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Abstract

In the recent discussion how biotic systems may react to ocean acidification caused by the rapid rise in carbon dioxide
partial pressure (pCO2) in the marine realm, substantial research is devoted to calcifiers such as stony corals. The
antagonistic process – biologically induced carbonate dissolution via bioerosion – has largely been neglected. Unlike
skeletal growth, we expect bioerosion by chemical means to be facilitated in a high-CO2 world. This study focuses on one of
the most detrimental bioeroders, the sponge Cliona orientalis, which attacks and kills live corals on Australia’s Great Barrier
Reef. Experimental exposure to lowered and elevated levels of pCO2 confirms a significant enforcement of the sponges’
bioerosion capacity with increasing pCO2 under more acidic conditions. Considering the substantial contribution of sponges
to carbonate bioerosion, this finding implies that tropical reef ecosystems are facing the combined effects of weakened
coral calcification and accelerated bioerosion, resulting in critical pressure on the dynamic balance between biogenic
carbonate build-up and degradation.

Citation: Wisshak M, Schönberg CHL, Form A, Freiwald A (2012) Ocean Acidification Accelerates Reef Bioerosion. PLoS ONE 7(9): e45124. doi:10.1371/
journal.pone.0045124

Editor: Sam Dupont, University of Gothenburg, Sweden

Received April 20, 2012; Accepted August 14, 2012; Published September 18, 2012

Copyright: � 2012 Wisshak et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was financially supported by the Deutsche Forschungsgemeinschaft (DFG) grant Fr 1134/19, and fieldwork was co-funded by the Australian
Institute of Marine Science (AIMS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: max.wisshak@senckenberg.de

Introduction

Since the turn of the millennium, ocean acidification (OA) has

been recognized as a key factor in marine ecology, attracting

a growing pool of research which identified OA to have a multitude

of mainly negative effects on reproduction, growth, survival, and

diversity of marine biota [1–3]. Among the best studied victims in

this respect are organisms that produce carbonate skeletons, and

particularly scleractinian corals that show significantly reduced

skeletal growth rates with declining pH and lowered seawater

carbonate saturation state [4–8]. In contrast, bioeroding organisms

have largely been ignored, although they play a key role in

carbonate cycling by abrading or dissolving materials such as coral

skeletons, and thus need to be included in any equation

concerning reef health or growth. This omission needs to be

addressed, because chemically achieved bioerosion is expected to

be facilitated with progressing OA [9,10], potentially placing many

bioeroders into the circle of ‘‘winners’’ of global climate change

[11].

Marine bioerosion acts at different scales and is performed by

a multitude of organisms employing different chemical and

mechanical means in the process of attachment, grazing, or

carbonate penetration [12]. On coral reefs, the largest proportion

of internal bioerosion is often contributed by demosponges, which

do not add to calcification as they have siliceous spicules, but

frequently represent 60 to over 90% of total macroborer activity

[13,14]. Single sponge species commonly remove around 10 and

in extreme cases more than 20 kg m22 yr21 [15], thereby

balancing or even surpassing reef calcification rates at some sites

[14,16–17]. In warm waters worldwide, the photosymbiotic

clionaids of the so-called ‘Cliona viridis species complex’ lead this

process in terms of abundance, colony size, growth, and erosion

rates [15,18]. Their symbiosis with dinoflagellate zooxanthellae

appears to increase their competitive powers, and it is compar-

atively stress resistant [19,20]. ‘C. viridis species’ routinely invade

and kill live corals and have been reported to survive and increase

in abundance where environmental conditions deteriorate [21].

Our model organism Cliona orientalis Thiele, 1900 belongs to this

species complex and is one of the most competitive and abundant

representatives of these bioeroders. It is widely distributed on

Australia’s Great Barrier Reef (GBR), Indonesia and Japan

[18,22] (Fig. 1).

