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Abstract: The recovery of natural gas from CH4-hydrate deposits in sub-marine and  

sub-permafrost environments through injection of CO2 is considered a suitable strategy 

towards emission-neutral energy production. This study shows that the injection of hot, 

supercritical CO2 is particularly promising. The addition of heat triggers the dissociation of 

CH4-hydrate while the CO2, once thermally equilibrated, reacts with the pore water and is 

retained in the reservoir as immobile CO2-hydrate. Furthermore, optimal reservoir 

conditions of pressure and temperature are constrained. Experiments were conducted in a 

high-pressure flow-through reactor at different sediment temperatures (2 °C, 8 °C, 10 °C) 

and hydrostatic pressures (8 MPa, 13 MPa). The efficiency of both, CH4 production and 

CO2 retention is best at 8 °C, 13 MPa. Here, both CO2- and CH4-hydrate as well as mixed 

hydrates can form. At 2 °C, the production process was less effective due to congestion of 

transport pathways through the sediment by rapidly forming CO2-hydrate. In contrast, at  

10 °C CH4 production suffered from local increases in permeability and fast breakthrough 

of the injection fluid, thereby confining the accessibility to the CH4 pool to only the most 

prominent fluid channels. Mass and volume balancing of the collected gas and fluid stream 

identified gas mobilization as equally important process parameter in addition to the rates 

of methane hydrate dissociation and hydrate conversion. Thus, the combination of heat 

supply and CO2 injection in one supercritical phase helps to overcome the mass transfer 

limitations usually observed in experiments with cold liquid or gaseous CO2. 
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1. Introduction 

Large amounts of natural gas, predominantly methane, are stored in gas hydrates in sediments 

below the seafloor and the permafrost [1]. Current estimates of the global methane hydrate inventory 

range between 1000 and 10,000 Gt of carbon [2–5]. Motivated by these results, gas hydrate research 

activities worldwide center around the exploitation of this potential new energy resource. The methods 

that are currently discussed to produce the methane from gas hydrates are generally derived from 

standard techniques used in conventional oil and gas business, i.e., reduction of the pressure in the 

reservoir and thermal stimulation, as well as injection of hydrate inhibitors, such as salt, to induce 

dissociation of the gas hydrates [6]. In addition, the substitution of CH4 by CO2 as guest molecule in 

the gas hydrate structure has been proposed as a more elegant production technology with respect to 

greenhouse gas policies [7,8]. 

All of these methods have been studied in laboratory experiments to validate their feasibility as well 

as in numerical simulations to gain first ideas about their applicability on reservoir scale. First 

production tests were carried out in the permafrost reservoir of Mallik in northern Canada in 2002 [9] 

as well as in 2008 [10]. Gas hydrates were successfully destabilized by injection of hot water and by 

depressurization, respectively, producing limited amounts of CH4 gas over a few days. Further field 

trials in 2012 will test the chemical exchange of methane in gas hydrates by injection of CO2 below the 

permafrost of the Alaska North Slope [11] and the depressurization technique in the first offshore test 

in the Nankai Trough [12,13].  

Overall, the conclusions drawn from those studies are that thermal stimulation by injecting hot 

water is slow and inefficient, whereas depressurization seems to be the more promising strategy [6]. 

However, due to the endothermic nature of gas hydrate dissociation, in the long run, the reservoir will 

cool down, re-establishing stable conditions for gas hydrates and consequently, methane production 

rates are expected to cease after some time [14,15]. 

Thus, being able to achieve stable and economic methane production rates will require a 

combination of depressurization and methods (re)activating the methane hydrate reservoir.  

One elegant way to activate the methane hydrate reservoir is the injection of CO2. Since CO2 

hydrate is thermodynamically more stable than CH4-hydrate and both form structure-I, the exchange 

reaction will proceed exothermically [16], adding heat to the system. Besides its attractiveness in 

combining energy production with CO2 storage as a measure to mitigate further increases in 

greenhouse gas emissions to the atmosphere, a technological advantage is that it sustains the integrity 

and geomechanical stability of the sediments, thus reducing the potential risk of slope failures. 

Several laboratory-based studies have shown the feasibility of the hydrate conversion reaction on 

pure or sediment-dispersed gas hydrates and from molecular scale to volumes of a few liters (an 

overview is given in Discussion). However, the overall reaction rate turns out to be quite sluggish and 

the conversion is often incomplete. This results primarily from a shell of CO2-hydrate that forms 

around the methane hydrate grain. Any further mass transport of CO2 into and CH4 out of the inner 

core is drastically slowed down or even completely inhibited as analogous experiments with C2H6 as 

attacking guest molecules have shown [17]. Moreover, excess water, as usually encountered in the 

pore space of hydrate deposits, generally induces immediate CO2-hydrate formation blocking 

permeable pathways for the gas exchange.  
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Common to all those studies is that the chosen pressure-temperature conditions were either within 

the stability fields of CO2- and CH4-hydrate or only CO2-hydrate. Hence, any attempt towards 

economic CH4 production rates based on the CH4-to-CO2-hydrate conversion requires a  

different approach.  

In the Ignik Sikumi Gas Hydrate Field Test (January-April 2012) [11] on the Alaska North Slope 

a 2-stage Huff’n’Puff-like procedure was, thus, followed. First a CO2/N2 gas mixture (~6000 m3 over 

13 days) was injected into the CH4-hydrate bearing sandstone. Subsequently, gas was produced by 

depressurization for 6 weeks with CH4 contents dominating the produced gas mixture already after  

2 days [18]. 

Here, we present a different strategy: in our experiments we have injected hot (95 °C), supercritical 

CO2 into CH4-hydrate bearing sand at typical marine p-/T-conditions. The hot CO2 was injected in 

several discrete intervals, actively dissociating the CH4-hydrate. Each injection was followed by a 

period of thermal and chemical equilibration of the system. The results are analyzed and presented in 

terms of CH4 production rate and overall CH4 yield, hydrate conversion efficiency, degree of CO2 and 

H2O retention in the system, as well as efficiency of the energy input for CH4-hydrate dissociation. 

Partitioning of the components CO2 and CH4 into the different liquid, gaseous and hydrate phases is 

estimated and the results are compared in light of previous experiments which used cold CO2. Finally, 

we conclude with perspectives for this hydrate exploitation strategy and outline the steps that are 

necessary to develop a successive exploitation strategy for marine gas.  

2. Experimental Section  

2.1. Preparation of Artificial Sediment and Seawater Medium 

The sediment samples were prepared at −20 °C from a homogeneous mixture of quartz sand (grain 

size 0.1–0.6 mm, G20TEAS, Schlingmeier, Schwülper, Germany) and fine grained ice particles (grain 

size fraction 0.3–1.0 mm, deionized water). Individual sample compositions before and after  

CH4-hydrate formation are summarized in Table 1. The sample mixture of quartz sand and ice was 

filled into a sample bag made of PTFE cloth and was placed inside a stainless steel pressure vessel 

which was cooled to −7 °C. The pressure vessel was then pressurized with CH4 gas to 13 MPa. To 

accelerate hydrate formation, water availability was increased by freezing-thawing cycles from −7 °C 

to +2 °C in a procedure similar to [19]. The formation process was continuously monitored by logging 

the CH4 gas pressure. Within 3–7 days, the conversion of water to hydrate was completed. 

Subsequently, the sample was brought to −5 °C before being de-pressurized to atmospheric pressure. 

