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Overview

4.1. The Continuous Model

Simulating the marine ecosystem has become a key tool for understanding the ocean carbon cycle and its

variability. The marine ecosystem contains several biogeochemical quantities (called tracers), for example

nutrients, phyto- and zooplankton which interact and are moreover transported by the ocean circulation

and influenced by temperature and salinity. Thus ecosystem simulations require modeling and computation

both of ocean circulation and biogeochemistry. The underlying continuous models are governed by coupled

systems of nonlinear, parabolic PDEs or DAEs, for ocean circulation (ocean models, i.e., Navier-Stokes

equations with additional temperature and salinity transport equations) and transport of biogeochemical

tracers (marine ecosystem models, i.e., convection- or advection-diffusion-reaction type equations) [9]. Thus

they fit in our general formulation (1) and its discrete counterpart (2).

In ecosystem models, the parameters to be optimized – summarized in the vector u in (2) – are for example

growth and dying rates of the tracers and thus appear in the usually nonlinear coupling or interaction terms

in the model.

Our example ecosystem model was developed by Oschlies and Garcon [13] and simulates the interac-

tion of dissolved inorganic nitrogen, phytoplankton, zooplankton and detritus (thus also called NPZD

model). One aim was to reproduce observations yd at different North Atlantic locations by the optimiza-

tion of model parameters within credible limits. Figure 4.1 shows the model output and target data,

respectively, as illustration for the tracer detritus for a certain depth and a part of the time interval.
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Figure 1: Model output y(D) (detritus) and observa-

tion data y(D)
d for one year at depth z � −25m.

The model uses pre-computed ocean circulation and

temperature data from an ocean model (in a sometimes

called off-line modus), i.e., no feedback by the biogeo-

chemistry on the circulation and temperature is mod-

eled [13]. Thus the continuous model (1) here just con-

tains the biochemistry, whereas all circulation data are

hidden in the right-hand side f .

As a test case and since biogeochemistry – except for

sinking processes – mainly happens locally in space, we

use here a one-dimensional version of the model. This

version simulates one water column at a given horizontal

position. This is additionally motivated by the fact that

there have been special time series studies at fixed locations. Clearly the computational effort in a one-

dimensional simulation is significantly smaller than in the three-dimensional case. Thus, before going to 3-D,

this model serves as a good test example for the applicability of surrogate-based optimization approaches,

since it includes all significant features of ecosystem models.

In the NPZD model, the concentrations (in mmol N m
−3

) of dissolved inorganic nitrogen N , phytoplank-

ton P , zooplankton Z, and detritus (i.e., dead material) D are summarized in the vector y = (y(l))l=N,P,Z,D

7

Figure 1:  Model output y(D) (detritus) and target data 
yd  for one year at depth z ≃ −25 m.
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Surrogate-Based Optimization for Ecosystem Models

u y(u) u ŷ(u)
high-fidelity low-fidelity

u sk(u)
surrogate

alignment/ correction≈

Actual optimization process involves . . .

Evaluation of “fine” model y(u) + its sensitivity y′(u)

! High computational cost

! Or even not available
⇓

y(u) replaced by computationally cheaper, less ac-
curate surrogate sk(u)

uk+1 = min s∈U J (sk(u + s), u)

sk(u) ≈ y(u) ,
(

s
′
k(u) ≈ y

′(u)
)

· Fine model evaluated once or a few times only per iteration

· Number of iterations needed to yield satisfactory solution is small

· Accurate (at least locally) and cheap surrogate model

· Analytically tractable (smooth, easy to optimize)



‣ Initial boundary value problem (IBVP) for a system of time-dependent partial differential or 
differential algebraic equations (PDEs/DAEs) of the following form:
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Climate Models - A General Formulation 

with different methods including local, gradient-based and so-called global, genetic algorithms have been

performed, see [14]. The underlying physically-based low-fidelity model is obtained from a temporarily coarser

discretization of the high-fidelity one. We verify our approach by using synthetic target data and by comparing

the results of surrogate-based optimization to those obtained from the direct fine model optimization. The

application on real data is performed as a next step. Furthermore, this exemplary application shall serve as

a test for three-dimensional model runs, which are much more costly with respect to computing time.

The structure of the paper is as follows: The general form of climate models and the parameter optimiza-

tion problem considered is described in Section 2. We point out that the mathematical formulation of the

climate models we use is quite general, such that our approach is not limited to them but remains applicable

for a wide range of time-dependent models. We first recall the basic idea of surrogate-based optimization

in Section 3. The ecosystem model, which is taken as an example in this paper, is introduced in Section

4, and its low-fidelity counterpart that we use as a basis for the surrogate is described in Section 5. The

response correction, the construction of the surrogate model and the quality of the surrogate are described

and analyzed in Section 6. The setup of the optimization which is used to compare the results is given in

Section 7. Numerical results and discussion of an exemplary test run are provided in Section 8. Section 9

concludes the paper with a summary and an outlook.

2. Model Equations and Optimization Problem

In this section we give the formulations of what we call a model and of the corresponding parameter opti-

mization problem. Our formulations are quite general and appropriate for a big class of applications, for

which climate models are only one example.

2.1. Continuous and discrete Model Formulation

We start from an initial boundary value problem (IBVP) for a system of time-dependent partial differential

or differential algebraic equations (PDEs/DAEs) of the following form:

E
∂y

∂t
= f(y, u) in Ω× (0, T )

y(x, 0) = yinit(x) in Ω

y(x, t) = ybdr(x, t) on ∂Ω× (0, T ).






(1)

Here y is the vector of the state variables, and E is a matrix with the size of y, typically being the identity

matrix for a PDE while having rank deficiency for a DAE [15]. We include DAEs in this formulation since in

climate models, e.g., ocean circulation models, the Navier-Stokes equations [16] are an important part, and

– after space discretization – take the form of a DAE system. Then y may for example consist of velocity

field, pressure, temperature and salinity. In our example of a marine ecosystem model (which is formulated

as PDE system), the matrix E can be set to the identity and thus omitted. In this case the state vector y

contains all relevant biogeochemical tracers as phyto- and zooplankton etc., see Section 4 for the details.

3

‣ Ocean circulation models (Navier-Stokes equations): 
‣ y may consist for example of the velocity field, pressure, temperature, salinity 

‣ Marine ecosystem model:  
‣ The matrix E can be set to the identity and thus omitted
‣ here, the rhs f( y, u ) contains 

(a) the transport (diffusion,advection) and nonlinear coupling of so-called biogeochemical 
tracers such as phyto-/ zooplankton etc.

(b) the ocean model data: precalculated („offline“) or obtained simultaneously („online“)
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Marine Ecosystem Models - Some Motivations

‣ Used for example to compute and predict the oceanic uptake of CO2 as part of the global 
carbon cycle

‣ The uptake is determined by the solution of CO2 in the water via the ocean surface ...

