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Štěpán Holuba,1, Dirk Nowotka∗,b

aDepartment of Algebra, Charles University of Prague,
Sokolovska 83, 186 75 Praha 8, Czech Republic.

bDepartment of Computer Science, Christian-Albrechts-Universität zu Kiel,
Christian-Albrechts-Platz 4, 24118 Kiel, Germany.

Abstract

We consider repetitions in words and solve a longstanding open problem about

the relation between the period of a word and the length of its longest unbordered

factor (where factor means uninterrupted subword). A word u is called bordered

if there exists a proper prefix that is also a suffix of u, otherwise it is called

unbordered. In 1979 Ehrenfeucht and Silberger raised the following problem:

What is the maximum length of a word w, w.r.t. the length τ of its longest

unbordered factor, such that τ is shorter than the period π of w. We show that,

if w is of length 7
3τ or more, then τ = π which gives the optimal asymptotic

bound.
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periodicity, unbordered words

1. Introduction

When repetitions in words are considered then two notions are central:

a (the) period, which gives an (the least) amount by which a word has to be

shifted in order to overlap with itself, and a (the shortest) border, which denotes

a (the least) nontrivial overlap of a word with itself. Both notions, period and
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border, are naturally related. For every p < |w| we have that p is a period of w,

if, and only if, w has a border of length |w| − p. In particular, the period of an

unbordered word is its length, and the length of the shortest border of a bordered

word is not larger than its period. Moreover, a shortest border itself is always

unbordered. Periodicity also restricts occurrences of long unbordered factors

(uninterrupted substrings). Deeper dependencies between the period of a word

and its unbordered factors have been investigated [1, 2, 3, 4, 5, 6] and exploited

in applications [7, 8, 9] for decades; see also references to related work below.

Let us recall the problem by Ehrenfeucht and Silberger [2]. Let w be a (finite)

word of length |w|, let τ(w) denote the maximum length of unbordered factors

of w, and let π(w) denote the period of w. Certainly, τ(w) ≤ π(w) since a period

of w is also a period of its factors. Moreover, it is folklore that τ(w) = π(w) when

|w| ≥ 2π(w) (it follows, for example, from the existence of Lyndon conjugates; see

chapter 5.1 in [10]). So, the relation between τ(w) and π(w) remains interesting

in cases where |w| < 2π(w). Actually, the interesting cases are also the most

common ones since a simple counting argument shows that by far most words

have a period that is longer than one half of their length. This leads to a much

more difficult problem, raised by Ehrenfeucht and Silberger [2] (see also Schütz-

enberger’s comments at the end of chapter 8 in [10]), which asks about a bound

on |w| depending on τ(w) — rather than on π(w) — such that τ(w) = π(w) is

enforced. In this paper we establish the following fact for all finite words w:

If |w| ≥ 7

3
τ(w) then τ(w) = π(w) .

This multiplicative bound on the length of w is asymtotically tight; see the

following example by Assous and Pouzet [11]. We do not address the additive

constant in this paper (see also Conclusions).

Previous Work

Ehrenfeucht and Silberger raised the problem described above in [2]. They

conjectured that |w| ≥ 2 τ(w) implies τ(w) = π(w). That conjecture was falsified

shortly thereafter by Assous and Pouzet [11] by the following example:
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w = anban+1banban+2banban+1ban (1)

where n ≥ 0 and τ(w) = 3n+6 (note that ban+1banban+2 and an+2banban+1b

are the two longest unbordered factors of w) and π(w) = 4n+7 and |w| = 7n+10,

that is, τ(w) < π(w) and |w| = 7
3τ(w)− 4 > 2τ(w). Assous and Pouzet [11] in

turn conjectured that 3τ(w) is the bound on the length of w for establishing

τ(w) = π(w). Duval [4] did the next step towards answering the conjecture. He

established that |w| ≥ 4 τ(w) − 6 implies τ(w) = π(w) and conjectured that,

if w possesses an unbordered prefix of length τ(w), then |w| ≥ 2 τ(w) implies

τ(w) = π(w). Despite some partial results [12, 13, 14] towards a solution, Duval’s

conjecture was only solved in 2004 [15, 6] with a new proof given in [5]. It turned

out that the optimal bound, for Duval’s conjecture, is 2 τ(w)− 1; note that this

result lowered the bound for Ehrenfeucht and Silberger’s problem to 3 τ(w)− 2,

in accordance with the conjecture by Assous and Pouzet [11].

However, there remained a gap of 2
3τ(w) between that bound and the largest

known example which is the one given above. The bound of 7
3τ(w) has been

conjectured in [15, 6]. This conjecture is proved here, and the problem by

Ehrenfeucht and Silberger is finally solved.

