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Abstract. In this paper we consider the avoidance of patterns in infi-
nite words. Generalising the traditional problem setting, functional de-
pendencies between pattern variables are allowed here, in particular, pat-
terns involving permutations. One of the remarkable facts is that in this
setting the notion of avoidability index (the smallest alphabet size for
which a pattern is avoidable) is meaningless since a pattern with per-
mutations that is avoidable in one alphabet can be unavoidable in a
larger alphabet. We characterise the (un-)avoidability of all patterns of
the form πi(x)πj(x)πk(x), called cubes under permutations here, for all
alphabet sizes in both the morphic and antimorphic case.

1 Introduction

The avoidability of patterns in infinite words is an old area of interest with
a first systematic study going back to Thue [1,2]. This field includes discoveries
and studies by many authors over the last one hundred years; see for example [3]
and [4] for surveys. In this article, we are concerned with a generalisation of the
theme by considering patterns with functional dependencies between variables,
in particular, we investigate permutations. More precisely, we do allow function
variables in the pattern that are either morphic or antimorphic extensions of
permutations on the alphabet. Consider the following pattern for example:

xπ(x)x

where an instance of the pattern is a word uvu that consists of three parts
of equal length, that is, |u| = |v|, and v is the image of (the reversal of) u
under any permutation on the alphabet. For example, aab|bba|aab (aab|abb|aab)
is an instance of xπ(x)x for the morphic (respectively, antimorphic) extension
of permutation a 7→ b and b 7→ a.

Recently, there has been some initial work on avoidance of patterns with
involutions which is a special case of the permutation setting considered in this
paper (as involutions are permutations of order at most two); see [5,6,7]. The
original interest of investigating patterns under involution was motivated by
possible applications in biology where the Watson-Crick complement corresponds
to an antimorphic involution over four letters. Our considerations here are much
more general, however, and the relation to direct applications in microbiology
are admittedly scant.
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Since these are the very first considerations on this kind of pattern avoidance
at all, we restrict ourselves to cube-like patterns. The cube xxx is the most
basic and well-investigated pattern that lends itself to nontrivial considerations
on patterns with functional dependencies (a square would hardly be interesting
in that context). So, we have one variable, occurring three times, and only one
function variable, that is, we investigate patterns of the form:

πi(x)πj(x)πk(x)

where i, j, k ≥ 0.
It is worth noting that the notion of avoidability index plays no role in the

setting of patterns involving permutations. Contrary to the traditional setting,
where once a pattern is avoidable for some alphabet size it remains avoidable
in larger alphabets, a pattern with permutations can become unavoidable in a
larger alphabet. This is a new and somewhat unexpected phenomenon in the field
of pattern avoidance. It does not occur, for example, in the involution setting
but requires permutations of higher order.

2 Preliminaries

We define Σk = {0, . . . , k − 1} to be an alphabet with k letters. For words u and
w, we say that u is a prefix (resp. suffix) of w, if there exists a word v such that
w = uv (resp. w = vu). We denote that by u ≤p w (resp. u ≤s w).

For a word w and an integer i with 1 ≤ i ≤ |w| we denote the i-th letter of w
by w[i]. We also denote the factor that starts with the i-th letter and ends with
the j-th letter in w by w[i..j]. If w is a word of length n then wR, the reversal
of w, is defined as the word w[n]w[n− 1] . . . w[1].

If f : Σk → Σk is a permutation, we say that the order of f , denoted ord(f),
is the minimum value m > 0 such that fm is the identity. If a ∈ Σk is a letter,
the order of a with respect to f , denoted ordf (a), is the minimum number m
such that fm(a) = a.

A pattern which involves functional dependencies is a term over (word) vari-
ables and function variables (where concatenation is an implicit functional con-
stant). For example, xπ(y)π(π(x))y is a pattern involving the variables x and y
and the function variable π. An instance of a pattern p in Σk is the result of
substituting every variable by a word in Σ∗k and every function variable by a
function over Σ∗k . A pattern is avoidable in Σk if there is an infinite word over
Σk that does not contain any instance of the pattern.

In this paper, we consider patterns with anti-/morphic permutations, that
is, all function variables are unary and are substituted by anti-/morphic per-
mutations only. A more formal definition of patterns and avoidability under
permutations is given in the Appendix, together with several conventions we
make for our notations.

The infinite Thue-Morse word t is defined as

t = lim
n→∞

φnt (0),
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for φt : Σ∗2 → Σ∗2 where φt(0) = 01 and φt(1) = 10. The word t avoids the
patterns xxx (cubes) and xyxyx (overlaps).

Let h be the infinite word defined as

h = lim
n→∞

φnh(0),

where φh : Σ∗3 → Σ∗3 is a morphism due to Hall [8], defined by φh(0) = 012,
φh(1) = 02 and φh(2) = 1. The infinite word h avoids the pattern xx (squares).

The reader is referred to [9] for further details on the concepts discussed in
this paper. Finally, note that some proofs are omitted due to space limitations.

3 The morphic case

In this section, the function variable π is always substituted by a morphic per-
mutation.

We begin this section by showing the avoidability of a series of basic patterns.
These results are then be used to show the avoidability of more general patterns.
Our first result uses the morphism α : Σ∗2 → Σ∗3 that is defined by

0 7→ 02110, 1 7→ 02210.

Lemma 1. The infinite word tα = α(t) avoids the patterns xxx and xπ(x)x in
Σm, for all m ≥ 3. These patterns cannot be simultaneously avoided by words
over smaller alphabets.

The following lemma is the main tool that we use to analyse the avoidabil-
ity of cubes under morphic permutations. To obtain this result we apply the
morphism β : Σ∗2 → Σ∗4 defined by

0 7→ 012013213, 1 7→ 012031023.

Lemma 2. Let tβ = β(t) for the morphism β defined before and let i, j ∈ IN and
f, g be morphic permutations of Σm with m ≥ 4. The word tβ obtained as such
does not contain any factor of the form uf(u)g(u) for any u ∈ Σ∗4 with |u| ≥ 7.
Furthermore, tβ does not contain any factor of the form uf i(u)f j(u) with∣∣{u[`], f i(u)[`], f j(u)[`]

}∣∣ ≤ 2,

for all ` ≤ |u| and |u| ≤ 6.

Proof. We begin with addressing the first claim. One can easily show that tβ
contains no cube. For |u| ∈ {7, 8}, the length of uf(u)g(u) is 21 or 24 and so
it is completely contained in β(v) for some factor v of the Thue-Morse word
with |v| = 4. Thus, it is sufficient to check that there is no factor of the form
uf(u)g(u) in the image of the set of factors of length 4 of the Thue-Morse word.
We did this using a computer program1.

1 Implementations of all programs mentioned in this paper can be found at the web-
page http://www.informatik.uni-kiel.de/zs/taocup.

http://www.informatik.uni-kiel.de/zs/taocup
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For |u| ≥ 9 we have that at least one of the factors u, f(u), g(u) has 3 occur-
rences of the letter 1. Indeed, any factor uf(u)g(u) of tβ , having length greater
than or equal to 27, has a factor xβ(s1s2)y where s1, s2 ∈ {0, 1} and |xy| = 9.
Clearly, x is a suffix of β(s3) and y is a prefix of β(s4) for some letters s3 and
s4 from {0, 1}. Now, regardless of the way we choose the letters s1, s2, s3 and
s4 from {0, 1}, such that s1s2s3s4 is a factor of t, we obtain that any factor
of length 27 of β(s1s2s3s4) contains at least 7 occurrences of the letter 1. By
the pigeonhole principle, it follows that at least one of the factors u, f(u), g(u)
has 3 occurrences of the letter 1. In fact, this factor contains one of the words
w1 = 1201321, w2 = 1321301, w3 = 1301201, or w4 = 13012031. Also, denote
y1 = 0120310, y2 = 0310230, and y3 = 0230120. Let us assume first that u con-
tains three occurrences of the letter 1, and assume that u[i..i+`], with ` ∈ {6, 7},
is the leftmost subfactor of u that contains three 1-letters and begins with 1.
But this means that also f(u)[i..i + `] and g(u)[i..i + `] contain three identical
letters. It is rather easy to note that, whenever wi ≤p u[i..i+ `] for i ∈ {2, 3, 4},
then the only possibility is that also wi ≤p f(u)[i..i+ `] and wi ≤p g(u)[i..i+ `];
otherwise, f and g would map the same letter in two different ways, a contra-
diction. However, in that case, f and g would be the identical mappings, which
means that tβ would contain a cube, again a contradiction.