System re-pressurization and water saturation of pore spaces was achieved by instant filling and  

re-pressurization with saltwater medium (S ≈ 31). The volumes of saltwater injected into the pressure 

vessel accounted for the total pore/cavity volumes and are listed in Table 1. Hydrate dissociation 

during the brief period of depressurization was minimized by taking advantage of the anomalous  

self-preservation effect, which reaches an optimum close to the chosen temperature [20]. Subsequently, 

the sample temperature was changed to match the individual requirement of the experiments. Saltwater 

medium was prepared according to [21] and was close to seawater composition. 
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Table 1. Sediment preparation and CH4-hydrate formation. List of initial parameters for 

sediment and hydrate preparation. 

Experiment 
Quartz 
sand/g 

Ice/g 
Void 

volume/mL  

CH4-hydrate 
produced from 

ice/mol 
No. 

Experimental 
conditions 

1 2 °C, 13 MPa 1449 314 1112 3.03 
2 8 °C, 13 MPa 1338 297 1172 2.87 
3 10 °C, 13 MPa 1514 305 1097 2.95 
4 8 °C, 7.5 MPa 1603 315 1053 3.04 

2.2. Experimental Setup and Procedure 

Experiments were carried out in a custom-made high pressure apparatus (NESSI, Natural 

Environment Simulator for Sub-seafloor Interactions). All wetted parts of the set-up are made of 

stainless steel. Saltwater medium was supplied from reservoir bottles (DURAN, Wertheim, Germany) 

using a HPLC pump S1122 (SYKAM, Fürstenfeldbruck, Germany), CO2 was supplied with a piston 

pump (Teledyne ISCO, Lincoln NE, USA) and heated to 95 °C inside a temperature controlled 

conditioning chamber prior to injection into the sample vessel. Experiments were carried out in upflow 

mode with injection of CO2 at the bottom of the sample vessel. Pressure, salinity and temperature were 

monitored in the influent and the effluent fluid streams. Flow control was achieved by the  

high-pressure pumps that supplied the fluids. Pressure was adjusted with a back-pressure regulator 

valve (TESCOM Europe, Selmsdorf, Germany) in line with a fine-regulating valve for compensation 

of pressure spikes (TESCOM Europe). All experiments were carried out at constant temperature 

conditions. Temperature control was achieved with a thermostat system (Huber, Offenburg, Germany). 

The experimental scheme is shown in Figure 1. 

Four experiments were carried out at different pressure-temperature (p-/T-) conditions: 2 °C,  

13 MPa; 8 °C, 13 MPa; 10 °C, 13 MPa and 8 °C, 8 MPa. The phase diagram in Figure 2 visualizes the 

experimental conditions with respect to the thermodynamic stability regimes of CH4- and CO2-hydrate.  

At the beginning of each CO2 injection experiment, the water-saturated sediment-hydrate sample was 

continuously percolated with saltwater medium at a flow rate of 1.0 mL·min−1. This initial water injection 

interval was performed to verify that the sample body was permeable and homogeneously pressurized. 

Injection of CO2,sc was realized stepwise, in 4 to 6 injection intervals, simulating a sequential injection 

strategy as opposed to a continuous injection. During each injection interval, CO2,sc was injected at 

constant flow rates of 2.5 to 5 mL·min−1. 

In between injection intervals, the system pressure was maintained by injection of small amounts of 

CO2 at constant pressure. This was necessary to compensate for volume changes due to cooling of the 

injected CO2 and to phase changes. The time intervals between injection steps are referred to as 

equilibration intervals during which no effluent fluid was produced. The number of injection intervals 

was chosen to ensure at least matching ratios between the injected CO2 volume and the volume 

potentially accessible to fluid within the pressure vessel. In most experiments, this was achieved after 

five injections. However, at 2 °C, 13 MPa, the experiment had to be aborted after the fourth injection 

due to substantial loss of hydraulic conductivity. 
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Figure 1. Experimental scheme. (a) Experiments were carried out in a high-pressure 

experimental system suitable for flow-through experimentation. Water and CO2 were 

supplied from reservoir containers using suitable high-pressure delivery systems. The 

hydrate-sediment sample was prepared in a 2 L stainless steel pressure vessel inside an 

internal pouch made of PTFE cloth. Before entering the pressure vessel, the pressurized 

CO2 was heated to 95 °C. The sample-temperature was controlled by circulating cooling 

fluid through a cooling jacket around the pressure vessel. Pressure, temperature, and 

conductivity (PTS) were measured discontinuously in the influent and effluent fluids. Bulk 

effluent fluids were de-pressurized and collected downstream in a 100 L gas sampling bag 

after de-pressurization; (b) Cross-section of the sample pressure vessel. 
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Figure 2. Experimental conditions, stability of CH4- and CO2-hydrates. Phase diagrams of 

the CH4-H2O (red) and the CO2-H2O (blue) system at S = 31 and pressure-temperature  

(p-/T-) conditions of the respective experiments. Phase diagrams were calculated according  

to ([22–24]). Experiment 1 was carried out under low-temperature conditions at 2 °C, 

13 MPa, inside the stability region of both CH4-hydrate and CO2-hydrate. Experiment 2 

was carried out at an increased sediment temperature of 8 °C and 13 MPa. Experiment 3 

was carried out at 10 °C, 13 MPa inside the stability zone of pure CH4-hydrate but outside 

of the stability region of pure CO2-hydrate. Experiment 4 was carried out at the same 

temperature conditions as experiment 2 but at a reduced pressure of 8 MPa, close to the 

phase boundary of pure CH4-hydrate. 

 

2.3. Fluid Sampling and Gas Analysis 

Sub-samples for fluid composition monitoring were taken discontinuously from the influent and 

effluent streams using gas-tight glass syringes. Gas volumes were measured after expansion at 

atmospheric pressure. Bulk effluent fluids were collected inside 100 L gas tight TEDLAR sampling 

bags (CEL Scientific, Santa Fe Springs, CA, USA). The sampling bags were mounted inside water 

filled sampling containers. After expansion of the effluent fluids at atmospheric pressure, their volume 

was measured as volume of displaced water from the containers. Effluent gas analysis was carried out 

with gas chromatography. 
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2.4. Terms and Definitions 

2.4.1. Components and Phases 

At the beginning of each experiment, the system consists of three components CH4, H2O and quartz 

sand. All CH4 is bound in a single phase as CH4-hydrate (CH4,hyd). H2O is present as liquid salt water 

or as solid phase hydrate water. The quartz sand is assumed to remain chemically unchanged as an 

inert solid phase. Injection of supercritical CO2 (CO2,sc) introduces one additional component and three 

additional phases, CO2-hydrate (CO2,hyd), liquid CO2 (CO2,liq) and gaseous CH4, (CH4,g). Because of 

mutual solubilities of components, phase composition is somewhat more complicated, which is, 

however, only of minor importance for this study.  

The formation of mixed CO2-CH4-hydrates of variable composition in our experiments is likely. 

However, in this study we were not able to determine the final composition of the gas hydrates at the 

end of the experiments. Moreover, the exact composition of the gas hydrates does not affect the 

calculated mass and volume balances and hence the interpretation of our results. Thus, for simplicity 

reasons, hereafter the term “CO2-hydrate" is used for gas hydrates containing CO2, regardless of the 

fact that they will likely also contain methane in variable amount. Mass flow analysis is exclusively 

based on component inventories, whereas phase composition is calculated based on volume balancing 

of influent and effluent fluids. 

2.4.2. Calculation of Mass Balances 

Mass balances were calculated from measurements of influent (subscript infl) and effluent 

(subscript effl) substance amounts nCO2, nCH4, and masses mH2O. Mass balances are exclusively based on 

overall amounts of components, but do not consider phase distribution. Experimental results are 

presented as bulk sample inventories of components i.e., amounts of components inside the pressure 

vessel. Data evaluation is based on calculation of efficiency (ECH4), yield (YCH4), and rate (rCH4) of CH4 

production from CH4-hydrate bearing sediments at different sediment temperatures and pressures, and 

efficiency (ECO2, EH2O) and amount of CO2 and H2O retention (SCO2, SH2O).  

