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ABSTRACT

It is becoming increasingly recognized that the eddy field plays an important—possibly dominating—role
for oceanic motions in many aspects (e.g., transport of properties and risk assessment in the case of extreme
events). This motivates the study of individual eddy events. In the Lagrangian coordinate system, vorticity
possibly associated with eddies appears in two forms: as shear vorticity between neighboring particles, and
as curvature of the trajectory of a single particle. Typical field experiments in physical oceanography using
surface drifters or subsurface floats do not reach data densities high enough to produce enough encounters
of drifters to calculate shear vorticity between them. However, curvature in individual tracks is easily
observed. This study presents a methodology that extracts segments from within a trajectory that are
“looping,” which will be interpreted as a drifter being caught in an eddy. The method makes use of
autoregressive processes, a simple type of stochastic processes, which easily enables a fit to the nonperfectly
shaped trajectory data usually expected from field experiments. These processes also deliver frequency and
persistence of the detected eddies by a very simple calculation, which makes the methodology highly suited
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for automatized scanning of larger datasets.

1. Introduction

The imprint of eddy vorticity in particle trajectories
can be by shear and curvature. With field experiments
in mind, data density is typically low and thus insuffi-
cient to deduce synoptic shear vorticity. The search for
eddies in such trajectories is then restricted to analyzing
curvature. With the aim of finding coherent vortices
and deducing their internal structure, one would want
to identify several revolutions around an eddy center,
in contrast to shorter arclike “curves” (which may well
be caused by a coherent eddy nearby). The whole issue
of identifying coherent eddy structures in trajectories is
then reduced to finding “looping” segments within a
trajectory, and the main difficulty is that data from field
experiments is noisy and of irregular shape.

The most natural way to deal with the issue is obvi-
ously inspection by eye, which has been applied fre-
quently in oceanographic research (e.g., Shoosmith et
al. 2005; Fratantoni and Richardson 2006). However,
this is time-consuming and possibly subject to human
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error or bias. A different approach is made by Boebel
et al. (2003), who use a computer algorithm to derive
curvature from the (smoothed) tracks and count revo-
lutions accordingly. However, they use threshold values
for curvature and duration of the eddy event, and allow
for equivalently defined exceptions from these. All of
these thresholds are likely to depend on the flow char-
acteristics of the region under study. Roughly at the
same time, a software package called Drifter Analysis
(DANA) was developed by Lankhorst (2003), which
contains an eddy detection algorithm based mainly on
the fit of a stochastic process [an autoregressive (AR)
process]. This algorithm has now received further up-
grades, tuning, and validation using the work by
Shoosmith et al. (2005, from now on referred to as
SRBR), and is the subject of this manuscript." Using
the AR process has the advantage that the fundamental
behavior of the underlying time series (i.e., oscillating
or not, including persistence and period time scales) is
easily read off from the fit parameters. The goal is to
derive a method that is completely self-contained and
requires no initial guess for any parameter (like thresh-
old curvatures or initial guesses for time scales), al-

! For interested readers, the DANA software is freely available
upon request to the author (it is a set of routines for MatLab).
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though the method of course uses such thresholds in-
ternally. The mathematical (i.e., less tied to physical
quantities) character of these thresholds gives rise to
the hope that the method is useful for very different
flow regimes. In fact, it has produced sensible results
during test runs with RAFOS and SOFAR float data
from depths between 700 and 2600 m from the North
and tropical Atlantic. These test runs covered the rela-
tively wide ranges of Lagrangian integral time scales
from approximately 3-10 days and eddy kinetic ener-
gies between 5 and 100 cm? s~ (Lankhorst and Zenk
2006).

2. Methodology

In this section, the methodology used to detect loop-
ing parts within a trajectory (called “loopers”) is de-
scribed. Because of their fundamental importance to
the method, AR processes are introduced first. This is
followed by a listing of all criteria that need to be ful-
filled before a trajectory segment is considered to be
looping. A comparison with the study by SRBR, who
identified eddies in float trajectories by visual inspec-
tion, finishes this section.

a. About AR processes

Autoregressive processes are a class of linear sto-
chastic processes. An autoregressive process of order n
(ARn process) is one that describes a process variable
z, by an equation such as

= ¢z Tz ot Tz, T e (1)
The ¢. . . are constant coefficients, 7 is the time (in dis-
crete, equally separated steps), and €, is a random noise
process as a forcing. We are therefore looking at time
series of a variable z,. The name autoregressive comes
from the fact that z, is expressed in terms of itself at
previous times. For interested readers, a very detailed
discussion of time series analysis is given by Box et al.
(1994). The following paragraphs try to summarize the
aspects of AR processes that are important to the use
presented here.