Other Related Work

The result related most closely to the problem by Ehrenfeucht and Silberger

is the so called critical factorization theorem (CFT).

The CFT states the following: Let w = uv be a factorization of a word w

into u and v. The local period of w at the point |u| is the length q of the shortest

square centered at |u| (see p. 6 for a more formal description). It is straightforward

to see that q is not larger than the period of w. The factorization uv is called

critical if q equals the period of w. The CFT states that a critical factorization

exists for every nonempty word w, and moreover, a critical factorization uv can

always be found such that |u| is shorter than the period of w. The CFT was

conjectured first by Schützenberger [16], proved by Césari and Vincent [1], and
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brought into its current form by Duval [3]. Crochemore and Perrin [7] found

a new and elegant proof of the CFT using lexicographic orders, and realized

a direct application of the theorem in a new string-matching algorithm.

How does the CFT relate to the problem by Ehrenfeucht and Silberger?

Observe that the shortest square x2 centered at some point in w is always such

that x is unbordered. If x results from a critical factorization and x occurs

in w, then τ(w) = π(w). Therefore, it immediately follows from the CFT that

|w| > 2π(w) − 2 implies τ(w) = π(w). The multiplicative constant two is

optimal as shown by the words (aba)kabba.(aba)k of length 2π(w)− 4 for which

τ(w) = π(w)−1. As already mentioned, we establish the asymptotically optimal

bound on |w| enforcing the equality τ(w) = π(w) in terms of τ(w) instead of

π(w). This rounds off the long lasting research effort on the mutual relationship

between the two basic properties of a word w, that is, τ(w) and π(w).

2. Notation and Basic Facts

Let us fix a finite set A of letters, called alphabet, for the rest of this paper.

Let A∗ denote the monoid of all finite words over A including the empty word

denoted by ε. Let u, v, w ∈ A∗ such that w = uv. Then u−1w = v and wv−1 = u.

For all k ≥ 0, we define w0 = ε and wk = wwk−1, if k > 0. In general, we denote

variables over A by a, b, c, and d and variables over A∗ are usually denoted

by f , g, h, r through z, and by Greek letters, including their subscripted and

primed versions. Typically, Greek variables are used to indicate a word defined

as a suffix with special lexicographic properties. The letters i through q are to

range over the set of nonnegative integers.

Let w = a1a2 · · · an. We denote the length n of w by |w|, in particular

|ε| = 0. Let 1 ≤ i ≤ j ≤ n. Then u = aiai+1 · · · aj is called a factor of w. Let

0 ≤ i ≤ n. Then u = a1a2 · · · ai is called a prefix of w, denoted by u ≤p w,

and v = ai+1ai+2 · · · an is called a suffix of w, denoted by v ≤s w. The longest

common prefix w of two words u and v is denoted by u ∧p v and is defined so

that if u ≤p v, then w = u, and if v ≤p u, then w = v, and in any other case w

4



is such that wa ≤p u and wb ≤p v for some different letters a and b. The longest

common suffix of u and v, denoted u ∧s v, is defined similarly, as one would

expect. Two words u and v, with |u| ≤ |v|, overlap each other, if there is a word

w, with |v| < |w| < |uv|, such that u ≤p w and v ≤s w or v ≤p w and u ≤s w.

An integer 1 ≤ p ≤ n is a period of w if ai = ai+p for all 1 ≤ i ≤ n − p. The

smallest period of w is called the period of w, denoted by π(w). A nonempty

word u is called a border of a word w, if w = uy = zu for some nonempty words

y and z. We call w bordered, if it has a border, otherwise w is called unbordered.

Let τ(w) denote the maximum length of unbordered factors of w, and τ2(w)

denote the maximum length of unbordered factors occurring at least twice in w.

Let τ2(w) = 0, if no unbordered factor occurs twice in w. We have that

τ(w) ≤ π(w) . (2)

Indeed, let u = b1b2 · · · bτ(w) be an unbordered factor of w. If τ(w) > π(w) then

bi = bi+π(w) for all 1 ≤ i ≤ τ(w)− π(w) and b1b2 · · · bτ(w)−π(w) is a border of u;

a contradiction.

Let C be a total order on A. Then C extends to a lexicographic order, also

denoted by C, on A∗ with u C v if either u ≤p v or xa ≤p u and xb ≤p v and

a C b. Let Ca denote an order on A where a is the maximum letter. The C-

maximum suffix α of a word w is defined as the suffix of w such that v C α for

all v ≤s w.

The following remarks state some facts about maximum suffixes which are

folklore. They are included in this paper to make it self-contained.

Remark 2.1. Let w be a bordered word. The shortest border u of w is unbor-

dered, and w = uzu. The longest border of w has length equal to |w| − π(w).

