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Abstract

Let π(w) denote the minimum period of the word w, let w be a prim-
itive word with period π(w) < |w|, and let z be a prefix of w. It is shown
that if π(wz) = π(w), then |z| < π(w) − gcd(|w|, |z|). Detailed improve-
ments of this result are also proven. Finally, we show that each primitive
word w has a conjugate w′ = vu, where w = uv, such that π(w′) = |w′|
and |u| < π(w). As a corollary we give a short proof of the fact that if
u, v, w are words such that u2 is a prefix of v2, and v2 is a prefix of w2,
and v is primitive, then |w| > 2|u|.

1 Introduction

Various aspects of periodicity play a central rôle in combinatorics on words and
its applications; see Lothaire’s books [8, 9, 10]. The notion of periodicity is well
posed in many problems concerning algorithmic aspects of strings: in pattern
matching, compression of strings, sequence analysis, and so forth.

In this paper we study extensions of words with respect to their periodicity.
Let w be a word over a finite alphabet A. The length of w is denoted by |w|. The
empty word is denoted by ε. A positive integer p is a period of w, if w = (uv)ku
where p = |uv|, k ≥ 1, and v 6= ε. The minimum period of w is denoted by π(w).

For a word w = uv, the word u is a prefix of w, denoted by u ≤p w, and v
is a suffix of w, denoted by v ≤s w. If v is nonempty, then u is a proper prefix
of w, denoted by u <p w. A nonempty word u is a border of w, if u is a prefix
and a suffix of w, i.e., ux = w = yu for some nonempty words x and y. Each
word has a unique factorization in the form w = ukv, where k ≥ 1, v <p u and
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|u| = π(w). Here u is called the root of w and v the residue of w. We denote
the length |v| ≥ 0 of the residue v by ρ(w).

A word is primitive if it is not a power of a shorter word, i.e., if π(w) does
not divide |w| properly.

Let w be a word with a nonempty residue and a prefix z ≤p w. We show
that if the word wz has the same minimum period as w, that is, π(wz) = π(w),
then |z| < π(w)− gcd(|w|, |z|), where gcd denotes the greatest common divisor
function. Finally, we strengthen the above extension result by showing that if
w is a word with u as a root and w has a nonempty residue, then π(wz) > π(w)
for all prefixes z ≤p w with |z| ≥ π(w) + π(u)− ρ(w)− 1.

In the last section, we study extensions wz that force the period π(wz) = |w|.
This problem is stated for unbordered conjugates. For this, let τ(w) denote the
shortest prefix of the word w, say w = τ(w)u, such that the conjugate uτ(w) is
unbordered, i.e., π(u τ(w)) = |u τ(w)|. We show that for each primitive word
w it holds that τ(w) < π(w). As a corollary we give a short proof of a result
similar to one by Hickerson [10, Lemma 8.2.2] stating that if u, v, w are words
such that v is primitive and u2 <p v2 <p w2, then u2 <p w, i.e., |w| > 2|u|
(Hickerson requires the primitivity of u).

2 Extensions of words by periods

It is clear that if u is a border of a word w, then |w| − |u| is a period of w, and
thus |w| − |u| ≥ π(w). A word w is said to be bordered (or self-correlated [11]),
if it has a border, that is, if w has a prefix of length less than |w| which is also
a suffix of w. If w is not bordered, it is called unbordered. Clearly, a word w is
unbordered if and only if π(w) = |w|.

We begin with an application of the basic periodicity result of Fine and Wilf [6]:

Theorem 1 (Fine and Wilf). If a word w has two periods p and q such that
|w| ≥ p + q − gcd(p, q), then also gcd(p, q) is a period of w.

Note that if w has an empty residue, then π(wz) = π(w) for all words
z = wku with u ≤p w and k ≥ 0. Therefore, in the sequel we consider words
with nonempty residues. Note that each word w with a nonempty residue is
primitive, and thus π(w2) = |w| > π(w).

Theorem 2. Let w be a word with a nonempty residue and a prefix z ≤p w.

If π(wz) = π(w) then |z| < π(w)− gcd(π(w), |w|) .

Proof. Clearly π(wz) ≥ π(w). Let d = gcd(π(w), |w|), and suppose that z ≤p w
satisfies π(wz) = π(w). Then both |w| and π(w) are different periods of wz.
If |wz| ≥ π(w) + |w| − d, then Theorem 1 implies that d is a period of wz. In
this case, d = π(w), since π(wz) ≥ π(w), and so π(w) divides |w| contradicting
primitivity of w; hence the claim follows.

The following example shows that the bound given in Theorem 2 is optimal
for all lengths.
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Example 3. Consider the word

w = an−1ba

with the minimum period π(w) = n, and let z = an−2 ≤p w. We have π(wz) =
n, where |z| = |w| − 3 = π(w)− gcd(π(w), |w|)− 2, since gcd(n, n + 1) = 1.

The following example shows that the condition |z| ≥ π(w)− gcd(π(w), |w|)
does not imply that π(wz) = |w|.

Example 4. Consider the word

w = ababaabab .