An AR process is stationary (i.e., all statistical mo-
ments are constant with time) exactly if all (possibly
complex) solutions L of the characteristic equation

L=l —dpl? ==, L"=0 ()

are outside of the unit circle. This shall be assumed true
from now on.
The normalized autocorrelation function R_(7),
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where 7 is the time lag, satisfies the associated homo-
geneous equation [cf. Eq. (1) without the forcing term]:

RZ(T) = qble(T - 1) + ¢2Rz(T - 2) +ee et (rl)nRz(T - I’l).
©)

The power spectral density p, as a function of fre-
quency fis then given by

262

d)le—Z’rrif_ d)ze—4'rrif_ R

pf) = 11— &, ¢ 2|2

1
with 0=f=>. “4)

Note that the shape of both the autocorrelation and
spectrum is independent of the forcing term ¢, which
can only influence the overall level as a constant factor.

Equations (1) and (3) can also be rewritten as linear
difference equations of order n, after introducing some
A_ and A, terms. This emphasizes the close relationship
to linear differential equations, which the reader may
be more familiar with. The linearity (i.e., additivity and
homogeneity of the solutions) is valid for both the dif-
ference and the differential versions, which is the un-
derlying reason why these processes are called linear.

It is therefore not surprising that a second-order au-
toregressive (AR2) process resembles a harmonic os-
cillator with stochastic forcing €, Depending on the co-
efficients ¢, ,, the solutions to the homogeneous Eq. (3)
can be damped exponentials only (overdamped oscilla-
tor), exponentially damped sinusoidals (underdamped
oscillator), or the aperiodic, degenerated solution in be-
tween (critically damped oscillator). In terms of the
characteristic polynomial [Eq. (2)], this means two real
roots, two complex conjugates, or a degeneration into
one root, respectively. The latter is defined by the pa-
rabola

¢ +4d, =0 ®)

for an AR2 process.

Let us now restrict ourselves to stationary, oscillating
(i.e., underdamped) AR2 processes. Their coefficients
are “below” the parabola of Eq. (5), and their autocor-
relation is described by

R.(1) = e T cos(2mfyT),

where

1
d=—-—In(\/—¢,) and f,= %arccos<2¢;id)2>.

()
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The two coefficients ¢, , can be transformed into two
time scales: a damping time scale d and an oscillation
frequency f,,. Here d is the decay scale of the enveloping
exponential and a measure of how long an oscillating
motion may be expected to exist coherently. Note that
d is real, because ¢, < —Vad7 = 0. Figure 1 shows two
examples of AR2 processes with identical f,, but differ-
ent d. Both time series oscillate at frequencies near f,
but the one with weaker damping does so in a clearer
and more energetic way. This behavior is also apparent
in the autocorrelation and spectrum (also shown in
Fig. 1).

Stationary AR2 processes are those with coefficients
within a triangle in ¢;—¢, space, the corners of which
are (=2, —1), (2, —1), and (0, 1). This triangle and the
parabola [Eq. (5)] are indicated in the inset in Fig. 2.
The remaining figure discusses numerous algorithms to
fit an AR process to a given time series (i.e., to find the
coefficients ¢. . . and the strength of the forcing, €, that
best match the original time series). The Signal Pro-
cessing Toolbox [(SigProcTbx) from MatLab (more in-
formation available online at www.mathworks.com)]
software contains four such algorithms (called aryule,
arburg, arcov, armcov), of which the first two use fairly
common techniques [the Yule-Walker equations (see
Box et al. 1994) and Burg’s algorithm (see Press et al.
1993)]. The performance of these algorithms was tested
by challenging them with artificial AR2 time series with
known coefficients. The coefficients were chosen to be
in a range that would be expected from oceanic float
data: both d and f;, are assumed to be small, which leads
to coefficients in the lower-right-hand corner of the
“stationarity triangle.” It turned out that the simple
aryule method performs worse than the other three
routines (between the results of which there was almost
no difference), so that arburg was selected for the eddy
detection process. It is interesting to note that all fitting
routines seem to reproduce the frequency better than
the damping scale. This can be seen from the clouds of
scattered points around the true values, which are
aligned parallel to the parabola of Eq. (5) (lines of
equal f,, are also roughly parallel to this parabola).