‣ ... and physical and biogeochemical processes in the water, i.e. 
‣ Ocean circulation                 
‣ Photosynthesis, consumption by zooplankton, sinking of dead material (which 

exports the carbon to the deeper ocean)

---------------------------------------------------------------------------------------

Oceanic CO2 Uptake ...

is determined by 

... the solution of CO2 in the water via the ocean surface

... and physical and biogeochemical processes in the water                                                
(ocean circulation, photosynthesis, sinking of dead material)

Picture: Wagner GFDL

26.03.08 11:08Carbon-dioxide-3D-vdW.svg

Seite 1 von 1file:///Users/slawig/Conferences/2008_03_HH/Carbon-dioxide-3D-vdW.svg

Simulations based on those models are a key tool in CCS approaches (e.g. iron fertilization)
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z

‣ Although one-dimensional, the following example illustrates the general formulation of this 
type of models and actually provides the basis for many marine ecoystem models (also 3D)

‣ Model is of so-called NPZD type: 
Concentrations of the tracers dissolved inorganic nitrogen N, phytoplankton P, zooplankton 
Z, and detritus (i.e., dead material) D are simulated in a water column, y = (y(l)) l=N,P,Z,D

Marine Ecosystem Models - One Representative Example

∂y
(l)

∂t
=

∂

∂z

�
κ

∂y
(l)

∂z

�
+ Q

(l)
(y, u2, . . . , un), l = N,P,Z

∂y
(D)

∂t
=

∂

∂z

�
κ

∂y
(D)

∂z

�
+ Q

(D)
(y, u2, . . . , un)− ∂y

(D)

∂z
u1, l = D

‣ Here: ocean model data (the turbulent mixing coefficient κ = κ(z,t) and temperature) is 
precalculated by one ocean model

‣ The terms Q(l) are the biogeochemical coupling (or source-minus-sink) terms for the four 
tracers and u = (u1, ..., un) is the vector of unknown physical and biological parameters

‣ 1D: no advection but a the sinking term is (apparent in the equation for the tracer detritus)
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The Optimization Problem

‣ Adjust/identify model parameters u such that 
given measurement data yd  is matched by the 
model output y( u )

‣ The mathematical task thus can be classified as a 
least-squares type optimization or inverse problem 

‣ The opt. process requires a substantial number of 
(typically expensive) function evaluations

‣ Methods that aim at reducing the optimization cost 
(e.g. surrogate-based optimization), are highly 
desirable

2.2. Optimization Problem

In this subsection we formulate the optimization problem for the discrete model. Omitting the boldface

notation, the same formulation holds for the continuous model, but naturally would require further analysis,

which is beyond the scope of this paper.

The key task in parameter optimization is to minimize a least-squares type cost function measuring the

misfit between the discrete model output y = y(u), i.e., the solution of (2), and given observational data

yd [11, 12]. We assume that yd ∈ Y , otherwise an appropriate observation/restriction operator has to be

introduced. In most cases, the cost function is constrained by parameter bounds. Thus the parameter

optimization problem can be written as

min
u∈Uad

J(y(u) ) (3)

where

J(y ) :=
1

2
||y − yd ||2Y , Uad := {u ∈ Rn

: bl ≤ u ≤ bu} , bl,bu ∈ Rn , bl < bu.

The inequalities in the definition of the set Uad of admissible parameters are meant component-wise. The

functional J may additionally include a regularization term for the parameters, which was not necessary in

our case.

Additional constraints on the state variable y might be necessary, e.g., to ensure non-negativity of the

temperature or of the concentrations of biogeochemical quantities. In our example model however, by using

appropriate parameter bounds bl and bu, non-negativity of the state variables can be ensured. This was

already observed and used in [14].

3. Surrogate-Based Optimization

For many nonlinear optimization problems, a high computational cost of evaluating the objective function

and its sensitivity, and, in some cases, the lack of sensitivity information, is a major bottleneck. The need for

decreasing the computational cost of the optimization process is especially important while handling complex

three-dimensional models.

Surrogate-based optimization [1–4] addresses these issues by replacing the original high-fidelity model y

by its surrogate model s. The surrogate should be computationally cheap and analytical tractable. It can be

obtained by approximating the sampled high-fidelity model data using a suitable technique, e.g., polynomial

regression [1], kriging [17] or support-vector regression [18].

Another possibility, explored in this paper, is to construct the surrogate through correction of a coarse

or low-fidelity model, a less accurate but computationally cheap representation of y. The surrogate model

is updated at each iteration of the optimization algorithm, typically using available high-fidelity model data.

In particular, the surrogate model sk at iteration k can be constructed by only using the high-fidelity model

output y(uk) at the current optimization variable vector uk and the corresponding low-fidelity model output.
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Figure 1: Model output y(D) (detritus) and observa-

tion data y(D)
d for one year at depth z � −25m.
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temperature data from an ocean model (in a sometimes

called off-line modus), i.e., no feedback by the biogeo-

chemistry on the circulation and temperature is mod-

eled [13]. Thus the continuous model (1) here just con-

tains the biochemistry, whereas all circulation data are
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version simulates one water column at a given horizontal

position. This is additionally motivated by the fact that

there have been special time series studies at fixed locations. Clearly the computational effort in a one-

dimensional simulation is significantly smaller than in the three-dimensional case. Thus, before going to 3-D,

this model serves as a good test example for the applicability of surrogate-based optimization approaches,

since it includes all significant features of ecosystem models.

In the NPZD model, the concentrations (in mmol N m
−3

) of dissolved inorganic nitrogen N , phytoplank-
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Figure 1:  Model output y(D) (detritus) and target data 
yd  for one year at depth z ≃ −25 m.

(1)
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Surrogate-Based Optimization (SBO)

sk(uk) = y(uk) , s�
k(uk) = y�(uk),

‣ Complex (so-called high-fidelity) models often require substantial computational effort 
already for a model evaluation

‣ As a consequence, opt. and control problems for such models are often still beyond the 
capability of modern numerical algorithms and computer power

‣ Idea: replace the high-fidelity in focus by a computationally cheaper and yet reasonably 
accurate representation, so-called surrogate

Another possibility, explored in this paper, is to construct the surrogate through correction of the coarse

or low-fidelity model, a less accurate but computationally cheap representation of y. The surrogate model

is updated at each iteration of the optimization algorithm, typically using available high-fidelity model data.

In particular, the surrogate model sk at iteration k can be constructed by only using the high-fidelity model

output y(uk) at the current optimization variable vector uk and the corresponding low-fidelity model output.

The low-fidelity model correction aims at reducing misalignment between the low- and high-fidelity models.

The specific correction technique exploited in this work is described in detail in Section 6.

The next iterate, uk+1, is obtained by optimizing the surrogate sk, i.e.,

uk+1 = argmin
u∈Uad

J ( sk(u) ). (4)

Then the updated surrogate sk+1 is determined by re-aligning the low-fidelity model at uk+1 and optimized

again as in (4). The process of aligning the coarse model to obtain the surrogate and subsequent optimization

of this surrogate is repeated until a user-defined termination condition is satisfied, which can use certain

convergence criteria, assumed level of cost function value or on a specific number of iterations (particularly

if the computational budget of the optimization process is limited). A discussion of termination condition

used in this work can be found in Section 8.

A well performing surrogate-based algorithm is capable of yielding a satisfactory solution at a low com-

putational cost, typically corresponding to only a few evaluations of the high-fidelity model. The key pre-

requisites to ensure this are a cheap and yet reasonably accurate coarse model as well as a properly selected

and low-cost alignment procedure (i.e., using a limited number of high-fidelity model evaluations, preferably

just one).

If the surrogate sk satisfies so-called 0-order and 1st-order consistency conditions [19, 20] with the high-

fidelity model at uk, i.e.,

sk(uk) = y(uk) , s�k(uk) = y�(uk), (5)

the surrogate-based scheme (4) is probably convergent to at least a local optimum of (3), provided that both

the low- and high-fidelity models are sufficiently smooth, and the surrogate optimization step is enhanced by

the the trust-region (TR) safeguard [19, 20], i.e.,

uk+1 = argmin
u∈Uad,||u−uk||≤δk

J ( sk(u) ),

with δk being the trust-region radius updated according to the TR rules.

Note that the 1st-order consistency requires high-fidelity sensitivity data, which is not utilized here. In

this work, the surrogate is defined to satisfy the 0-order consistency only which is sufficient to ensure good

performance as demonstrated in Subsection 6.3 and Section 8.