Indeed, if u is a border of w, then each border of u is also a border of w.

Therefore u is unbordered, and it does not overlap with itself. If v is a border of w

then |w| − |v| is a period of w. Conversely, the prefix of w of length |w| − π(w)

is a border of w.
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Remark 2.2. Any maximum suffix of a word w occurs only once in w and is

longer than its longest border, that is, longer than |w| − π(w).

Indeed, let α be the C-maximum suffix of w for some order C. Then w = xαy

and α C αy implies y = ε by the maximality of α. If w = uvα with |v| = π(w),

then uα ≤p w gives a contradiction again.

Remark 2.3. Let ϑ be its own maximum suffix w.r.t. some order C, and let x

be a prefix of ϑ of length π(ϑ). Then x is unbordered.

Indeed, suppose on the contrary that x is bordered, that is, x = ghg for some

nonempty g. Let ϑ = xy. We have gy C ϑ = ghgy, by assumption, which implies

y C hgy. Note that gy is not a prefix of ϑ otherwise |gh| < |x| is a period of ϑ

contradicting the choice of x. Hence, zb ≤p y and za ≤p hgy for some different

letters a and b with b C a. But, y ≤p ϑ, since |x| = π(w), implies zb ≤p ϑ which

contradicts the maximality of ϑ (since zb ≤p ϑ C za ≤p hgy). These arguments

are illustrated by the following figure.

ϑ

x

g h g

y

z a z b

Let an integer q with 0 ≤ q < |w| be called a point in w. A nonempty word

x is called a repetition word at point q if w = uv with |u| = q and there exist

words y and z such that x ≤s yu and x ≤p vz. Let π(w, q) denote the length

of the shortest repetition word at point q in w. We call π(w, q) the local period

at point q in w. Note that the repetition word of length π(w, q) at point q

is necessarily unbordered and π(w, q) ≤ π(w). A factorization w = uv, with

u, v 6= ε and |u| = q, is called critical, if π(w, q) = π(w), and if this holds, then q

is called a critical point. Let C be an order on A and J be its inverse. Then

the shorter of the C-maximum suffix and the J-maximum suffix of some word
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w is called a critical suffix of w. This terminology is justified by the following

version of the so called critical factorization theorem (CFT) [7] which relates

maximum suffixes and critical points.

Theorem 2.4 (CFT). Let w be a nonempty word and γ be a critical suffix

of w. Then |w| − |γ| is a critical point.

Remark 2.5. Let rs be an unbordered word where |r| is a critical point. Then s

and r do not overlap and sr is unbordered with |s| as a critical point.

3. Special Factorizations

Let us highlight the following definitions. They are not standard and will be

central to the proof of Theorem 4.1. Let the words α and w be given. The use

of Latin and Greek variables should suggest that the definitions will be typically

applied in situations when w is a long word, and α is its short factor with some

special lexicographic properties.

Definition 3.1. The longest prefix of α strictly shorter than α that is also

a suffix of w will be called the α-suffix of w.

We want to note that the previous definition will be useful in situation when α

is shorter than w, although it allows the other possibility too. Note also that

the α-suffix is allowed to be empty.

Definition 3.2. The number |wy−1|, where y is the α-suffix of w, is called the

α-period of w, denoted by πα(w).

In particular, |w| − |α| < πα(w) ≤ |w|.

Definition 3.3. The shortest prefix x of w satisfying πα(x) = πα(w) is called

the α-critical prefix of w.

Remark 3.4. Note that the α-suffix of w can be empty, but it cannot be equal

to α. For example, the abb-suffix of aabb is empty. Therefore, the abb-critical

prefix of aabb is aabb itself. In general, if α is unbordered and it is a suffix of w,

then the α-suffix of w is empty.

7



Remark 3.5. Let x be the α-critical prefix and y the α-suffix of w. Note that

πα(w) ≤ |x| ≤ |w| and, in particular, πα(w) = |x| = |w| if y = ε.

Consider the following illustration of the definitions with ga 6≤p α.

w

g ≤p α a

x

y ≤p α

Remark 3.6. Note that za = x, where a is a letter, is the α-critical prefix of

w, if, and only if, za is the longest prefix of w satisfying πα(z) < πα(za).

Example 3.7. Consider w = ababbaababab of length 12 and α = ababb. The

α-suffix of w is abab, whence πα(w) = 8. The α-critical prefix of w is ababbaababa

of length 11, since

πα(ababbaababa) = 8 , and πα(ababbaabab) = 6 .

a b a b b a a b a b a b

4. Solution of the Ehrenfeucht–Silberger Problem

This entire section is devoted to the proof of the main result of this paper:

the solution of the Ehrenfeucht–Silberger problem by Theorem 4.1.