The usage of the term efficiency, (E) always relates to the cumulative amount of CO2 injected 

(nCO2,inj), the subscript init refers to the initial amount or mass of component: 




infl2,

4

4

CO

CH
CH n

Y
E  (1)  




infl2,

2

2

CO

CO
CO n

S
E  (2)  

Yield, (Y) refers to the cumulative amount of produced components: 

 effl4,4 CHCH nY  (3)  
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Retention, (S) is related to the amount of substances that remain in the sample vessel: 

  
effll2,2infl2 COCOCO nnS  (4)  

   efflinitOH OHmOHmS 22   
2

 (5)  

We use the term CO2 retention rather than CO2 storage to describe the time-dependent accumulation 

of CO2 in the sample matrix. This takes into account that on the time scale of the experiments the 

conversion to CO2-hydrate is not complete and CO2 remains partly mobile.  

2.4.3. Calculation of Volume Balances 

Evidence of phase changes, i.e., dissociation of CH4,hyd, with release of CH4,g and formation of 

CH4,hyd or CO2,hyd was derived from a comparison of the influent and effluent fluid volumes, which 

were converted to account for the thermodynamic conditions inside the sample vessel (subscript PT). 

The release of CH4,g from CH4,hyd is the only process which can account for substantial positive fluid 

volume differences (Vdiff,rel) with larger bulk effluent fluid volumes compared to influent CO2 volumes. 

CH4 release summarizes the volume of produced CH4 (VCH4,effl) and the volume of CH4,g retained in the 

pressure vessel according to Equation 6. VCO2 and VH2O are symbols for volumes of CO2 and H2O: 

PTinfl,COefflO,HPTeffl,CHPTeffl,COreldiff, 2,24,2,
VVVVV   (6)  

Similarly, negative volume differences (Vdiff,for) in the converted influent and effluent volumes were 

interpreted as volume consumption of CO2,liq or CH4,g due to hydrate formation. Hydrate formation 

capacity is calculated based on Equation (7) rather than on Equation (6), which takes into account that 

CH4 production from CH4,hyd does not induce a relevant volume difference inside the pressure vessel:  

PTinfl,COefflO,HPTeffl,COfordiff, 2,22,
VVVV   (7)  

Volume differences caused by gas dissolution were of minor importance for this study. However, 

since particularly dissolution of CH4 in CO2,liq and dissolution of CO2 in H2O could become relevant in 

short term experiments, the maximum error related to our results is estimated in the Results section. 

Quantitative evaluations of CH4 release and hydrate formation are always in accordance with inventory 

limits of components.  

2.4.4. Calculation of Energy Efficiency 

We use a simplified energy ratio to estimate energy efficiency, E∆H. The energy efficiency relates 

the theoretical energy input for CH4-hydrate dissociation to the thermal energy input from injection of 

hot CO2,sc: 

 
  100

)(

pC,f,95pT,f,CO

dissdissHCH,CH

ΔH

infl2,

4hyd4, 









HHm

HTTCm
E

p
 (8)  
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We again carefully distinguish between CH4 production and CH4 release and calculate energy 

efficiencies for produced CH4 (E∆H,prod, based on mass balance analysis to calculate the mass of 

hydrate to match produced CH4) and released CH4 (E∆H,rel, based on analysis of fluid volume 

differences to calculate the mass of hydrate to match released CH4). The meaning of further symbols in 

Equation 8 is as follows: Cp,CH4-hyd: Specific isobaric heat capacity [25], Tdiss: dissociation temperature 

of CH4-hydrate, T: experimental temperature, ∆Hdiss: enthalpy of CH4-hydrate dissociation, mCO2,infl: 

mass of injected CO2, ∆Hf,T,p: enthalpy of formation at experimental pressure and temperature,  

∆Hf,95 °C,p: enthalpy of formation at 95 °C and experimental pressure. 

3. Results 

3.1. Analysis of Mass Balances 

3.1.1. CH4 Inventory and CO2 Inflow during Injection and Equilibration Periods 

Mass balances were calculated from measured compositions of influent and effluent fluid streams. 

Figure 3 shows the time-dependent CH4 inventory and the cumulative amount of injected CO2 during 

the whole experimental period. The bulk sample composition was altered considerably by production 

of CH4 and retention of CO2 during injection/production intervals, but was only slightly changed during 

equilibration intervals as a result of pressure-controlled slow injection of CO2.  

CH4 production was clearly dependent on sediment temperature and hydrostatic pressure. Between 

2% and 35% of the initial amount of CH4 fixed in hydrate was produced after stepwise injection of  

22 mol and 21 mol CO2 (Figure 3a at 2 °C, 13 MPa and 3d at 8 °C, 8 MPa, respectively). From the 

graphs of effluent fluid pressure in Figure 3, it is apparent that pressure is not constant during injection 

periods. Pressure oscillations are partly due to the backpressure regulation mechanism where pressure 

is discontinuously released by a valve, or due to accidental freezing of regulators after cooling from 

adiabatic gas expansion. However, exceptionally large pressure spikes were observed in Experiment 1 

at 2 °C, 13 MPa. These pressure spikes occurred after sample permeability decreased drastically, 

suggesting rapid CO2-hydrate formation. Permeability could only be restored after sample fracturing 

with very high differential pressures >15 MPa. Sample blocking became irreversible by experimental 

means at the end of Experiment 1. 
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Figure 3. Inventory of CH4, cumulative amount of injected CO2 and sample effluent pressure 

(peffl) in each of the experimental runs. (a) 2 °C, 13 MPa; (b) 8 °C, 13 MPa; (c) 10 °C,  

13 MPa; (d) 8 °C, 8 MPa. It should be noted, that the axis scaling for peffl is different for 

every experiment. CO2 was injected stepwise as hot supercritical CO2,sc and at a constant 

flow rate (steep gradients in dashed lines). Injection of CO2 at constant pressure and low flow 

rate alternated with equilibration periods. Fluids including CH4 could only exit the system 

during injection/production periods. CH4 production is shown as a decrease of the CH4 

inventory. Effluent fluid pressure (peffl) is constant during equilibration periods. Strong 

aberrations indicate technical problems, which could be solved without destabilization of the 

hydrate sample. However, peffl is unstable during injection periods. Massive pressure spikes 

were observed in Experiment 1 (2 °C, 13 MPa) after sample permeability changed due to 

CO2-hydrate formation. Sample permeability could be restored temporarily by fracturing at 

high differential pressures (>15 MPa). CO2-hydrate formation eventually led to complete 

congestion of the fluid pathways at the end of the experiment. Sample blocking was not 

observed in other experiments at higher temperatures. 
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3.1.2. CH4 Production 

Generally, data in this study are presented as amounts of substance or masses of the components 

CH4, CO2 and H2O which were retained inside the pressure vessel, i.e., the development of the 

inventory of the respective components in the bulk sample, as a function of the amount of injected 

CO2. This approach allows for easy comparison of CH4 production efficiencies as shown in Figure 4. 

Changes in inventory amounts are calculated by balancing substance amounts of influent and effluent 

fluids. Results in Table 2 indicate that CH4 concentration in the overall effluent gas was comparatively 

high during early injection steps. However, only small amounts of bulk effluent gas consisting of both 

CH4 and CO2 were produced. During later injection steps, the produced fluid volume is much larger 

with high amounts of CO2 contributing to the effluent gas. Therefore, the absolute amounts of 

produced CH4 are increased while the relative amounts of CH4 are decreased. We found that CH4 

production from CO2 injection is most efficient at 8 °C, while the gas recovery was apparently 

independent of pressure. CH4 recovery at 2 °C and 10 °C was both impaired compared to experiments 

at 8 °C. The experiment at 8 °C, 13 MPa was terminated after the injection of 27.5 moles of CO2. At 

this point, 31% of the available hydrate reservoir was depleted and produced as effluent CH4. 