6

‣ Key points:
‣ Surrogate model should be accurate (at least locally), cheap and smooth
‣ If the surrogate satisfies so-called 0- and 1st-order consistency conditions, i.e., 

and provided that the opt. step is restricted to some trust-region, the surrogate-based 
scheme (2) is provable convergent to at least a local minimum of our original problem (1)

‣ Various SBO approaches sucessfully applied to a wide range of applications

(2)
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Physically based: 
Constructed from physical low-fidelity model (with suitable correction/alignment)

Pro:
Inherits more characteristics of the system 

Contra:
Dedicated (reuse is rare)
Typically more expensive
Low-fidelity model must be available

Popular techniques:
Response correction, Space Mapping

How to obtain the low-fidelity model?
‣ Using simplified physics (e.g., ignoring second order effects)
‣ Coarse discretization
‣ Using analytical formulas if available

Malte Prieß - 27/10/2010 - Cluster of Excellence “The Future Ocean” Surrogate-Based Optimization for Ecosystem Models - p. 1/5

Surrogate-Based Optimization for Ecosystem Models

u y(u) u ŷ(u)
high-fidelity low-fidelity

u sk(u)
surrogate

alignment/ correction≈

Actual optimization process involves . . .

Evaluation of “fine” model y(u) + its sensitivity y′(u)

! High computational cost

! Or even not available
⇓

y(u) replaced by computationally cheaper, less ac-
curate surrogate sk(u)

uk+1 = min s∈U J (sk(u + s), u)

sk(u) ≈ y(u) ,
(

s
′
k(u) ≈ y

′(u)
)

· Fine model evaluated once or a few times only per iteration

· Number of iterations needed to yield satisfactory solution is small

· Accurate (at least locally) and cheap surrogate model

· Analytically tractable (smooth, easy to optimize)

Types of Surrogates
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‣ Discretized model equation of our high-fidelity model:

(      = # of discrete temporal points of the fine model,    = # of discrete spatial points)

Low-Fidelity Model - One Example

Thus, before going to 3-D, this model serves as a good test example for the applicability of surrogate-based

optimization approaches, since it includes all significant features of ecosystem models.

In the NPZD model, the concentrations (in mmol N m
−3

) of dissolved inorganic nitrogen N , phytoplank-

ton P , zooplankton Z, and detritus (i.e., dead material) D are summarized in the vector y = (y
(l)

)l=N,P,Z,D

and described by the following coupled PDE system

∂y
(l)

∂t
=

∂

∂z

�
κ

∂y
(l)

∂z

�
+ Q

(l)
(y, u2, . . . , un), l = N, P,Z

∂y
(D)

∂t
=

∂

∂z

�
κ

∂y
(D)

∂z

�
+ Q

(D)
(y, u2, . . . , un)− ∂y

(D)

∂z
u1, l = D





(6)

in (−H, 0)× (0, T )

with additional appropriate initial values. Here, z denotes the only remaining, vertical spatial coordinate,

and H the depth of the water column. The terms Q
(l)

are the biogeochemical coupling (or source-minus-sink)

terms for the four tracers and u = (u1, . . . , un) is the vector of unknown physical and biological parameters.

The sinking term is only apparent in the equation for detritus. In the one-dimensional model no advection

term is used, since a reduction to vertical advection would make no sense. Thus, the circulation data (taken

from an ocean model) are the turbulent mixing coefficient κ = κ(z, t) and the temperature Θ = Θ(z, t), which

goes into the nonlinear coupling terms Q
(l)

but is omitted in the notation.

4.2. Discretization Scheme and Discretized Model

The continuous model (6) is discretized and solved using an operator splitting method, which for a given

a time-step τ reads

�
I − τA

diff
j

�
� �� �

:=Bdiff
j

yj+1 =
�
I + τA

sink
�

� �� �
:=Bsink

B
Q
j ◦B

Q
j ◦B

Q
j ◦B

Q
j (yj), j = 1, . . . ,M. (7)

Recall that by yj we denote the discrete solution in time step j given as

yj = (yji)i=1,...,I , j = 1, . . . ,M. (8)

at the discrete spatial points. Since in our case the model output consists of four tracers, I denotes the

number of spatial discrete points times 4.

If the discrete state yj is given in such a way that the four discrete tracer vectors at the time step j

are concatenated, the matrices A
diff
j , A

sink
in (7) are (4 × 4)-block-diagonal matrices. They represent the

discretization of the diffusion (with second order central differences) and the sinking (discretized by an

upstream scheme), respectively.

In every time step j → j + 1, at first the nonlinear coupling operators Qj (that depend on tj directly

and/or via the temperature field Θ) are computed at every spatial grid point and integrated by four explicit

Euler steps, each of which is described by the nonlinear operator

B
Q
j (yj) :=

�
yj +

τ

4
Qj(yj)

�
.

8

τ̂ = βτ

and described by the following coupled PDE system
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in (−H, 0)× (0, T )

with additional appropriate initial values. Here, z denotes the only remaining, vertical spatial coordinate,

and H the depth of the water column. The terms Q
(l)

are the biogeochemical coupling (or source-minus-sink)

terms for the four tracers and u = (u1, . . . , un) is the vector of unknown physical and biological parameters.

The sinking term is only apparent in the equation for detritus. In the one-dimensional model no advection

term is used, since a reduction to vertical advection would make no sense. Thus, the circulation data (taken

from an ocean model) are the turbulent mixing coefficient κ = κ(z, t) and the temperature Θ = Θ(z, t), which

goes into the nonlinear coupling terms Q
(l)

but is omitted in the notation.

4.2. Discretization Scheme and Discretized Model

The continuous model (6) is discretized and solved using an operator splitting method, which for a given a

time-step τ reads
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diff
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:=Bdiff
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j (yj), j = 1, . . . ,M. (7)

Recall that by yj we denote the discrete solution in time step j given as

yj = (yji)i=1,...,I , j = 1, . . . ,M. (8)

at the discrete spatial points. Since in our case the model output consists of four tracers, I denotes the

number of spatial discrete points times 4. If the discrete state yj is given in such a way that the four discrete

tracer vectors at the time step j are concatenated, the matrices A
diff
j , A

sink
in (7) are (4× 4)-block-diagonal

matrices. They represent the discretization of the diffusion (with second order central differences) and the

sinking (discretized by an upstream scheme), respectively.

In every time step j → j + 1, at first the nonlinear coupling operators Qj (that depend on tj directly

and/or via the temperature field Θ) are computed at every spatial grid point and integrated by four explicit

Euler steps, each of which is described by the nonlinear operator

B
Q
j (yj) :=

�
yj +

τ

4
Qj(yj)

�
.

Note that, for simplicity, we omitted the additional arguments of the term Qj in the formulation above.

Then, an explicit Euler step with full step-size τ is performed for the sinking term. This step is represented

by the matrix B
sink

. Since the sinking velocity is temporarily constant, this matrix does not depend on the

time step j. Finally, an implicit Euler step for the diffusion operator is applied. Due to κ = κ(z, t) the
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ỹ(u)
˜̂y(u) , β = 10
˜̂y(u) , β = 40
˜̂y(u) , β = 60

Figure 3: Same as in Figure 2 but now using smoothing (cf. (9)) for both the coarse and the fine model. Smoothing
helps removing the numerical noise in the model outputs so that the optimization process is able to identify and track
relevant changes of the traces of interest.

6.2. Response Correction

In this work, the surrogate model output is generated, at iteration k of the optimization process, by multi-

plicative correction of the low-fidelity model output (cf. Section 3). The correction factor, denoted as Akji,

is defined by pointwise division of the smoothed fine by the smoothed coarse model output at the point uk,

i.e.,

skji(u) := Akji
˜̂yji(u),

Akji :=
ỹβ

ji(uk)
˜̂yji(uk)






k = 1, 2, . . . ,

j = 1, . . . , M̂ , i = 1, . . . , I,
(11)

where ỹβ is given by (9). We call Ak := (Akji)j,i ∈ RM̂×I the correction matrix in step k. We use it to write

the correction step in iteration k on the whole discrete state vector as

sk(u) := Ak ◦ ˜̂y(u), sk ∈ RM̂I

where the operation “◦” is defined by (11).