Theorem 4.1. Let w ∈ A∗. If |w| ≥ 7
3τ(w) then τ(w) = π(w).

The strategy of the proof is as follows. We define a factorization of w, which

allows to detect its long unbordered factors. Two main constructions leading to

such factors are given in § 4.1 (Claim 4.7) and in § 4.2 (Claim 4.11). In § 4.3 we
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show that the main assumption of the theorem, namely that the length of the

constructed factors is at most 3
7 |w|, leads to a contradiction, unless τ(w) = π(w).

Note that the claim holds trivially if every letter in w occurs only once

because in that case τ(w) = π(w) = |w|. We now define the above mentioned

factorization of w, which is of central importance to our approach.

Definition 4.2. Let

w = v′uzuv

be a factorization of w such that u is unbordered, |u| = τ2(w) and z is of

maximum length (recall that τ2(w) denotes the maximum length of unbordered

factors occurring at least twice in w). Moreover, let us fix

t = v ∧p zu and t′ = v′ ∧s uz

for the rest of this proof.

The example of long words where the period exceeds the length of the longest

unbordered factors by Assous and Pouzet (see page 2) turns out to highlight the

most interesting cases of this proof. We therefore use its instance with n = 2

as a running example throughout this section. With this example, the above

defined factorization is illustrated by the following figure.

a a b a a a b a a b a a a a b a a b a a a b a a
v′ u z u v

It is clear that such a factorization exists whenever a letter occurs more than

once in w. However, it is not necessarily unique. For instance, the factorization

on the previous picture competes with the following one.

a a b a a a b a a b a a a a b a a b a a a b a a
v̂′ û ẑ û v̂

In general, suppose that t′u contains an unbordered factor û, distinct from u

but of the same length. Then we have a factorization v̂′ûẑûv̂ of w, which also

satisfies the requirements. Note, moreover, that if we define t̂ and t̂′ analogously
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to t and t′, then we have

t−1v = t̂−1v̂ and v′t′
−1

= v̂′(t̂′)
−1
. (3)

v′ u z u v

v̂′ û ẑ û v̂

t′

t̂′

t

t̂

In one case (see Case 1, p. 18) it will be important to require that t′u does

not contain such an unbordered factor û. That is, we shall single out the leftmost

possible factorization (within bounds given by the factor t′uzut).

Definition 4.3. If t′u does not contain an unbordered factor of length |u|

distinct from u, then we shall say that t′ is as short as possible.

If this additional assumption is not stated explicitly, then we consider an

arbitrary factorization maximizing |u| and |z|. The assumption is helpful in view

of the following claim.

Claim 4.4. Let t′ be as short as possible, and let ϑ be a maximum suffix of t′u

w.r.t. some order C. Then |ϑ| ≤ |u|.

Proof. Suppose that there is a maximum suffix ϑ of t′u strictly longer than u.

The prefix û of ϑ of length π(ϑ) is unbordered by Remark 2.3. It is of length at

least |u|, since otherwise u is bordered. From |u| = τ2(w) the equality |û| = |u|

follows since û occurs at least twice in w; a contradiction with the minimality

of t′.

We start the proof by the following claim, which reveals a long unbordered

factor in a special situation.

Claim 4.5. Let ϑ be the maximum suffix of u w.r.t. some order C. If v0ϑ is

a prefix of ϑv for some nonempty word v0, then uzuϑ−1v0ϑ is unbordered.

Proof. Suppose on the contrary that uzuϑ−1v0ϑ has a shortest border h. Note

that h is, like every shortest border of a factor in w, not longer than |u| = τ2(w).
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In fact |h| < |u| since |h| = |u| contradicts the maximality of |z|. If |ϑ| < |h| < |u|

then ϑ occurs more than once in u contradicting Remark 2.2, which states that

a maximum suffix occurs only once in a word. And finally, if |h| ≤ |ϑ| then u

is bordered by h since then h ≤s ϑ ≤s u; a contradiction which concludes the

proof.

As the reader already noted, our main tool will be considering maximum

suffixes w.r.t. certain lexicographic orders. Let us fix some notation.

Definition 4.6. Fix an order C. Let α denote the C-maximum suffix of u and

β the J-maximum suffix of u, where J is the inverse order of C. Let yα and yβ

denote the α- and β-suffix of uv. Moreover, let y be the shorter of yα and yβ

and let ξ be either α or β so that y = yξ. Let γ denote the shorter of α and β.

