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Abstract

A word v = wu is a (nontrivial) Duval extension of the unbordered word w,
if (u is not a prefix of v and) w is an unbordered factor of v of maximum
length. After a short survey of the research topic related to Duval extensions,
we show that, if wu is a minimal Duval extension, then u is a factor of w.
We also show that finite, unbordered factors of Sturmian words are Lyndon
words.
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1 Introduction

In this paper a short survey about the research on the relationship between
the length of a word and its unbordered factors is given. This line of research
was introduced by Ehrenfeucht and Silberger [3] and Assous and Pouzet [1]
in 1979. It was carried further and culminated in a strong conjecture by Du-
val [2] in 1982.

We will give a historical overview on this line of research, its main results
and conjectures so far, in Section 2. This will lead to the concept of Duval
extensions which are introduced in Section 3. In that section we will also show
that unbordered, finite factors of Sturmian words are Lyndon words which we
are not aware of being shown in the literature so far. Our main contribution
is presented in Section 4. It shows a remarkable property of minimal Duval
extensions.

We shall now introduce the main notations of this paper. We refer the
reader to [5, 6] for more basic and general definitions.

Consider a finite alphabet A of letters. Let A∗ denote the monoid of all
finite words over A including the empty word, denoted by ε. Let w ∈ A∗.
Then we can express w as a sequence of letters w(1)w(2) · · ·w(n) where w(i) ∈ A

is a letter, for every 1 ≤ i ≤ n. We denote the length n of w by |w|. Note,
that |ε| = 0. A word w is called primitive if it cannot be factored such that
w = uk for some k ≥ 2. Let w = uv for some words u and v. Then vu is
called conjugate of w. Let [w] denote the set of all conjugates of w. Note,
that w ∈ [w].

A nonempty word u is called a border of a word w, if w = uv = v ′u for
some words v and v′. We call w bordered, if it has a border that is shorter
than w, otherwise w is called unbordered. Note, that every bordered word w

has a minimum border u such that w = uvu, where u is unbordered. Suppose
w = uv, then u is called a prefix of w, denoted by u ≤ w, and v is called
a suffix of w, denoted by v 4 w.

Let CA be an ordering of A = {a1, a2, . . . , an}, say a1 CA a2 CA · · · CA an.
Then CA induces a lexicographic order, also denoted by CA, on A∗ such that

u CA v ⇐⇒ u ≤ v or u = xau′ and v = xbu′ with a CA b

where a, b ∈ A. We write C for CA, for some alphabet A, if the context is
clear.

Let us consider the following examples. Let A = {a, b} and u, v, w ∈ A∗

such that u = abaa and v = baaba and w = abaaba. Then u and v are
primitive, but w is not. Furthermore, [u] = {aaab, aaba, abaa, baaa} is the
set of all conjugates of u. Let a C b. Then u C w C v. We have that a is
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the shortest border of u and w, whereas ba is the shortest border of v. The
smallest unbordered factor of w has length three.

2 On the Maximum Length of Unbordered

Factors

When the length of unbordered factors of a word is investigated, that is
usually done in terms of the length of the word and its minimum period.

Lets make our terminology more precise. Consider a word w over some
alphabet A. An integer 1 ≤ p ≤ n is a period of w, if w(i) = w(i+p) for all
1 ≤ i ≤ n − p. The smallest period of w is called the minimum period (or
simply, the period) of w, denoted by ∂(w). Let µ(w) denote the maximum
length of unbordered factors of w. For example, let w = abaabbaaba, then
∂(w) = 7 and µ(w) = 6.

Clearly, the maximum length of unbordered factors µ(w) of w is bound
by the period ∂(w) of w. We have

µ(w) ≤ ∂(w)

since for every factor v of w, with ∂(w) < |v|, the prefix v(1)v(2) · · · v(|v|−∂(w))

of v is also a suffix of v by the definition of period.
It is a natural question to ask at what length of w is µ(w) necessarily

maximal, that is, µ(w) = ∂(w). Of course, the length of w is considered with
respect to either µ(w) or ∂(w).

In 1979 Ehrenfeucht and Silberger [3], as well as, Assous and Pouzet [1]
addressed this question first. Ehrenfeucht and Silberger [3] stated

Theorem 1. If 2∂(w) ≤ |w| then µ(w) = ∂(w).