Note that the surrogate model is constructed using just one evaluation of the high-fidelity model. This

simple correction scheme is justified by the fact that the overall ”shape” of the low-fidelity model output

resembles that of the high-fidelity one. In particular, the high-value outputs for both models are corresponding

to each other on the time scale, which is the consequence of the low-fidelity model being physically-based.

Also, the relative changes of the outputs while changing the model parameters are similar for both coarse

and fine models so that the multiplicative correction seems to be a natural choice.

It should be emphasized that our surrogate model does not use high-fidelity model sensitivity data. Still,

as demonstrated in Section 8, it is able to yield remarkably good results, not only with respect to the quality

of the final solution, but, most importantly, in terms of the low computational cost of the optimization

process.
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for this coarser discretized model will be denoted by ŷ, the corresponding number of discrete time steps by, . . . , M̂ , i

‣ In the original discrete model (high-fidelity model) the time step τ is chosen as one hour

‣ The low-fidelity model (with state variable     and number of discrete temporal points     ) is 
obtained by using a coarser time discretization with

(with a coarsening factor β ∈ N \ {0, 1}, while keeping the spatial discretization fixed)
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Figure 2: High- and low-fidelity model output y, ŷ, respectively, for the state dissolved inorganic nitrogen at depth

z ≈ −2.68m for different values of the coarsening factor β and the same randomly chosen parameter vector u. For

simplicity we skip super- and subscripts in the legends of all figures.

resulting matrix Bdiff
j depends on j and is non-symmetric [21, Section 5]. It is tridiagonal, and the system is

solved directly by splitting it up into the four blocks. Writing this last step formally as a matrix inversion,

formulation (7) corresponds to (2).

In the original discrete model (6) the time step τ is chosen as one hour, and this version is from now on

what in surrogate-based optimization is called the high-fidelity or coarse model.

5. The Low-Fidelity Model

Surrogates can be either based upon an approximation of the sampled high-fidelity model data (functional

surrogates) or on a physical low-fidelity model. Functional surrogates are constructed without any particular

knowledge of the system and will not be addressed further in this paper. In contrast, surrogates based upon

a physical low-fidelity model (also known as physically based surrogates [22]) inherit more characteristics of

the fine model under consideration. Possible ways to create such a physical low-fidelity model are by using

a coarser discretization (while employing the same simulation tool as for the high-fidelity model), simplified

physics or different ways of describing the same physical phenomenon or even by using analytical formulas

if available. In this paper, we use a low-fidelity model which has a coarser time discretization which we will

explain below.

5.1. Coarser Time Discretization

The low-fidelity model is obtained by using a coarser time discretization with

τ̂ = βτ

with a coarsening factor β ∈ N \ {0, 1}, while keeping the spatial discretization fixed. The state variable

for this coarser discretized model will be denoted by ŷ, the corresponding number of discrete time steps by

M̂ = M/β. Note that the parameters u for this coarse model are the same as for the fine model. Figure 2

shows the fine and coarse model output y, ŷ for the state dissolved inorganic nitrogen, for different values of

β and at the same randomly chosen parameter vector u.
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Figure 3: Same as in Figure 2 but now using smoothing (cf. (9)) for both the coarse and the fine model. Smoothing
helps removing the numerical noise in the model outputs so that the optimization process is able to identify and track
relevant changes of the traces of interest.

6.2. Response Correction

In this work, the surrogate model output is generated, at iteration k of the optimization process, by multi-

plicative correction of the low-fidelity model output (cf. Section 3). The correction factor, denoted as Akji,

is defined by pointwise division of the smoothed fine by the smoothed coarse model output at the point uk,

i.e.,

skji(u) := Akji
˜̂yji(u),

Akji :=
ỹβ

ji(uk)
˜̂yji(uk)






k = 1, 2, . . . ,

j = 1, . . . , M̂ , i = 1, . . . , I,
(11)

where ỹβ is given by (9). We call Ak := (Akji)j,i ∈ RM̂×I the correction matrix in step k. We use it to write

the correction step in iteration k on the whole discrete state vector as

sk(u) := Ak ◦ ˜̂y(u), sk ∈ RM̂I

where the operation “◦” is defined by (11).

Note that the surrogate model is constructed using just one evaluation of the high-fidelity model. This

simple correction scheme is justified by the fact that the overall ”shape” of the low-fidelity model output

resembles that of the high-fidelity one. In particular, the high-value outputs for both models are corresponding

to each other on the time scale, which is the consequence of the low-fidelity model being physically-based.

Also, the relative changes of the outputs while changing the model parameters are similar for both coarse

and fine models so that the multiplicative correction seems to be a natural choice.

It should be emphasized that our surrogate model does not use high-fidelity model sensitivity data. Still,

as demonstrated in Section 8, it is able to yield remarkably good results, not only with respect to the quality

of the final solution, but, most importantly, in terms of the low computational cost of the optimization

process.
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‣ Elemental (multiplicative) response correction of (smoothed) coarse model at iteration k

(     = # of discrete temporal points of coarse model,    = # of discrete spatial points )
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In this work, the surrogate model output is generated, at iteration k of the optimization process, by multi-

plicative correction of the low-fidelity model output (cf. Section 3). The correction factor, denoted as Akji,
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i.e.,

skji(u) := Akji
˜̂yji(u),

Akji :=
ỹβ
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where ỹβ is given by (9). We call Ak := (Akji)j,i ∈ RM̂×I the correction matrix in step k. We use it to write

the correction step in iteration k on the whole discrete state vector as

sk(u) := Ak ◦ ˜̂y(u), sk ∈ RM̂I

where the operation “◦” is defined by (11).

Note that the surrogate model is constructed using just one evaluation of the high-fidelity model. This

simple correction scheme is justified by the fact that the overall ”shape” of the low-fidelity model output

resembles that of the high-fidelity one. In particular, the high-value outputs for both models are corresponding

to each other on the time scale, which is the consequence of the low-fidelity model being physically-based.

Also, the relative changes of the outputs while changing the model parameters are similar for both coarse

and fine models so that the multiplicative correction seems to be a natural choice.

It should be emphasized that our surrogate model does not use high-fidelity model sensitivity data. Still,

as demonstrated in Section 8, it is able to yield remarkably good results, not only with respect to the quality

of the final solution, but, most importantly, in terms of the low computational cost of the optimization

process.
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6.2. Response Correction

In this work, the surrogate model output is generated, at iteration k of the optimization process, by multi-

plicative correction of the low-fidelity model output (cf. Section 3). The correction factor, denoted as Akji,

is defined by pointwise division of the smoothed fine by the smoothed coarse model output at the point uk,

i.e.,
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where ỹβ is given by (9). We call Ak := (Akji)j,i ∈ RM̂×I the correction matrix in step k. We use it to write

the correction step in iteration k on the whole discrete state vector as

sk(u) := Ak ◦ ˜̂y(u), sk ∈ RM̂I

where the operation “◦” is defined by (11).

Note that the surrogate model is constructed using just one evaluation of the high-fidelity model. This

simple correction scheme is justified by the fact that the overall ”shape” of the low-fidelity model output

resembles that of the high-fidelity one. In particular, the high-value outputs for both models are corresponding

to each other on the time scale, which is the consequence of the low-fidelity model being physically-based.

Also, the relative changes of the outputs while changing the model parameters are similar for both coarse

and fine models so that the multiplicative correction seems to be a natural choice.

It should be emphasized that our surrogate model does not use high-fidelity model sensitivity data. Still,

as demonstrated in Section 8, it is able to yield remarkably good results, not only with respect to the quality

of the final solution, but, most importantly, in terms of the low computational cost of the optimization

process.
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sk(uk) = ỹβ(uk)

‣ By definition, the surrogate satisfies exact 0-order consistency, i.e., 

‣ Note: we do not use sensitivity information from the fine model
(1st-order consistency condition cannot be satisfied exactly)

‣ Nevertheless: this surrogate model exhibits quite good generalization capability
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Figure 4: Surrogate’s, fine (down-sampled) and coarse model output ỹβ , ˜̂y, sk for the state detritus at depth
z ≈ −2.68m and at two iterates uk and with different neighborhood radii �, see the text for details. The surrogate
obviously provides a reasonable approximation of the fine model at the point and in the neighborhood. Shown are
the smoothed model outputs and for illustration only for some representative tracers and a part of the whole time
interval only.

cost.