Sponges erode at cellular level by means of biochemical

dissolution that leads to the formation of minute cup-shaped

grooves and the mechanical extraction of so-called sponge chips of

a diameter between 10 and 100 mm [22]. In order to dissolve

carbonate, the sponge lowers the pH at the tissue-substrate

interface where the specialised etching cells act [22] (exact etching

agent unknown to date). Sponge bioerosion is conducted

extracellulary potentially making the process sensitive to environ-

mental conditions and change. The lower the environmental pH is

to begin with, the less pronounced is the gradient between ambient

seawater and the site of dissolution, and the lower will be the

metabolic cost required for bioerosion. Hence we hypothesise that

the pH lowering inherent to OA will increase the efficiency of the

bioerosion process, leading to a significant increase of sponge

bioerosion rates with increasing pCO2.

Materials and Methods

Experimental Setup
In order to test the physiological response in the bioerosion

capacity of Cliona orientalis to simulated OA, we core-sampled

sponge tissue with dead coral substrate from infested, but live,
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massive Porites sp. colonies in Little Pioneer Bay at Orpheus Island,

central GBR (Fig. 1A). Sampling was achieved with an air-drill

and hole-saw (inner diameter 30 mm), cores were trimmed to

25 mm in length with an air-cutter, and kept 4 days outdoors in

a seawater flow-through raceway for recovery allowing the tissue

to fully heal (Fig. 1D). Cores included sponge-penetrated material

at the surface and clean dead coral skeleton below. Entirely clean

cut-off parts of cores from the same colonies were prepared as

controls and treated in exactly the same way. The condition of the

physiologically important photosymbiosis with intracellular dino-

flagellates was monitored with pulse amplitude modulated

fluorescence (PAM) [20] by measuring their photosynthetic

efficiency Fv/Fm and the proxy for chlorophyll a concentration

F0 at the surface of dark-adapted sponge cores before and after the

experiment (Maxi-iPAM, Walz, Germany). This analysis excluded

significant differences between treatments and only in case of F0 it

showed a moderate decrease over the course of the experiment,

probably due to a partial retraction of the photosymbionts as

a reaction to the experimental conditions (Table 1). Cores were

transferred to a flow-through open system (Fig. 2) that was set up

in a constant-temperature room (25uC), allowing 24 h of

acclimatisation. Incoming ambient seawater taken from few

hundred metres south of the sampling site in Pioneer Bay, was

filtered to 25 mm, thereby retaining pico- and nanoplankton

(,20 mm) as the sponges’ natural food. The water was temper-

ature-adjusted in a reservoir tank coupled to two chiller/heater

units (TC 15, Teco, Italy). Four outlets delivered controlled,

constant flow (,30 l/h) to the four treatment lines. The range of

target pCO2 levels and the respective carbonate system parameters

dissolved inorganic carbon (DIC), pH, and the resulting saturation

state for aragonite and calcite in seawater (VAr and VCa), were

established via perturbation with specifically mixed gases in sealed

30 l tanks (Table 1, Figs. 2–3). This approach is accepted as an

effective and the most appropriate method for simulating future

carbonate system scenarios in closed, and particularly in open

experimental systems [23]. The present-day level (pCO2=393 -

matm; pH(total scale) = 8.05) was provided in form of compressed air.

Gases for the three manipulated pCO2 treatments were mixed

with Digamix 5KA 36A/9 pumps (H. Wösthoff, Germany). The

below present level (pCO2=339 matm; pH(total scale) = 8.10) was

mixed from ‘scrubbed’ air, generated via CO2-assimilation by soda

lime pellets (DiveSorb Pro, Dräger, Germany), and CO2. The

elevated (pCO2= 571 matm; pH(total scale) = 7.91) and the strongly

elevated treatment levels (pCO2= 1410 matm; pH(total scale) = 7.57)

were mixed using food-grade CO2 and compressed air with

ambient pCO2. The gas-adjusted seawater was led into 80 l

treatment tanks. These were covered with lids of transparent

acrylic glass to minimise evaporation and to stabilise the pCO2 in

the headspace that was also filled with the respective gas mixture.

Each flow-through treatment tank carried 8 replicate sets of 4

sponge-bearing cores taken from different coral colonies (Fig. 1D;

32 cores in total per treatment tank), and 3 sets of control cores (12

cores per treatment). In each tank, current was generated by

a pump placed centrally, spout pointing upwards. The experiment

ran for 10 days.

