kind=”assignment ”>

70 <source language=”java ”>

71 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”

java ”/>

72 </ source>

73 <codeElement x s i : t y p e=”code:Value ” name=”number l i t e r a l ” type

=”/0/@model . 0/ @codeElement .1/ @codeElement . 0 ” ext=”3 ”>

74 <source language=”java ”>

75 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”

java ”/>

76 </ source>

77 </codeElement>

78 <ac t i onRe l a t i on x s i : t y p e=”ac t i o n :Wr i t e s ” to=”/0/@model . 0/

@codeElement .0/ @codeElement .0/ @codeElement .0/ @codeElement

.1/ @codeElement .0/ @codeElement . 0 ” from=”/0/@model . 0/

@codeElement .0/ @codeElement .0/ @codeElement .0/ @codeElement

.1/ @codeElement .1/ @codeElement .1/ @codeElement .0/

@codeElement . 0 ”/>

79 </codeElement>

80 </codeElement>

81 </codeElement>

82 </codeElement>

83 </codeElement>

84 </codeElement>

85 </codeElement>

86 </codeElement>

vii

C KDM EXAMPLE

87 <codeElement x s i : t y p e=”code:LanguageUnit ” name=”Common Java datatypes

”>

88 <codeElement x s i : t y p e=”code : IntegerType ” name=” i n t ”/>

89 <codeElement x s i : t y p e=”code : IntegerType ” name=”long ”/>

90 <codeElement x s i : t y p e=”code:FloatType ” name=” f l o a t ”/>

91 <codeElement x s i : t y p e=”code:FloatType ” name=”double ”/>

92 <codeElement x s i : t y p e=”code:BooleanType ” name=”boolean ”/>

93 <codeElement x s i : t y p e=”code:VoidType ” name=”void ”/>

94 <codeElement x s i : t y p e=”code:CharType ” name=”char ”/>

95 <codeElement x s i : t y p e=”code : IntegerType ” name=”shor t ”/>

96 <codeElement x s i : t y p e=”code:OctetType ” name=”byte ”/>

97 <codeElement x s i : t y p e=”code :Str ingType ” name=” s t r i n g ”/>

98 </codeElement>

99 </model>

100 <model x s i : t y p e=”code:CodeModel ” name=”e x t e r n a l s ”>

101 <codeElement x s i : t y p e=”code:Package ” name=”java ”>

102 <codeElement x s i : t y p e=”code:Package ” name=”lang ”>

103 <codeElement x s i : t y p e=”code :C la s sUn i t ” name=”St r ing ”>

104 <source language=”java ”>

105 <r eg i on language=”java ”/>

106 </ source>

107 <codeRe lat ion x s i : t y p e=”code:Implements ” to=”/0/@model . 1/

@codeElement .0/ @codeElement .1/ @codeElement . 0 ” from=”/0/@model

. 1/ @codeElement .0/ @codeElement .0/ @codeElement . 0 ”/>

108 <codeRe lat ion x s i : t y p e=”code:Implements ” to=”/0/@model . 1/

@codeElement .0/ @codeElement .0/ @codeElement . 1 ” from=”/0/@model

. 1/ @codeElement .0/ @codeElement .0/ @codeElement . 0 ”/>

109 <codeRe lat ion x s i : t y p e=”code:Implements ” to=”/0/@model . 1/

@codeElement .0/ @codeElement .0/ @codeElement . 2 ” from=”/0/@model

. 1/ @codeElement .0/ @codeElement .0/ @codeElement . 0 ”/>

110 </codeElement>

111 <codeElement x s i : t y p e=”code:TemplateUnit ” name=”Comparable&l t ;T>”>

112 <codeElement x s i : t y p e=”code:TemplateParameter ” name=”T”/>

113 <codeElement x s i : t y p e=”c o d e : I n t e r f a c e U n i t ” name=”Comparable ”>