They also established that every primitive word w has at least σ-many
unbordered conjugates, where σ is the number of different letters occuring
in w, which leads directly to

Theorem 2. If 2∂(w)− σ ≤ |w| then µ(w) = ∂(w).

However, this result was stated by Duval [2] only in 1981.
The real challenge, though, turned out to be giving a bound on the length

of w with respect to µ(w). It was conjectured in [3] that 2µ(w) ≤ |w|
implies µ(w) = ∂(w). However, Assous and Pouzet gave the following counter
example. Let

w = anban+1banban+2banban+1ban

for which |w| = 7n+10 and µ(w) = 3n+6 and ∂(w) = 4n+7 contradicting
that conjecture. They themselves gave the following conjecture.
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Conjecture 3. Let f : N → N such that f(µ(w)) ≤ |w| implies µ(w) = ∂(w).
Then

f(µ(w)) ≤ 3µ(w) .

In 1982 Duval [2] established the following.

Theorem 4. If 4µ(w)− 6 ≤ |w| then µ(w) = ∂(w).

He also stated Conjecture 6 (see next section) about what was later called
Duval extensions that would imply

If 3µ(w) ≤ |w| then µ(w) = ∂(w) .

3 Duval Extensions

In the previous section we recalled a question initially raised by Ehrenfeucht
and Silberger [3]. The problem was to estimate a bound on the length of
w, depending on µ(w), such that µ(w) = ∂(w). Duval [2] introduced a re-
stricted version of that problem by assuming that w has an unbordered prefix
of length µ(w). However, lets first fix some more notations.

Let w and u be nonempty words where w is also unbordered. We call wu

a Duval extension of w, if every factor of wu longer than |w| is bordered, that
is, µ(wu) = |w|. A Duval extension wu is called trivial, if ∂(wu) = µ(wu).
A nontrivial Duval extension wu of w is called minimal, if u is of minimal
length, that is, u = u′a and w = u′bw′ where a, b ∈ A and a 6= b.

Example 5. Let w = abaabbabaababb and u = aaba. Then

w.u = abaabbabaababb.aaba

(for the sake of readability, we use a dot to mark where w ends) is a nontriv-
ial Duval extension of w of length |wu| = 18, where µ(wu) = |w| = 14 and
∂(wu) = 15. However, wu is not a minimal Duval extension, whereas

w.u′ = abaabbabaababb.aa

is minimal, with u′ = aa ≤ u. Note, that wu is not the longest nontrivial
Duval extension of w since

w.v = abaabbabaababb.abaaba

is longer, with v = abaaba and |wv| = 20 and ∂(wv) = 17. One can check
that wv is a nontrivial Duval extension of w of maximum length, and at the
same time wv is also a minimal Duval extension of w.
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In 1982 Duval [2] stated the following conjecture.

Conjecture 6. Let wu be a nontrivial Duval extension of w. Then |u| < |w|.

It follows directly from this conjecture that for any word w, we have that
3µ(w) ≤ |w| implies µ(w) = ∂(w). This conjecture has remained popular
throughout the years, see for example Chapter 8 in [6].

Duval extensions have also become a subject of interest on their own. In
particular the set of words having no nontrivial Duval extension has been
investigated in [4] and [8].

Infinite words of minimal subword complexity are called Sturmian words,
cf. [9, 6]. Let us consider finite factors of Sturmian words in the following,
and lets simply call them Sturmian words. Mignosi and Zamboni showed the
following uniqueness result for Duval extensions in [8].

Theorem 7. Unbordered Sturmian words have no nontrivial Duval exten-
sion.

This result was improved by the authors of this paper in [4] to Lyndon
words. Let a primitive word w be called Lyndon word if it is minimal among
its conjugates, that is, if w C v for every v ∈ [w] and some arbitrary order C

on A, cf. [7, 6]. Note, that Lyndon words are unbordered.

Theorem 8. Lyndon words have no nontrivial Duval extension.

Theorem 10 states that unbordered Sturmian words are indeed Lyndon
words. The following lemma will be used to prove that result.

Let τ : A∗ → B∗ be a morphism, and CA and CB be orders on A and B,
respectively, such that

a1 CA a2 =⇒ τ(a1) CB τ(a2) (1)

for every a1, a2 ∈ A, and τ(a) is a Lyndon word w.r.t. CB for every a ∈ A.