Simulating a Diurnal Rhythm
The sponge-bearing cores were kept in a 12/12 h light/dark

rhythm. This was achieved with two Sylvania Oracle lamps per

treatment tank with 150W HIS-TD Coral-Arc bulbs suspended

85 cm above each treatment tank (Sylvania, Sydney). The light

intensities per lamp and at different positions in the tanks were

measured with an Extech EA33 dome-sensor light meter

(Triosmartcal, Australia), and lamps as well as sponge sets per

Figure 1. The zooxanthellate sponge Cliona orientalis at Orpheus Island, Great Barrier Reef, Australia. (A) Location of Orpheus Island
(Palm Island Group) on the central GBR. (B) Medium-sized colony infesting the massive coral Porites sp. at the reef crest in Little Pioneer Bay, Orpheus
Island. (C) Detail illustrating the oscula (exhalant pores; inhalant pores are microscopically small) and the Porites skeletal structure visible beneath the
sponge tissue. (D) One of the eight replicate sets per treatment tank with 4 healed sponge-bearing coral cores.
doi:10.1371/journal.pone.0045124.g001
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tank were additionally systematically rotated. The overall mean

light intensity was 7030 cd, and intensities were not significantly

different between the experimental tanks (n = 5 measurements per

tank). Due to heat generated by the lamps, the water temperature

followed a diurnal cycle with the same rhythm and amplitude of,
1uC in all tanks, simulating a natural temperature oscillation as on

the reef.

Monitoring Carbonate System Parameters
Temperature in the treatments was recorded in 10 min intervals

with Starmon Mini high-resolution loggers (Star Oddi, Iceland;

accuracy 60.02uC). Salinity (PSS scale) and pH (NBS scale; for

monitoring purposes only) were measured daily with a SevenGo

DUO meter (Mettler-Toledo, Switzerland) equipped with an

InLab 738-ISM conductivity probe and an InLab Expert Pro-ISM

pH probe (both calibrated daily with NIST certified buffer

solutions). Water samples were taken at the start, the 3rd, 6th and

10th day of the experiment. Sampled water was sterile-filtered with

0.2 mm PES filters. Samples for DIC and Total Alkalinity (TA)

were treated with 0.02 vol % saturated HgCl2 solution to arrest

biological activity while samples for nutrients were left untreated.

The relative order and timing of all sampling procedures between

9:30 and 10:30 h was kept constant in order to minimise influence

of daily fluctuations in temperature, pH, and sponge-dinoflagellate

biorhythms. During this time window, pH and T were closest to

their mean values (see below). Nitrate, nitrite, phosphate, and

silicate were measured photometrically (U-2000, Hitachi, Japan)

with precision levels of 60.5, 60.02, 60.05, and 1.1 mmol/l;

ammonium was quantified fluorometrically (SFM 25, Kontron

Instruments, Germany) with a precision of 60.08 mmol/l. TA was

determined in duplicate, using potentiometric open-cell titration.

Seawater was weighed (1416B MP8-1, Sartorius, Germany) and

titrated with 0.005 N hydrochloric acid in an automatic titrator

(Titrando 808, Metrohm, Germany); the average precision

between duplicate water samples was #4 mmol/kg. DIC was

measured photochemically using an automated segmented flow

analyser (QuAAtro, Bran+Luebbe, USA) equipped with an

autosampler (65 mmol/kg precision). Both, TA and DIC were

calibrated with certified seawater reference material (Dickson

standard). The carbonate system was computed from the

Table 1. Summary of experimental settings, carbonate system parameters, nutrient levels, photosynthesis parameters, and
sponge bioerosion figures (all values are given as mean values 6 standard deviation for 10 days of exposure).