Particularly at 8 °C, CH4 production showed a linear trend with respect to CO2 injection, which 

indicates that CH4 from the CH4 inventory can be produced with constant efficiency using CO2,sc. The 

experiments were stopped before reaching a maximum production yield after the volume of injected 

CO2 was approximately equal to the sample void volume.  

Figure 4. CH4 production. CH4 sample inventory during injection of CO2. Low CH4 

production efficiency and yield was observed at 2 °C, 13 MPa (▲) and 10 °C, 13 MPa (♦). 

CH4 production efficiency and yield were highest at 8 °C (both runs). 
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During the initial saltwater percolation period prior to CO2 injection (data not shown), only minor 

amounts of CH4 were produced with the effluent water. The continuously injected saltwater is 

undersaturated with respect to CH4 and therefore stimulates the dissociation of CH4-hydrates until 

saturation is reached. The occurrence of this effect indicates a satisfactory surface contact between the 

percolating liquids and the hydrate. However, the production of free CH4,g was not observed during the 

saltwater percolation period.  

Table 2. Effluent amounts of CH4 and CO2. Amounts of CH4 and CO2 recovered in the 

effluent fluid for each injection step. The third column for each injection step shows the 

CH4 content in the effluent gas consisting of only CH4 and CO2. Although the amounts of 

effluent CH4 increase, the CH4 content is low because of large amounts of effluent CO2 

Experimental 

Conditions 

Effluent gas composition 

Inj. Step 1 Inj. Step 2 Inj. Step 3 Inj. Step 4 Inj. Step 5 

n (mol)  CH4 

/% 

(v/v) 

n (mol) CH4 

/% 

(v/v)

n (mol) CH4 

/% 

(v/v)

n (mol) CH4 

/% 

(v/v) 

n (mol) CH4 

/% 

(v/v) 
CH4 CO2 CH4 CO2 CH4 CO2 CH4 CO2 CH4 CO2 

2 °C, 13 MPa 0.004 0.02 17.3 0.022 1.16 1.8 0.011 1.44 0.7 0.034 2.21 1.5 / / / 

8 °C, 13 MPa 0.009 0.02 29.3 0.019 0.01 65.2 0.317 3.33 8.7 0.237 4.09 5.5 0.255 4.05 5.9 

10 °C, 13 MPa 0.142 1.45 8.9 0.175 2.81 5.9 0.079 2.71 2.8 0.044 2.86 1.5 0.039 2.55 1.5 

8 °C, 8 MPa 0.070 0.05 56.2 0.231 1.50 13.3 0.162 2.3 6.5 0.221 2.4 8.4 0.227 2.7 7.7 

3.1.3. CO2 and H2O Retention 

In addition to CH4 production, the efficient retention of CO2 and H2O is important for the overall 

process. As shown in Figure 5, CO2 retention was most efficient at 2 °C, 13 MPa, where the 

thermodynamic conditions were most favorable for CO2-hydrate formation. Increasing amounts of 

CO2 were retained over the entire experimental period with a linear increase in the CO2 inventory until 

the experiment was stopped after loss of hydraulic conductivity. Also in experiments at higher 

temperatures the maximum CO2 retention capacity was not reached until the end of the experiments. 

However, CO2 retention efficiency was lower than at 2 °C. Similar to CH4 production, differences in 

CO2 retention were minor in experiments at 8 °C at different pressures. While the retention during the 

first injection steps was comparable to the retention at 2 °C, it was less efficient during later injection 

steps (nCO2,inj > 10 mol) where substantial amounts of the injected CO2 were produced in the effluent 

gas stream. At 10 °C, 13 MPa, i.e., slightly above the CO2-hydrate dissociation temperature, CO2 

breakthrough occurred almost immediately after injection. 

In contrast to CH4 production and CO2 retention, the efficiency of water retention was similar in all 

experiments. Approximately 50% of the initial water was retained in the pressure vessel at all 

temperatures and pressures (Figure 6).  
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Figure 5. CO2-retention. CO2 sample inventory during injection of CO2. CO2 retention 

efficiency was highest at 2 °C, 13 MPa (▲). Rapid CO2 breakthrough was observed at  

10 °C, 13 MPa (♦). CO2 retention efficiency at 8 °C (■, 13 MPa and ○, 8 MPa) was 

dependent on pressure conditions. 

 

Figure 6. Water retention. H2O sample inventory during injection of CO2. Retention of 

pore water was similar for all experiments with approximately 50% of initial water content 

(pore water plus hydrate water) being removed.  
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Typical conductivity values from discontinuous measurements of bulk effluent water samples were 

10.3 ± 3.5% below influent saltwater conductivities, indicating partial freshening of the pore water by 

hydrate water. A small number of samples showed exceptionally low conductivity values compared to 

influent saltwater medium values (injection step 2 at 10 °C, 13 MPa: 16% of saltwater conductivity, 

injection step 4 at 8 °C, 8 MPa: 67% of saltwater conductivity). These substantial differences could be 

due to errors during sampling. However, in accordance to volume balance calculations in the next 

paragraph they are probably due to distinct events of discharge of low salinity hydrate water released 

from hydrate dissociation. Conductivity measurements were not used to quantify hydrate dissociation 

inside the reactor since it was not possible to adequately calculate effects of mixing and transport of 

H2O in the pressure reactor. Additionally, amounts of discharged H2O were relatively small and could 

be easily contaminated by leakage of water from the sampling container into the sampling bag. Because of 

such a leak in the sampling bag, water inventory values for the two last injection steps at 8 °C, 13 MPa 

could not be calculated. 

3.1.4. Investigation of Sampling and Analytical Error  

Error in results was investigated from mass balancing after release of fluids from the high-pressure 

vessel at the end of Experiments 3 and 4. However, mass balance analysis was not carried out in 

Experiments 1 and 2, since we have attempted to sample undisturbed hydrates at the end of each 

experiment instead. While fluid release for mass balancing had to be performed slowly, hydrate 

sampling has to be performed fast and demanded rapid release of remaining pressurized fluids.  

However, depressurization and bulk effluent sampling after completion of the experiment by 

stepwise releasing large amounts of CO2,liq via the manually adjusted backpressure regulator was very 

problematic. The instant expansion of the CO2, especially after lowering the backpressure, led to 

pressure spikes in the sampling lines and bag due to flow restrictions in the tubing which had a length 

of several meters. This caused substantial leakage and extensive loss of effluent gas, which could be 

visually observed. Pressure spikes were even more distinct and severe due to frequent freezing of the 

valves from adiabatic gas expansion and subsequent expulsion of CO2 after required additional 

lowering of the backpressure settings and warming of the frozen valve and tubing. However, this 

effluent gas loss during final depressurization was of minor importance during the experiment because 

of much lower flow rates and no adjustment of the backpressure regulator being necessary. 

Because of these problems with depressurization, final recovery of CO2 and CH4 showed some 

deviation with respect to amounts of injected CO2 or initial CH4 amounts. The error in CO2 recovery 

was −6.5 mol CO2 (30% from total injected CO2) in experiment 3, and −3.4 mol CO2 (16% from total 

injected CO2, in experiment 4). Mass balance deviations for CH4 were −1.2 mol (40% from initial 

CH4) in experiment 3 and 0.4 mol (14% from initial CH4) in experiment 4. However, water recovery 

was excellent in both experiments with a cumulative relative error of < 2%.  