Note that |y| < |γ| in any case. The following figure shall illustrate the

considered setting by an example where v 6= t and |α| < |β| and |yα| > |yβ |, that

is, we have y = yβ and ξ = β and γ = α.

v′ u

β = ξ

yβ = y

α = γ

yα

ta

z u

β = ξ

α = γ tb

v

yα

yβ = y

The same notation for our running example is depicted next.

a a b a a a b a a b a a a a b a a b a a a b a a
v′ u z u v

yβ = y ta tb

yαα = u

β = ξ = γ

yβ = y

α = u

β = ξ = γ yβ = y
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It turns out that the proof splits into two main situations according to

whether or not |v| > |ty|. Each of the cases yields a long unbordered factor of w.

4.1. The First Construction

In this subsection we shall suppose |v| > |ty|. We consider the ξ-critical

prefix of w in order to obtain a long unbordered factor. Note that the following

claim holds independently of whether or not v 6= t.

Claim 4.7. If |v| > |ty|, then τ(w) ≥ |γzuvy−1|.

Proof. Suppose |v| > |ty|. The inequality implies that the ξ-critical prefix of w

can be written as v′uzuv0d, where d is a letter and v0 is a (possibly empty) word.

Let g denote the ξ-suffix of v′uzuv0.

Assume first that gd = ξ as illustrated by the next figure.

v′ u

y = yξ

ξ = gd

z u

ξ = gd

v

y = yξ

v0d

gd = ξ

Then the word uzuv0d is unbordered, by Claim 4.5. Recall that |γ| ≤ |ξ| ≤ |u|

and that |v0d| ≥ |vy−1|, since v′uzuv0d is the ξ-critical prefix of w. Therefore

we have τ(w) ≥ |uzuv0d| ≥ |γzuvy−1| as claimed.

Suppose next gc is a prefix of ξ with c 6= d. (Note that if gd 6= ξ, then c 6= d

is implied by the definition of the ξ-critical prefix.) We distinguish two cases on

the order of c and d in C.

Suppose c C d and consider βzuv0d. Recall that |β| > |y| and |v| ≤ |v0d|+ |y|.

Hence, either βzuv0d is unbordered and we get τ(w) ≥ |βzuv0d| ≥ |γzuvy−1|

and we are done, or βzuv0d has a shortest border, say hd.
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Suppose |h| ≤ |g| and |h| < |β| as illustrated by the next figure.

v′ u

gc

hc

β

hd

z u

β

v

v0d

gd

hd

Then hd is a prefix of β and the occurrence of hc ≤s gc in ξ, and hence also in

u, contradicts the maximality of β since hd J hc.

Suppose |g| < |h| < |β| as illustrated by the next figure.

v′ u

β = ξ

gc

hd

gd

z u

β = ξ

v

v0d

gd

hd

Then gd occurs in u and ξ = β. Indeed, gc ≤p ξ gives a contradiction if ξ = α

since gc C gd. But now, h contradicts the assumption that g is the ξ-suffix of

v′uzuv0.

It remains that |β| ≤ |h| which implies β ≤p h as illustrated next.

v′ u

β t

hd

z u

β

v

v0d

β

hd

The choice of u implies |h| < |u|. Hence, either h = βv0 or the word uzuv0h
−1β

is unbordered, by Claim 4.5. If uzuv0h
−1β is unbordered, then |u| > |hd|
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and |v| ≤ |v0d| + |y| imply τ(w) ≥ |uzuv0h−1β| > |βzuv0d| ≥ |γzuvy−1|. If

uzuv0h
−1β is bordered, then h = βv0, which implies v0d ≤p t (recall that

t = v ∧p zu), and |v| ≤ |ty|, since |v| ≤ |v0d| + |y|; a contradiction. This

completes the case c C d.

The case d C c is similar considering αzuv0d and the claim is thereby proved.

Remark 4.8. Note that we have arguments for v′ mirror symmetric to those

for v. That is, if we define α′, β′, y′, ξ′ and γ′ for v′ analogously, then Claim 4.7

implies the following: If |v′| > |t′y′|, then τ(w) ≥ |y′−1v′uzγ′|.

4.2. The Second Construction

In this section, we investigate the presence of long unbordered factors in w

when |v| ≤ |ty|. We shall also suppose that v is not a prefix of zu, that is, t 6= v.

Definition 4.9. In the rest of the paper, whenever t 6= v, the first letter of t−1v

will be denoted by b and the first letter of t−1zu by a. In other words, the word

ta is a prefix of zuv and tb a prefix of v, with a 6= b. Let δ denote the word such

that δa is the Ca-maximum suffix of t′uta for some fixed order Ca such that a is

the maximum in A.

The word δ plays an important role in this section, similar to the role of ξ in

the previous section. We first point out that every factor of t′uv is strictly less

than δa w.r.t. Ca if |v| ≤ |ty|. In particular, δa does not occur in t′uv in such a

case.