For the eddy detection process, it was necessary to
apply a smoothing filter to the data prior to the AR2 fit
to ensure that the fit detects the desired signal. Re-
peated failures to do so were often related to high-
frequency “noise” in the raw data (e.g., poor position-
ing or unresolved tidal-inertial oscillations), or simply
two superimposed eddylike features (a small, high-
frequency eddy orbiting a large, low-frequency object).
In almost every case, a simple low-pass filter was suffi-
cient to suppress the unwanted signal, and has there-
fore been applied as a standard method. However, this
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FiG. 1. Example of two artifically generated time series of AR2
processes. Forcing and fundamental frequency (f, = (1/10)) were
identical for both, but decay time varied [gray:d = (1/6), black:d =
(1/40)]. (top) Close-up view of the time series. (middle) Sample
(crosses) and theoretical [solid lines, from Eq. (3)] autocorrelation
functions [dashed: enveloping exponentials from Eq. (3)]. (bot-
tom) Sample (dashed) and theoretical [solid, from Eq. (4)] spec-
tra.

carries an inconsistency with it: the spectrum of an AR2
process has a distinct shape (one spectral line with a
decay proportional to f~2 at the high-frequency end),
which is possibly very different from that of the filtered
time series. As an ad hoc validation of the procedure,
an AR2 fit was applied to artificial time series with
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Fi1G. 2. Ad hoc test of AR-fitting routines. Time series with known AR?2 coefficients (black
diagonal crosses) were created, and four fit routines were challenged to recreate these coef-
ficients (different gray symbols). The aryule algorithm produced the worst results, while the
results from the other three routines were almost identical. The arburg algorithm was chosen
for the eddy detection process. Black solid lines indicate the triangle in which AR2 processes
are stationary, and the dashed line is the parabola that separates periodic (below the parabola)
from aperiodic (above it) solutions. The inset in the upper-right-hand corner shows an over-

view of the entire stationarity triangle.

known AR2 parameters. Then, a filter was applied to
the time series, and the fit routine was applied again.
The results of this test are shown in Fig. 3: in all cases,
the fundamental frequency of the AR2 process was
found with great accuracy. The damping scale is re-
duced because filtering removes some of the noise.
Nevertheless, the spectrum calculated from Eq. (4) us-
ing the coefficients from the fit to the filtered time se-
ries resembles that of the original time series (empha-
sizing the spectral line at f; due to reduced noise),
which generates exactly the behavior wanted for the
eddy detection procedure. To create Fig. 3, a high-
order Butterworth filter with a bandpass between "4
and 4 times the fundamental frequency of the AR2 time
series was used. For the eddy detection (cf. section 2b),
a much weaker filter will be applied, so that this may be
considered safe.

b. Eddy detection criteria

The actual search for looping parts within a trajec-
tory works as follows and is included in the DANA
software by the author.

1) The position data of the trajectory is smoothed with
a digital filter. As a careful default, a third-order
Butterworth low-pass filter with a cutoff period of
(1/20) of the window length (cf. next list item) is
applied. The MatLab SigProcTbx routines to create
and apply the filter are butter and filtfilt. From the
smoothed trajectory, zonal (1) and meridional (v)
velocities are computed by simple differences.

2) The trajectory is split into overlapping windows. As
a default for the window length, four passes with
lengths of 2, 4, 8, and 16 times the Lagrangian inte-
gral time scale 7; are suggested. Here 7; should be
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FiG. 3. Test of AR?2 fits applied to filtered time series. (top left) Time series with known AR2 (black
circles) parameters were created, and a fit routine applied to reconstruct them (gray crosses). Then, a
high-order bandpass filter was applied to the time series, and the AR2 fit routine was applied again
(black crosses). (top right) The fundamental frequency was still found with very good accuracy, while the
damping scale was reduced due to the fact that the filter reduced some of the noise. (bottom) For one
realization, spectra are shown [gray solid: sample spectrum of the original time series, black solid: sample
spectrum of the filtered time series, black dashed: theoretical spectrum from Eq. (4) using the coeffi-
cients from the fit to the filtered time series]. The overall impression is that filtering does not affect
analysis of the fundamental frequency, and that the AR2 fit works mainly on the parts of the spectrum
that carry energy, thereby ignoring the steep cutoff implied by the filter. This behavior is necessary for

the eddy detection process.

computed as an average over all trajectories first. It
is advisable that this quantity be reasonably homo-
geneous throughout the dataset one wishes to study.
Note that this step automatically adapts the algo-
rithm to the particularities of the flow field, thereby
eliminating the need for human input.