7. Optimization Setup

The optimization approach proposed in this work has been tested using synthetic target data. We compare

the quality of the solution and the computational cost of the surrogate-based optimization to those obtained

by direct fine and coarse model optimization. For all optimizations we used the MATLAB2 function fmincon,

exploiting the active-set algorithm.

At a randomly chosen parameter vector ud ∈ Uad we computed the fine model output y(ud) and down-

sampled it to be commensurable with the coarse and surrogate model outputs. The resulting data set is used

as our synthetic target data yd and given as:

(yd)ji := yβ
ji(ud), j = 1, . . . , M̂ , i = 1, . . . , I.

where y
β was defined in (10).

2MATLAB is a registered trademark of The MathWorks, Inc., http://www.mathworks.com
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Figure 5:   Surrogate’s, fine (down-sampled) and coarse model output yβ, ŷ, sk for the state 
detritus at depth z ≈ −2.68 m and at two iterates uk and in a neighbourhood ūk. The surrogate 
obviously provides a reasonable approximation of the fine model at the point and in the 
neighborhood. Shown are the smoothed model outputs and for illustration only for some 
representative tracers and a part of the whole time interval only.
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Figure 5: Fine model output yβ (down-sampled) for state dissolved inorganic nitrogen (left) and the state detritus
(right) at depth z ≈ −2.68m (top) and z ≈ −184.32m (bottom). Shown are, in the legend from top to bottom: (i)
Target yd, i.e., the sampled fine model output at a randomly chosen parameter vector ud, (ii) fine model output at the
initial value u0, (iii) at the coarse model optimum û∗, (iv) at the optimum u∗

s obtained by surrogate optimization, and
(v) the fine model output at the result of the direct fine model optimization yielding u∗. Curves corresponding to (i),
(iv) and (v) are very close. For clarity, the sampled fine model output is only shown at the selected (representative)
time intervals. In the lower figures, a greater section can be shown since the model output at this deeper depth layer
is not as noisy as in upper layers.

approximation yβ(û∗) of the target data corresponding to J(yβ(û∗) ) = 2.96e+03. The optimization cost is

only Cc = 11.275 equivalent fine model evaluations. Optimization of the surrogate finally provides a solution

u∗
s with a remarkably good optimal fit yβ(u∗

s) and parameter match corresponding to a cost function of

J(yβ(u∗
s) ) = 48.527.

The key point is that the computational cost of the surrogate-based optimization is low: only Cs = 59.575

equivalent fine model evaluations were required to yield u∗
s. Roughly the same cost function value J ≈ 48

was obtained by direct fine model optimization after Cf = 375 model evaluations. Altogether, a reduction

in the total optimization cost of about 84% could be obtained by using this surrogate-based optimization

approach.

We point out that the performance looks similar for other initial conditions u0 as well as for other target

data. It is also worth noticing that although using different routines for fine/surrogate model optimization

might yield different results, the relative reduction in the total optimization cost using the surrogate in

the optimization run would probably be maintained. For example, in [14] better cost function values were
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Numerical Results

iterate uk,1 uk,2 . . . uk,12 J(yβ(u) ) Ci

u0 0.718 0.314 0.018 0.06 0.026 1.992 0.839 0.001 0.152 0.079 0.661 3.823 6.609e+04

Fine model optimization: u∗ := argmin u∈Uad
J

�
yβ(u)

�

u∗ 0.747 0.596 0.025 0.01 0.03 0.999 2.046 0.01 0.203 0.02 0.493 4.31 1.267e-02 983

Coarse model optimization: û∗ := argmin u∈Uad
J̃ ( ˜̂y(u) )

û∗ 0.3 1.066 0.036 0.065 0.064 0.025 0.04 0.065 0.01 0.012 0.73 3.449 2.96e+03 11.275

Surrogate optimization: u∗s := argmin u∈Uad
J̃ ( sk(u) )

u∗s 0.705 0.626 0.044 0.015 0.06 0.937 1.908 0.016 0.147 0.02 0.629 4.237 48.527 59.575

ud 0.75 0.6 0.025 0.01 0.03 1.0 2.0 0.01 0.205 0.02 0.5 4.32 ∼ 84% reduction

Table 1: Results of the fine, coarse model and surrogate optimization from one illustrative test run, corresponding
to results given in Figure 5, see the text for details. Shown are, for those three optimization approaches, the initial
and optimal parameters u0,u

∗, û∗,u∗
s , the corresponding values of the cost function J (which we use for comparison,

cf. (12)) and the computational cost Ci ∈ {Cf , Cc, Cs} (cf. Subsection 7.2) in terms of the total number of equivalent
fine model evaluations required to obtain the given cost function value.

obtained by direct fine model optimization using a different optimization method (other than MATLAB’s

fmincon) for the same problem and the same model.

8.2. Appropriate Choice of Number of Alignment Steps

It should be emphasized again that the surrogate-based optimization method presented in this paper does

not use sensitivity information and that the surrogate model satisfies exactly only the 0-order consistency

condition with the high-fidelity model (cf. Subsection 6.3). Because of the specific choice of the model

alignment method that is tailored to the relationship between the low- and high-fidelity model, our algorithm

is able to yield a rapid improvement of the cost function. On the other hand, the algorithm convergence can

be quite slow in the vicinity of the optimal solution. Both points are illustrated in the following paragraphs.

Results are presented in Figure 6 showing the value of the cost function J (cf. (12)) calculated at the

single iterates of the fine and coarse model optimization runs (Figure 5 and Table 1) and at those of this

extended surrogate optimization run. The x-axis represents the number of equivalent fine model evaluations

which were required to reach the given value of the cost function. The same figure indicates several points

corresponding to the specific values of the reduction in the total optimization cost.

The point showing 84% reduction marks the result u∗s which we presented in the previous paragraph

corresponding to a value of the cost function J(yβ(u∗s) ) ≈ 48 (cf. Figure 5, Table 1).

The figure also shows that approximately 95% reduction could be achieved after only 4 equivalent fine

model evaluations corresponding to a termination condition of J(yβ(uk) ) ≤ 2780). Of course the quality of

the final solution at this point is not as good as the quality of the solution given above in Figure 5 and Table

1, i.e., the one obtained after approximately equivalent 60 fine model evaluations. It is worth noticing that

with even more than those 60 model evaluations, no significant reduction in the cost function value J can be
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Figure 6:  
(left) Fine model output yβ (down-sampled) for dissolved inorganic nitrogen at depth z ≈ 2.68 m. Shown are, in 
the legend from top to bottom: (i) Synthetic target data, i.e., fine model output yβ at randomly chosen 
parameters ud, (ii) fine model output at the initial value u0, (iii) at the result of the direct fine model optimization 
u*, (iv) at the coarse model optimum û* and (v) at the result us* of a SBO run based on a multiplicative 
response correction.

(right) Cost function values J, computational costs Ci (in terms of number of equivalent fine model evaluations) 
at the initial parameter value u0, the fine model optimum u*, the coarse model optimum û* and at the solution 
us* of a SBO run. Cost savings, when using SBO, are about 84% when compared to the direct fine model 
optimization.
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Figure 6: The values of the cost function J (cf. (12)) versus the equivalent number of fine model evaluations for the
fine, coarse and the surrogate-based optimization run. Several points corresponding to various values of the relative
reduction in the total optimization cost (surrogate-based optimization versus straightforward fine model optimization)
are also indicated. Results of fine model and surrogate optimization given in Figure 5 and Table 1 correspond to the
point marked as ∼84%.

further achieved by the surrogate optimization process. Decreasing the threshold value in the termination

condition to J(yβ(uk) ) ≤ 0.1 leads to a significant increase of the number of surrogate optimization steps

of approximately 400.