Variable with [unit] or (scale) below present pCO2 present-day pCO2 elevated pCO2

strongly elevated
pCO2

temperature [uC] 25.2760.51 25.2760.51 25.2760.51 25.2760.51

salinity (PSS) 33.1560.23 33.1460.24 33.1460.24 33.1560.23

pH (NBS scale) 8.2460.02 8.1760.03 8.0260.04 7.6360.08

pH (converted to total scale) 8.1160.02 8.0460.03 7.9060.03 7.5560.07

DIC [mmol/kg] 1911.7611.3 1945.4619.7 2011.6627.7 2153.3655.7

TA [mmol/kg] 2226.1616.6 2231.0613.8 2225.7617.6 2232.3614.5

pCO2 [matm]* 338.6637.4 393.2655.6 570.9682.4 1409.56369.6

pH (total scale)* 8.1060.04 8.0560.05 7.9160.05 7.5760.12

HCO3
2 [mmol/kg]* 1679.6626.3 1730.2635.7 1836.8639.2 2031.4667.4

CO3
22 [mmol/kg]* 222.6616.9 204.2618.5 158.7616.1 82.2622.3

VAr* 3.5960.27 3.2960.29 2.5660.26 1.3260.36

VCa* 5.4560.40 5.0060.45 3.8960.40 2.0160.55

nitrate NO3 [mmol/l] 0.0560.05 0.0360.02 0.0260.01 0.0360.05

nitrite NO2 [mmol/l] 0.0460.01 0.0360.01 0.0460.02 0.0360.00

ammonium NH4 [mmol/l] 0.1460.23 0.1060.15 0.0460.04** 0.0560.03

phosphate PO4 [mmol/l] 0.0860.02 0.0860.02 0.0760.03 0.0760.02

silicate SiO2 [mmol/l] 4.8060.41 4.8560.49 4.6960.60 4.8960.44

luminous intensity at start [cd] 7359.46343.5 7078.06752.8 6782.16415.7 6898.56422.6

Fv/Fm before treatment 0.6860.01 0.6860.01 0.6860.00 0.6860.00

Fv/Fm after treatment 0.6060.01 0.5960.01 0.6160.01 0.6160.01

F0 before treatment 0.2260.01 0.2260.01 0.2260.01 0.2260.01

F0 after treatment 0.1360.02 0.1460.01 0.1360.01 0.1460.01

penetration depth [cm] 1.2560.13 1.3060.20 1.3760.12 1.3460.09

sponge biomass [g] 1.4960.16 1.5060.07 1.5460.08 1.4860.06

weight change per replicate [g] 20.3260.07 20.3260.02 20.3860.04 20.5260.06

change relative to present-day [%] 99.76619.98 116.91611.04 161.11618.11

weight change per control [g] 0.0860.02 0.0560.00 0.0560.02 0.0460.01

bioerosion rate [kg m22 yr21] 2.2260.45 2.2360.15 2.6060.25 3.5960.40

*Carbonate system parameters computed with the software CO2SYS.
**One contaminated sample excluded from analysis.
doi:10.1371/journal.pone.0045124.t001
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measured temperature, salinity, TA and DIC concentrations using

the CO2SYS program (EXCEL macro v. 1.02 in default settings).

All nutrient levels were very low with values near or below

precision and detection levels, rendering consideration for

correcting the carbonate system calculations unnecessary. As

a cross-check, calculated (via DIC and TA) and directly measured

pH values were compared and showed a highly significant

correlation and no outliers (pH(total scale) = 0.9176 pH(NBS)

+0.5453; r2 = 0.99; p,0.0001). This regression was used to

convert measured pH values to total scale. Numerical data of

the experimental settings and selected calculated carbonate system

parameters are given in Table 1 and are illustrated figure 3.

Assessment of Bioerosion Rates
Bioerosion rates were determined gravimetrically by applying

the buoyant weight method [24] at the beginning and the end of

the experiment after 10 days of exposure. This method allows an

accurate determination of substrate weight loss, while the sponge

tissue (,2% of the dry weight) with a density much closer to that

of seawater does not carry any relevant weight for our purpose.

High precision was assured by placing the balance (CPA324S,

Sartorius, Germany) on a weighing chamber in a tank with

experimental outflow water, using a harness with tungsten wire,

keeping harness and reference weight underwater all the time,

weighing the reference weight every 5 samples to enable drift

control, and by using the animal weighing mode to reduce bias by

vibrations (average of 100 measurements in 20 s). Since bioerosion

is commonly quantified as removed substrate mass per unit surface

area and time, bioerosion rates were converted to the commonly

used unit kg m22 yr21 by relating the weight difference to the

surface area of the sponge. After the healing process, the sponge-

bearing cores had two surface areas to consider, the upper circle of

original surface and the healed surface around the sides of the

core. As the latter is in right angle to the upper surface and will

thus have a lesser influence on the bioerosion, we included only

half of the lateral surface in the reference unit in order not to

underestimate bioerosion rates.