So, the only possibility that remains is to have u[i..i+ 6] = 1201321. In this
case, we obtain that either f(u)[i..i+ 6] = w1 or f(u)[i..i+ 6] is one of the words
y1, y2, or y3. When f(u)[i..i+ 6] = w1 we obtain easily that |u| is divisible by 9,
so g(u)[i..i + 6] = w1, as well. Again, this shows that f and g are identical, so
tβ contains a cube, a contradiction. Now, if f(u)[i..i + 6] = y1 we get that the
length of u is of the form 9k + 8 for some k ∈ IN. This means that g(u)[i] = 3,
a contradiction. If f(u)[i..i + 6] = y2 we get that the length of u is of the form
9k + 2 for some k ∈ IN. This would mean that g(u)[i..i + 3] = 1023, again a
contradiction. Finally, when f(u)[i..i+ 6] = y3 we get that the length of u is of
the form 9k+ 5 for some k ∈ IN and we get that g(u)[i] = 2, which is once more
a contradiction. As we have reached a contradiction in every case, we conclude
that the assumption we made was false. Similar arguments work for the cases
of when f(u) and g(u) contain a factor with three occurrences of the letter 1.
Thus, tβ has no factor of the form uf(u)g(u) for any u ∈ Σ∗ with |u| ≥ 7.

To show the second statement, we have that every possible occurrence of
such a factor is included in the image under β of a factor of length 4 of t
(by the same reasoning as above). Computer calculations show that there are
only 12 different factors of the form ug1(u)g2(u) for some u ∈ Σ∗ with |u| ≤
6 and permutations g1, g2 such that there is no position 1 ≤ ` ≤ |u| with
u[l] 6= g1(u)[`] 6= g2(u)[`] 6= u[`]. These factors are: 012|013|213, 013|213|012,
023|012|013, 120|132|130, 130|120|132, 132|130|120, 201|321|301, 213|012|013,
230|120|132, 301|201|321, 321|301|201, 321|301|203, where the vertical lines mark
the borders between u, g1(u) and g2(u). For every factor we can check that there
are no i, j ∈ IN and no permutation f such that g1 = f i and g2 = f j . For
instance, let us assume that there are i, j and f such that 012|013|213 is a factor
of the form uf i(u)f j(u) (i.e., u = 012, f i(u) = 013 and f j(u) = 213). Since
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u[1] = f i(u)[1] = f i(u[1]) = 0, it follows that ordf (0) | i and since f j(u)[1] = 2,
we conclude that the letter 2 is in the same orbit of f as 0, i.e., ordf (2) = ordf (0)
and ordf (2) | i. This is a contradiction with u[3] = 2 6= 3 = f i(u)[3] = f i(u[3]).
The analysis of the other factors leads to similar contradictions. ut

The next result highlights sets of patterns that cannot be simultaneously
avoided.

Lemma 3. There is no w ∈ Σω
3 that avoids the patterns xxx, xxπ(x), and

xπ(x)x simultaneously. There is no w ∈ Σω
3 that avoids the patterns xxx,

xπ(x)π(x), and xπ(x)x simultaneously.

Proof. It can be easily seen (for instance, by checking with a computer program
that explores all the possibilities by backtracking) that any word of length at
most 9 over Σ3 contains a word of the form uuu, uuf(u), or uf(u)u, for some
u ∈ Σ+

3 and some morphic permutation f of Σ3.
Similarly, any word of length at most 10 over Σ3 contains a word of the form

uuu, uf(u)f(u), or uf(u)u, for u ∈ Σ+
3 and morphic permutation f of Σ3. ut

The following result shows the equivalence between the avoidability of several
pairs of patterns.

Lemma 4. A word w ∈ Σω
m avoids the pattern xxπ(x) if and only if w avoids

the pattern π(x)π(x)x. A word w ∈ Σω
m avoids the pattern xπ(x)π(x) if and only

if w avoids the pattern π(x)xx. A word w ∈ Σω
m avoids the pattern xπ(x)x if

and only if w avoids the pattern π(x)xπ(x).

Proof. If an infinite word w has no factor uuf(u), with u ∈ Σ+
m and a morphic

permutation f ofΣm, then w does not contain any factor g(u)g(u)u, with u ∈ Σ+
m

and a morphic permutation g ofΣm for which there exists a morphic permutation
f of Σm such that g(f(a)) = a, for all a ∈ Σ. This clearly means that w avoids
π(x)π(x)x in Σm. The other conclusions follow by the same argument. ut

The following two remarks are immediate.

– The pattern πi(x)πi(x)πi(x) is avoidable in Σm for m ≥ 2 by the word t.
– The patterns πi(x)πi(x)πj(x) and πi(x)πj(x)πj(x), i 6= j, are avoidable in
Σm for m ≥ 3 by the word h.

Another easy case of avoidable patterns is highlighted in the next lemma.

Lemma 5. The pattern πi(x)πj(x)πi(x), i 6= j, is avoidable in Σm, for m ≥ 3.

Proof. Assume i < j. In this case, setting y = πi(x) we get that the pattern
πi(x)πj(x)πi(x) is actually yπj−i(y)y. Avoiding the last pattern is the same as
avoiding the pattern yπ(y)y. This pattern is avoidable in alphabets with three
or more letters, by Lemma 1. Also, this pattern is clearly unavoidable in Σ1 and
Σ2.

If i > j, we take y = πj(x) and we obtain that πi(x)πj(x)πi(x) is actually
πi−j(y)yπi−j(y), which is avoidable if and only if π(y)yπ(y) is avoidable. This
latter pattern is avoidable over alphabets with three or more letters, by Lemmas
1 and 4. The pattern is clearly unavoidable in Σ1 and Σ2. ut
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In the next theorem we present the case of the patterns xπi(x)πj(x), with
i 6= j. For this we need to define the following values:

k1 = inf {t : t - |i− j|, t - i, t - j} (1)

k2 = inf {t : t | |i− j|, t - i, t - j} (2)

k3 = inf {t : t | i, t - j} (3)

k4 = inf {t : t - i, t | j} . (4)

Remember that inf ∅ = +∞. However, note that {t : t - |i− j|, t - i, t - j} is al-
ways not empty, and that k1 ≥ 3 (as either |i−j| is even or one of i and j is even,
so k1 > 2). Also, as i 6= j at least one of the sets {t : t | i, t - j} and {t : t - i, t | j}
is also not empty. Further, we define

k = min {max {k1, k2} ,max {k1, k3} ,max {k1, k4}} (5)

According to the remarks above, k is always defined (that is k 6= +∞).

Lemma 6. The pattern xπi(x)πj(x), i 6= j, is unavoidable in Σm, for m ≥ k.

Proof. First, let us note that the fact that m ≥ k1 means that for every word
u ∈ Σ∗m there exists a morphism f such that u 6= f i(u) 6= f j(u) 6= u; indeed, we
take f to be a cyclic permutation of Σm, which means that the first letters of
u, f i(u) and f j(u) are pairwise different. Similarly, the fact that m ≥ k2 (when
k2 6= +∞) means that for every word u ∈ Σ∗m there exist a morphism f such
that u 6= f i(u) = f j(u). In this case, suppose that a is the first letter of u, and
take f a permutation such that ordf (a) = k2, and f only changes the letters
from the orbit of a (thus, ord(f) | k2). Clearly, the first letters of f i(u) and
f j(u) are not equal to a, but f i(u) = f j(u) as ord(f) divides |i−j|. We get that
u 6= f i(u) = f j(u), for this choice of f . Finally, one can show by an analogous
reasoning that the fact that m ≥ k3 (when k3 6= +∞) means that for every word
u ∈ Σ∗m there exists a morphism f such that u = f i(u) 6= f j(u) and the fact
that m ≥ k4 (when k4 6= +∞) means that for every word u ∈ Σ∗m there exists a
morphism f such that f i(u) 6= u = f j(u).