Lemma 9. If w ∈ A∗ is a Lyndon word, then τ(w) is a Lyndon word.

Proof. Let |w| = n. Assume w is a Lyndon word and τ(w) is not a Lyndon
word. Therefore, τ(w) = xy such that yx is minimal w.r.t. CB, and x and y

are not empty.
If x = τ

(

w(1)w(2) · · ·w(i)

)

and y = τ
(

w(i+1)w(i+2) · · ·w(n)

)

with 1 ≤ i < n,
then we have an immediate contradiction by (1).

Therefore, there exists an i, where 1 ≤ i ≤ n, and τ(w(i)) = v1v2 such
that we have x = τ

(

w(1)w(2) · · ·w(i−1)

)

v1 and y = v2τ
(

w(i+1)w(i+2) · · ·w(n)

)

and v1, v2 6= ε. That implies v2 CB v1v2, and we have v1 = uj and v2 = uk,
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for some primitive u and j, k ≥ 1, since v1v2 is a Lyndon word by assumption.
But now, either

v1yxv
−1
1 CB yx or v−1

2 yxv2 CB yx ,

a contradiction. The following theorem shows that Theorem 8 implies
Theorem 7.

Theorem 10. Every unbordered Sturmian word is a Lyndon word.

Proof. Let u ∈ {a, b} be an unbordered Sturmian word. Assume u begins
with a and ends with b without restriction of generality. The case is clear
if u = abk for some k ≥ 1. Assume a occurs at least twice in u. Then
u = abkvabk+1 and u can be factored into abk and abk+1 for some k ≥ 1.
Let τ : {a, b}∗ → {a, b}∗ such that τ(a) = abk and τ(b) = abk+1. Now, let
w = τ(u) and we have that w is an unbordered Sturmian word that begins
with a and ends in b. By induction w is a Lyndon word w.r.t. a C b and u is
a Lyndon word w.r.t. C by Lemma 9.

The converse of Theorem 10 is certainly not true. Indeed, consider the
word aabbab which is a Lyndon word but not a Sturmian word since it con-
tains four factors of length two.

Another property of Duval extensions will be introduced in the next sec-
tion.

4 Minimal Duval Extensions

The minimal Duval extension of a word w is the smallest prefix of a nontrivial
Duval extension of w such that the prefix itself is a nontrivial Duval extension
of w. The following theorem gives a rather surprising property of nontrivial
Duval extensions.

Theorem 11. Let wu be a minimal Duval extension of w. Then u is a factor
of w.

Proof. By assumption, we have w = u′aw′ and u = u′b where a, b ∈ A and
a 6= b. Consider the shortest border v0 of aw′u′b which exists by assumption
since |aw′u′b| = |w| + 1. If |v0| ≥ |u|, then the claim holds. Thus, assume
that |v0| < |u|.

w u

u′ a u′ b

av′0av
′
0 b av′0 b

v0 v0
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Let v0 = av′0b. Then v′0b ≤ w′u and av′0 4 u′. The factor av′0aw
′u has

a shortest border v1 such that |av′0av
′
0| < |v1| because otherwise v0 is not the

shortest border of aw′u. Again, if |v1| ≥ |u|, then the claim follows. Assume
that |v1| < |u|.

w u

u′ av′0 b u′ b

a v′1 a

av′0a av′0 b

a v′1 b a v′1 b

v1 v1

Let v1 = av′1b. Then v′1b ≤ w′u and av′1 4 u′. The factor av′1aw
′u has

a shortest border v2 such that |av′1av
′
1| < |v2| because otherwise v1 is not the

shortest border of av′0aw
′u.

In this way, we get a sequence of suffixes v0, v1, . . . , vk of wu growing
in length such that |v0| < · · · < |vk|, and moreover vi occurs in w for every
0 ≤ i ≤ k.

w u

u

vk+1 vk+1

If |vk| < |u|, this sequence of suffixes of wu can be continued. Since wu is
of finite length, the sequence is finite. Assume thus that k is the maximum
index for which |vk| < |u|. Then |u| ≤ |vk+1|, and hence u 4 vk+1, which
proves the claim.
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