Then π(w) = |ababa| = 5. Let z = aba. We have |z| = π(w)− 2 and

wz = ababa.abab.aba

with π(w) = 5 < 7 = π(wz) < 9 = |w|, since |ababaab| is a period of wz.

For a word w with a nonempty residue, let its maximal extension number be
defined by

κ(w) = max{p | p = |z| for a prefix z ≤p w with π(wz) = π(w)} .

Theorem 2, κ(w) exists and satisfies κ(w) < π(w)− 1. For a nonempty word w,
let w• denote the word from which the last letter is removed. For the proof of
the following result, see Berstel and Karhumäki [1].

Lemma 5. Let u and v be two nonempty words. If uv• = vu• then there exists
a word g such that u = gi and v = gj for some i, j ≥ 1.

We shall now have a partial improvement of Theorem 2.

Theorem 6. Let w be a word with a nonempty residue and let u be the root of
w. Then

κ(w) ≤ π(w) + π(u)− ρ(w)− 2 .

Proof. Let u = vy where |v| = ρ(w), and let x be the root of u. Assume that
there exists a prefix z ≤p w such that π(wz) = π(w) and |z| = π(w) + π(u) −
ρ(w)− 1 = |wu| − |v| − 1. By Theorem 2, we have that π(u) < ρ(w), and thus
x <p u. Now, |vz| = |ux| − 1 and since vz ≤p ux, we have vz = ux• = vyx•,
and thus z = yx•. Also, z = xy•, since z ≤p u and y <p u, for, y <p z <p u and
x is the root of u. By Lemma 5, yx• = xy• implies that there exists a primitive
word g such that x = gi and y = gj for some i, j ≥ 1. Then v = gitg1 for a
prefix g1 <p g and an integer t ≥ 0, and so u = vy = gitg1g

j . However, since x
is the root of u, u = xrx1 for some r ≥ 1 and x1 <p x, from which it follows that
u = git+jg1. In order for g to be primitive, we must have j = 0, for otherwise g
is a proper conjugate of itself. This contradicts the fact that j ≥ 1.

The bound given in Theorem 6 is optimal as shown in the following example.
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Example 7. Consider the words

wn = (aba)nab

where π(wn) = 3, π(u) = 2 for the root u = aba of wn, and ρ(wn) = 2. Hence,
κ(w) = π(wn) + π(u)− ρ(wn)− 2 = 1. Indeed, the extension wnab has a larger
period than 3, namely π(wnab) = 3n + 2.

Also, for
un = (ab)naab

of length 2n + 3, we have π(un) = 2n + 1, and the length ρ(un) of the residue
of un is 2 . Hence, κ(un) = 2n− 1 = π(un) + π((ab)na)− ρ(un)− 2.

3 Critical points and extensions

Every primitive word w has an unbordered conjugate. For instance, consider
the least conjugate of w with respect to some lexicographic ordering, that is,
a Lyndon conjugate of w; see e.g. Lothaire [8]. Denote by τ(w) the shortest
prefix of w, w = τ(w)u, such that the conjugate uτ(w) is unbordered. Hence
0 ≤ τ(w) < |w|.

Lemma 8. Each primitive word w has a factorization w = uv such that the
conjugate vu is unbordered and either |u| < π(w) or |v| < π(w).

Proof. Let w = ukz, where u is the root of w, k ≥ 1, and z <p u. Suppose
that w has no conjugate as stated in the claim. Let w′ = yuk−izui−1x be
an unbordered conjugate of w, where u = xy. (Take, for instance, a Lyndon
conjugate of w.) It follows that i = k or i = 1, for otherwise yx is a border of w′.
If i = 1, then w′ = yuk−1zx is a required conjugate: w′ = (yuk−1z)(x). Assume
then that i = k, we have w′ = yzuk−1x and thus z <p x; otherwise again yx is
a border of w′. However, now w′ = (yz)(uk−1x) is a required conjugate.

In the following we say that an integer p with 1 ≤ p < |w| is a point in the
word w. A nonempty word u is called a repetition word at p if w = xy with
|x| = p and there exist words x′ and y′ such that u is a suffix of x′x and u is a
prefix of yy′. Let

π(w, p) = min{|u| | u is a repetition word at p}

denote the local period at point p in w. In general, we have that π(w, p) ≤ π(w).
A factorization w = uv, with u, v 6= ε and |u| = p, is called critical, and p is
a critical point, if π(w, p) = π(w).

The Critical Factorization Theorem (CFT) is a fundamental result on pe-
riodicity. It was first conjectured by Schützenberger [12] and then proved by
Césari and Vincent [2]. Later it was developed into its present form by Duval [5].
We refer to [7] for a short proof of the theorem giving a technically improved
version of the proof by Crochemore and Perrin [3].

4



Theorem 9 (CFT). Let w be a word with at least two different letters. Then
w has a critical point p such that p < π(w).

The following lemma rests on the CFT.

Lemma 10. Let w be an unbordered word with |w| ≥ 2, and let w = uv be such
that p = |u| is any critical point of w. Then also the conjugate vu is unbordered.