Further, we show that if m ≥ max{k1, k2} (in the case when k2 6= +∞) there
is no infinite word over Σm that avoids xπi(x)πj(x). As k1 ≥ 3 it follows that
m ≥ 3. One can quickly check that the longest word that does not contain an
instance of this pattern has length six and is 001010 by trying to construct such
a word letter by letter. This means that there is no infinite word over Σm that
avoids this pattern in this case.

By similar arguments, we can show that if m ≥ max{k1, k3} (in the case
when k3 6= +∞) there is no infinite word over Σm that avoids xπi(x)πj(x). In
this case, the longest word that avoids those patterns is 01010.

If m ≥ max{k1, k4} (in the case when k4 6= +∞) we also get that here is no
infinite word over Σm that avoids xπi(x)πj(x). The construction ends at length
six, the longest words without an instance of the pattern are 011001, 011002,
011221, 011223 and 011220.

These last remarks show that the pattern xπi(x)πj(x) is unavoidable by
infinite words over Σm, for all m ≥ k. ut
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The next result represents the main step we take towards characterising the
avoidability of cubes under morphic permutations.

Proposition 1. Given the pattern xπi(x)πj(x) we can determine effectively the
values m, such that the pattern is avoidable in Σm.

Proof. Since we already examined the case m ≥ k in Lemma 6, it only remains
to be seen which is the situation for Σm with m < k.

The cases for m = 2 and m = 3 are depicted in Table 1. Note that in the table
an entry “X” (respectively, “×”) at the intersection of line (i, Σm) and column
(j) means that the pattern xf i(x)f j(x) is avoidable (respectively, unavoidable)
in Σm. In building the table we used the fact that the pattern xπi(x)πj(x) is
avoidable in Σ2 if and only if i ≡ j ≡ 0(mod 2), and in that case it is avoided by
the Thue-Morse word. Also, for Σ3, when j 6= 0, the avoidability of the pattern
follows from the fact that an instance of the pattern contains cubes or squares,
so it can be avoided by the infinite words t (seen as a word over three letters,
that just does not contain one of the letters) or h, respectively. In the case when
j = 0, we use the word defined in Lemma 2 to show the avoidability of the
respective patterns.

We move on to the case m ≥ 4. In this case, we split the discussion in several
further cases, depending on the minimum of k1, k2, k3, and k4.

Case 1: k1 = min {k1, k2, k3, k4}. This means that k > k1. If m < k1 it must
be the case that m | i and m | j (since k3, k4 > k1). For every letter a ∈ Σm and
every morphic permutation f of Σm, since ordf (a) ≤ m we get that ordf (a) | i
and ordf (a) | j. So in this case an instance of the pattern xπi(x)πj(x) is actually
a cube, which can be avoided by the Thue-Morse word. If k1 ≤ m < k, then for
every a ∈ Σm and morphic permutation f of Σm we either have that ordf (a)
divides both i and j or that ordf (a) divides neither i nor j nor |i − j|. If we
have a letter a occurring in a word u such that the latter holds, it means that
we have at least 3 different letters in the the word uf i(u)f j(u). If there is no
such letter in u, then uf i(u)f j(u) is a cube. In both cases, the Thue-Morse word
avoids the pattern xπi(x)πj(x).

Case 2: k2 = min {k1, k2, k3, k4}. In this case, it can easily be seen that
k = k1. If 4 ≤ m < k2 we get for every a ∈ Σm and every morphic permutation

j(mod 6)
0 1 2 3 4 5

0 X X × X X X × X X X × X
1 × X × X × × × × × × × ×

i(mod 6) 2 X X × × X X × × X X × X
3 × X × X × × × X × × × X
4 X X × X X X × × X X × ×
5 × X × × × × × × × × × X
Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3 Σ2 Σ3

Table 1. Avoidability of xπi(x)πj(x) in Σ2 and Σ3 for morphic permutations π
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f of Σm that ordf (a) | i and ordf (a) | j (since k3, k4 > k2). This means that
in this case every instance of the pattern xπi(x)πj(x) is a cube, which can be
avoided by the Thue-Morse word. If k2 ≤ m < k, we have for each letter a ∈ Σm
and every morphic permutation f of Σm that either ordf (a) divides at least one
of i and j or ordf (a) | |i− j|. In all cases, this means that for each position l of
a word u, we have that at least two of the letters u[`], f i(u)[`] and f j(u)[`] are
equal, and the word defined in Lemma 2 avoids such patterns.

Case 3: k3 = min {k1, k2, k3, k4}. As in the previous case we get that k = k1. If
4 ≤ m < k3 we have that for every letter a ∈ Σm and every morphic permutation
f it must be the case that ordf (a) | i and ordf (a) | j. Again, every instance
of xπi(x)πj(x) is in fact a cube, and so this pattern is avoided by the Thue-
Morse word. If k3 ≤ m < k = k1 we can easily see that for every letter a ∈ Σm
and every morphic permutation f we have that ordf (a) divides i or j or both
of them. This means that for every factor of the form uf i(u)f j(u) and every
position ` in u we have that u[`] = f i(u)[`] or u[`] = f j(u)[`]. The word of
Lemma 2 avoids such patterns.

Case 4: k4 = min {k1, k2, k3, k4}. This is symmetric to the previous case, so
the pattern xπi(x)πj(x) is avoided by the Thue-Morse word for 4 ≤ m < k4 and
by the word of Lemma 2 for k4 ≤ m < k.

Now we can conclude the characterisation of patterns xπi(x)πj(x). Such a
pattern is always avoidable in Σm for all 4 ≤ m < k. Moreover, it might also
be avoidable Σ2 and Σ3, or only Σ3 but not in Σ2, or neither in Σ2 nor in
Σ3 (according to Table 1). Therefore, for each pair (i, j) of natural numbers,
defining a pattern xπi(x)πj(x), we can effectively compute the values of m such
that this pattern is avoidable in Σm. ut

Further we show the following result, as a completion of the previous one.

Proposition 2. Given the pattern πi(x)πj(x)x we can determine effectively the
values m, such that the pattern is avoidable in Σm.

Proof. Let m be a natural number. We want to check whether πi(x)πj(x)x is
avoidable in Σm or not. Take M = max{i + 1, j + 1,m}. It is not hard to see
that fM ! equals the identity for all morphic permutations f of the alphabet
Σm. Let us take y = πi(x). By the fact that the function that can substitute π
are permutations, we obtain that πi(x)πj(x)x is avoidable in Σm if and only if
yπM !−i(y)πM !−i+j(y) is avoidable in Σm. Moreover, note that:

inf{t : t - j, t -M !− i, t -M !− i+ j} = inf{t : t - |i− j|, t - i, t - j}
inf{t : t | j, t -M !− i, t -M !− i+ j} = inf{t : t - i, t | j}

inf{t : t |M !− i, t -M !− i+ j} = inf{t : t | i, t - j}
inf{t : t -M !− i, t |M !− i+ j} = inf{t : t | |i− j|, t - i, t - j}

Therefore, yπM !−i(y)πM !−i+j(y) is avoidable in Σm if and only if 4 ≤ m < k,
where k is defined using (5) for i and j. ut

In the exact same manner we get the following proposition.
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Proposition 3. Given the pattern πi(x)xπj(x) we can determine effectively the
values m, such that the pattern is avoidable in Σm. ut

We can now summarise the results of this section in the following theorem:

Theorem 1. Given the pattern πi(x)πj(x)πk(x) where π is substituted by mor-
phic permutations, we can determine effectively the values m such that the pat-
tern is avoidable in Σm.

