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Abstract

The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, result-
ing in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected 
to impact calcification in calcifying marine organisms. However, other physiological processes related to calcifica-
tion might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were 
exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related 
to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will 
be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme func-
tioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term 
exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by 
CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to 
CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased 
with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation 
are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological 
status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implica-
tions of the physiological changes in C. officinalis in response to elevated CO2 are discussed.
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Introduction

Increasing atmospheric CO2 emissions are changing the 
chemistry in the surface layer of global oceans. As more 
CO2 dissolves into the seawater, changes in the speciation 
of inorganic carbon occur, resulting in more bicarbonate 
ions (HCO3

–), more protons (H+), and fewer carbonate ions 
(CO3

2–). The consequences of these changes are a lower pH 
and CO3

2– saturation state of the seawater. By the end of 
this century, the pH of surface oceans is expected to drop by 
0.3–0.5 units (Caldeira and Wickett, 2003; Feely et al., 2004; 

Orr, 2005) due to increasing concentrations of atmospheric 
CO2 that could reach up to 970 µatm CO2 (Houghton et al., 
2001). Such changes in seawater chemistry could have severe 
impacts on calcifying organisms, which rely on inorganic car-
bon for producing their shells and skeletons, which consist of 
calcium carbonate (CaCO3).

Several studies have shown negative responses of  cor-
als, macroalgae, and molluscs to elevated seawater CO2 
concentrations (Anthony et  al., 2008; Jokiel et  al., 2008; 
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Martin et  al., 2008; Martin and Gattuso, 2009; Albright 
et al., 2010; Diaz-Pulido et al., 2011; Rodolfo-Metalpa et al., 
2011; Hofmann et al., 2012b). However, due to the increase 
in ocean acidification research in the past few decades, it is 
now clear that calcifing marine organisms show a variety 
of  responses, due to differences in the substrate (HCO3

– or 
CO3

2–) used for calcification, their ability to control the pH at 
the location of  calcification, the crystalized form of CaCO3 
deposited, and the production of  protective organic layers 
that prevent dissolution (Ries, 2009, 2011; Hurd et al., 2011; 
Jokiel, 2011a,b; Rodolfo-Metalpa et al., 2011; Roleda et al., 
2012). Furthermore, studies have shown that physiological 
processes other than calcification, such as photosynthesis, 
nutrient assimilation, and growth, are also affected by ele-
vated CO2 concentrations (Magnusson et al., 1996; Mercado, 
1999; Gordillo et  al., 2001, 2003; Israel and Hophy, 2002; 
Zou, 2005; Connell and Russell, 2010; Zou et  al., 2011; 
Hofmann et  al., 2012b). The physiological and ecological 
responses of  calcifying organisms to elevated CO2 is there-
fore species specific, and also depends on local conditions, 
such as nutrient availability (Ries, 2009; Russell et al., 2009; 
Fabricius et  al., 2011; Price et  al., 2011; Hofmann et  al., 
2012a). It is nevertheless important to understand how all 
processes, not just calcification, will be affected by elevated 
CO2, and what implications these changes will have for cal-
cifiying organisms.

In calcifying primary producers, photosynthesis is also 
affected by increasing CO2 levels. However, the responses 
of these organisms are again variable, because of differ-
ent mechanisms and efficiencies of obtaining CO2 for pho-
tosynthesis. Because the ambient seawater concentration 
of HCO3

– is much higher than that of CO2, marine algae 
have mechanisms called carbon-concentrating mechanisms 
(CCMs) which transport HCO3

– across cell membranes using 
ion transporters, or catalyse the dehydration of HCO3

– to 
CO2 via the membrane-associated external carbonic anhy-
drase (Johnston, 1991; Badger and Price, 1994; Raven, 1997, 
2003; Raven et al., 2002). In non-calcifying algae, CCMs have 
been shown to be down-regulated under elevated CO2 con-
ditions. This down-regulation relieves algae from the high 
energy demands of producing ion transporter proteins and 
enzymes (Raven, 2011; Raven et al., 2012). However, in calci-
fying algae, this enzyme may play an additional role in calci-
fication, and has been shown to increase under elevated CO2 
(Isenberg et al., 1963; Hofmann et al., 2012b).