For each of these windows, means and trends of u
and v are removed, and AR2 processes are fit to
both u and v using the arburg algorithm (see section
2a). This returns coefficients ¢ ..., from which

4)

damping scales d,,,, and frequencies f, , are derived
by Eq. (6). Additionally, auto- and cross correla-
tions of u and v are computed for all windows, and
the revolution angle of the trajectory is found by
applying MatLab functions unwrap and angle to u +
iv.
The trajectory segment will be considered looping if
all of the following criteria apply.

Oscillating: The fit shows oscillations (i.e., both
.., are real).
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Equal persistence: Here d,, and d, are (almost)
equal. This has been expressed as follows:

|log2<%>| < 1.02. (7)
Together with the next criterium, this ensures that
the fits in u# and v directions have the same charac-
teristics, which is likely for coherent vortices but
unlikely for random noise.
Equal frequency: Equivalently, f, and f, are (al-
most) equal:

|log2(]%> | <0.15. (8)

Duration long versus period: The duration time
scale is long compared to the detected period for
both u and v components:

d"<09 d d"<09 )

— <09 and —<09.

fu 5
Quality of the AR2 fit: The AR2 process explains

most of the actual variance; that is, the noise level €

that the AR2 fit returns is below the sample vari-

ances u?, v times a scaling factor:

2

Elt
—<0.59 and
e

2
&

< 0.59. (10)

Minimum revolution angle: The revolution angle
6 is at least two complete revolutions:

1 1
— <.
[0] 4m

Phase lag 90°: The phase lag between u and v is
near 90° or 270°, to extract near-circular motions.
This is expressed by the cross-correlation R, be-
tween u and v, which must be near 0 for lag O:

|R.(0)]

—max(lRwl) < 0.36.

(11)

The eddy period is then taken from f, ,, and the
sense of rotation from the sign of 6. With geo-
strophic motions in mind, counterclockwise loops
will be considered cyclonic eddies in the Northern
Hemisphere and clockwise loops anticyclonic, and
vice versa for the Southern Hemisphere. If a loop
crosses the equator, this obviously fails, and the
DANA software issues a warning.

The numeric values on the right-hand sides in the
above list are initial threshold values that define the
behavior of the fit routine. However, a sensitivity study
indicates that the method is relatively inert to poorly
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FI1G. 4. Sample trajectory of a RAFOS float at 1500-m depth in
the northeastern Atlantic with three eddy features. These dem-
onstrate several difficulties in the detection process: eddy trans-
lation (both cyclones), irregular shape (the anticyclone), and vary-
ing revolution period as the float changes its distance from the
eddy center (all). The shading indicates what the automatized
algorithm of this manuscript detected as eddies. To include the
large anticyclone, an additional time window of length 160 days
was applied in this computation.

chosen parameters (cf. validation of the method in sec-
tion 2c). The parameters in Egs. (7), (8), (9), (10), and
(11) have been found to yield best results in this sensi-
tivity study.

The typical application that the algorithm was devel-
oped for is subsurface RAFOS float trajectories at in-
termediate (e.g., 500-3000 m) depth and position fixes
in regular intervals of typically 1 day. In fact, the above
numbers have worked reasonably well for two further
datasets of dynamically rather different regimes
(RAFOS floats at 1500 m in the northeastern Atlantic
and at 800 m in the tropical Atlantic), although no com-
parison to a study like SRBR has been made in these
cases. An example of such a trajectory with three eddy
features is given in Fig. 4. These nicely demonstrate the
difficulties one encounters during the automatic detec-
tion: advection, varying periods, and irregular shapes of
the eddies. Near the start of this trajectory, there is a
cyclonic eddy that translates in a curve toward the
northeast, while the float slowly leaves the eddy. Thus,
the revolution period from the float track increases
from approximately 8 to 20 days before the eddy is left.
Later, the float is caught in a large stationary anticy-
clone, in which the trajectory is of a rather irregular,
noncircular shape. Periods vary between 30 and 80
days. Toward the end, there is a small cyclone (period
circa 6 days) that moves erratically. All three eddy fea-
tures are detected by the algorithm using the above
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FiG. 5. Validation of the detected eddy period. A number of
float trajectories from different depths (700-1500 m) and regions
(subpolar and tropical Atlantic) was inspected visually for eddies.
Their periods were estimated and compared to those from the
automatic detection scheme using the AR2 fit. As suggested in
Fig. 3, the periods are found with great accuracy by the AR2 fit
(cf. the results to the identity function indicated).

methodology (with the exception that another time
window of 160-day length was applied to include the
large anticyclone).

c. Validation of the method

This section will briefly review the performance of
the AR?2 fits with respect to the detected periods, which
is followed by a comparison of the entire eddy detec-
tion algorithm with the work by SRBR.