Proof. Let us assume that i is the minimum between i, j, and k. Let us take y =
πi(x). The pattern becomes yπ`(y)πt(y), and we can identify all the alphabets
where this pattern is avoidable by Proposition 1.

If j is the minimum between i, j, and k we use Proposition 3 to identify
all the alphabets where this pattern is avoidable. Finally, if k is the minimum
between i, j, and k we use Proposition 2 to identify all the alphabets where this
pattern is avoidable. ut

4 The antimorphic case

In this section, the function variable π is always replaced by an antimorphic
permutation. Most of the proofs of this section can be found in the Appendix.
They follow mainly the same lines as the proofs presented in Section 3; however,
in some cases, they are more technically involved.

As in the morphic case, we first establish a series of results regarding basic
patterns. To begin with, we introduce the morphism γ : Σ∗2 → Σ∗3 defined by

0 7→ 0011022, 1 7→ 1100122.

Lemma 7. The word tγ = γ(t) avoids the pattern xπ(x)x in Σm, for m ≥ 3.

The following lemma shows the avoidability of a particular type of patterns
where the function variable is a morphism; this result becomes useful in the
sequel. For this, we define the morphism δ : Σ∗3 → Σ∗4 by

0 7→ 012031, 1 7→ 032132, 2 7→ 032102130132.

Lemma 8. The word hδ = δ(h) contains no factor uu and uf(u)uR where
u ∈ Σ+

m and f is a morphic permutation of Σm, for all m ≥ 4.

The previous lemma has a corollary that is important in the context of avoid-
ability of cubes under antimorphic permutations.

Corollary 1. There exists an infinite word that avoids the patterns xx and
xπ(x)xR in Σm, for all m ≥ 4.

Proof. By the previous proof we obtain that there exist infinitely many finite
words that contain no factors uu and uf(u)uR for u ∈ Σ+

m and morphic permu-
tations f over alphabets Σm with m ≥ 4. By reversing these words, we obtain
that there exist infinitely many finite words over Σm that contain neither squares
nor factors uf(u)uR for u ∈ Σ∗m and antimorphic permutations f on Σm, with
m ≥ 4. Therefore, there exists an infinite word that contains no such factors,
and the statement of the corollary holds. ut
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As in the case of the morphic permutations, we first study the avoidability
of the pattern xπi(x)πj(x). However, a finer analysis must be performed here.

In the next lemma we look at case when the exponent i is even and j is odd.
For this purpose let the morphism ζ : Σ∗2 → Σ∗5 be defined by

0 7→ 012034, 1 7→ 120324.

Lemma 9. Let tζ = ζ(t) for the morphism ζ defined above. Also, let i ∈ IN be
even and j ∈ IN be odd, and f and g be morphic and, respectively, antimorphic
permutations of Σm, with m ≥ 5. The word tζ obtained as such does not contain
any factor of the form uf(u)g(u) for u ∈ Σ∗5 with |u| ≥ 6. Furthermore, tζ does
not contain any factor of the form uf i(u)f j(u) such that∣∣{u[`], f i(u)[`], f j(u)R[`]

}∣∣ ≤ 2,

for all ` ≤ |u| and |u| ≤ 5.

In the case when the exponent i is odd and j is even, we examine the mor-
phism η : Σ∗2 → Σ∗5 defined by

0 7→ 012340124310243012340124310234102430124310234,

1 7→ 012340124310243012341023401243012341024310234.

Note that this morphism is equivalent to θ ◦ β, where β is the morphism
defined in Lemma 2 and θ : Σ∗4 → Σ∗5 is defined by

0 7→ 01234, 1 7→ 01243,

2 7→ 10243, 3 7→ 10234.

Lemma 10. Let tη = η(t) for the morphism η defined above. Also, let i ∈ IN be
odd and j ∈ IN be even and f and g be antimorphic and, respectively, morphic
permutations of Σm, with m ≥ 5 The word tη obtained as such does not contain
any factor of the form uf(u)g(u) for u ∈ Σ∗5 with |u| ≥ 11. Furthermore, tη does
not contain any factor of the form uf i(u)f j(u) such that∣∣{u[`], f i(u)R[`], f j(u)[`]

}∣∣ ≤ 2,

for all ` ≤ |u| and |u| ≤ 10.

We now move further to the main results regarding the avoidability of cubes
under antimorphic permutations.

It is not hard to see that the results on the avoidability of the patterns
πi(x)πi(x)πi(x) with i ∈ IN and πi(x)πi(x)πj(x) with i, j ∈ IN for morphic
permutations also hold in the case of antimorphic permutations. An equivalent
of Lemma 5 also holds in the antimorphic case.

Lemma 11. The pattern πi(x)πj(x)πi(x), i 6= j, is avoidable in Σm for m ≥ 3.
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We now look at patterns of the form xπi(x)πj(x) with i 6= j and antimorphic
f . Let k1, k2, k3, k4 and k be defined as in (1) to (5).

Lemma 12. The pattern xπi(x)πj(x), i 6= j, is unavoidable in Σm for m ≥ k.

Proposition 4. Given the pattern xπi(x)πj(x), we can determine effectively
the values m, such that the pattern is avoidable in Σm.

Proof. The cases when m = 2 and m = 3 are exactly like those depicted in
Table 1 for the morphic case.

The case when m = 4 is based on the remark that it is sufficient to know how
to decide the avoidability of the pattern xπi(x)πj(x) for i, j < 12. Indeed, it is
not hard to see that if i and j are arbitrary natural numbers, then xπi(x)πj(x)
is avoidable in Σ4 if and only if xπi

′
(x)πj

′
(x) is avoidable, for i′ (resp. j′) being

the remainder of i (resp. j) divided by 12. With this in mind, one can analyse
every pair (i, j) with 1 ≤ i, j ≤ 12, and decide in each case the avoidability of
the pattern xπi(x)πj(x). The pattern is clearly unavoidable whenever the value
k computed for i and j in (5) is less than or equal to 4. When i = 0 the pattern
xπi(x)πj(x) is avoided by the word h as any instance of the pattern contains
squares, and when j = 0 the pattern is avoided by the word from Lemma 7. Also,
in the case when i and j are both even we can decide the avoidability of the
pattern using the results obtained for morphisms in the previous sections, as, in
this case, f can be seen as a morphism instead of an antimorphism. Moreover,
when i = j we can avoid the pattern xπi(x)πi(x) by the word h that contains
no squares. The same word h avoids the pattern in the cases when (i, j) ∈
{(4, 1), (9, 1), (8, 5), (9, 5), (3, 7), (4, 7), (3, 11), (8, 11)}. To complete the picture,
we note that a word avoids the pattern xπ(xR)xR if and only if it avoids the
pattern xπ′(x)xR where π′ is mapped to a morphic permutation. Therefore, by
Lemma 8 we obtain that the pattern xπi(x)πj(x) is avoided by the infinite word
hδ for (i, j) ∈ {(4, 3), (8, 3), (4, 9), (8, 9)} and by Corollary 1 we obtain that it is
avoidable for (i, j) ∈ {(7, 3), (11, 3), (1, 9), (5, 9)}.

Further, the discussion is split in four cases. If both i and j are even, we can
decide the avoidability of the pattern just as in the case of morphisms (as the
instance of π can be seen, in fact, as a morphism). If both i and j are odd, we
compute the value k defined in (5) and define M = max{k, j + 1, i + 1}. Now,
xπi(x)πj(x) is avoidable in Σm if and only if (xπi(x)πj(x))R = πj(xR)πi(xR)xR

is avoidable in Σm. The last condition is equivalent to the avoidability of the
pattern πj(y)f i(y)y in Σm. Taking z = πj(y), we obtain that πj(y)πi(y)y is
avoidable in Σm if and only if zπM !−j+i(z)πM !−j(z) is avoidable in Σm. Now we
only have to notice that M !− j + i is even and M !− j is odd, as M ! is always
even. Therefore, the case when i and j are odd can be reduced to the case when
i is even and j is odd.