Quantification of Sponge Tissue and Penetration Depth
After the experiment, the amount of final sponge tissue and the

mean penetration depth were determined per sponge-bearing core

(n = 32 per treatment). The cores were soaked in freshwater for

24 h to remove the salt, rinsed with deionised water, and dried at

110uC for 60 h, before determining the dry weight (CPA324 S,

Sartorius, Germany). Obtained values served as a validation for

the buoyant weight method and the calculated values differed

from the directly measured dry weight by only 0.0660.05%. The

sponge tissue was then removed with , 5% hydrogen peroxide

and the weighing procedure was repeated for determining the

weight difference corresponding to the sponge biomass. The mean

penetration depth of C. orientalis was quantified with a digital

calliper from the two deepest and two shallowest penetration

depths of each core.

Statistical Analyses
Linear regression models were computed with SigmaPlot (v. 12).

Normality tests, One-way ANOVA, and the Kruskal-Wallis

analysis were carried out with PAST (v. 2.03). Two-way ANOVA

of PAM data was undertaken with the software R (v. 2.13).

Results and Discussion

Before testing a possible pH dependency of sponge bioerosion,

we assessed biologically-driven daily pH fluctuations in the

treatment tanks as evidenced during a 24 h series of measurements

logged both with and without sponge replicates in place (Fig. 4).

Despite the flow rate of ,30 l/h, a pH oscillation of 0.07 points

was determined at present-day pCO2 when sponges were in the

tank. The rise in pH coincided with the beginning of the 12 h

irradiance period (simulated daylight), and values declined again

after lights were turned off. This signal reflects the uptake of CO2

(and linked rise of pH) during active photosynthesis of the

symbionts in the sponge tissue. This flux was higher than the

simultaneous generation of CO2 from the sponge respiration,

resulting in net photosynthesis during daytime. In contrast, during

the following dark phase only respiration was taking place, both by

the sponge and its photosymbionts, and led to a decrease in pH. In

Figure 2. The experimental setup. Low-flow open system in a constant temperature room (T = 25uC) using filtered sea-water (25 mm) stored in
a reservoir tank, with four treatment lines (pCO2= 339 matm, 393 matm, 571 matm, and 1410 matm) each comprising a perturbation tank connected to
a gas mixing pump, leading to an illuminated (12:12 h) treatment tank with replicate petri dishes (n = 8 per treatment, containing 4 sponge-bearing
coral cores) and controls (n = 3 per treatment, containing 4 clean coral cores), terminating in the buoyant weighing unit.
doi:10.1371/journal.pone.0045124.g002
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comparison, the photosynthetic activity of phytoplankton and

some early algal turfs in the treatment tanks amounted to a change

of only 0.01 pH points. The temperature in all treatment tanks

also followed a synchronous light-dependent rhythm due to the

warming by the lamps, thereby simulating daily temperature

fluctuation. The carbonate saturation states for aragonite and

calcite never became undersaturated (V,1), neither in the highest

experimental pCO2 nor when considering the diurnal pH and

temperature fluctuations. Nevertheless, a relevant abiotic dissolu-

tion or microbial bioerosion of the coral substrate was ruled out by

including clean dead coral cores of similar size and from the same

source as controls – none of these lost weight, despite the larger

exposed surface in the sponge-free cores (Table 1). Estimates of

proportional biomass [25] additionally indicate that microbial

bioerosion by phototrophic or chemotrophic euendoliths in the

sponge cores is negligible. We furthermore checked mean

penetration depth and sponge tissue weight per sponge-bearing

core after the experiment (Table 1), which did not vary

significantly between treatments and confirmed that our data

were not biased by sponge biomass or tissue shrinkage, so that the

change in buoyant weight recorded in our experiment can be

addressed with confidence to the chemical and mechanical

bioerosion activity of Cliona orientalis.