114 <source language=”java ”>

115 <r eg i on language=”java ”/>

116 </ source>

117 </codeElement>

118 </codeElement>

119 <codeElement x s i : t y p e=”c o d e : I n t e r f a c e U n i t ” name=”CharSequence ”>

120 <source language=”java ”>

121 <r eg i on language=”java ”/>

122 </ source>

viii

C KDM EXAMPLE

123 </codeElement>

124 </codeElement>

125 <codeElement x s i : t y p e=”code:Package ” name=”i o ”>

126 <codeElement x s i : t y p e=”c o d e : I n t e r f a c e U n i t ” name=” S e r i a l i z a b l e ”>

127 <source language=”java ”>

128 <r eg i on language=”java ”/>

129 </ source>

130 </codeElement>

131 </codeElement>

132 </codeElement>

133 <codeElement x s i : t y p e=”code:ArrayType ” name=”java . lang . S t r ing [] ” s i z e

=”1 ”>

134 <itemUnit type=”/0/@model . 1/ @codeElement .0/ @codeElement .0/

@codeElement . 0 ”/>

135 <indexUnit type=”/0/@model . 0/ @codeElement .1/ @codeElement . 0 ”/>

136 </codeElement>

137 <codeElement x s i : t y p e=”code:Value ” name=”number l i t e r a l ” type=”/0/

@model . 0/ @codeElement .1/ @codeElement . 0 ” ext=”5 ”>

138 <source language=”java ”>

139 <r eg i on f i l e=”/0/@model . 2/ @inventoryElement . 0 ” language=”java ”/>

140 </ source>

141 </codeElement>

142 </model>

143 <model x s i : t y p e=”source : InventoryMode l ” name=”source r e f e r e n c e s ”>

144 <inventoryElement x s i : t y p e=”s o u r c e : S o u r c e F i l e ” name=” I f C l a s s . java ”

path=”C:\Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \
Example\Source−A r t i f a c t s \Example\ examplepackage\ I f C l a s s . java ”

language=”java ”/>

145 </model>

146 <model x s i : t y p e=”source : InventoryMode l ” name=”

CloudMIGXpressTmpJavaProject1332585344928 ”>

147 <inventoryElement x s i : t y p e=”s o u r c e : D i r e c t o r y ” name=”

CloudMIGXpressTmpJavaProject1332585344928 ” path=”C:\Users \ f f i \
runtime−org . cloudmig . c loudmigxpress . product \
CloudMIGXpressTmpJavaProject1332585344928 ”>

148 <inventoryElement x s i : t y p e=”s o u r c e : C o n f i g u r a t i o n ” name=” . c l a s s pa th ”

path=”C:\Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \
CloudMIGXpressTmpJavaProject1332585344928 \ . c l a s s p a th ”/>

149 <inventoryElement x s i : t y p e=”s o u r c e : C o n f i g u r a t i o n ” name=” . p r o j e c t ”

path=”C:\Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \
CloudMIGXpressTmpJavaProject1332585344928 \ . p r o j e c t ”/>

150 <inventoryElement x s i : t y p e=”s o u r c e : D i r e c t o r y ” name=”bin ” path=”C:\
Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \

ix

C KDM EXAMPLE

CloudMIGXpressTmpJavaProject1332585344928\bin ”/>

151 <inventoryElement x s i : t y p e=”s o u r c e : D i r e c t o r y ” name=” l i b ” path=”C:\
Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \
CloudMIGXpressTmpJavaProject1332585344928\ l i b ”/>

152 <inventoryElement x s i : t y p e=”s o u r c e : D i r e c t o r y ” name=”s r c ” path=”C:\
Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \
CloudMIGXpressTmpJavaProject1332585344928\ s r c ”>

153 <inventoryElement x s i : t y p e=”s o u r c e : D i r e c t o r y ” name=”main ” path=”C:\
Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \
CloudMIGXpressTmpJavaProject1332585344928\ s r c \main ”>

154 <inventoryElement x s i : t y p e=”s o u r c e : D i r e c t o r y ” name=”examplepackage