So there remain only two cases to be analysed: the case when i is even and
j is odd as well as the case when i is odd and j is even. In this cases the proofs
follows similar to the morphic case. ut

As in the case of morphic permutations we can easily derive the following
two results.
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Proposition 5. Given the pattern πi(x)πj(x)x, we can determine effectively
the values m such that the pattern is avoidable in Σm. ut

Proposition 6. Given the pattern πi(x)xπj(x), we can determine effectively
the values m such that the pattern is avoidable in Σm. ut

Finally, as consequence of the last three propositions, we state the main result
of this section in the following theorem:

Theorem 2. Given the pattern πi(x)πj(x)πk(x) where π is substituted by anti-
morphic permutations, we can determine effectively the values m such that the
pattern is avoidable in Σm. ut

5 Conclusions

In this paper, we have extended the concept of avoidability of patterns to avoid-
ability of patterns with permutations. We have characterised for all m whether
a cube, that is, a pattern of the form πi(x)πj(x)πk(x), is avoidable in Σm for
all i, j, k ≥ 0. We have given these characterisations for both the morphic and
antimorphic case.

The next natural question is of course concerning the avoidance of longer
patterns. Note that a first step towards answering that question follows from
Lemma 2 (morphic case) and 9 (antimorphic case). They each give a word over
four letters or five letters, respectively, that avoids sequences of permutations of
length 3 or more for all factors of length 7 or more.
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Appendix

Preliminaries

We first mention several notations that we use throughout the paper. Word
variables are usually denoted by x, y, or z, while words are denoted by u, v, w, s, t,
etc. On the other hand, we denote the function variables with π or π′ and the
instances of such variables (i.e., functions on Σ∗k) with letters like f , g, f ′, g′,
f1, g1, etc.

Let us give an algebraic definition of the general notion of pattern which
involves functional dependencies and pattern avoidability in this setting.

In order to define the notions of pattern and pattern avoidability we make
use of some basic universal algebra notions. A signature is a pair (S,Σ) with S
a finite set, whose elements are called sorts, and

Σ = {σ : s1 × · · · × sn → s : n ≥ 0, s1, . . . , sn, s ∈ S}

a set of function symbols; for a function symbol σ : s1 × · · · × sn → s we say
that n is its arity. In this paper, we assume that S = {s} is a singleton and that
all the functions have their arity greater than or equal to 1. An (S,Σ)-algebra
is a structure A = (As, AΣ) where As is a set and

AΣ = {Aσ : Ans → As : σ : sn → s ∈ Σ}.

For a set of variables X we define the term algebra generated by X, denoted
TΣ(X), as follows:

– T0 = X;
– Ti+1 = {σ(α1, . . . , αn) : σ : sn → s ∈ Σ,α1, . . . , αn ∈ Ti} ∪ Ti, for i ≥ 0;
– (TΣ(X))s = ∪i≥0Ti;
– (TΣ(X))σ(α1, . . . , αn) = σ(α1, . . . , αn), for σ : sn → s ∈ Σ,α1, . . . , αn ∈

(TΣ(X))s.

A morphism φ of (S,Σ)-algebras A = (As, AΣ) and B = (Bs, BΣ) is a function
φ : As → Bs such that φ(Aσ(α1, . . . , αn)) = Bσ(φ(α1), . . . , φ(αn)). Given an al-
gebra A = (As, AΣ) and a function f : X → As, there exists a unique morphism
F from TΣ(X) to A such that F (x) = f(x), for all x ∈ X.

Given a set of variables X and a set of function letters F (all having arity
greater than or equal to one, and working over a single sort s), a pattern p is an
element of TF (X), the term algebra generated by X over the signature ({s},F).
A pattern p is said to be avoidable in the alphabet Σk with functions from the
family (Fn)n≥1 (where the functions of Fn are defined over (Σ∗k)n with values
in Σ∗k , for n ≥ 1) if there is an infinite word w over Σk that has no factor u
verifying the following properties:

– there exists an algebra Au = (Σ∗k , A
u
F ) whose functions of arity n are con-

tained in Fn for n ≥ 1,
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– u is the image of p through the unique morphism φ of ({s},F)-algebras from
TF (X) to Au.

In this paper, we only analyse the avoidability of a very restricted class
of patterns. First, we only deal with the case when X is a singleton and F
contains exactly one function letter for each arity greater than or equal to 1.
For n ≥ 2, we always take Fn = {cn}, where cn is the n-ary catenation of
words. Moreover, for an alphabet Σk we take the family F1 as either the family
of morphic permutations over Σk or the family of antimorphic permutations
over the same alphabet. Finally, almost all our results concern patterns with
only three occurrences of the variable x; such patterns are, clearly, of the form
πi(x)πj(x)πk(x).

For a pattern πi(x)πj(x)πk(x), we say that a word f i(u)f j(u)fk(u), where
u ∈ Σ∗k and f : Σ∗k → Σ∗k is a anti-/morphism that permutes Σk, is an instance
of the given pattern.

The morphic case

Proof of Lemma 1:
We start by noting that tα does not contain any factor of length less or equal to
15 which is an instance of the pattern xπ(x)x. This can be shown by checking
whether such a word is a factor of α(v), for all the factors v of length 4 of the
Thue-Morse word; a simple computer program shows that indeed there are no
such words.

It remains to show that any factor of tα, having more than 15 letters, is not
an instance of the pattern xπ(x)x. For this, assume that w is such a factor (i.e.,
w appears in tα and |w| > 15).

First, we show that w cannot be a cube. For the sake of a contradiction,
assume that w is a cube and w = u3. If u begins with 0 it follows easily that |u| is
divisible by 5; similarly, if u begins with 1 or with 2 we reach the same conclusion,
namely |u| is divisible by 5. So, in all cases |u| is divisible by 5. It follows that
w = (sα(v)s′)3, where s, s′ ∈ {0, 1, 2}∗, |s| + |s′| = 5 and v ∈ {0, 1}∗. If |s| = 5
(respectively, |s′| = 5) we obtain that u = α(av) (respectively, u = α(va)), for
some a ∈ {0, 1}; but this means that the Thue-Morse word contains a cube, a
contradiction. Let us now assume that 3 ≤ |s| < 5. It follows that s′s = α(a),
for some letter a ∈ {0, 1}, and that s′ is placed exactly before w in tα. This
means, once more, that tα contains a factor (s′sα(v))3 = (α(av))3. Thus, the
Thue-Morse word contains a cube, a contradiction. Finally, we look at the case
when 0 < |s| < 3. It follows that 3 ≤ |s′| < 5. Thus, s′s = α(a), for some letter
a ∈ {0, 1}, and s is placed exactly after w in tα. This means that tα contains
the factor (α(v)s′s)3 = (α(va))3; it follows that the Thue-Morse word contains a
cube, a contradiction. In all the cases we reached contradictions, so tα contains
no cube.

Further, note that 00 occurs always in tα on positions equal to 4 modulo
5, 11 occurs always on positions equal to 2 modulo 5, and 22 occurs always
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on positions equal to 1 modulo 5. Moreover, each factor of tα, longer than 5,
contains at least a factor aa with a ∈ {0, 1, 2}.

Let us first analyse the case of m = 3: i.e., x can be mapped to words over
Σ3 and f is a permutation on the alphabet Σ3.

Assume now that tα contains a factor w that can be expressed as uf(u)u
for some u ∈ Σ∗3 and a morphism f such that f permutes Σ3. Let aa be the
rightmost occurrence of one of the factors {00, 11, 22} in u. On the positions that
correspond to the letters aa we also have a square bb in f(u), with b ∈ Σ3. We
have uf(u)u = (saas′)(f(s)bbf(s′))(saas′), for some words s and s′ such that
u = saas′ and |s|+ |s′|+ 2 > 5. It is not hard to see that the length of aas′f(u)s
should be divisible by 5 (as the positions of tα where a pair of letters aa occurs
are equal modulo 5). Therefore, |u|+ |f(u)| = 2|u| is divisible by 5. This means
that |u| is divisible by 5. So aa and bb occur on positions that are equal modulo
5. Therefore, a = b. As u contains no other occurrences of one of the factors
{00, 11, 22} to the right of aa it follows that u has at most two other letters to
the right of aa (in the case when a = 1 the factor u can have at most one letter
to the right of aa). This means that u contains at least one letter exactly before
aa, which is different from a; the same letter occurs before bb = aa in f(u).
This means that f maps two of the three letters of the alphabet to themselves.
Therefore, f is the identity on Σ3. It follows that f(u) = u and tα contains a
cube uuu. This is a contradiction.