Nutrient assimilation and uptake are further metabolic 
processes that may be affected by higher CO2 concentrations. 
Because the speciation of inorganic nitrogen and phosphate 
is affected by pH, the preference and uptake of inorganic 
nutrients may be affected, as well as the enzymatic activity 
involved in nutrient assimilation. Non-calcifying macroalgae 
have been shown to decrease nitrate uptake under elevated 
CO2 (García-Sánchez et  al., 1994; Magnusson et  al., 1996; 
Andria et al., 1999). Such changes in metabolism are likely 
to have significant effects on macroalgal nutritional content, 
which could have implications for grazers and competitive 
interactions between species. To date, however, there have not 
been many studies investigating how inorganic carbon and 

nutrient-related enzymatic activity in calcifying macroalgae 
will respond to elevated CO2.

Seasonal changes in temperature, nutrient availability, 
and light are also likely to interact with the effect of CO2 
on metabolic processes in algae (Tyrrell et al., 2008; Martin 
and Gattuso, 2009; Mercado and Gordillo, 2011). As calci-
fication, photosynthesis, nutrient uptake, growth, and other 
metabolic processes are affected by temperature, light, and 
nutrient availability, changes in these factors are likely to have 
a strong influence on the enzymatic response of macroalgae 
to increasing CO2. Therefore, mesocosm studies such as this 
one are useful for monitoring CO2 effects over time during 
natural temperature, nutrient, and light fluctuations.

Both calcifying and non-calcifying algae provide impor-
tant habitat and shelter for many marine organisms, and erect 
calcifying algae such as Corallina officinalis contribute to the 
strength of the intertidal community structure and provide 
refugia for organisms in environments with high wave action 
(Dommasnes, 1968; Stewart, 1982; Coull and Wells, 1983; 
Kelaher, 2002, 2003). Corallina officinalis is an upright cal-
cifying alga found in the inter- and subtidal zones on rocky 
coastlines, often at exposed locations and in tidal drainage 
channels. It is a late successional species with a complex mor-
phological structure (Littler and Littler, 1980). Corallina spp. 
often form extensive macroalgal beds that cover large areas 
of the intertidal zone and provide substratum, habitat, and 
refugia for a number of important marine organisms (Coull 
and Wells, 1983; Hicks, 1977; Akioka et al., 1999; Kelaher, 
2002, 2003). The important ecological roles served by this 
alga could be interrupted under high CO2 conditions, as its 
skeleton contains high-Mg calcite, the most soluble form of 
CaCO3 found in calcifying marine macroalgae (Andersson 
et  al., 2008). It is therefore important to understand how 
its metabolism may be affected in the future. Therefore, a 
mesocosm study was conducted with macroalgal communi-
ties containing the calcifying rhodophyte C. officinalis grown 
under three different CO2 concentrations. The competitive 
interactions between C.  officinalis and non-calcifying mac-
roalgae as well as the overall macroalgal community response 
are discussed in a separate paper (Hofmann et  al., 2012a). 
Here the focus is on inorganic nutrient uptake rates and the 
ezymatic activity of carbonic anydrase and nitrate reductase 
in C. officinalis grown under elevated CO2 conditions.

Materials and methods

Experimental design and seawater chemistry
The experiment was conducted in 75 litre mesocosms on the German 
island of Sylt in the North Sea. Experimental conditions including 
mesocosm set-up, duration, and the inorganic carbon chemistry of 
the seawater are outlined in Hofmann et al. (2012a). Temperature, 
salinity, and pH were monitored daily. Seawater samples for inor-
ganic nutrient analysis were taken weekly from the seawater source 
flowing into all tanks. Nutrient uptake rates were calculated based 
on a 3 h incubation of C.  officinalis in 5 litre plexiglass chambers 
continuously bubbled with mixed gas (386, 665, or 1486 µatm CO2). 
Rates were calculated after doubling the projected surface area of the 
algal thalli, which was measured using the imaging analysis software 
ImageJ (National Institute of Mental Health, Bethesda, MD, USA).
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Tissue sampling and analysis
Corallina officinalis tissue samples were taken weekly for analysis of 
nitrate reductase and carbonic anhydrase activity, as well as total inor-
ganic carbon content of the skeleton. Nitrate reductase activity of 
C. officinalis was determined based on the in situ method of Corzo 
and Niell (1991). Fresh algal tissue (200–400 mg) was placed into 5 ml 
amber vials containing 3 ml of anoxic assay buffer (0.1 M phosphate 
buffer, pH 8.0, 0.5 mM EDTA, 0.1% 1-propanol, 30 mM KNO3, 
10 µM glucose) that had been previously bubbled with N2 gas for at 
least 5 min. Each vial was individually bubbled with N2 gas for an addi-
tional 1 min before being placed into a 30 °C water bath in the dark 
for 30 min. After the incubation, 1 ml of the assay buffer was removed 
and the nitrite concentrations were determined colorimetrically (Snell 
and Snell, 1949) after the addition of 200  µl of 4% sulphanilimide 
and 300 µl of 0.1% n-(1-naphthyl) ethylenediamine dihydrochloride. 
Following the assay, the algal tissue was dried at 60 °C for 48 h to deter-
mine the dry weight (DW), and nitrate reductase activity was calculated 
as µmol NO2