For a scientific analysis of the eddy parameters,
knowledge of the period is essential. Information on
the eddy size is then easily obtained by multiplying the
(detrended or, alternatively, RMS) float velocity with
the period. As suggested by Figs. 2 and 3, the AR2 fit
routines are fairly precise when detecting the funda-
mental frequency. To verify this further, periods of a
random selection of eddies from RAFOS float trajec-
tories collected during Leibniz-Institut fiir Meereswis-
senschaften (IFM-GEOMAR) projects were estimated
visually, and these estimates were compared to the re-
sults from the DANA software, which uses the algo-
rithm described in section 2b. The results of this com-
parison are shown in Fig. 5, which verifies a good per-
formance of the algorithm. At long periods, the
algorithm tends toward underestimation, which can be
explained as follows: the longest window length sets an
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TABLE 1. Dependence of the eddy detection on the number of
completed revolutions. The first column indicates how many loop-
ers are found by the reference SRBR, the second column shows
how many of these loopers are also identified by the DANA
software. Column 3 contains the ratio of these numbers, and col-
umn 4 the number of revolutions completed as indicated in SRBR
(their appendixes A and B).

Loopers Loopers No. of
by SRBR common Ratio revolutions
108 60 55.6% All
93 60 64.5% >2.0
57 47 82.5% >3.0
45 41 91.1% >4.0
35 34 97.1% >5.0

upper limit to what can be detected. If eddy periods
near this length exist, the automatic algorithm will only
find those parts that are short enough to fit in, which
could be bad frequency estimates, while the better es-
timates are ruled out by the criterion that two complete
revolutions are required. In such a case, the visual in-
spection will detect the “true” values better. The slope
of the linear fit indicated in the figure is approximately
0.81; it increases to 0.97 if only eddies with periods
below 25 days are considered, which is highly satisfac-
tory considering the noisiness of the data.

As a thorough validation of the methodology as a
whole, a comparison to the results by SRBR was car-
ried out. There, a dataset from the northeastern Atlan-
tic is inspected visually for eddies, which results in a
total of 108 loopers, of which 52 are cyclonically loop-
ing and 56 anticyclonically looping [(52/56) ~ 0.093].
Analyzing the same dataset with DANA using the
methodology of section 2b, a total of 105 loopers are
found, distributed among 62 cyclonic and 43 anticy-
clonic loopers [(62/43) ~ 1.44].

Of the 108 loopers identified by SRBR, 60 are rec-
ognized by DANA (56%). However, this ratio in-
creases substantially if events with very few revolutions
are not considered, because most of the discrepancies
between the DANA algorithm and SRBR occur with
such short-lived events. In fact, if only those loopers
with more than three completed revolutions (as indi-
cated by SRBR’s appendixes A and B) are considered,
DANA identifies 47 of 57 events (83%). Further details
on this effect are listed in Table 1. The explanation for
this is that the eddy detection criteria of this manuscript
are naturally fulfilled better the longer the looping rec-
ord is (agreement reaches 97% when considering only
loopers with more than five revolutions). Furthermore,
of the eddies with fewer than three revolutions ob-
served, at least eight do not complete two 360° circles
and can therefore not be found by DANA, while they
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F1G. 6. Comparison between identified loopers according to the algorithms of SRBR and DANA. (light blue) No loopers detected
by either method. (dark blue) Loopers detected by DANA only. (red) Loopers detected by SRBR only. (green) Loopers detected by

both methods.

are recognized by SRBR because two closed loops are
completed before reaching a 720° revolution angle.
Vice versa, DANA will detect cycloidal cusps as loop-
ers even if they are elongated so that they do not have
closed loops, because the data are detrended first.
These cases are not considered by SRBR. Several cases
are indeed very difficult to decide on, both by eye and
by the automatism, and the overall impression is that
the agreement is good enough to be limited by the ca-
pabilities of both the automatic scheme and the human
eye (and not only the former).