Consequently, the assumption we made is false and tα avoids the pattern
xπ(x)x on Σ3.

If m > 3, it follows that tα may contain an instance of xπ(x)x that is not a
cube if and only if π is mapped to a permutation of Σm whose restriction to Σ3 is
also a permutation (because tα contains no other symbols than those of Σ3). So,
basically, the other letters of the alphabet over which the function substituting
π is defined are not important, and we can follow the same reasoning as in the
case when m = 3. ut

The antimorphic case

Proof of Lemma 7:
We can easily check that tγ contains no factor of the form uf(u)u for some
antimorphic permutation f with |u| < 4. Looking at γ, we see that every factor
of tγ of length at least 4 contains a square of letters ss with s ∈ Σ3. Assuming
that tγ contains a factor of the form uf(u)u for some u and an antimorphic
permutation of the alphabet f , we now look at the last of those letter-squares
that occurs in u:

Case 1: ss = 00. Looking at the occurrences of 00 in tγ , we see that u either
ends with 00, 001 or 0012 then. If u ends with 00, it is followed by 1102 or 122
in tγ . Considering that |u| > 4, u ends with 2200 in the first case. It follows that
f(2200) = f(0)f(0)f(2)f(2) = 1102, a contradiction since 2 is mapped to both
0 and 2. In the other case we get f(00) = 12, which is impossible as well. If u
ends with 001, it is followed by 102 or 22 in tγ . Again, there is no permutation f
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such that f(001) = 102 or f(001) = f(1)f(0)f(0) = 22f(0) (since the mapping
is not injective in the second case). If u ends with 0012, which is always followed
by 200 or 211 in tγ , we also get f(1) = f(2) in both cases, a contradiction as
mentioned before.

Case 2: ss = 11. Then u ends with 11, 110 or 1102. If u ends with 11, it
actually ends with 0011 or 2211, because 11 is always preceded by 00 or 22 in
tγ . If u ends with 0011, which is always followed by 022 in tγ , it means that
f(011) = f(1)f(1)f(0) = 022, a contradiction. If it ends with 2211, which is
followed by 0012, we get f(2211) = f(1)f(1)f(2)f(2) = 0012, which also means
mapping a letter onto two different images. In the case when u ends with 110,
we observe that 110 is always followed by 22 or 012 in tγ . In both cases, there is
no permutation f such that f(110) = f(0)f(1)f(1) starts with 22 or equals 012,
contradicting the assumption. If u ends with 1102, which is followed by 200 or
211, we get from f(102) = f(2)f(0)f(1) that f(0) = f(1), again a contradiction.

Case 3: ss = 22. Then u ends with 22, 220 or 221. If u ends with 22, the
suffix of length 4 must be 1022 or 0122, because 22 is always preceded by 01
or 10 in tγ . Both possibilities are followed by 0011 or 1100 in tγ , so f can
not be a permutation in this case, since we have f(2) = f(1). If u ends with
220, this means that it actually ends with 0220 or 1220, and it is followed by
0110 in tγ . We conclude that u has to end with 0220, otherwise we would get
that f(0) = f(1), so f could be no permutation. According to the previous
reasoning, we have the following situation in tγ at the border between u and f(u):
00110220|011022 where | marks this border. Since the factors 10220|01102|10220
and 110220|011022|110220 don’t occur in tγ , we must have |u| > 6 and we got
the following factor in tγ : 00110220|01102200 which is obviously followed by
11022 because of the form of γ. This means we have (0011022)3 in tγ = γ(t)
and since γ is a block code, it follows that 000 is a factor of t, a contradiction
since the Thue-Morse avoids cubes. Similar reasoning in the case when u ends
with 221 leads us to the conclusion, that there is no word u and no antimorphic
permutation of the alphabet f such that uf(u)u is a factor of tγ . ut

Proof of Lemma 8:
We begin with a series of simple remarks on the structure of the word hδ. First,
it is rather plain that in every factor of length 20 of hδ we have at least one
occurrence of the factor 032; indeed, a factor of length 20 of hδ contains either
δ(2) or the prefix of length 3 of one of δ(1) or δ(2). Second, as h contains no
factor 121, we obtain in a similar fashion that in every factor of length 26 of hδ
we have at least one occurrence of the factor 012. Further, note that any factor
of length less than or equal to 60 that appears in hδ is contained in the image of
a factor of length 10 of h (as every 4 consecutive letters of h contain at least one
occurrence of the letter 2). Finally, every factor of length 10 of h is contained in
its prefix φ8h(0), so every factor of length at most 60 is contained in the prefix
δ(φ8h(0)). Indeed, this holds if we note that all the factors of length 3 that may
appear in h appear in its prefix φ4h(0) (these factors are all the possible factors
of length 3 over Σ3 except the ones that contain squares, 010 or 212). Then, all
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the factors of length 4 of h are contained in φ5h(0), all the factors of length 5 of
h are contained in φ6h(0), all the factors of length 8 of h are contained in φ7h(0),
and finally, all the factors of length 10 of hδ are contained in φ8h(0).

We are now able to prove the lemma. We can check by a computer program
that the prefix δ(φ8h(0)) contains neither a factor uu with |u| < 26 nor a factor
uf(u)uR with |u| < 20 and f an arbitrary morphic permutation of Σm with
m ≥ 4.

Further, we show that hδ contains no occurrences of a factor uf(u)uR with
|u| ≥ 20 and f an arbitrary morphic permutation of Σm with m ≥ 4. In fact,
we show that hδ contains no occurrences of a factor uvuR with |u| ≥ 20 and
|v| = |u|. By the previous remarks, u contains 032. Thus, uR should contain 230.
But one can easily see that 230 does not appear in hδ, and this concludes the
proof.

We move on to the more complicated task of showing that hδ contains no
squares uu with |u| ≥ 26. Clearly, if hδ would contain such a factor, then u would
contain 012. But, if 012 appears in the first u on position i, then it appears also
on position i in the second u. As 012 appears in hδ only on positions 6t+ 1 for
some t > 0 it follows that the length of u is divisible by 6. Clearly, u = xδ(z)y
for some x, y ∈ Σ∗4 and z ∈ Σ3 such that y (resp. x) has no prefix (resp. suffix)
that is the image of a non-empty word through δ. This means that yx = δ(s) for
some s ∈ Σ3. If |y| ≥ 5 then it follows that uu is followed by x as well (as y would
uniquely determine the letter s ∈ Σ3 such that δ(s) = yx), so this means that
hδ contains a square δ(zs)2; this is a contradiction with the fact that h contains
no squares. If |x| ≥ 4 a similar conclusion would follow; more precisely, hδ would
contain the square δ(sz)2, again a contradiction. So |y| ≤ 4 and |x| ≤ 3. This
means that s ∈ {0, 1}. If yx = δ(0) the conclusion follows just as the above.
So the only case left to be analysed is when yx = δ(1). The only case that is
different from the above is when uu is contained in φ(2z1z2). As h contains no
squares, we get that z starts and ends with an 0, so h contains 010, again a
contradiction. Therefore, we conclude that hδ contains no squares.