On the other hand, optimization of the coarse model yields a solution û∗, which was obtained after

approximately 11 equivalent fine model evaluations (cf. Table 1) corresponding to J(yβ(û∗) ) ≈ 2960. This

result is much worse than that obtained using surrogate models.

9. Conclusions

Parameter optimization in climate models can be very expensive in terms of the cost function and gradient

evaluations, especially for three-dimensional cases. Therefore, methods that aim at reducing the optimization

cost, including surrogate-based optimization techniques, are highly desirable.

In this paper, we successfully applied a surrogate optimization technique to the optimization of a one-

dimensional coupled marine ecosystem model. We use a physically-based surrogate constructed from a

low-fidelity model that is the same as the original, high-fidelity one, but utilizes a coarser time discretization.

The surrogate is constructed through a simple multiplicative response correction of the low-fidelity model.

We demonstrated that the relation between the low- and high-fidelity model response values is rather well

preserved for various sets of parameters, which shows that our correction method is quite suitable for the

considered problem.

The optimization approach proposed in this work has been verified using synthetic target data. We

furthermore compared the results, both in terms of the quality of the solution and the computational cost,

18

Figure 7:  The values of the cost function J versus the equivalent number of fine model evaluations for the fine, coarse 
and the surrogate-based optimization run. Several points corresponding to various values of the relative reduction in the 
total optimization cost (surrogate-based optimization versus straightforward fine model optimization) are also indicated. 
Results of fine model and surrogate optimization given in Figure 6 (left) correspond to the point marked as ∼84%

Numerical Results



‣ We presented an efficient optimization methology for the optimization of climate model 
parameters

‣ We use a one-dimensional marine ecosystem model as a representative of this class of 
models

‣ Our approach is based on a coarser discretized low-fidelity model which is corrected by a 
multiplicative response correction

‣ The optimization process requires only one high-fidelity model evaluation per iteration

‣ It turned out that even without sensitivity information this approach is able to yield a very 
reasonable solution at the cost of a few high-fidelity evaluations only

‣ The robustness of the algorihtm can be further improved by using fine model sensitivity 
information 
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‣ Due to numerical noise (cf. Figure 2), it is reasonable to smoothen the coarse model output

‣ It was observed by visual inspection of the model outputs that this procedure allows us to 
remove the numerical noise and identify the main characteristics of the traces of interest

‣ For the smoothing we use a walking average with span ±n given as:

‣ It turns out, also by visual inspection, that a value of n = 3 and “double” smoothing are 
suitable for the considered problem

It is important to keep in mind that choosing β too large could lead to a numerically unstable scheme

[23]. The condition on stability is determined by the ratio h/u1 and the nonlinear coupling term Q, where h

denotes the spatial step-size. All computations in this paper were performed with parameters that guarantee

stability.

6. The Surrogate

The surrogate model is constructed here in a simple way using a multiplicative response correction of the

low-fidelity model. The correction term is calculated at the beginning of each iteration of the algorithm (4)

using a single high-fidelity model evaluation. It turns out that this way of correcting the low-fidelity model

is quite suitable for the considered problem because the relation between the low- and high-fidelity model

response values is rather well preserved for various sets of parameters u, at least locally.

6.1. Smoothing

As the low-fidelity model output is very noisy (cf. Figure 2), it is necessary to smoothen the coarse and,

consequently, also the fine model output before calculating the multiplicative correction factors. Initial ex-

periments indicated (details omitted for the sake of brevity) that the surrogate-based optimization exploiting

the unsmoothed model outputs is not able to yield a reasonable solution.

For the smoothening of the fine and coarse model output ŷ,y, respectively, we use a walking average with

span ±n given as:

˜̂yji :=
1

2n + 1

j+n�

m=j−n

�
1

2n + 1

m+n�

p=m−n

ŷpi

�

ỹβ
ji :=

1
2n + 1

j+n�

m=j−n

�
1

2n + 1

m+n�

p=m−n

yβ
pi

�

j = 1, . . . , M̂ , i = 1, . . . , I, (9)

where j, i are the temporal and spatial indices, respectively (cf. (8)) and where we used the down-sampled

fine model output, denoted by yβ ∈ RM̂I , which is given by

yβ
ji := yβj,i, j = 1, . . . , M̂ , i = 1, . . . , I, (10)

to be commensurable with the coarse model output. In this paper, we use n = 3. Also, the smoothing is

performed twice. It was observed by visual inspection of the model outputs that this procedure allows us to

remove the numerical noise and identify the main characteristics of the traces of interest. It turns out, also

by visual inspection, that the chosen value of n = 3 and “double” smoothing are suitable for the considered

problem. Figures 2 and 3 show the corresponding fine and coarse model outputs without (Figure 2) and with

smoothing (Figure 3), with increasing coarsening factor β (cf. Subsection 5.1) for one representative tracer.
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Smoothing
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‣ It is important to keep in mind that choosing β too large could lead to a numerically unstable 
scheme

‣ The condition of stability is dependent on the ratio h / v and the nonlinear coupling term Q 
( h = spatial step-size, v = here, sinking velocity )

Numerical Instability

Figure 4:  The figure shows one year of the fine model output y(u) and of the coarse model output ŷ for the state detritus at 
depth z ≃ 25 m for different values of the coarsening factor β and at some fixed parameters u. 
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FIGURE 2. The figure shows one year of the fine model output y(u) and of the coarse model output ŷ for the state detritus at
depth z! 25 m for different values of ! with ! = "/"̂ and at some fixed parameters u.

Discretization and Low-Fidelity Model

The model (1) is solved explicitly in the nonlinear coupling term Q and the sinking term for y(D) with an Euler-
forward timestepping method and implicitly in the diffusion term. An upstream scheme with u1 > 0 for the advection
and a central difference approximation for the diffusion is used in the discretization of the model equations. In the
discretized form of (1) we denote by y j the approximate solution in the jth timestep, where y j ≈ (y(zi,t j))i=1,...,K ,
y j ∈ R4·K and K is equal to the number of spatial discrete points. With Aj := A(t j) we have in matrix formulation

[

I− " ·Adiffj
]

︸ ︷︷ ︸

:=Bdiffj

y j+1 =
[

I+ " ·Aadvj
]

︸ ︷︷ ︸

:=Badv

◦BQj ◦B
Q
j ◦B

Q
j ◦B

Q
j (y j) , BQj (y j) := [I+ "/4 ·Qj(y j)] , j = 1, . . . ,M (4)

where the (time-dependent) operators Adiffj ,Aadv contain the spatial discretization of the sinking and diffusion term
(4× 4 blockdiagonalmatrices), Qj the nonlinear coupling in the four tracers (4× 4 blockmatrix) and M," denote the
number and size of the discrete time steps.
For the low-fidelity model we now use a coarser time-discretization with "̂ = ! · " . Figure 2 shows the fine model

and coarse models for different values of ! at some fixed parameters u.