3.2. Analysis of Volume Balances 

While mass balances allow for the calculation of the quantities of different components inside the 

sample vessel, they do not provide any information on the distribution of the components among the 

liquid, gas and hydrate phases. Influent and effluent fluid volumes corrected to experimental pressure 
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and temperature were analyzed as a measure to further constrain the amounts of CH4,g and to evaluate 

the reservoir size of CH4- and CO2-hydrate. Effluent volumes include the cumulative amounts of CH4, 

CO2 and H2O in the production fluid; the influent volume is exclusively composed of injected CO2.  

CH4 released in Figure 7 summarizes the amount of CH4 produced (red areas) and CH4,g retained in 

the pressure vessel (pink areas) after hydrate dissociation. Release of CH4 from dissociating hydrates 

causes Vdiff,rel to positively deviate from the neutral volume balance in Figure 7. However, Vdiff,for used 

for estimating hydrate formation (shown as blue areas in Figure 7), does not consider CH4 production 

in the volume balance, thus both hydrate formation and CH4,g accumulation are shown as simultaneous 

events in Figure 7. The exclusion of CH4,effl from the volume balance is motivated from considering 

that CH4-hydrate dissociation releases CH4,g and H2O. Thus, CH4 production from hydrates does not 

induce a relevant volume difference inside the pressure vessel. In contrast, CH4 production from CH4,g 

induces a volume difference, and hydrate formation capacity estimated from fluid volume balancing 

would be lowered accordingly. Since it is currently not possible to distinguish between the possible 

sources of produced CH4, we assume that all produced CH4 originates from hydrate dissociation.  

Figure 7. Fluid volume balancing and evaluation of phase distribution. Deviations from 

even volume balances [grey dashed lines in (a)–(d)] are shown as colored areas related to 

the cumulative volume of injected CO2. The figure emphasizes the difference between CH4 

production (red areas) and CH4 release (pink areas plus red areas). The volume based 

hydrate formation potential was derived from negative volume differences (blue areas). 

Results are presented for single experiments (a) 2 °C, 13 MPa; (b) 8 °C, 13 MPa;  

(c) 10 °C, 13 MPa; (d) 8 °C, 8 MPa. Volume balances were calculated from inflow 

amounts of CO2 and effluent amounts of CO2, CH4 and H2O for each injection step. During 

early injection steps most positive deviations were observed with largest net deviations for 

10 °C, 13 MPa (c). Distinct negative deviations were observed in the experiments at 2 °C 

and 10 °C during later injection steps. Positive deviations are considered to be entirely due 

to CH4 gas release from CH4-hydrates, whereas negative deviations are considered to be 

due to hydrate formation of either CO2-, CH4- or mixed CO2-CH4-hydrates.  
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Figure 7. Cont. 

 
 

Overall Vdiff,rel revealed different tendencies with respect to p-/T-conditions. Only in Experiment 1 

at 2 °C, 13 MPa overall Vdiff,rel was negative (−115 mL, 12% of volume of injected CO2). All other 

experiments revealed positive volume differences. At 8 °C, 8 MPa Vdiff,rel was +246 mL (24% of 

volume of injected CO2) and at 10 °C, 13 MPa Vdiff,rel was +182 mL (18% of volume of injected CO2). 

In contrast, the overall fluid volume balance of +31 mL (3% of volume of injected CO2) was small, but 

still positive at 8 °C, 13 MPa. Experiments at 2 °C and 10 °C showed a trend to positive volume 

change values during early injection steps, whereas negative values were observed mainly during the 

late injection steps. Such a trend was not observed in the experiments at 8 °C. CH4 release was clearly 

exceeding CH4 production in experiment 3, but also in Experiment 1, volume differences indicated 

transient CH4 release without CH4 production. The smallest apparent differences between volumes of 

produced CH4 and released CH4 are observed in experiments at 8 °C.  

Volume differences caused by component dissolution were neglected here, however, in all cases of 

dissolution of a pure component an error is introduced in the volume analysis. Particularly dissolution 

of CH4 in CO2,liq and dissolution of CO2 in H2O could be significant. The saturation concentration of 

CO2 in an aqueous solution at 10 °C and 13 MPa is approximately 1.6 mol/kg. Dissolution of 1.6 mol 

of CO2 of ρ ≈ 942 kg/m3 in 1 kg of saltwater ρ ≈ 1030 kg/m3 produces a brine of ρ ≈ 1046 kg/m3. The 

volume difference between the resulting brine and the initial two phase liquids amounts to 

approximately −23 mL that are not accounted for in the volume balance calculations. Only few data 

are available for estimating the solubility of CH4 in CO2,liq and the possible error from this phase 

transfer cannot easily be quantified. Further, the solubility of H2O in CO2 and CH4 phases is of minor 

importance for volume balancing. However, please note that all phase transfers resulting from mutual 

solubilities of components would induce a negative volume difference and would finally result in an 

underestimation of CH4 release. CH4 release estimates in this study are therefore minimum values.  
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3.3. Analysis of Energy Efficiencies  

Energy balancing evaluates the efficiency of thermal stimulation of hydrate dissociation. It 

complements the results from mass and volume balances carried out in the previous paragraphs. We 

use a simplified energy ratio Equation 8 to estimate energy efficiency of CH4 production E∆H,prod and 

CH4 release E∆H,rel. 

Figure 8. Energy efficiency. (a) Cumulative energy efficiency of gas production (E∆H,prod) 

was calculated from free enthalpy changes comparing effluent CH4 gas recovery with 

theoretical CH4 release from hydrate dissociation due to injection of supercritical CO2. 

Lowest E∆H,prod was observed at 2 °C, 13 MPa (▲). E∆H,prod at 10 °C, 13 MPa (♦) peaked at 

11.3%, but decreased with ongoing CO2 injection. E∆H,prod was highest at 8 °C, independent 

of hydrostatic pressure. The energy efficiency calculated from CH4 production is compared 

to the energy efficiency calculated from CH4 gas release (E∆H,rel); (b, please note the 

difference in axis scales). Minor differences were observed in experiments at temperatures  

8 °C. However, E∆H,rel at 10 °C is close to optimum (♦ in (b)), whereas energy efficiency of 

CH4 production is only 11.3% (♦ in (a)). Also at 2 °C, E∆H,rel is considerably increased 

compared to E∆H,prod. These results indicate that a significant amount of CH4,g liberated 

from dissociating CH4-hydrates is trapped and might eventually re-crystallize in secondary 

CH4- or (CH4-CO2)-hydrates within the sediment.  

 
 

The importance to distinguish between CH4 production and CH4 release becomes obvious from 

Figure 8. Figure 8a shows the cumulative E∆H,prod based on CH4 production yields. While experiments 

at 8 °C show reasonable energy efficiencies (19% at 13 MPa, and 18% at 8 MPa), energy recovery was 

apparently poor at 2 °C, 13 MPa (2%) and 10 °C, 13 MPa (8%). In contrast, cumulative E∆H,rel based 

on apparent CH4 release estimated from fluid volume differences was considerably higher, with 

maximum efficiency values close to 100% for early injection steps at 10 °C. Although the energy 

efficiency of CH4 release due to CO2-injection was close to optimum values for the highest sediment 

temperature (10 °C), this was not reflected in CH4 production, which was relatively inefficient 



Energies 2012, 5                      

 

 

2129

compared to experiments at lower temperatures. A similar trend was also observed in Experiment 1 at 

2 °C, however, E∆H,rel was considerably lower compared to the experiment at 10 °C. The increase in 

cumulative energy efficiency E∆H,rel between injection steps 1 and 2 at 10 °C can be explained by a 

very short equilibration time (0.07 d), which was too short for thermal equilibration of the sample.  