Finally, we showed that hδ has no factors uu and uf(u)uR for morphic per-
mutations f on Σm for all m ≥ 4. ut

Proof of Lemma 9: We start by proving the first claim of the lemma. If |u| = 6,
the length of such a factor is 18 and so it is completely contained in the images of
factors of length 4 of the Thue-Morse word under ζ. We can verify that there is
no such factor in this set by simple computer calculations. If |u| > 6, we can show
an even stronger statement, namely that there is no factor uf(u) in tζ where f
is an antimorphic permutation. To see this, we make an extensive case analysis
on the suffix of length 7 of u. There are 22 different factors of length 7 in tζ . We
show two cases explicitly, the others use the same arguments. For example, if
0120340 ≤s u, this factor is always followed by 12034 in tζ . If this had the form
uf(u) for a word u and an antimorphic permutation f , we would get f(0) = 1
and f(0) = 3, a contradiction. In most other cases we get that one letter would be
mapped onto two different images as well. A case where we need some different
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reasoning is when 0324120 ≤s u. We can easily see that this is always followed
by 324 in tζ , which itself is followed by either 012 or 120. In the case when it is
followed by 012, we get a contradiction of the same type as before, since 2 would
then be mapped to both 2 and 1. So if this has the form uf(u) for some word
u and antimorphic permutation f , we must have 0324.120324.120 as a factor in
tζ . But in order to get this as a factor of tζ , we must have the factor 111 in t,
a contradiction. For the proof of the second statement, we only have to look at
occurrences in the images of factors of length 4 of t, again because of the length
constraint. A short computation shows that there are only two different factors
of the form ug1(u)g2(u) with |u| ≤ 5 and g1 and g2 antimorphic permutations
such that there is no position 1 ≤ ` ≤ |u| with u[`] 6= g1(u)[`] 6= g2(u)[`] 6= u[`]
in those images: 240|120|341 and 340|120|341. For both factors, we can quickly
check that there is no permutation f and no i, j ∈ IN such that g1 = f i and
g2 = f j . If we assume that 240|120|341 has the form uf i(u)f j(u), for some u
and f as in the statement, we obtain u = 240, f i(u) = 120 and f j(u) = 341. By
looking at the second letter of each block we get f i(4) = 2 and f j(4) = 4, that
is ordf (4) | j and 2 is in the same orbit of f as 4, so ordf (2) = ordf (4). But we
also get f j(240) = f j(0)f j(4)f j(2) = 341, so f j(2) = 1, contradicting the fact
that ordf (2) | j. The same reasoning applies to the factor 340|120|341. ut

Proof of Lemma 10:
We first show that tβ = β(t) does not contain any factor of the form uf ′(u)g′(u)
for any u ∈ Σ∗ with |u| ≥ 7, where f ′ is an antimorphism and g′ is a morphism:
As in Lemma 2, we check the cases when u is short by computer computations.
In fact, we check that tβ has no factor of the form uf ′(u)g′(u) with 7 ≤ |u| ≤ 11.
It suffices to check the images of all factors of length 5 of the Thue-Morse word
under β. In the case when |u| ≥ 12 and f ′ is antimorphic, we can even prove
a stronger result. In fact, we show that tβ does not contain any factor of the
form uf ′(u) for an antimorphic permutation f ′, when |u| ≥ 12. Let us assume,
for the sake of a contradiction, that tβ has such a factor. Looking at β(0) and
β(1), we see that every factor u of length at least 12 contains an occurrence of
a substring s of length 4 that contains 4 different letters (this is already true for
|u| ≥ 7). In the following, we look at the last occurrence of such a factor in u
and perform an exhaustive case analysis on its possible values and positions in
u. Note that the vertical line marks the border between u and f ′(u), while the
dot marks the border between the images of two letters under β.

1. s = 0132: Note that the factor 0132 is always followed by 130120 in tβ . If
0132 ≤s u, we got the following situation in tβ : 0132|1301. This means that
f ′(0) = f ′(2) = 1, which contradicts the fact that f ′ is a permutation. If
01321 ≤s u, the situation at the border is 01321|3012. This would mean that
1 is mapped to both 2 and 3 by f ′, a contradiction. If 013212 ≤s u, we have
2013213|0120 (remember that we assumed |u| ≥ 11 and by the definition
of β, 013213 is always preceded by a 2 in tβ). The prefix 0120 of f ′(u) is
followed by either 13 or 31 in tβ . In the former case, we get that f ′ maps 2 to
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both 2 and 3 and in the latter case f ′ maps 1 to both 1 and 3, a contradiction
in both cases.

2. s = 2130: If 2130 ≤s u, we would have 32130|1201 or 32130|12031 and either
f ′(2) = f ′(0) = 1 or f ′(3) = f ′(0) = 1. So let 21301 ≤s u. But then we
have either 21301|20132 or 21301|20310 and either f ′(2) = f ′(1) = 2 or
f ′(2) = f ′(0) = 0, a contradiction in both cases.

3. The cases s ∈ {3012, 2013, 2031, 3102, 1023} follow the same reasoning as
above and lead to similar contradictions.

4. s = 1203. In this case we see that 1203 ≤s u, otherwise s would not be the
last factor of that shape. From the definition of β, we see that the situation at
the border between u and f ′(u) must be 301203|102301 from which it follows
that f(1) = 3 and f(2) = 2. This means that we get a contradiction as above
if 301203 is preceded by a 1, since 102301 is always followed by 2 in tβ . So
we have 102301213|1023012 and since f ′ is completely determined by this,
we get that 102301203 ≤p f ′(u). So we have the following factor occurring in
tβ : 1023.01203|1023.01203 and since β is a block code and therefore uniquely
decodable, we conclude that 111 is a factor of t, a contradiction.

5. If s = 2301, we can derive that there is a cube in the Thue-Morse word as
above, because we get the following situation: 3.012031023.01|2031023.01203
(this is where we use the fact that |u| ≥ 12).

Further, we look at the word tη = θ(tβ). Let us first assume that |u| > 30. If
uf(u)g(u) appears in tη then u contains at least six occurrences of the letter
2, and each two consecutive such occurrences have exactly four letters between
them. This means that in g(u) each two consecutive occurrences of g(2) have
exactly four letters between them as well, and g(2) occurs at least six times in
g(u). This only leaves the possibility that g(2) = 2. From this, we also obtain
easily that |u| is divisible by 5. A similar argument shows that f(2) = 2. Consider
now the last occurrence of 2 in u. This letter is mapped to the first 2 of f(u),
and there are exactly 4 letters between these two consecutive occurrence of the
letter 2 in tη. This means that after the last occurrence of the letter 2 in u there
are exactly two more letters in this word and there are exactly two letters in
f(u) before the first occurrence of 2. As 5 | |u| we get that there exists a factor
vsw in tβ , with v, s, w ∈ Σ∗4 , such that u = θ(v), f(u) = θ(s), and g(u) = θ(w).
As f is an antimorphic permutation, there exists an antimorphic permutation f ′

such that s = f ′(v), and as g is a morphic permutation, there exists a morphic
permutation g′ such that w = g′(v). As |u| > 30, we get that |v| ≥ 7. Thus, tβ
would contain a factor vf ′(v)g(v) with f antimorphic permutation, g morphic
permutation, and |v| ≥ 7, a contradiction.

For 11 ≤ |u| ≤ 30 we can check with the computer that the conclusion holds.
Indeed, this means that we must check all the factors of length at most 90 and
see whether they are of the form vf(v)g(v) or not. But any factor of tη of length
at most 90 is a factor of η(w) where w is a factor of length 3 of t, so our check
can be done quite fast. This shows that the first statement of the lemma holds.