Sponge bioerosion rates reached a mean of 2.2360.15 kg m22

yr21 in the present-day treatment (Table 1). Bioerosion rates

significantly increased with rising pCO2 (Fig. 5A, Table 2). At

moderately elevated pCO2 the mean bioerosion rate was

2.6060.25 kg m22 yr21, which corresponds to a 17% increase

relative to the present-day rate. At strongly elevated pCO2,

bioerosion was further enhanced, attaining a mean rate of

3.5960.40 kg m22 yr21 and representing a 61% change

compared to the present-day value. This increase in bioerosion

rate reflects the enhanced efficiency of the sponges’ bioerosion

process as a result of the lowered environmental pH, causing

a shallower gradient between the environment and the etching

site. The sponge apparently ‘takes advantage’ of the facilitated

dissolution in the more acidic environment, as opposed to keeping

bioerosion rates constant and only lowering the metabolic cost. In

contrast to this distinct trend, a decrease in bioerosion rate of

2.2260.45 kg m22 yr21 in the slightly lowered pCO2 level was less

than 1% lower and thus not significantly different compared to the

present-day treatment (Table 2). The physiological interpretation

for our findings in the lowered pCO2 is that the sponge is partly

able to compensate for the less favourable conditions (hindered

dissolution in more alkaline conditions), possibly at the cost of

increasing the metabolic rate. The overall linear regression of

bioerosion rate versus pCO2 is highly significant (r2 = 0.76;

p,0.0001) and clearly supports the initial hypothesis that sponge

bioerosion can be expected to accelerate with progressing OA.

Based on the linear regression, the relationship between pCO2

[matm] and C. orientalis bioerosion rates [kg m22 yr21] can be

formulated as in Eq. 1, and the respective relationship converted

to changes in pH in Eq. 2.

bioerosion rate ~ 0:0013pCO2z1:7875 ð1Þ

bioerosion rate ~ {2:6836pH(total scale)z23:882 ð2Þ

Keeping the limitation in ecological relevance inherent to short-

term lab experiments in mind, this relationship translates to

a predicted 25.4% increase in sponge bioerosion by the end of this

century, following the BERN-CC reference model based on the

SRES A2 emission scenario that corresponds to a predicted pCO2

level of 836 matm by the year 2100 [26]. The most optimistic

SRES B1 model with a predicted 2100 pCO2 of only 540 matm
would result in an 8.6% increase and the intermediate SRES A1B

Figure 3. Temporal variability of measured experimental
settings and carbonate system parameters during the 10 day
experiment. (A) Diurnal temperature oscillation as a function of heat
radiation during the illumination phases; identical for all four
treatments. (B) Salinity of the incoming seawater; identical for all four
treatments. (C) Measured pH levels; for monitoring purposes only. (D)
TA (top) and DIC (bottom).
doi:10.1371/journal.pone.0045124.g003
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model with a 2100 pCO2 of 703 matm equates to a potential

17.7% increase in sponge bioerosion (Fig. 5B). A similar range of

predictions can be made when applying the new Representative

Concentration Pathways (RCPs) [27] with an 8.6%, 15.8%, and

30.9% increase for the RCP 4.5, 6, and 8.5 scenarios, respectively.

Due to the important role of bioeroding sponges, and of ‘C.

viridis complex’ species in particular, this finding suggests severe

consequences for coral reef health. Coral reef calcification and

bioerosion are antagonistic processes in a dynamic balance

[28,29]. This balance will become seriously strained when

bioerosion is accelerated by OA, while at the same time, coral

net calcification rates are declining [4–8]. This situation will push

the carbonate budget towards negative values, and on some reefs

negative carbonate budgets have already been recognised as result

of intensive sponge bioerosion [16,17].