Claim 4.10. Let f be a factor of t′uv. If |v| ≤ |ty|, then f Ca δa and f 6= δa.

Proof. If f occurs in t′ut or y, then the claim follows from the maximality

of δa.

Assuming |v| ≤ |ty|, it remains that there is a prefix f ′b of f such that

f ′ ≤s t
′ut. Then f ′a ≤s t

′uta, and the maximality of δa implies f ′a Ca δa. The

claim now follows from f ′b ≤p f and f ′b Ca f ′a.

The following claim introduces a further long unbordered factor of w, namely

δt−1zuvy−1δ , where yδ is the δa-suffix of w.
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Claim 4.11. The word δt−1zuvy−1δ is unbordered, and |yδ| < |v| − |t|.

Proof. If |yδ| ≥ |v| − |t|, then there is a suffix t0 of t′ut such that t0b is a prefix

of yδ, and hence, a prefix of δ. This contradicts the maximality of δa w.r.t. Ca

since t0a is a suffix of t′uta, and hence, a suffix of δa. So, we have |yδ| < |v| − |t|.

In particular, we have that the δa-critical prefix of δt−1zuv is strictly longer

than δt−1zut, whence it can be written as δt−1zutvδd, where d is a letter. The

definition of the critical prefix implies that |tvδd| ≥ |v| − |yδ|. Let g denote the

δa-suffix of δt−1zutvδ. Since δa does not occur in t′uv by Claim 4.10, we have

that gd 6= δa. Therefore gc is a prefix of δa and c 6= d. Moreover, we deduce

d Ca c from Claim 4.10.

Suppose that |tvδd| > |v| − |yδ|. Then there is a suffix g′ of g such that

g′d is a prefix of yδ, and hence, also of δ. We obtain a contradiction with the

maximality of δa, since g′c is a factor of δa. The situation is illustrated in the

following figure.

v′ u

t

δ

yδ
a

z u

t

δ

b

v

yδ

tvδd
g′d

gdgc

δt−1zutvδd

Therefore |tvδd| = |v| − |yδ| and δt−1zuvy−1δ is the δa-critical prefix of

δt−1zuv.

Suppose that δt−1zuvy−1δ is bordered, and let h be its shortest border. The

15



definition of the critical prefix implies that the δa-period of δt−1zuvy−1δ is

|δt−1zuvy−1δ |, whence δa ≤p h. Since |h| < |u|, we have that δa occurs in uv

contradicting Claim 4.10.

Our running example gives the following setting, with d = b.

a a b a a a b a a b a a a a b a a b a a a b a a
v′ u z u v

ta = δa tb yδ

δt−1zutvδd
tvδd

We conclude this section by some auxiliary claims.

Claim 4.12. The word δ satisfies

|δ| > |t|+ |t′| − |z| . (4)

Proof. Suppose the contrary. Then δ lies within the overlap of ut and t′u in

uzu, as illustrated by the following figure.

u z u

t a

t′

δ

This contradicts the maximality of δa since it occurs now twice in t′uta; see also

Remark 2.2.

Remark 4.13. Similarly to the mirror symmetric version of Claim 4.7, see

Remark 4.8, we have a mirror symmetric setting for Claim 4.11, too.

Provided that t′ 6= v′, let a′t′ ≤s v
′uz and b′t′ ≤s v

′ with a′ 6= b′. Let

δ′ be defined analogously to δ. If |v′| ≤ |y′t′|, then Claim 4.11 translates to

y′−1δ v′uzt′−1δ′ is unbordered and |y′δ| < |v′| − |t′|.

16



Claim 4.7 is formulated for an arbitrary order C. Since we want to combine

results of § 4.1 with the present section, we shall identify C and Ca. In particular,

we have b C a, and δa is the C-maximum suffix of t′uta.

The conditions |v| ≤ |ty| and the t 6= v now imply that utb and yα are

overlapping in uv. Let f be the word such that fb is the overlap. In other words,

f is a suffix of ut such that uv = utf−1yα. Since |yα| < |α|, we have

|t| > |v| − |α|+ |f | . (5)

u v

t b

yα

f

Note that fb is a prefix of yα, and fa a suffix of uta. We have the following

claim (recall Definition 4.3).

Claim 4.14. If t′ is as short as possible, then

|f | > |t|+ |t′| − |z| . (6)

Proof. Similarly as above for δ, we deduce that fa cannot be a factor of

the overlap of t and t′ in z, otherwise α is not the C-maximum suffix of t′u,

a contradiction with Claim 4.4 on page 10.

4.3. Implied Inequalities

In this section, we procede by case distinction and conclude the proof of the

main Theorem 4.1. We shall suppose that τ(w) ≤ 3
7 |w| and obtain in respective

cases either a contradiction, or τ(w) = π(w). In other words, we show that the

inequalities derived so far cannot hold, unless τ(w) > 3
7 |w| or τ(w) = π(w).