To find best agreement between DANA and SRBR,
the parameters of Egs. (7), (8), (9), (10), and (11) have
been tuned by testing more than 10 000 combinations of
different values (the other criteria refer to physical
properties that are not supposed to be varied). The goal
was to find parameters that would maximize the com-
mon times spent in loopers in both methods, while
yielding equal total looper times in each method. With
the above numbers, DANA finds 9073 looper days, of
which 5268 (58%) are common with the 9086 found by
SRBR. Although the parameters were varied through-
out a large domain [by factors of up to 50% for Eq. (9)
and exceeding 300% for all others] in the sensitivity
study, this ratio of common looper time to total looper
time of either method never fell below 42%, indicating
that the method is relatively insensitive to poorly cho-

sen parameters. It should be noted that these numbers
include all data, in particular those loopers for which dif-
ferent behavior between DANA and SRBR can be ex-
plained as in the previous paragraph. Therefore, the
agreement of 58% must be considered highly satisfactory.

To demonstrate overall agreement, Figs. 6 and 7
show an overview of the results by SRBR and the
present study. In Fig. 6, all trajectories are shown (“spa-
ghetti diagram”), with the looping parts color coded
according to which of the two methods identified them.
The 5268 days commonly identified are shown in green,
while the data labeled by none or only one method is in
different colors. It is obvious at a glance that DANA
identifies features with strong advective motion (wavy
lines without closed loops), which SRBR do not con-
sider. However, visual inspection revealed that in sev-
eral such cases there was clearly a pattern that one
could consider to be a quickly moving eddy feature.
This may be the reason why DANA finds more cy-
clones than SRBR, as there seem to be more small
cyclones which are rapidly advected when compared to
corresponding anticyclones (this agrees well with find-
ings by Lankhorst and Zenk 2006). Figure 7 shows that
the discrepancy between the cyclone—anticyclone ratios
is worst in the western basins, which are known to con-
tain the strong North Atlantic and Irminger Currents
possibly advecting the eddies around. It obviously re-
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F1G. 7. Comparison of “looper” detection by SRBR (data are from their Table 1 and their
Fig. 4) and by the DANA algorithm within a RAFOS float dataset at middepth in the North
Atlantic. In four areas, cyclonically (C) and anticyclonically (AC) looping trajectory segments
are counted. The numbers in brackets are quotients of these.

mains beyond the scope of the DANA detection algo-
rithm to differentiate between eddies and other circu-
lation patterns (e.g., wave motions) that may both cre-
ate the same cycloidal Lagrangian drift tracks. There
are also many cases where the record lengths of the
loopers identified by DANA do not match those by
SRBR, which is natural but decreases the percentage of
agreement significantly. Otherwise, agreement between
the two methods is as described in the previous para-
graphs and is expected to satisfy scientific needs.

3. Conclusions

A self-contained identification scheme for looping
segments within float or drifter trajectories is pre-
sented. The underlying scientific question is the analy-
sis of coherent eddies, which will result in such loops if
a drifter or float is caught in an eddy for a sufficient
time. The detection algorithm splits each trajectory up
into overlapping time windows, and for every window a
set of criteria is applied to decide whether this trajec-
tory segment is considered looping or not. The criteria
are based on fundamental statistic properties such as
auto- and cross correlations, and in particular on fits of
second-order autoregressive (AR2) processes to the ve-

locity time series. From the AR2 coefficients, it is easily
read off whether a time series is oscillating, and periods
are derived with good accuracy. Validation has been
carried out for the suitability of the AR?2 fit routines for
this purpose. A comparison to the study by SRBR, who
identified looping trajectories by visual inspection,
yielded good agreement to the results found here using
the same float dataset. As a limitation, the eddy field
parameters (i.e., typical eddy periods and sizes) should
be reasonably homogeneous throughout the dataset un-
der study. The algorithms to formulate the various cri-
teria in computer language are readily available, and a
software package called Drifter Analysis (DANA), first
presented by Lankhorst (2003), has the methodology of
this study implemented in MatLab code. The advan-
tages of having an automatized computer algorithm for
the eddy detection are obviously the aspect of saving
time and using objective criteria rather than the human
eye. In a recent study (Lankhorst and Zenk 2006),
DANA has been applied to reveal a distinct asymmetry
in the abundances of cyclones versus anticyclones in
another float dataset of the subpolar North Atlantic. It
may be interesting to reanalyze other datasets with this
question in mind, which is now possible in a rather
effective manner.
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