Constructive Methods in
Automatic Analysis of Correctness Proofs *

Alessandro Avellone! Marco Benini' Dirk Nowotka?

! Dipartimento di Scienze dell’Informazione
Universita degli Studi di Milano, via Comelico 39/41 — 20135, Milano, ITALY
2 Turku Centre for Computer Science, Abo Akademi University
Lemminkéiisenkatu 14 A — 20520 Turku, FINLAND

{avellone,beninim}@dsi.unimi.it, dnowotka@abo.fi

The goal of this contribution is to show that an instrument from Constructive
Proof Theory, the Collection Method [MO79,MO81], can be used in practice to
extract information from a correctness proof. In particular, we use such a method
to automatically label the source code of a program with assertions that state
the minimal pre- and postconditions (wrt the correctness proof) which ensure
the validity of the specification.

Our application is in the analysis of correctness proofs, so we have a fixed
program and we want to mazimize the amount of significant information we can
get about it from its correctness argument. In this respect, as shown in [MO79],
the Collection Method is more powerful than normalization-based techniques, s-
ince it extracts much more information. Of course, we want to filter the extracted
information, since every correctness proof contains parts with are relevant for the
program, while other parts are accessory, providing just logical or arithmetical
results.

The Collection Method takes a set I of proofs as input, and generates a
set, Coll* (I), as output, which contains the information content of I. In our
application I will be the singleton set composed by the correctness proof, and
Coll* (I) will be the set the labelling algorithm operates on.

Our verification environment is for object code programs, thus we gave a
specialized version of the labelling algorithm. It is also possible to define a general
version.

Hence, our process to analyze an object program through its correctness
proof, is as follows

1. To generate via the Collection Method the information content Coll* (1)
where I is the singleton set containing the correctness proof;

2. To filter Coll* (I) via the labelling algorithm, and to construct a set of as-
sertions, one for every instruction;

3. To remap these sets onto the original program as intermediate specifications.

We should remark that these steps can be performed lazily, and interleaved, so
that we are able to generate specifications step by step.

* Keywords: Verification, Analysis



References

[MMOS88] Pierangelo Miglioli, Ugo Moscato, and Mario Ornaghi. Constructive theo-
ries with abstract data types for program synthesis. In D. Skordev, editor,
Mathematical Logic and its Applications, pages 293-302. Plenum Press, New
York, 1988.

[MOT79] Pierangelo Miglioli and Mario Ornaghi. A purely logical computing model:
the open proofs as programs. Technical Report MIG-7, Istituto di Cibernetica
— University of Milano, 1979.

[MOS81] Pierangelo Miglioli and Mario Ornaghi. A logically justified model of com-
putation. Fundamenta Informaticae, IV((1,2)):151-172, 277-341, 1981.