The case distinction is based on whether or not t = v (t′ = v′); in addition

to the main criterion of previous sections, that is, whether or not |v| > |ty|

(|v′| > |t′y′|).
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Case 1: t 6= v or t′ 6= v′, but not both.

By symmetry, we assume t 6= v and t′ = v′ in the following. We also assume

that t′ is as short as possible. Note that this assumption does not change the

situation, that is, we still have t 6= v and t′ = v′; see (3).

Subcase 1.1: |v| > |ty|

Claim 4.7 on page 12 yields τ(w) ≥ |γzuvy−1|. If |v′| ≤ |v|, then the inequality

|γ| > |y| implies τ(w) > |zuv| ≥ 1
2 |w|; a contradiction to our assumption. We

therefore have |v′| > |v|.

Claim 4.4 implies

|γz| > |v′| . (7)

Indeed, if |γz| ≤ |v′|, then γz ≤s t
′ = v′, and hence, there is a maximum suffix ϑ

of t′u strictly longer than u contradicting Claim 4.4 (where we let ϑ be the

maximum suffix of t′u with respect to the same order to which γ is the maximum

suffix of u).

Again, we deduce a contradiction with τ(w) ≤ 3
7 |w| since τ(w) ≥ |γzuvy−1| >

1
2 |w| by

2(|γ|+ |z|+ |u|+ |v| − |y|) > |v′|+ |γ|+ |z|+ 2(|u|+ |v| − |y|) (by (7))

> |v′|+ |z|+ 2(|u|+ |v|)− |y| (by |γ| > |y|)

> |v′|+ |z|+ 2|u|+ |v| (by |v| > |y|)

= |w|.

Subcase 1.2: |v| ≤ |ty|

In this subcase, we obtain a contradiction by establishing the following set

of inequalities that do not have a common solution. Inequality (4) can be

transformed into

L1 := |δ| − |t| − |t′|+ |z| − 1 ≥ 0 .
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Claim 4.11 on page 15 yields |δzu| + 1 ≤ 3
7 |w| which together with |w| =

|v|+ |v′|+ 2|u|+ |z| gives

L2 := 3|v′|+ 3|v| − |u| − 4|z| − 7|δ| − 7 ≥ 0 .

Moreover, since |yδ| ≤ |δ|, Claim 4.11 yields |t−1zuv| ≤ 3
7 |w| and we obtain

L3 := 7|t|+ 3|v′| − 4|v| − 4|z| − |u| ≥ 0 . (8)

The desired contradiction, that is, the fact that the above inequalities have no

common solution, follows from

21 L1 + 4 L2 + 3 L3 = −7(|uzδ|+ 7) ,

which is obtained keeping in mind that t′ = v′.

Case 2: t 6= v and t′ 6= v′.

By symmetry, we can suppose |v′| ≤ |v|, which implies τ(w) < |γzuvy−1|,

see the beginning of Subcase 1.1. Claim 4.7 now yields |v| ≤ |ty|. As above in

Subcase 1.2, we obtain L1, L2, L3 ≥ 0. We need some more inequalities in this

case for we assume t′ 6= v′. Inequality (5) can be transformed into

L4 := |t|+ |α| − |f | − |v| − 1 ≥ 0 ,

and the inequality (6) into

L5 := |f | − |t| − |t′|+ |z| − 1 ≥ 0 .

We now exploit Remark 4.8 on page 14. If τ(w) ≥ |y′−1v′uzγ′|, then using

|y′| < |γ′| and τ(w) ≤ 3
7 |w| we obtain the inequality

L6 := 3|v| − 4|v′| − 4|z| − |u| − 7 ≥ 0 .

If, on the other hand, the inequality |v′| ≤ |t′y′| holds, then we can use Re-

mark 4.13 and derive the mirror variant of (8), namely, the inequality

L7 := 7|t′|+ 3|v| − 4|v′| − 4|z| − |u| ≥ 0 .
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We now get

14 L1 + 2 L2 + 2 L3 + 7 L4 + 7 L5 + 3 L7 =

14 L1 + 2 L2 + 2 L3 + 7 L4 + 7 L5 + 3 L6 + 21(|t′|+ 1) = −42− 7|zuα−1| .

Once again, a sum of nonnegative values turns out to be negative; a contradiction.

Case 3: t = v and t′ = v′.

This is the only case, in which we prove τ(w) = π(w), instead of a contradic-

tion.