Numerical Stability

The solution of the given partial differential equation (cf. Eq. (1)) is found by solving the associated finite difference
equations (cf. Eq. (4)). The essential idea defining stability is that the numerical process should not cause any small
perturbations introduced through rounding at any stage or through any initial perturbation to grow and ultimately
dominate the solution [5].
For the method (4) it can be shown that

∣
∣
∣
∣y j

∣
∣
∣
∣ ≤

(
j−1

#
m=0

∣
∣
∣
∣Bdiffm

∣
∣
∣
∣

)

·
∣
∣
∣
∣Badv

∣
∣
∣
∣
j
·
j−1

#
m=0

∣
∣
∣
∣LQm

∣
∣
∣
∣
4

, LQm := I+ "/4 ·Q′
m(0) since Qm(0) = 0 (5)

using a 1st-order Taylor approximation LQj of the nonlinear operator B
Q
j . Hence a sufficient criterion for stability of the

discretization scheme is
∣
∣
∣
∣Bdiffm

∣
∣
∣
∣ ≤ 1 ,

∣
∣
∣
∣Badv

∣
∣
∣
∣ ≤ 1 ,

∣
∣
∣
∣LQm

∣
∣
∣
∣ ≤ 1 . (6)

An analysis of Eq. (6) shows that stability is obtained if "̂ ≤ 2 ·)z1/u1, where)z1! 5.37m is equal to the thickness
of the uppermost gridbox. Figure 2 shows a comparism between the fine and different coarse models, for a specific
value of the sinking velocity u1 = 10m/d. In this case we have "̂ ≤ 2 ·)z1/u1! 25.8. We see that already with ! = 20
the model begins to show oscillations. However even then the model output is still reasonable. On the other hand,
while neglecting the nonlinear term Q, the theoretical upper bound on "̂ can be reproduced.
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‣ Aggressive Space Mapping (firstly developed by John W. Bandler et., 1994) is based on:

‣ If either the fine model nearly matches the data in an optimum or if both models are similar 
near their respective optima we obtain, using (5), so-called perfect mapping

‣ This motivates to solve for

‣ Under certain conditions ASM is equivalent to use surrogate given above in a SBO 
algorithm
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The following results were shown in Echeverŕıa and Hemker (2005): If either
the fine model nearly matches the data in an optimum

u∗ := argmin
u∈U

J (y(u) ) , i.e. y(u∗) ≈ yd,

or if both models are similar near their respective optima (y(u∗) ≈ ŷ(û∗)), we
obtain (using (5))

p(u∗) = argmin
u∈U

|| ŷ(u)− y(u∗) ||2Y ≈ argmin
u∈U

|| ŷ(u)− yd ||2Y = û∗. (8)

which is also referred to as a perfect mapping and which motivates to solve for a
solution of (7).

If in addition to (8) the mapping is injective and the coarse model optimum û∗
is unique, then the solution of the ASM approach, ū, coincides with the fine model
optimum u∗ and the solution ūs obtained by directly optimizing the surrogate
defined in (5), i.e.,

ūs = argmin
u∈U

J ( ŷ(p(u)) ) . (9)

However, in most real applications these theoretically derived conditions might
of course not be exactly satisfied. For a more detailed analysis we also refer to
Echeverŕıa and Hemker (2005)

For the complex model used here, it is not the focus of this paper (and it
is not clear if it is possible) to prove those theoretical conditions. Instead, the
applicability of the ASM algorithm is verified by using synthetic target data yd =
y(ud) with known parameters ud and by comparing the ASM solution ū to those
obtained by fine and coarse model optimization, u∗ and û∗, as well as to the known
optimal parameters ud.

7.1 Globalized Quasi-Newton Method

Since the standard Quasi-Newton Algorithm, as given in e.g. Kosmol (1993) and
Nocedal and Wright (2000), may suffer from local convergence one can additional
use a classical line search strategy introducing a merit function h : U → R given
as (Kosmol, 1993)

h(u) :=
1
2

|| F(u) ||2 =
1
2

|| p(u)− û∗ ||2 .

If F�(uk)B−1
k is positive-definite, then

∇h(uk)�dk = F(uk)�F�(uk)B−1
k F(uk) ≤ 0,

i.e., dk is a descent direction for h at the point uk.
Obviously the Newton direction (where Bk is replaced by F�(uk)) is always a

descent direction for h in uk, satisfying ∇h(uk)�dk = −2h(uk). Assuming that Bk

is a ”good” approximation of F�(uk), we use the last relation also in a line search
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Figure 3 Fine and coarse model output y, ŷ as well as the aligned surrogate
sk(uk) = ŷ (pk(uk)) for the state detritus, at the same randomly chosen
parameter vector uk, at depths z ≈ 25m (top) and z ≈ 60m. The surrogate
model provides a reasonable approximation of the fine model while lying
closer than the coarse model itself.

where the second relation is ensured by the minimization (5). Figure 3 illustrates
this property showing the fine and coarse as well as the surrogate model output
for the state detritus at a randomly chosen parameter vector uk. This supports
the argumentation above: In the point uk the surrogate obviously provides a
reasonable approximation for the fine model while being closer to it than the coarse
model itself. We will see in the next section that this property is also given in a
neighborhood.

7 Aggressive Space Mapping

In this section we will briefly recall the basic idea of the Aggressive Space Mapping
(ASM) algorithm and present the globalization strategy as well as the pseudo code
of the algorithm we used to obtain the results presented in this paper. The ASM
algorithm was firstly developed by Bandler et al. (1994). It firstly solves for an
optimum of the coarse model, i.e.,

û∗ := argmin
u∈U

J ( ŷ(u) )

and then iteratively computes a solution ū of the nonlinear system

F(ū) := p(ū)− û∗ = 0. (7)

using a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000) with
a Broyden rank-one approximation (Broyden, 1965) for the Jacobian Bk ≈ p�(uk)
(see also Bandler et al., 1994; Bandler et al., 2004a).
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ŷ(uk)
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F(ū) := p(ū)− û∗ = 0. (7)
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the fine model nearly matches the data in an optimum

u∗ := argmin
u∈U

J (y(u) ) , i.e. y(u∗) ≈ yd,

or if both models are similar near their respective optima (y(u∗) ≈ ŷ(û∗)), we
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is not clear if it is possible) to prove those theoretical conditions. Instead, the
applicability of the ASM algorithm is verified by using synthetic target data yd =
y(ud) with known parameters ud and by comparing the ASM solution ū to those
obtained by fine and coarse model optimization, u∗ and û∗, as well as to the known
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Figure 2 Fine and coarse model output y, ŷ, respectively, for the state dissolved
inorganic nitrogen at depth z ≈ 2.68 m for different values of the coarsening
factor β and the same randomly chosen parameter vector u. For simplicity we
skip subscripts in the legends of all figures.

6 The Surrogate Model

The ASM algorithm, as will be described in the next section, is a conditionally

equivalent approach to use a surrogate model in the optimization which is obtained

by a space mapping approach introduced by Bandler et al. (1994). Here a a

physical low-fidelity or coarse model with output ŷ (cf. Section 5) is corrected

in the kth optimization step by a so-called parameter mapping pk to obtain a

surrogate sk for the fine model, in detail

sk(u) := ŷ (pk(u)) , pk(u) = p(uk) + p�
(uk) (u− uk),

ûk = p(uk) := argmin
u∈U

|| ŷ(u)− y(uk) ||2Y . (5)

The usually non-linear mapping p is aligning the fine and coarse model and is

approximated in the point uk using a first-order Taylor expansion.

6.1 0-order Consistency

Assuming that the minimization in (5) actually yields perfect alignment

ŷ(ûk) = y(uk),

the surrogate exactly satisfies 0-order consistency, i.e., sk(uk) = y(uk) (cf. Section

4).

If this is not the case, i.e., the minimization (5) yields a local minimum for

which we would have obtained an approximate alignment only, i.e., ŷ(ûk) ≈ y(uk)

then obviously the surrogate’s consistency is only satisfied approximately, i.e.,

sk(uk) ≈ y(uk).

The 0-order consistency is dependent on how close the alignment of the coarse

model can be achieved by p. However, using the definition of the surrogate and

the mapping from (5), the surrogate obviously is at least as close to the fine model

as the coarse model itself, i.e.,

�sk(uk)− y(uk)� = �ŷ [p(uk)]− y(uk)� ≤ �ŷ(uk)− y(uk)� (6)
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Figure 3 Fine and coarse model output y, ŷ as well as the aligned surrogate
sk(uk) = ŷ (pk(uk)) for the state detritus, at the same randomly chosen
parameter vector uk, at depths z ≈ 25m (top) and z ≈ 60m. The surrogate
model provides a reasonable approximation of the fine model while lying
closer than the coarse model itself.

where the second relation is ensured by the minimization (5). Figure 3 illustrates
this property showing the fine and coarse as well as the surrogate model output
for the state detritus at a randomly chosen parameter vector uk. This supports
the argumentation above: In the point uk the surrogate obviously provides a
reasonable approximation for the fine model while being closer to it than the coarse
model itself. We will see in the next section that this property is also given in a
neighborhood.