– g DW–1 h–1. Prior to the experiment, nitrate reductase 
activity was measured hourly under ambient CO2 conditions in the 
light (Fig. 1). Following this analysis, tissue was sampled for enzyme 
activity each week between 10:00 h and 14:00 h, when the activity was 
most stable, to ensure that the nitrate reductase activity measurements 
in C. officinalis were not confounded by daily fluctuations.

Total carbonic anhydrase activity of C.  officinalis was meas-
ured according to Haglund et  al. (1992). Algal tissue [50–100 mg 
fresh weight (FW)] was ground with liquid nitrogen using a chilled 
mortar and pestle and immersed in 15 ml of chilled assay buffer 
(50 mM TRIS, pH 8.5, 25 mM dithiothreitol, 25 mM isoascorbic 
acid, 5 mM EDTA). Aliquots of 3 ml of the extract were added to 
clean tubes followed by 2 ml of ice-cold CO2-saturated water. The 
time it took for the pH to drop 0.4 units during continuous mixing 
was recorded. Three aliquots from each extract were measured and 
the mean of these measurements was considered as one replicate. 
External carbonic anhydrase activity was measured using the same 
method, but with intact algal thalli (200–400 mg FW) immersed in 
assay buffer rather than algal extract. Total and external carbonic 
anhydrase activity were calculated as (Tb/Ts–1)/FW, where Tb=the 
time it took for a blank sample with just assay buffer to drop 0.4 
pH units, Ts=the time it took for the algal extract (total) or buffer 
with an intact thallus (external) to drop 0.4 pH units, and FW=fresh 
weight of the algae in grams. External carbonic anhydrase activity 
was normalized to the dry weight of the thalli. The internal carbonic 
anhydrase activity was calculated by subtracting the external from 
the total carbonic anhydrase activity.

The percentage of C. officinalis tissue made of CaCO3 was deter-
mined in fragments that were used in the enzyme activity analysis 
and was measured by determining the ash free DW of the dried tis-
sue after removing the organic material by burning at 400  °C for 

12 h. No effect of the enzyme assay buffers was apparent on the 
skeletal material, as the amount of CaCO3 in algae grown under 
385 µatm CO2 did not differ from previous measurements on algae 
that had not been exposed to any enzyme buffer. Furthermore, the 
CaCO3 content of algae exposed to the nitrate reductase assay buffer 
did not differ from that of algae exposed to the carbonic anhydrase 
assay buffer, and algae exposed to the assay buffers showed the same 
trend with respect to CO2 concentration.

Results

Seasonal variability of temperature and inorganic 
nutrients

The mean seawater temperature in the mesocosm tanks dur-
ing the experimental period is shown in Fig. 2. Temperature 
increased linearly with time from the end of March to the 
beginning of July 2011, and ranged from 6 °C to 19 °C. The 
seawater concentrations of nitrate, nitrite, ammonium, phos-
phate, and silicate are shown in Fig.  3. Nitrate concentra-
tions in the seawater ranged from 6.7  µM to 38.9  µM and 
were highest in March, at the beginning of the experiment, 
and declined rapidly to a minumum 40 d after the experiment 
began. Nitrate levels then began to increase again, but only 
reached 37% of the initial concentration by the end of the 
experiment. Silicate concentrations followed a similar pat-
tern, but reached higher than initial levels at the end of the 
experiment. On the other hand, phosphate concentrations 
increased during the experiment, and ammonium concentra-
tions ranged from 1.03 µM to 3.06 µM.