Note that now |uz| is a period of w whence π(w) ≤ |uz|. We can suppose

that π(w) > |u| since otherwise π(w) = τ(w) = |u|, and we are done. Let rs be

a critical factorization of u. Then szr is unbordered of length π(w), unless r is

a prefix, and s is a suffix of z; see Remark 2.5 on page 7. Suppose the latter

possibility. Now, either one of the words uz and zu is unbordered of length

π(w) or u is both prefix and suffix of z. We are therefore left with the case

w = v′uiz′ujv, with i, j ≥ 2, where u is not a suffix of uz′ and not a prefix of z′u.

Note that z′ cannot be empty. Moreover, v′ is a suffix of uz = uiz′uj−1 and v is

a prefix of zu = ui−1z′uj . From the maximality of z we deduce

|v′| < |u| and |v| < |u| (9)

which implies that v′ is a suffix of u, and v is a prefix of u.

Suppose, without loss of generality, i ≤ j. Similarly as above, we have that

either sz′uj−1r or z′uj is unbordered, whence |z′uj | ≤ τ(w). From |z′uj | ≤ 3
7 |w|

we deduce

|v′v| ≥
(

4

3
j − i

)
|u|+ 4

3
|z′| . (10)

If i < j, then we obtain from j ≥ 3 that |v′v| > 2|u|; a contradiction with (9).

Therefore i = j ≥ 2.

If v′ is a suffix of uz′ and v a prefix of z′u, then we have π(w) = τ(w) = |z′uj |.

Otherwise, we obtain from Case 1 and Case 2 an unbordered factor u0 of v′uz′uv

longer than 3
7 |v
′uz′uv|. We show that u0 induces a long unbordered factor
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of w. First, suppose that u0 is a factor of uz′u. Then |u0| ≤ π(uz′u) = |uz′|.

Since the inequalities |uz′| ≥ |u0| > 3
7 |v
′uz′uv| imply |ujz′| > 3

7 |w|, we have

a contradiction with |ujz′| ≤ τ(w). Suppose now that u0 is not a factor of uz′u.

Without loss of generality we can suppose that u0 = puq, where p is a suffix of

v′uz′ and q is a nonempty prefix of v. Then the word pujq is a factor of w, and,

again, |pujq| > 3
7 |w|. It is obvious that pujq is unbordered since its shortest

border cannot be longer than u (by |u| = τ2(w)) and each border of length at

most |u| would be also a border of puq.

This concludes the proof of Theorem 4.1.

As we mentioned above, Case 3 is the only one allowing τ(w) = π(w). We

can therefore extend Theorem 4.1 with the following claim.

Claim 4.15. Let |w| ≥ 7
3τ(w), and let v′uzuv be a factorization of w satisfying

Definition 4.2. Then v′ is a suffix of zu, and v is a prefix of uz.

5. Conclusions

The relation between the period π(w) of a word w and the length τ(w)

of its longest unbordered factors has been investigated in this paper. Clearly,

τ(w) ≤ π(w). It is also not difficult to see that τ(w) = π(w) holds for long

words, that is, for words, which are much longer than both τ(w) and π(w). The

question of interest is: When exactly is a word long enough so that τ(w) = π(w)

is enforced? When the word length is expressed w.r.t. π(w), it is known that

|w| > 2π(w)− 2 implies τ(w) = π(w) .

Theorem 4.1 of the present paper makes the complementary statement

|w| ≥ 7

3
τ(w) implies τ(w) = π(w) .

This solves a problem raised first by Ehrenfeucht and Silberger in 1979. Note

that the result is independent of the alphabet size.
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The bounds 2τ(w) (see [2]) and 3τ(w) (see [11]) have been previously con-

jectured, and several attempts in proving the latter have been made; see [4, 12,

13, 14, 5]. However, the bound proved above is (asymptotically) tight as demon-

strated by an example in [11] with words of length 7
3τ(w)− 4 and τ(w) < π(w).

For the sake of clarity we did not try to make the additive constant optimal in

this paper. We only note that our arguments can be easily modified to obtain

that already |w| > 7
3τ(w) − 8

3 implies τ(w) = π(w). We do not consider this

value of the additive constant to be too interesting since we conjecture that the

example by Assous and Pouzet is optimal, that is

|w| > 7

3
τ(w)− 3 implies τ(w) = π(w) ,

and, moreover, if |w| = 7
3τ(w)− 4 and τ(w) 6= π(w), then w is of the form given

by (1).

Apart from the actual result, we would like to point out the proof techniques

used to solve the Ehrenfeucht–Silberger problem. In particular, the notion of

α-critical prefix of a word w (Definition 3.3) is used to find long unbordered

factors in words with a large period, that is, words that do not have much of a

global structure. We are confident that the investigation of α-critical prefixes

of a word will lead to more insights in its structure, for example w.r.t. its local

periods.
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