” path=”C:\Users \ f f i \ runtime−org . cloudmig . c loudmigxpress .

product \CloudMIGXpressTmpJavaProject1332585344928\ s r c \main\
examplepackage ”>

155 <inventoryElement x s i : t y p e=”s o u r c e : S o u r c e F i l e ” name=” I f C l a s s . java

” path=”C:\Users \ f f i \ runtime−org . cloudmig . c loudmigxpress .

product \CloudMIGXpressTmpJavaProject1332585344928\ s r c \main\
examplepackage\ I f C l a s s . java ”/>

156 </ inventoryElement>

157 </ inventoryElement>

158 <inventoryElement x s i : t y p e=”s o u r c e : D i r e c t o r y ” name=”misc ” path=”C:\
Users \ f f i \ runtime−org . cloudmig . c loudmigxpress . product \
CloudMIGXpressTmpJavaProject1332585344928\ s r c \misc ”/>

159 </ inventoryElement>

160 </ inventoryElement>

161 </model>

162 </kdm:Segment>

163 <kdm:Attribute tag=”export ” value=”none ”/>

164 </xmi:XMI>

165 }� �
Listing 20: Simple KDM example

x

D RATING ALGORITHM

D Rating Algorithm

� �
1 Map<Double , Double> rateValues (Li s t<Double> va lues) {
2 Map<Double , Double> r e s u l t L i s t = new HashMap<Double , Double>() ;

3 C o l l e c t i o n s . s o r t (va lue s) ;

4

5 double oneRatingValue = va lue s . get (0) ;

6 f i l t e r L i s t (values , oneRatingValue) ;

7 double threeRatingValue , f iveRat ingValue = 0 ;

8

9 r e s u l t L i s t . put (oneRatingValue , 1 . 0) ;

10

11 i f (! va lue s . isEmpty ()) {
12 int l a s t I n d e x = va lues . s i z e () − 1 ;

13 f iveRat ingValue = va lue s . get (l a s t I n d e x) ;

14 f i l t e r L i s t (values , f iveRat ingValue) ;

15 r e s u l t L i s t . put (f iveRat ingValue , 5 . 0) ;

16 }
17

18 i f (! va lue s . isEmpty ()) {
19 double median = median (va lue s) ;

20 threeRatingValue = median ;

21

22 i f (va lue s . conta in s (median)) {
23 r e s u l t L i s t . put (threeRatingValue , 3 . 0) ;

24 }
25

26 List<List<Double>> l i s t = divideListWithoutMedian (values , median

) ;

27

28 workOnPartList (values , r e s u l t L i s t , oneRatingValue ,

29 threeRatingValue , l i s t . get (LEFT) , 2 . 0) ;

30

31 workOnPartList (values , r e s u l t L i s t , threeRatingValue ,

32 f iveRat ingValue , l i s t . get (RIGHT) , 4 . 0) ;

33 }
34

35 return r e s u l t L i s t ;

36 }
37

38 private void f i l t e r L i s t (L is t<Double> values , double rat ingValue) {

xi

D RATING ALGORITHM

39 List<Double> toRemove = new ArrayList<Double>() ;

40 for (Double va lue : va lue s) {
41 i f (doubleEqualsWithDelta (rat ingValue , va lue)) {
42 toRemove . add (value) ;

43 }
44 }
45 for (Double toRem : toRemove) {
46 va lues . remove (toRem) ;

47 }
48 }
49

50 private boolean doubleEqualsWithDelta (double rat ingValue , Double

va lue) {
51 i f (Double . compare (rat ingValue , va lue) == 0) {
52 return true ;

53 }
54 return Math . abs (va lue − rat ingValue) <= 0 . 0 0 1 ;

55 }
56

57 private List<List<Double>> divideListWithoutMedian (Lis t<Double>

values , double median) {
58 List<Double> l e f t L i s t = new Vector<Double>() ;