Nutrient uptake rates and nitrate reductase activity

Nutrient uptake rates of nitrate, ammonium, and phosphate 
by C. officinalis were measured after 35 d of exposure to the 
CO2 treatments and are shown in Fig. 4. There was a negative 
correlation between nitrate uptake and CO2 concentration 
(Pearson’s correlation coefficient= –0.81, P=0.002). There 
was no significant treatment effect of CO2 on ammonium or 
phosphate uptake rates.

Throughout the experimental period, there was a significant 
effect of time on nitrate reductase activity, as it decreased in 
all CO2 treatments after 12 weeks. There was also a significant 
effect of CO2 on nitrate reductase activity (Table  1). Algae 
grown under ambient CO2 levels had the lowest enzyme activ-
ity, while algae grown under 665 µatm CO2 had the highest 
(Fig. 5A). The relationship between nitrate reductase activity 
and nitrate uptake rate differed between the CO2 treatments 
(Fig.  6). The algae grown under elevated CO2 had higher 
nitrate reductase activity, but lower nitrate uptake rates com-
pared with algae grown in the ambient CO2 treatment.

Carbonic anhydrase activity

All carbonic anhydrase activity (total, internal, and external) 
was significantly affected by time. External carbonic anhy-
drase activity was affected by CO2, and internal and external 
carbonic anhydrase activity was affected by an interaction 
between time and CO2 (Table 1). Internal carbonic anhydrase 
showed no observable pattern over time, except for two peaks 

Fig. 1. Daily cycle of mean (±SE, n=3) nitrate reductase activity in 
C. officinalis in the light in April 2011. The hourly light intensity is 
shown by the dotted lines.
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in the 1486 µatm CO2 treatment after 4 and 8 weeks, and a 
large drop after 12 weeks. On the other hand, external car-
bonic anhydrase increased equally in all treatments during 
the first half  of the experiment until week 7 when all treat-
ments levelled off, but the enzyme activity was highest in the 
1486 µatm CO2 treatment and subsequently decreased with 
decreasing CO2 level (Fig. 5B, C).

CaCO3 content

Inorganic carbon content of the C. officinalis skeleton peaked 
in all treatments after 3 weeks, and afterwards the CO2 
treatment effect became apparent, as the skeletal inorganic 

carbon content decreased with increasing CO2 concentration 
(Fig. 5D). By the end of the experiment, there was a negative 
linear relationship between skeletal inorganic content (% DW 
of CaCO3) and external carbonic anhydrase activity which 
was not apparent after shot-term exposure (36 d) to elevated 
CO2 (Fig. 7A, B).

Discussion

The present results suggest that elevated CO2 will significantly 
affect enzyme activity and subsequently many metabolic pro-
cesses in C. officinalis, including photosynthesis, calcification, 
and inorganic nutrient uptake and assimilation. The enzyme 
external carbonic anhydrase is important in the CCM of many 
macroalgae. Although its activity has been shown to decrease 
in non-calcifying macroalgae in response to elevated CO2 
(Björk et al., 1993; García-Sánchez et al., 1994; Haglund and 
Pedersén, 2009), an increase in external carbonic anhydrase 
activity with increasing CO2 concentration was observed. In 
non-calcifying macroalgae, there is evidence that less enzyme 
is produced because more CO2 is available for photosynthesis, 
so less HCO3

– must be converted to CO2 (Giordano et  al., 
2005a, and references therein; Matsuda et al., 2011). However, 
in the case of calcifying macroalgae, it is likely that external 
carbonic anhydrase plays a role in metabolic processes other 
than photosynthesis, particularly calcification. In corals, car-
bonic anhydrase has been reported to be an important enzyme 
in the calcification process (Kingsley and Watabe, 1987; 
Nimer et  al., 1994; Al-Horani et  al., 2003; Rahman et  al., 
2008; Tambutté, 2007). Hofmann et al. (2012a) showed that 
calcification rates in C. officinalis had a parabolic relationship 
to CO2 concentration, and Hofmann et  al. (2012b) showed 
that external carbonic anhydrase showed an increasing trend 
with elevated CO2 in the same species. As photosynthesis was 
not stimulated by CO2 in this species, despite an increase in 

Fig. 2. Mean (±SE, n=4) seawater temperature in the mesocosm tanks during the experimental period. Circles, 385; squares, 665; and 
triangles, 1486 µatm CO2.