Pioneer experimental evidence for an increase of bioerosion

rates generated by specific bioeroders due to seawater acidification

was provided for euendolithic microborers. Biosphere 2 experi-

ments showed that particularly the dominant microboring

chlorophyte Ostreobium quekettii grows faster under elevated pCO2

(750 matm) [10]. However, in contrast to endolithic algae which

occasionally even support stressed calcifiers [30], bioeroding

sponges are always in antagonism to calcifiers, and the species

we worked with is known to often overwhelm and kill live corals

[18,21]. Several mesocosm experiments and field studies demon-

strated an increase of total dissolution – including bioerosion, but

rarely addressed as such – partly leading to a net loss of carbonate

[31]. Coral reefs in the eastern tropical Pacific, where cool, CO2-

rich upwelling water masses lead to naturally low pH and

saturation states, are poorly cemented and prone to intense

bioerosion [17], serving as a model for coral reef development in

a high-CO2 world [9]. Lowest mean pH(seawater scale) values of 7.88

and a corresponding VAr of 2.49 were reported from Galápagos

[9]. Hence at least part of pH conditions predicted by OA

Figure 4. Diurnal pH and temperature oscillations. Biologically induced pH fluctuation (increase during photosynthesis; decrease as result of
respiration) in the present-day pCO2 treatment tank (393 matm) with (diamonds) and without sponges (circles), showing the causal relationship with
the illumination phase (top); temperature fluctuation in the same tank affected by heat radiated off the metal halide lamps (bottom, triangles).
doi:10.1371/journal.pone.0045124.g004
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Figure 5. Increasing sponge bioerosion as a function of increasing pCO2. (A) Weight loss per replicate set translated to bioerosion rates for
the four pCO2 treatments. The linear regression of the 32 replicates (8 per treatment) is highly significant (r2 = 0.76; p,0.0001). (B) Projected percent
increase in sponge bioerosion relative to the present-day level, calculated for the BERN-CC model based on the SRES A2 (red), A1B (blue), and B1
(green) emission scenarios.
doi:10.1371/journal.pone.0045124.g005

Table 2. Results (p values) from the pairwise comparison of bioerosion rates in the four pCO2 treatments (Mann-Whitney test;
Bonferroni corrected p values in lower left triangle of matrix) performed after Kruskal-Wallis analysis (H = 21.25; Hc = 21.25;
p,0.0001; n = 8 per treatment) and rejection of normal distribution for the present-day (393 matm) and the elevated treatment
(571 matm) via Shapiro-Wilk test.

below present pCO2

339 matm
present-day pCO2

393 matm
elevated pCO2

571 matm
strongly elevated pCO2

1410 matm

below present pCO2 339 matm – 0.7132 0.0831 0.0009*

present-day pCO2 393 matm 1.0000 – 0.0063* 0.0009*

elevated pCO2 571 matm 0.4987 0.0379* – 0.0014*

strongly elevated pCO2

1410 matm
0.0056* 0.0056* 0.0082* –

*significant difference.
doi:10.1371/journal.pone.0045124.t002
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scenarios is already experienced by tropical reef corals and

bioeroding sponges at present time. This may apply not only for

the eastern Pacific but for many shallow coral reefs with relative

long water residence times, as a result of carbon fluxes related to

calcification and the remineralisation of organic matter [32]. At

the GBR for instance, spatial and temporal pH fluctuations are in

the magnitude of 0.4 pH units [33]. Hence, the three lower pCO2

treatments of the present experiment were within the range of

natural fluctuations currently experienced on some coral reefs,

whereas the strongly elevated treatment looks far into the future

and may never be reached.

Intriguingly, another important factor in climate change –

global warming – may partly counteract the development caused

by OA. Rising temperatures reduce the physicochemical dissolu-

tion capacity of calcium carbonate in seawater [34] and could also

slow down chemical bioerosion. However, within tolerance limits

of physiological processes, i.e. chemical reactions can be acceler-

ated by elevated temperature, and interaction of pCO2 and

temperature may have complex effects as has been demonstrated

with respect to coral calcification rates [35,36]. This observation

calls for multifactorial experiments that consider both, the isolated

as well as concerted effects of pCO2 and temperature on sponge

bioerosion and other bioerosion processes. And, as an indispens-

able step, the impact of climate change on bioerosion needs to be

addressed in long-term in-situ experiments. Ultimately, these data

will convey critical insights into global trends of biologically caused

decalcification and the possible threat of increasing bioerosion on

the balance between skeletal growth and bioerosion on tropical

coral reefs.
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