59 Lis t<Double> r i g h t L i s t = new Vector<Double>() ;

60

61 for (Double va lue : va lue s) {
62 i f (va lue < median) {
63 l e f t L i s t . add (value) ;

64 }
65 else i f (va lue > median) {
66 r i g h t L i s t . add (value) ;

67 }
68 else {
69 // median i s f i l t e r e d

70 }
71 }
72

73 List<List<Double>> r e s u l t = new Vector<List<Double>>() ;

74 r e s u l t . add (l e f t L i s t) ;

75 r e s u l t . add (r i g h t L i s t) ;

76

77 return r e s u l t ;

78 }
79

xii

D RATING ALGORITHM

80 private void workOnPartList (L is t<Double> values , Map<Double , Double>

r e s u l t L i s t , double f i r s tRat ingVa lue , double thirdRatingValue ,

L i s t<Double> s r c L i s t , double middleRank) {
81 i f (! s r c L i s t . isEmpty ()) {
82 double median = median (s r c L i s t) ;

83

84 i f (va lue s . conta in s (median)) {
85 r e s u l t L i s t . put (median , middleRank) ;

86 }
87

88 List<List<Double>> l i s t = divideListWithoutMedian (s r c L i s t ,

median) ;

89 Lis t<Double> l e f t L i s t = l i s t . get (LEFT) ;

90 approx imateLinearLi s t (r e s u l t L i s t , l e f t L i s t , f i r s tRat ingVa lue ,

median , middleRank − 1 . 0) ;

91 Lis t<Double> r i g h t L i s t = l i s t . get (RIGHT) ;

92 approx imateLinearLi s t (r e s u l t L i s t , r i g h t L i s t , median ,

thirdRatingValue , middleRank) ;

93 }
94 }
95

96 private void approx imateLinearLi s t (Map<Double , Double> r e s u l t L i s t ,

L i s t<Double> l i s t , double l e f tRat ing , double r ightRat ing , double

rank) {
97 for (Double va l : l i s t) {
98 double r a t i n g = rank + approximateLinear (l e f tRat ing , r ightRat ing

, va l) ;

99 r e s u l t L i s t . put (val , r a t i n g) ;

100 }
101 }
102

103 private double approximateLinear (double l e f tGradeValue , double

rightGradeValue , double value) {
104 double d i f f = rightGradeValue − l e f tGradeValue ;

105 double d i f f V a l u e = value − l e f tGradeValue ;

106

107 return d i f f V a l u e / d i f f ;

108 }� �
Listing 21: Rating algorithm in Java

xiii

D RATING ALGORITHM

xiv

E ATTACHMENTS

E Attachments

- One DVD labeled Master’s Thesis Attachment - Florian Fittkau containing

the source code for CDOSim and the MIPIPS and weights benchmark, created

documents in PDF-format, used external test applications, and the monitored

data for the conducted runs in the evaluations

xv

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Goals
	1.3.1 G1: Definition of the Simulation Input
	1.3.2 G2: Definition of the Simulation Output
	1.3.3 G3: Development of a Benchmark for Measuring the Computing Performance of a Node in MIPIPS
	1.3.4 G4: Development of CDOSim

	1.4 Document Structure

	2 Foundations and Technologies
	2.1 Foundations
	2.1.1 Cloud Computing
	2.1.2 Software Modernization
	2.1.3 CloudMIG Approach
	2.1.4 Simulation
	2.1.5 Model Transformation

	2.2 Involved Technologies
	2.2.1 CloudSim
	2.2.2 CloudMIG Xpress
	2.2.3 KDM
	2.2.4 SMM
	2.2.5 ATL
	2.2.6 Xpand

	3 Simulation Input
	3.1 Overview
	3.2 MIPIPS
	3.2.1 Description
	3.2.2 Derivation

	3.3 Instruction Count
	3.3.1 Description
	3.3.2 Derivation Overview
	3.3.3 Dynamic Approach
	3.3.4 Static Approach
	3.3.5 Hybrid Approach