Fig. 3. Inorganic nutrient concentrations of the ambient seawater 
throughout the duration of the experiment, from 30 March to 17 
June 2011.
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external carbonic anhydrase activity, it is hypothesized that 
external carbonic anhydrase activity is related to calcifica-
tion, and that its activity is up-regulated under elevated CO2. 
In this way, the algae may regulate the calcification mecha-
nism despite changes in seawater inorganic carbon chemistry 
that are unfavourable for CaCO3 deposition. This hypothesis 
is supported by the relationship observed between external 
carbonic anhydrase activity and the skeletal inorganic carbon 
content of C. officinalis, which was only revealed after long-
term exposure to elevated CO2. Such a response of the algae 
could be to compensate for higher dissolution rates under 
elevated CO2 conditions (Ries, 2011; Rodolfo-Metalpa et al., 
2011). If  external carbonic anhydrase does indeed play a role 
in calcification, higher dissolution rates would explain why 
an increase in skeletal inorganic carbon was not seen despite 
an increase in external carbonic anhydrase activity under ele-
vated CO2.

The overall decrease in nitrate reductase activity in C. offic-
inalis grown at all CO2 concentrations during the first 6 weeks 
was most probably due to a decline in the seawater nitrate 

concentration, as the enzyme has been shown to be depend-
ent on external nitrate availability (Solomonson and Barber, 
1990; Gordillo et  al., 2006). Algae generally prefer ammo-
nium over nitrate as their nitrogen source, as it is less energy 
costly to assimilate (Losada and Guerro, 1979; Syrett, 1981). 
The ammonium concentrations were sufficient to supply the 
algae with an alternative source of nitrogen when the seawa-
ter nitrate concentrations, and subsequently nitrate reductase 
activity, decreased.

The decrease in nitrate uptake rates by C. officinalis under 
elevated CO2 conditions is consistent with other results 
found for non-calcifying macroalgae and seagrass (García-
Sánchez et al., 1994; Magnusson et al., 1996; Andria et al., 
1999; Alexandre et al., 2012) as well as the observed increase 
in nitrate reductase activity (Mercado et al., 1999; Gordillo 
et  al., 2001; Alexandre et  al., 2012). Mercado et  al. (1999) 
reported that the reduction and assimilation of nitrate in 
Porphyra leucosticta grown under elevated CO2 was uncou-
pled, which also seems to be the case in C. officinalis. Changes 
in the intracellular ATP:NADP+/NADPH ratio could affect 

Fig. 4. Boxplots showing the median, minimum, maximum, and first and third quartiles of C. officinalis uptake rates for (A) nitrate and 
ammonium and (B) phosphate as a function of CO2 concentration.

Table 1. Results from a MANOVA test on enzyme activity and CaCO3 content (Cinorg) of C. officinalis with time as a within-subject factor 
and CO2 as a between-subject factor. F-ratios are given with degrees of freedom in parentheses, followed by the P-values significant at 
the 95% confidence level.

Response variable Time (within-subject factor) CO2 (between-subject factor) Time×CO2 (interaction)

tCAA F(9, 81)=15.5, P=2.1E-14 – –
eCAA F(11, 99)=45.6, P=7.8E-34 F(2, 9)=36.2, P=5.0E-5 F(22, 99)=3.4, P=1.6E-5
iCAA F(10, 90)=15.5, P=1.0E-15 – F(20, 90)=2.4, P=0.003
NRA F(11, 99)=9.4, P=2.5E-11 F(2, 9)=5.0, P=0.034 –
Cinorg F(11, 99)=21.4, P=1.5E-21 F(22, 99)=2.1, P=0.006 F(2, 9)=12.1, P=0.003

tCAA, total carbonic anhydrase activity; eCAA, external carbonic anhydrase activity; iCAA, internal carbonic anhydrase activity; NRA, nitrate 
reductase activity.
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nitrate reductase activity, due to the requirement for NADPH 
as a reducing agent to convert nitrate to nitrite (Corzo and 
Niell, 1991). Chlamydomonas sp. cells grown under normal 
CO2 conditions require higher ATP:NADPH ratios for CO2 
assimilation than high CO2-grown cells (Spalding et  al., 
1984). Therefore, if  algae grown under elevated CO2 have a 
lower ATP:NADPH requirement, the excess NADPH could 
stimulate nitrate reductase activity. However, this may only be 
the case when CCMs are down-regulated. In high CO2-grown 
C. officinalis, the protein content decreases, indicating a likely 
decrease in Rubisco concentration. This reduction in Rubisco 
content could be interpreted as a partial down-regulation of 
the CCM in C. officinalis, despite the increase in external car-
bonic anhydrase activity. However, another possible reason 
for stimulation of nitrate reductase under elevated CO2 is a 
change in the plastoquinone pool. Giordano et  al. (2005b) 
reported that nitrate reductase activity is controlled by the 
redox state of the plastoquinone pool in Chlamydomonas 
reinhardtii, in that nitrate reductase activity is stimulated by a 
reduced plastoquinone pool. A reduced plastoquinone pool 
generally occurs under high light conditions, when the elec-
tron transport chain is saturated (Behrenfeld et al., 1998). The 
lower protein content in C. officinalis grown under elevated 