4. Discussion 

4.1. Effect of Reservoir Temperature  

Experiments were conducted at three different reactor temperatures (2, 8 and 10 °C) reflecting 

typical gas hydrate reservoir temperatures found in the natural environment. As anticipated, at 2 °C 

CO2-hydrates formed with the excess pore water rapidly reducing the permeability of the sand matrix 

and thus, blocking available flow pathways. Applying higher differential pressure enabled fracturing of 

the sample and renewing fluid flow conditions for a few times, as observed by the high pressure spikes 

in Figure 3. However, after the fourth injection of CO2, the experiment had to be aborted as further 

fracturing of the sample was not possible anymore because the maximum pressure limit of NESSI was 

reached. This may also illustrate the potential risk of clogging up the surrounding of any CO2 injection well 

during CH4-hydrate production operation under similar unfavorable environmental p-/T-conditions. 

However, the observations made at higher reactor temperatures, particularly that CH4 recovery at 

8 °C was more efficient than at 10 °C, were unexpected. At an operating pressure of 13 MPa  

CO2-hydrate may form at 8 °C, whereas liquid CO2 and saltwater are the stable phases at 10 °C (Figure 2). 

Accordingly, the experimental result at 8 °C suggests that formation of CO2-hydrate in the pore space 

at comparably moderate rates reduces the permeability locally, thereby diverging the fluid flow to new 

pathways through the sample. Hence, new regions of the sediment are accessed by the injected CO2 

and new CH4-hydrates made available for dissociation and CH4 release. Overall, this leads to a quite 

evenly distributed migration of the injected CO2 through the quartz sand and an efficient production of 

hydrate-bound CH4. 

In contrast, at a reactor temperature of 10 °C the efficiency of the CH4 gas recovery was much 

lower, because CO2-hydrate could not form. As a consequence, permeability increased locally where 

the injected CO2 dissociated the CH4-hydrate, opening up a preferential flow pathway for the injected 

CO2. Hence, the injected CO2 did only affect a small region of the hydrate-bearing sediment and 

further CH4-hydrate dissociation is controlled by lateral heat propagation away from the conduit and 

the respective CH4 production is in addition also limited by its mass transport towards the channel.  

The unexpected similarity of CH4 production at 8 °C and 8 MPa or 13 MPa (Figure 4) indicated that 

sediment depressurization only had a minor effect on CH4 production. However, depressurization and 

enhanced destabilization of initial CH4-hydrate in the presence of CO2 likely resulted in a  

CO2-CH4 gas mixture which could readily induce formation of mixed CO2-CH4-hydrates of modified 

stability relative to pure CO2- or CH4-hydrates [26]. Indeed, evidence for re-formation of hydrates with 

high CH4 content was found from volume balancing (4.3).  
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4.2. Supercritical CO2 as Injection Fluid 

The injection of CO2,sc for production of CH4 from CH4-hydrates was tested experimentally for the 

first time. The technical strategy of CH4 production from hydrates by injection of CO2,sc into the host 

sediment can be considered as a combination of using an injection fluid for chemical activation of the 

reservoir with additional thermal stimulation. As a result from this combination CH4 production from 

hydrates is accelerated initially since CH4 release is driven rather by thermal stimulation of hydrate 

dissociation, than by hydrate conversion. The dominance of heat induced hydrate dissociation over 

hydrate conversion can be clearly seen from constant CH4 production efficiencies and the absence of 

apparent mass transfer limitations which would be expected in a diffusion-controlled conversion 

mechanism. However, the relevance of thermal hydrate dissociation as compared to hydrate 

conversion after thermal equilibration of the injected CO2 with the reservoir needs to be studied in 

more detail. The relative contribution of thermal dissociation and mass transport controlled hydrate 

conversion will strongly influence the development of the injection strategy with regard to lengths of 

injection and equilibration periods.  

As we have further shown in this study, heat injection and transport are crucial not only to  

CH4-hydrate destabilization but also to flow assurance in the hydrate-sediment porous medium. While 

different heat injection strategies are potentially feasible, the injection of hot CO2,sc appears to offer some 

benefits over cold injection of CO2 combined with independent heat injection strategies, because the 

combined fluid and heat flow prevents uncontrolled CO2-hydrate formation in the best possible way.  

Calculations of energy efficiency of CH4 production resulting from injection of hot CO2,sc 

seemingly indicated substantial heat loss to secondary processes, which has raised questions towards 

the energetic feasibility of CO2,sc injection. However, this production focused energy balance is 

somewhat misleading, since CH4 release is apparently exceeding CH4 production drastically. In that 

case, CH4,g mobilization is the actual problem limiting CH4 production, rather than energy efficiency. 

This aspect will be discussed in detail in the following paragraph.  

While the primary effect of injection fluid temperature i.e., the direct influence on CO2-hydrate 

formation, CH4-release and production is not clear at the moment, this study provides strong evidence 

that the secondary effect of injection fluid temperature, which is increasing sediment temperature, is 

very important. Heat transport and sediment warming as a result of injection of CO2,sc was not 

evaluated in this study. To stronger emphasize the relevance of this secondary effect of injection fluid 

temperature and also to better reflect reservoir conditions the experimental setup and procedure needs 

to be adapted to provide a spatially and temporally resolved temperature profile of the sample. 

Although the combination with additional process techniques such as depressurization is promising, 

the CO2 injection strategy itself is a central engineering tool for process optimization, and further 

modifications to the injection fluid might be of interest. An unsolved problem is the early breakthrough 

of CO2 as observed in our experiments which results in a dilute CH4 production fluid. The subsequent 

processing of the production fluid would be technically and economically demanding. As a further 

aspect, CH4,g mobilization after hydrate dissociation, could potentially be improved by influencing the 

physical or chemical properties of the injection fluid. 
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4.3. CH4 Production and Release 

This study clearly reveals the importance to differentiate between CH4 production and CH4 release. 

Mass balance analyses indicated that using the tested injection scheme both CH4 production and CO2 

retention are best at 8 °C. However, the recovered CH4 gas only is a fraction of the CH4 gas being 

released due to CH4-hydrate dissociation. That this is true to various extents in the different 

experiments was concluded from fluid volume balancing, i.e., analysis of fluid volume differences. A 

positive Vdiff,rel as calculated by Equation 6 is assumed to be due to dissociation of CH4-hydrate and 

release of free gas. In contrast, a negative Vdiff,for must be due to formation of CH4-, CO2- and mixed 

CH4-CO2-hydrate.  

We observed strong differences with respect to fluid volume balances in the different experiments. 

In the experiment at 2 °C, 13 MPa, indicated by marked negative volume differences during later 

injection steps, a strong tendency towards hydrate formation was observed. This is clearly in 

accordance with results from mass flow analysis as well as with experimental observations showing 

the fatal loss of sample hydraulic conductivity. However, negative volume differences were preceded 

by positive net volume changes which indicated at substantial release of CH4,g from hydrate 

dissociation. Since only minor CH4 production was measured in the experiment at 2 °C, CH4,g must 

have been retained inside the pressure vessel. Hydrate formation in this experiment was hence 

probably fueled from two reservoirs, CH4,g and CO2,liq. The substantial retention of injected CO2 at 

2 °C, CO2,liq suggests that CO2-hydrate is dominantly formed, however, the formation of mixed  

CO2-CH4-hydrates as well as the re-formation of CH4-hydrates cannot be excluded.    