	3.4 Weights per Statement
	3.4.1 Description
	3.4.2 Derivation

	3.5 Network Traffic
	3.5.1 Description
	3.5.2 Derivation

	3.6 SMM Workload Profile
	3.6.1 Description
	3.6.2 Derivation

	3.7 Enriched KDM Model
	3.7.1 Description
	3.7.2 Derivation

	3.8 Adaptation Rules
	3.8.1 Description
	3.8.2 Derivation

	3.9 Configuration
	3.9.1 Description
	3.9.2 Derivation

	4 Simulation Output
	4.1 Costs
	4.2 Response Times
	4.3 SLA Violations
	4.4 Rating

	5 CloudSim Enhancements
	5.1 Overview
	5.2 Enhanced CloudSim Meta-Model
	5.3 CPU Utilization Model per Core
	5.4 Starting and Stopping Virtual Machine Instances on Demand
	5.5 Delayed Cloudlet Creation
	5.6 Delayed Start of Virtual Machines
	5.7 Timeout for Cloudlets
	5.8 Improved Debt Model
	5.9 Enhanced Instruction Count Model
	5.10 History Exporter
	5.11 Dynamic Host Addition at Runtime
	5.12 Method Calls and Network Traffic between Virtual Machine Instances

	6 MIPIPS and Weights Benchmark
	6.1 Features
	6.2 Design
	6.3 Example Output

	7 CDOSim
	7.1 Features
	7.2 The Simulation Process
	7.3 Design

	8 Evaluation of CDOSim
	8.1 Goals of the Evaluation
	8.2 Methodology
	8.2.1 Comparison Method in E1
	8.2.2 Calculation of Relative Error for E2 to E5

	8.3 Basic Experiment Setup
	8.3.1 SLAstic and SLAstic Adaptations
	8.3.2 JPetStore Adaptation
	8.3.3 Eucalyptus
	8.3.4 Amazon EC2
	8.3.5 Workload Profile
	8.3.6 Default Simulation Configuration

	8.4 E1: MIPIPS Benchmark Evaluation
	8.4.1 Goals
	8.4.2 Experimental Setting
	8.4.3 Comparisons
	8.4.4 Results
	8.4.5 Discussion of the Results
	8.4.6 Threats to Validity

	8.5 E2: Accuracy Evaluation for Single Core Instances
	8.5.1 Goals
	8.5.2 Experimental Setting
	8.5.3 Scenarios
	8.5.4 Results
	8.5.5 Discussion of the Results
	8.5.6 Threats to Validity

	8.6 E3: Accuracy Evaluation for Multi Core Instances
	8.6.1 Goals
	8.6.2 Experimental Setting
	8.6.3 Scenarios
	8.6.4 Results
	8.6.5 Discussion of the Results
	8.6.6 Threats to Validity

	8.7 E4: Accuracy Evaluation for Adaptation Strategy Configurations
	8.7.1 Goals
	8.7.2 Experimental Setting
	8.7.3 Scenarios
	8.7.4 Results
	8.7.5 Discussion of the Results
	8.7.6 Threats to Validity

	8.8 E5: Inter-Cloud Accuracy Evaluation
	8.8.1 Goals
	8.8.2 Experimental Setting
	8.8.3 Scenario
	8.8.4 Results
	8.8.5 Discussion of the Results
	8.8.6 Threats to Validity

	8.9 Summary

	9 Related Work
	9.1 GroudSim
	9.2 Palladio
	9.3 SLAstic.SIM
	9.4 iCanCloud
	9.5 Byte Instruction Count for Java
	9.6 Measuring Elasticity
	9.7 Dhrystone Benchmark
	9.8 Cloudstone Toolkit

	10 Conclusions and Future Work
	10.1 Conclusions
	10.2 Future Work

	References
	A Glossary
	B Ecore Model for MIPIPS and Weights Benchmark
	C KDM example
	D Rating Algorithm
	E Attachments