7 Aggressive Space Mapping

In this section we will briefly recall the basic idea of the Aggressive Space Mapping
(ASM) algorithm and present the globalization strategy as well as the pseudo code
of the algorithm we used to obtain the results presented in this paper. The ASM
algorithm was firstly developed by Bandler et al. (1994). It firstly solves for an
optimum of the coarse model, i.e.,

û∗ := argmin
u∈U

J ( ŷ(u) )

and then iteratively computes a solution ū of the nonlinear system

F(ū) := p(ū)− û∗ = 0. (7)

using a Quasi-Newton iteration (Kosmol, 1993; Nocedal and Wright, 2000) with
a Broyden rank-one approximation (Broyden, 1965) for the Jacobian Bk ≈ p�(uk)
(see also Bandler et al., 1994; Bandler et al., 2004a).

Figure 8:  Fine and coarse model output y, ŷ as well as the aligned surrogate sk(uk) = ŷ( pk( uk ) ) for the state 
detritus, at the same randomly chosen parameter vector uk, at depths z ≈ 25m (top) and z ≈ 60 m (bottom). 
The surrogate model provides a reasonable approximation of the fine model while lying closer than the coarse 
model itself.
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uk,1 uk,2 . . . uk,12 J Ci

u0 0.486 0.644 0.019 0.01 0.037 0.933 1.905 0.006 0.18 0.017 0.406 6.937 5.9e-03

Fine model optimization: u∗ := argmin u∈U J (y(u) )

u∗ 0.764 0.599 0.027 0.01 0.035 1.018 1.93 0.01 0.218 0.02 0.495 5.866 1.6e-05 281

Coarse model optimization: û∗ := argmin u∈U J ( ŷ(u) )

û∗ 0.759 0.363 0.025 0.012 0.029 1.118 0.864 0.007 0.194 0.016 0.491 5.42 1.8e-03 19.95

ASM: Solve F(ū) := p(ū)− û∗ = 0

ū 0.759 0.587 0.027 0.011 0.034 0.944 1.524 0.01 0.179 0.02 0.49 6.073 5.0e-05 80.25

ud 0.75 0.6 0.025 0.01 0.03 1.0 2.0 0.01 0.205 0.02 0.5 6.0 57.54%

reduction

uk,1 uk,2 . . . uk,12 J Ci

u0 0.565 0.672 0.015 0.012 0.036 1.096 2.335 0.013 0.209 0.028 0.452 5.235 7.0e-02

Fine model optimization: u∗ := argmin u∈U J (y(u) )

u∗ 0.871 0.593 0.029 0.012 0.038 1.0478 0.952 0.011 0.223 0.019 0.466 5.836 5.6e-05 418

Coarse model optimization: û∗ := argmin u∈U J ( ŷ(u) )

û∗ 0.759 0.356 0.029 0.012 0.037 1.138 0.848 0.007 0.188 0.016 0.502 5.475 1.8e-03 26.35

ASM: Solve F(ū) := p(ū)− û∗ = 0

ū 0.761 0.572 0.031 0.011 0.043 0.96 1.529 0.011 0.174 0.02 0.512 5.976 5.9e-05 91.15

ud 0.75 0.6 0.025 0.01 0.03 1.0 2.0 0.01 0.205 0.02 0.5 6.0 71.27%

reduction

Table 1 Results of the fine and coarse model optimization and of the ASM algorithm
from two illustrative test runs, corresponding to Figures 5 (top) and 6
(bottom), See the text for details. Also shown are the corresponding values of
the cost function J given in (12) and the computational cost Ci in terms of
the total number of equivalent fine model evaluations required to obtain the
given cost function value J , again for the three cases, i.e.,
Ci ∈ {Copt,h, Copt,l, CQN}.

optimization (Copt,h, Copt,l) we consider the cost in terms of total number of
equivalent fine model evaluations. We generally yield the following:

CASM := Copt,l + CQN , CQN := NASM · Cp · Nqn
LS ,

Cp := Calign + 1, Calign := Nopt,p · (Cgrad + Nopt
LS )/β,

Copt,l := Nopt,l · (Cgrad + Nopt
LS )/β,

Copt,h := Nopt,h · (Cgrad + Nopt
LS ), Cgrad = 12. (14)

The optimization cost for the fine and coarse model optimization is given as the
number of iterations, denoted by Nopt,h, Nopt,l, times the cost of the gradient Cgrad

plus the number of line search steps done per iteration, denoted by Nopt
LS . Note that
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Figure 9:  
(left) Fine model output y for dissolved inorganic nitrogen at depth z ≈ 2.68 m. Shown are, in the legend from 
top to bottom: (i) Synthetic target data, i.e., fine model output y at randomly chosen parameters ud, (ii) fine 
model output at the initial value u0, (iii) at the coarse model optimum û*, (iv) at the result of the ASM algorithm 
ū, and (v) at the result of the direct fine model optimization u*.

(right) Cost function values J, computational costs Ci (in terms of number of equivalent fine model evaluations) 
at the initial parameter value u0, the fine model optimum u*, the coarse model optimum û* and the solution ū of 
the ASM algorithm. Cost savings, when using ASM, are about 57% when compared to the direct fine model 
optimization.
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y(ū)
y(u∗)

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

x 10
4

0

0.5

1

1.5

time [ hours ]

D
IN

 [
m

m
o

l N
 m

−
3
]

 

 

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

time [ hours ]

Z
O

O
 [
m

m
o
l N

 m
−

3
]

 

 

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

time [ hours ]

Z
O

O
 [

m
m

o
l N

 m
−

3
]

 

 

Figure 5 Fine model output y for dissolved inorganic nitrogen (left) and for

zooplankton (right) at depth z ≈ 2.68m (top) and z ≈ 108.15m (bottom).

Shown are, in the legend from top to bottom: (i) Target yd, i.e., fine model

output at randomly chosen parameters ud, (ii) fine model output at the

initial value u0, (iii) at the coarse model optimum û∗
, (iv) at the result of the

ASM algorithm ū, and (v) at the result of the direct fine model optimization

yielding u∗
. On the top left, we only show the interesting time interval.

Curves corresponding to (i), (iv) and (v) are very close.

parameters and values of the cost function J are given in the upper part of
Table 1. Furthermore the table shows the total cost of the fine (Copt,h) and the
coarse model optimization (Copt,l) and of the Quasi-Newton iterations of the ASM
algorithm (CQN ) in terms of the total number of equivalent fine model evaluations,
which were required to reach the given value of the cost function J . Equivalent
in this case means that for example β evaluations of the coarse model used here
with a coarsening factor β are equivalent to (or, as expensive as) one fine model
evaluation. Note that the total cost in the ASM approach consists of the cost for
the coarse model optimization Copt,l and those for solving the nonlinear system of
equations by the Quasi-Newton method, i.e., CQN . For details see also the next
subsection.

From Figure 5 we see that by the direct fine model optimization we yield a
very reasonable optimal fit y(u∗) (grey dashed line) of the target data yd (black
line). This corresponds to a cost function value of J(y(u∗)) = 1.611e− 05 obtained
after 281 function evaluations (cf. Table 1). We furthermore see that by the coarse
model optimization we yield parameters û∗ with a fit y(û∗) (light grey line) which
obviously provides only a rough approximation of the target data, but in Copt,l =
19.95 equivalent fine model evaluations only. Using the ASM approach, we finally