Fig. 5. Time series of mean (±SE, n=4) (A) nitrate reductase activity, (B) external carbonic anhydrase activity, (C) internal carbonic 
anhydrase activity, and (D) percentage inorganic carbon of C. officinalis exposed to three carbon dioxide concentrations. Circles, 385; 
squares, 665; and triangles, 1486 µatm CO2.

Fig. 6. Mean nitrate reductase activity (±SE, n=4) as a function 
of mean nitrate uptake rates in C. officinalis exposed to the 
three CO2 levels. Circles, 385; squares, 665; and triangles, 
1486 µatm CO2.
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CO2 (Hofmann et al., 2012a) suggests that Rubisco content 
may be lower in algae grown under high CO2 conditions. 
When CO2 concentrations are saturating for photosynthesis, 
activation of Rubisco can be rate limiting to photosynthesis 
rather than electron flow (Dietz and Herber, 1984). The com-
bination of high light conditions during summer and lower 
Rubisco content under elevated CO2 could have resulted in 
a more reduced plastoquinone pool in C.  officinalis grown 
under elevated CO2, causing the stimulation of nitrate reduc-
tase activity.

The absolute values and seasonal pattern of seawater tem-
perature in the mesocosm tanks and ambient seawater nutri-
ent concentrations were consistent with previously recorded 
seasonal trends in the Wadden Sea (van Beusekom et  al., 
2001, 2010). Therefore, the changes in both enzyme activi-
ties during the experimental period indicate that there was 
an effect of seasonally changing temperature and nutri-
ent conditions on C.  officinalis metabolism. However, the 
enzymes responded differently to seasonal fluctuations, as 
nitrate reductase increased and external carbonic anhydrase 
decreased during the first 6 weeks of the experiment. The 
increase in external carbonic anhydrase activity in all treat-
ments during the first 6 weeks was most probably a response 
to increasing seawater temperature, as enzymes have optimum 
temperatures for maximum activity, and C. officinalis growth 
is optimal at temperatures between 12 °C and 18 °C (Colthart 
and Johansen, 1973), which were reached after the first half  
of the experiment. The stimulation of carbonic anhydrase 
by elevated temperature has been previously reported for 
Chlorella vulgaris (Shiraiwa and Miyachi, 1985). This temper-
ature effect could have masked the CO2 effect during the first 
6 weeks of the experiment, as there was no difference in exter-
nal carbonic anhydrase activity between the CO2 treatments 

until after 6 weeks. Therefore, the enzymatic activity, reliant 
metabolic mechanisms, and cellular products of the calcify-
ing red alga C. officinalis will be affected by CO2, but will also 
depend on seasonal effects such as nutrient availability and 
temperature.

The present results indicate that the response of C. offici-
nalis to elevated CO2 is complex, and involves many metabolic 
processes other than just calcification and photosynthesis. 
The observed changes in enzyme activity, combined with 
changes in photosynthesis, calcification, and cell nutritional 
content reported by Hofmann et  al. (2012a), will alter the 
competitive status of C. officinalis under future oceanic CO2 
conditions, which could have implications for macroalgal 
communities and their grazers. However, it is still unclear if  
calcifying coralline algae, such as C. officinalis, will be able to 
adapt to increasing CO2 concentrations that will allow them 
to maintain their current competitive status within mac-
roalgal communities. Their ability to adapt will most prob-
ably depend on other abiotic factors and seasonal patterns. 
Therefore, it will be important to conduct future experiments 
on different life history stages of this alga, as well as to follow 
the responses of multiple generations to elevated CO2 under 
conditions which simulate seasonal changes.
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