In contrast to the experiment at 2 °C, fluid volume differences in the experiment at 10 °C were 

clearly dominated by CH4-hydrate dissociation and release of CH4,g, particularly in the early phase of 

the experiment. The high efficiency of CH4 release with respect to thermal stimulation by CO2,sc was 

clearly shown from energy efficiency calculations. However, the efficiency of CH4, release was not 

reflected in CH4 production and up to 2.1 mol CH4,g which was released from hydrates during CO2 

injection apparently remained as immobile gas inside the sample pressure vessel. The fact that 

significant amounts of CH4 remain within the sediment sample raises the question if and to what extent 

CH4 recovery is limited by gas mobilization rather than by the release of CH4 from hydrate. This is an 

aspect which needs to be investigated carefully in further studies since it influences process 

optimization strategies drastically. Similar to experiment 1 at 2 °C, volume differences at 10 °C reveal 

a transition towards hydrate formation during later injection steps. Since pure CO2-hydrates are 

thermodynamically not stable under these conditions only the re-formation of CH4-hydrate or the 

formation of mixed CH4-CO2-hydrates could account for these volume differences. The retention of 

CH4,g followed by drastic re-formation of CH4-hydrates is thus the reason for poor CH4 production 

efficiencies at 10 °C.  

Interestingly, the strong deviations between CH4 production and CH4 release were not observed in 

experiments at 8 °C. It is possible, that under these conditions CH4-hydrate dissociation and CH4,g 

release are well balanced by CO2-hydrate formation and volume differences induced by the 

simultaneous processes are hidden. The absence of net fluid volume changes could indicate the 

simultaneous absence of excess CH4 release and CO2-hydrate formation as well as substantial excess 

CH4 release balanced by CO2-hydrate formation. Indeed, for all experiments, hydrate formation is 
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assumed to be a continuous process and not, as suggested from volume balances, only occurring during 

later injection periods. Of course, if that is true, ongoing hydrate formation would need to be 

compensated by additional CH4,g release and would further increase the discrepancy between CH4 

production and CH4 release. It shall be emphasized that fluid volume balancing as carried out in this 

study only helps to distinguish between dominant processes of CH4 release or hydrate formation as 

ratios, and as such, phase inventory values are not readily accessible.  

The reason for discrepancies between CH4 production and apparent CH4 release are not clear yet. 

Interestingly, we observed similar trends for the experiment at 2 °C, which is putatively dominated by 

substantial CO2-hydrate formation and the experiment at 10 °C, which excludes the formation of pure 

CO2-hydrate. It appears possible, that both the fast passage of the CO2 as observed at 10 °C hinders the 

efficient CH4 production as well as slow passage at 2 °C in low permeability sediments dominated by 

rapid hydrate formation. At 10 °C, injected and rapidly flowing CO2,sc cools via heat conduction and 

distant melting of CH4-hydrates, thus producing inaccessible CH4,g inclusions. At 2 °C this effect is 

possibly modulated and amplified by additional flow restrictions from CO2-hydrate formation which 

could shield CH4,g inclusions effectively. 

4.4. Comparison of Hydrate Conversion Experiments 

In our experiments injection times and subsequent equilibration periods were arbitrarily chosen and 

varied for several technical and practical reasons within and between experiment runs (Figure 3). The 

primary goal of our study was to prove the feasibility of our supercritical CO2 technique under 

representative p-/T- conditions, but it was not intended to optimize its performance and efficiency—this 

must be left for future work. Therefore, calculating rates of hydrate conversion or methane production 

will give somewhat arbitrary numbers. However, since these are the first hydrate conversion 

experiments using supercritical CO2, it seems necessary and appropriate to compare our results to 

those of previous studies from other groups where CH4-hydrates were exposed to cold liquid or 

gaseous CO2 (see Table 3).  

In our experiments the highest CH4 yields were achieved at 8 ºC, where 31%–36% of the  

hydrate-bound CH4 was produced (Table 3) before those two experiments were, deliberately, aborted 

after 44 h and 73 h, respectively. At this point a relatively constant methane production had been 

established (Figures 3 and 4). In contrast, the 10 ºC experiment achieved only a methane yield of 

12.5% and shows a considerable decrease in CH4 production after the second injection cycle. At 2 °C, 

the methane is quite constantly produced (Figures 3 and 4), but with very low overall yield of  

only 2.4%.  
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Table 3. Hydrate conversion experiments. 

CO2 phase 
CH4 yield 

(%) 
Time 
(h) 

Volume 
(mL) 

Sediment 
 

Pressure 
(MPa) 

Temperature 
(°C) 

Hydrate 
stability 

Reactor type 
 

Reference 
 

gas 100 4  90 no 3.5 3 CO2 batch [27] 
gas 27 280 130 no 3.25 0/(−2/+2) CH4 + CO2 batch + flow − through [28–30] 

gas (N2/CO2) 85 20 no info no 12 1 CH4 + CO2 batch [31] 
gas 100 150  laser spot no 3.0 5 CO2 batch [32] 
gas 3 120 420  no 3.3 −2/0/+2 CH4 + CO2 batch [33] 

liquid 15 700 3200  no 3.9–4.5 1–3 CH4 + CO2 batch [7] 
liquid 50 5  no info no 6 −3 CH4 + CO2 batch [34] 
liquid 35 280  130  no 5.4, 6.0 0 CH4 + CO2 batch [30] 
liquid 17 100 200  sand 5 8 CO2 batch [35] 
liquid 50 300  100  sandstone 8.3 4 CH4 + CO2 batch [36–38] 

emulsion with H2O 25 100 200  sand 5 8 CO2 batch [39] 

supercritical 40.7/37.5 44/76 2000 sand 13/7.5 8 CH4 + CO2 flow-through This study 
supercritical 10.7 73 2000 sand 13 10 CH4 flow-through This study 
supercritical 3.4 46 2000 sand 13 2 CH4 + CO2 flow-through This study 

Note: In the listed studies pure water as well as saline waters were used. Please refer to the references for more details. 
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As discussed before, this is due to immediate CO2-hydrate formation with excess water in the pore 

space. A blocking of pore space by CO2-hydrate formation resulting in low CH4 yields was also 

encountered by Zunzhao et al. [33] and Hirohama et al. [7]. For similar reasons, Zhou et al. [39] could 

only achieve ~25% of hydrate conversion when applying a CO2-H2O emulsion. 

Most of the other studies, summarized in Table 3, avoided excess water in their experiments. 

Nevertheless, the achieved methane yield varies over a wide range from similarly low values of  

17%–27% [28–30,35] to almost 100% [27,31,32]. The main reason for this scatter is founded in very 

different experimental conditions, and as a consequence it is difficult to deduce an overall trend. Many 

of the experiments were conducted at p-/T- conditions close to the CH4-water phase boundary and here 

it seems preferential if the injected CO2 is gaseous [27,31,32] rather than liquid [35,39]. In two of those 

studies [27,32] the temperature was actually raised when introducing the CO2 gas such that the pure 

CH4-hydrates were no longer stable during the conversion reaction. Hence, the CH4-hydrate was actively 

destabilized by adding heat to the system, i.e., in some way a similar strategy as in our experiments. 

Experiments that were conducted at p-/T- conditions well within the stability fields of both gas 

hydrates [28–30,34,36–38] usually achieved only moderate hydrate conversion (Table 3). Two 

processes may be most likely to explain these findings: (1) Formation of mixed CH4-CO2-hydrates of 

varying composition and (2) a relatively quick gas exchange at the surface of the CH4-hydrate grain 

forming a shell out of CO2-hydrate and thereby inhibiting the further gas exchange, i.e., mass 

transport, into and out of the inner core of the hydrate grain. The latter process has been documented 

for the CH4-C2H8 gas replacement [17] and seems very likely to occur in the above batch-type 

experiments. Since the overall process, particularly in a sediment/sand matrix, is quite complex, some 

other factors, such as local limitations in heat transfer and hydrate grain size, may also play a role (see 

Conclusion section for more details).  