As in the proof of Lemma 2, the second statement can be easily checked by
computer, as well. ut
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Proof of Lemma 11:
If i < j, we take y = πi(x) and the pattern πi(x)πj(x)πi(x) becomes yπj−i(y)y.
The latter pattern is avoidable if and only if yπ(y)y is avoidable, where the
instances of π are morphisms if j − i is even and antimorphisms if j − i is
odd. In both cases the pattern is avoidable by Lemma 1 or Lemma 7, respec-
tively. If i > j. we take y = πj(x) and we have that πi(x)πj(x)πi(x) becomes
πi−j(y)yπi−j(y). This pattern is avoidable if and only if π(y)yπ(y) is avoidable,
where the instances of π are morphisms if i − j is even and antimorphisms if
i − j is odd. In both cases the pattern is avoidable by Lemma 4 and Lemma 1
or 7 respectively. ut

Proof of Lemma 12:
Clearly, the remarks we made at the beginning of Lemma 6 are valid in the
antimorphic case as well. We now distinguish different cases depending on the
parity of i and j. If both i and j are even, then for every antimorphic permutation
f there exists a morphic permutation f ′ such that f i(u) = f ′i(u) and f j(u) =
f ′j(u) for all u ∈ Σ+

m and we can apply Lemma 6. So let us assume first that i
is odd and j is even.

By trying to construct an infinite word over Σm that avoids the pattern if
m ≥ max{k1, k2}, we quickly notice that such a word can not exist. In fact, the
longest word without an occurrence of such a pattern is 001010101, which is of
length nine. If m ≥ max{k1, k3} the construction stops even earlier: In this case
the longest prefix that avoids the pattern is of length five: 01010.

If m ≥ max{k1, k4}, we can not get a word of length larger than six without
having an instance of the pattern. One of those longest words is 011002.

So in all cases we have seen that the pattern xπi(x)πj(x) is unavoidable in
Σm with m ≥ k if i is odd and j is even. The cases when i is even while j is
odd and when both i and j are odd are similar and lead to the same results;
therefore, the analysis of these is left to the reader. ut

Proof of Proposition 4:
Since we already examined the case m ≥ k in Lemma 12, it only remains to be
seen which is the situation for alphabets with less than k letters.

The cases when m = 2 and m = 3 are exactly like those depicted in Table
1 for the morphic case. As in the case of morphic permutations, the pattern
xπi(x)πj(x) is avoidable in Σ2 if and only if i ≡ j ≡ 0(mod 2), and in that case
it is avoided by the Thue-Morse word. In the case of Σ3, if j 6= 0, an instance of
the pattern would contain either squares or cubes, so it would be avoided by h
or, respectively, t. If j = 0, we use the word defined in Lemma 7 to obtain the
avoidability of the pattern.

The analysis of the case when m = 4 is more involved. First, note that it
is sufficient to know how to decide the avoidability of the pattern xπi(x)πj(x)
for i, j < 12. Indeed, it is not hard to see that if i and j are arbitrary natural
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numbers, then xπi(x)πj(x) is avoidable in Σ4 if and only if xπi
′
(x)πj

′
(x) is

avoidable, for i′ (resp. j′) being the remainder of i (resp. j) divided by 12.

Consequently, we only analyse the cases when i, j < 12. The pattern is clearly
unavoidable whenever the value k computed for i and j in 5 is less than or equal
to 4. When i = 0 the pattern xπi(x)πj(x) is avoided by the word h as any
instance of the pattern contains squares, and when j = 0 the pattern is avoided
by the word from Lemma 7. Also, in the case when i and j are both even we can
decide the avoidability of the pattern using the results obtained for morphisms
in the previous sections, as, in this case, f can be seen as a morphism instead of
an antimorphism. Moreover, when i = j we can avoid the pattern xπi(x)πi(x)
by the word h that contains no squares. The same word h avoids the pattern
in the cases when (i, j) ∈ {(4, 1), (9, 1), (8, 5), (9, 5), (3, 7), (4, 7), (3, 11), (8, 11)}.
To complete the picture, we note that a word avoids the pattern xπ(xR)xR if
and only if it avoids the pattern xπ′(x)xR where π′ is mapped to a morphic
permutation. Therefore, by Lemma 8 we obtain that the pattern xπi(x)πj(x)
is avoided by the infinite word hδ for (i, j) ∈ {(4, 3), (8, 3), (4, 9), (8, 9)} and by
Corollary 1 we obtain that it is avoidable for (i, j) ∈ {(7, 3), (11, 3), (1, 9), (5, 9)}.

Further, the discussion is split in four cases. If both i and j are even, we can
decide the avoidability of the pattern just as in the case of morphisms (as the
instance of π can be seen, in fact, as a morphism). If both i and j are odd, we
compute the value k defined in (5) and define M = max{k, j + 1, i + 1}. Now,
xπi(x)πj(x) is avoidable in Σm if and only if (xπi(x)πj(x))R = πj(xR)πi(xR)xR

is avoidable in Σm. The last condition is equivalent to the avoidability of the
pattern πj(y)f i(y)y in Σm. Taking z = πj(y), we obtain that πj(y)πi(y)y is
avoidable in Σm if and only if zπM !−j+i(z)πM !−j(z) is avoidable in Σm. Now we
only have to notice that M !− j + i is even and M !− j is odd, as M ! is always
even. Therefore, the case when i and j are odd can be reduced to the case when
i is even and j is odd.

So there remain only two cases to be analysed: the case when i is even and
j is odd as well as the case when i is odd and j is even. As in the morphic case,
we look at the minimum of k1, k2, k3 and k4:

Case 1: k1 = min {k1, k2, k3, k4}. This means that k > k1 and for m < k1
we get that m divides both i and j. For every letter a ∈ Σm and antimorphic
permutation f of Σm, since ordf (a) ≤ m, we get that ordf (a) divides both i
and j. Thus, every instance of xπi(x)πj(x) is in fact an instance of xxRx when
i is odd and j is even or an instance of xxxR when i is even and j is odd. Those
patterns are avoided by the word tγ of Lemma 7 or the word h respectively. If
k1 ≤ m < k, then for every a ∈ Σm and antimorphic permutation f of Σm we
either have that ordf (a) divides both i and j or it divides neither i nor j nor
|i− j|. If there is no letter that fulfils the latter case we get that the pattern is
actually xxxR (resp. xxRx) if i is odd (resp. even) and j is even (resp. odd) and
we can avoid it by the word h (resp. the word tγ from Lemma 7). Otherwise we
get that there have to be at least 3 different letters in an instance of this pattern
and this is obviously avoided by the Thue-Morse word.
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Case 2: k2 = min {k1, k2, k3, k4}. In this case we can see that k = k1. If
4 ≤ m < k2, then for every a ∈ Σm and antimorphic permutation f of Σm we
get that ordf (a) divides both i and j (since k3, k4 > k2) and we get again that
the pattern becomes xxRx (resp. xxxR) when i is odd (resp. even) and j is even
(resp. odd), which is avoided by the word h (resp. the word tγ from Lemma 7).
If k2 ≤ m < k we get for each letter a ∈ Σm and antimorphic permutation f
of Σm that ordf (a) divides at least one of i, j and |i − j|. Thus, for a factor
uf i(u)f j(u), at every position of ` ≤ |u| there are at most 2 different letters
appearing in u, f i(u), f j(u)R if i is even and j is odd (resp. in u, f i(u)R, f j(u) if
i is odd and j is even). Such factors are avoided by the words of Lemma 9 and
Lemma 10.

Case 3: k3 = min {k1, k2, k3, k4}. Again we get k = k1. If 4 ≤ m < k3 we
get that ordf (a) divides both i and j for every letter a ∈ Σm and antimorphic
permutation f of Σm. So every instance of xπi(x)πj(x) is in fact an instance of
xxxR (resp. xxRx) if i is even (resp. odd) and j is odd (resp. even) and thus
avoided by the word h (resp. the word tγ from Lemma 7). If k3 ≤ m < k, we
observe that ordf (a) divides at least one of i and j for every letter a ∈ Σm and
antimorphic permutation f of Σm. Again we get that for a factor uf i(u)f j(u)
at every position of ` ≤ |u| there are at most two different letters appearing in
u, f i(u), f j(u)R if i is even and j is odd (resp. in u, f i(u)R, f j(u) if i is odd and j
is even) and such factors do not appear in the words of Lemma 9 and Lemma 10.

As in the morphic case, the situation when k4 = min {k1, k2, k3, k4} is sym-
metric to the previous case and therefore the same results hold. ut
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