Proof. Without loss of generality we can assume that |u| ≤ |v|. Now π(w) = |w|,
since w is unbordered. Assume, contrary to the claim, that the word vu is
bordered. We have two cases to consider. (1) Assume that v = sv′ and u = u′s
for a nonempty word s. Then π(w, |u|) ≤ |s| < |w| contradicting the assumption
that |u| is a critical point. (2) Assume that v = sut. Then π(w, |u|) ≤ |su| < |w|,
and again |u| is not a critical point; a contradiction. These cases prove the
claim.

The following theorem states the main result of this section.

Theorem 11. Let w be a primitive word. Then τ(w) < π(w).

Proof. Suppose first that π(w) > |w|/2. Assume that w = xyz, where |xy| =
π(w), z <p xy, and |x| is a critical point of w such that |x| < π(w) provided
by Theorem 9. Suppose that the conjugate w′ = yzx is bordered, and let
u be its shortest border. Since |x| is a critical point in w and u is a local
repetition at |x| in w, we have |u| ≥ π(w), and hence |u| ≥ |yx|. Since u is
unbordered, it does not overlap with itself, and therefore |yzx| ≥ 2|u|, which
implies that |yzx| ≥ 2|yx| and hence |z| ≥ |yx|; a contradiction. Hence the
conjugate w′ = yzx is unbordered, and so τ(w) < π(w).

Assume then that π(w) < |w|/2, and let u be the root of w. Then w = ukz
where π(w) = |u| and z <p u and k ≥ 2.

Assume that τ(w) ≥ π(w), and thus that τ(w) > π(w). By Lemma 8, there
exists an unbordered conjugate w′ = vuk−1t of w, where v ≤s w such that
|v| < π(w). Consider a critical point p of w′, say w′ = gh, where |g| = p.

First, v is a suffix of uz, and thus the critical point p is not in v, i.e., p > |v|,
since π(w′) = |w′| and v occurs in uk−1t. Similarly, p < |vu|, since all suffixes of
w′ starting from a position q ≥ |vu| occur in w′ starting from the point q − |u|
and thus there is a local repetition at point q of length at most |u|. Now we
have |v| < |g| < |vu| and the conjugate hg is unbordered by Lemma 10. Let
u = rs such that g = vr. Then hg = suk−1zr and 1 ≤ |r| < |u| as required.

The following example illustrates that it is not enough to just consider critical
points for proving Theorem 11.

Example 12. It is not true that a conjugate vu with respect to a critical point |u|
of w = uv is unbordered. Consider for instance the word w = abcbababcbabab,
where π(w) = 6, and p = 3 is a critical point, but the corresponding conjugate
w′ = bababcbabababc has a border bababc.

Note that we always have π(wkz) ≤ |w| for prefixes z ≤p w and nonnegative
integers k. Theorem 11 gives a complementary result to Theorem 2 and 6.
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Corollary 13. Let w be a word with a nonempty residue and a prefix z ≤p w.

If |z| ≥ π(w) then π(wz) = |w| .

Proof. Let |z| ≥ π(w). By Theorem 11, w has an unbordered conjugate w′ = vu
where w = uv and |u| < π(w). Then we have π(wu) = |w| for the extension wu,
since π(wu) is at least the length of the longest unbordered factor of wu. The
claim follows now from wu ≤p wz.

The next example elaborates on the differences between Theorem 2 and
Corollary 13.

Example 14. Consider the word

w = aaabaa

for which |w| = 6 and π(w) = 4 and gcd(π(w), |w|) = 2 so that we get π(w) −
gcd(π(w), |w|) = 2. We have π(wz) > π(w) for each extension wz with z ≤p w
and |z| ≥ 2, by Theorem 2. The shortest extension increasing the period is for
z = aa, that is, w.aa = aaabaaaa with π(waa) = 5.

However, we have π(wz) < |w| and the corresponding conjugate w′ = abaaaa
of w is bordered. In this example, we need an extension z = aaa of length 3 in
order to obtain π(wz) = |w|.

The following result is due to Hickerson (communicated by Crochemore);
see [10, Lemma 8.2.2]. Below we show that this result also follows from The-
orem 11 where we require only that the length of the second longest word v
is primitive as compared to the required primitivity of u in Hickerson’s proof.
For a stronger result on squares as prefixes of words by Crochemore and Rytter
see [4] and [9, Lemma 8.1.14] for a short proof by Diekert.

Note that an integer p ≤ |w| is a period of the word w if and only if w ≤p xw,
where x ≤p w is such that |x| = p, and all unbordered factors of a word w are
not longer than π(w).

Corollary 15. Let u, v, w be words such that v is primitive and u2 <p v2 <p w2.
Then |w| > 2|u|.

Proof. Suppose that |w| ≤ 2|u|, and thus w <p v2 <p w2. Hence w has a
nonempty residue. Let w = vx. Then |x| is a period of v, since vv ≤p ww =
vxvx and so v ≤p xv. Now π(v) ≤ |x| and an unbordered conjugate of v
occurs in w by Theorem 11 (see also Corollary 13). Therefore π(w) ≥ |v|, and
so π(w) = |v|. However, also |u| is a period of w, since w <p u2. Therefore
|v| = π(w) = |u| gives a contradiction.
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