Thus, the major advantage of injecting supercritical CO2 is the destruction of the original  

CH4-hydrate excluding mass transfer limitations at hydrate grains. As a consequence, it is possible to 

establish a continuous production of CH4 gas. Furthermore, immediate formation of the more stable 

CO2-hydrates or mixed CO2-CH4-hydrates can be avoided at suitable reservoir temperatures potentially 

because the cooling of the CO2 takes some time, and the liberated CH4 gas warms up and migrates 

towards the outlet in the equilibration periods of our experiment. 

5. Conclusions  

In this study we presented the first experimental results on CH4 production from CH4-hydrates by 

injection of hot, supercritical CO2. Based on the inventories of the components CO2, CH4, and H2O 

(Table 4) the overall process performance was analyzed with respect to CH4 production, CO2 and H2O 

retention as well as energy efficiency (Table 5). The central finding of this study is that continuous 

CH4 production can be achieved, if some initial heat is introduced together with the CO2. The hot, 

supercritical CO2 efficiently activates the CH4-hydrate reservoir and thereby overcomes mass transport 

limitations typically observed with cold CO2. However, the reservoir temperature also plays a crucial 

role and definitely needs consideration when developing an exploitation strategy. At cold 

temperatures, rapid cooling of the injected CO2 can induce formation of CO2-hydrate with excess 

water causing congestions in the fluid pathways that may lead to complete process failure. We could 
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further show that both, CH4 production and CO2 retention is improved under conditions of slow  

CO2-hydrate formation. Constant CH4 production efficiencies at all temperatures indicate that 

production is driven by fast thermal destabilization of CH4-hydrates rather than by slow hydrate 

conversion. Surprisingly, the combination of mass flow analysis, volume and energy balancing suggests 

that CH4 production is limited by gas mobilization rather than by CH4-hydrate dissociation. Overall, it 

seems to be necessary to consider secondary processes for the overall CH4 production process. 

Table 4. Component inventories and phase distribution. Initial and final component and 

phase inventories are shown. Final amounts of components nfinal were calculated from mass 

balance analysis. Amounts of gaseous CH4 in the pressure vessel were estimated from 

volume differences. However, nCH4,g is putatively underestimated in cases of rapid  

CO2-hydrate formation, and overestimated if CH4-hydrate reformation occurs. Final 

hydrate inventories nCH4,hyd and nCO2,hyd are calculated from component inventories and 

show maximum values.  

No. T, p 

CH4 CO2 H2O 

nInitial nFinal nCH4,hyd nCH4,g nInitial nFinal nCO2,hyd nCO2,inj nInitial nFinal 

/mol /mol /mol /mol /mol /mol /mol /mol /g /g 

1 2 °C, 13 MPa 2.9 2.8 2.1–2.8 <0.7 0 17.0 <7.7 21.9 1452 804 

2 8 °C, 13 MPa 2.7 1.6 1.4–1.6 < 0.2 0 16.0 <8.3 27.5 1495 860 

3 10 °C, 13 MPa 2.8 2.5 0.4–2.5 <  2.1 0 9.1 <8.4 21.6 1429 871 

4 8 °C, 8 MPa 2.4 1.5 1.4–1.5 <  0.1 0 12.5 <7.5 21.5 1395 779 

 
Table 5. Summary of results: Mass and energy based process efficiencies and yields.  

No. T, p 

CH4 CO2 H2O Energy 

YCH4 ECH4 SCO2 ECO2 SH2O E∆H,prod E∆H,rel 

/mol /mol-%  /mol /mol-%  /g /w-% /J-% /J-% 

1 2 °C, 13 MPa 0.1 2.4 0.003 17.1 77.9 0.78 804 55 2.4 18.3 

2 8 °C, 13 MPa 0.8 31.2 0.030 16.0 58.0 0.58 860 58 19.4 23.2 

3 10 °C, 13 MPa 0.4 12.5 0.016 9.1 42.5 0.43 871 61 8.2 57.4 

4 8 °C, 8 MPa 0.8 35.5 0.039 12.5 58.0 0.58 779 56 17.6 21.0 

 

The combination of CH4 extraction from gas hydrates and storage of CO2 results in a complex 

multi-component, multiphase transport-reaction scheme, as illustrated in Figure 9. Highly dynamic 

processes on different time scales are putatively important for CH4-hydrate dissociation, hydrate 

conversion and pure or mixed hydrate reformation, all of them altering sediment parameters, such as 

bulk thermal and geomechanical behavior. Due to the spatial heterogeneity and concurrency of 

multiple processes, it is very likely that optimization efforts will be most successful when considering 

processes down to the pore scale. This underlines the technical relevance of former studies of  

CH4-CO2-hydrate conversion (Table 3), hydrate dissociation and formation ([40] and references therein), 

which were strongly focused on gaining mechanistic insights on grain size and molecular scale.  
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Figure 9. Process dynamics scheme. Relevant transport and reaction processes during 

injection of hot CO2,sc into CH4-hydrate bearing sediment. (1) Injection of hot, mobile 

CO2,sc; (2) Fast dissociation of CH4-hydrate due to thermal stimulation from hot CO2,sc 

injection; (3) Conductive heat transport via sediment particles or non-mobile pore water 

followed by thermal stimulation and dissociation of distant CH4-hydrate particles;  

(4) Mixing of CO2 and CH4; (5) CO2-hydrate formation with pore water; (6) Formation of 

mixed CO2-CH4-hydrates from CO2-CH4 gas mixtures; (7) CH4-CO2-hydrate exchange 

limited by diffusive transport of CH4 and CO2; (8) CO2,sc cools and rapidly transforms to 

CO2,liq. CO2-CH4 mixtures remain supercritical at high CH4 content; (9) CO2-hydrate 

formation with excess pore water might result in pore space clogging followed by 

substantial change of porosity and permeability. Complete loss of hydraulic conductivity is 

possible; (10) Production of fluid containing CH4, water and CO2 in various states and 

different and changing proportions; (11) Dissociation of load-bearing hydrate particles can 

cause settling of sediment and change of sediment integrity and geomechanical stability; 

(12) CH4 gas might be released into hydraulically isolated pores as non-producible gas.  
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6. Outlook 

Our results suggest that both efficiency and rate of CH4 production can be optimized in numerous ways.  

The additional combination with depressurization is likely to improve the production process, since 

CH4-hydrates could initially be destabilized to facilitate injection of the supercritical CO2. In turn, the 

heat of the CO2 can then compensate the cooling of the reservoir induced by the endothermic hydrate 

dissociation from depressurization. As a consequence, substantial production rates of CH4 gas could be 

maintained over extended periods of time.  

Different modifications of the injection fluid with respect to its composition and injection 

temperature as well as of the injection strategy itself might avoid early CO2 breakthrough and also 

improve gas mobilization, which was identified as a possible obstacle in the production process (i.e., in 

the 10 °C experiment).  

According to our results, reservoir conditions including temperature, pressure and permeability 

have a major influence on the production process and the choice of appropriate reservoir sites and 

technical means to influence the reservoir properties will be of paramount importance. So far, our 

experiments lack from the impossibility to directly monitor the processes and phase distribution inside 

the pressure vessel. Instead, this information has to be obtained indirectly from the analysis of effluent 

fluids. Hence, future studies would benefit significantly from the application of online monitoring 

including imaging techniques such as MRI or CT.  

Because of the complexity of the numerous physical and chemical processes contributing to the 

overall CH4 production we emphasize the importance of understanding the behavior of the system 

from the reservoir scale down to the pore scale. Only such knowledge can lead to progress in 

production simulations and laboratory experiments, which are prerequisites for the development of 

optimized production techniques.  
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