
Networks of Evolutionary Processors:

Computationally Complete Normal Forms

Jürgen Dassow
Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany
dassow@iws.cs.uni-magdeburg.de

Florin Manea
Christian-Albrechts-Universität zu Kiel, Institut für Informatik
D-24098 Kiel, Germany
and
Faculty of Mathematics and Computer Science, University of Bucharest,
Str. Academiei 14, RO-010014 Bucharest, Romania
flm@informatik.uni-kiel.de

Bianca Truthe
Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany
truthe@iws.cs.uni-magdeburg.de

Abstract. Networks of evolutionary processors (NEPs, for short) form a bio-
inspired language generating computational model that was shown to be equivalent
to the model of phrase-structure grammars. In this paper, we analyse different
restricted variants of NEPs that preserve the computational power of the general
model. We prove that any recursively enumerable language can be generated by a
NEP where the derivation rules can be applied at arbitrarily chosen positions, the
control of the communication is done by finite automata with at most three states,
and either the rule sets are singletons or the underlying graph is a complete graph.
If one uses networks with arbitrary underlying graphs and allows the additional
application of insertions and deletions only to the right-most or the to left-most
position of the derived words for some nodes, then we only need automata with
only one state to control the communication in the network. Clearly, this result is
optimal; moreover, finite automata with two states are necessary and sufficient in
order to generate all the recursively enumerable languages when the derivation rules
can be applied only at arbitrarily chosen positions.

Keywords: Bio-inspired Language Generating Models, Generating Networks of
Evolutionary Processors, Computational Completeness, Normal Form, Restricted
Filtering

1. Introduction

Motivated by several basic computing paradigms for parallel and dis-
tributed symbolic processing (Hillis, 1986; Errico and Jesshope, 1994;
Fahlman et al., 1983), E. Csuhaj-Varjú and A. Salomaa defined net-

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.1

2 J. Dassow, F. Manea, B. Truthe

works of language processors as a formal languages generating model
(Csuhaj-Varjú and Salomaa, 1997). Such a network can be viewed
as a graph whose nodes contain a set of production rules each and,
at any moment of time, a language is associated with a node. In a
derivation step, any node derives from its language all possible words
as its new language. In a communication step, any node sends those
words that satisfy filtering conditions, that require the membership to a
given regular language, to other nodes; any node receives those words
sent by the other nodes that satisfy input conditions, also requiring
the membership to a regular language. The language generated by a
network of language processors consists of all words which occur in the
languages associated with a given node.

In (Csuhaj-Varjú and Mitrana, 2000), one considers a computing
model inspired by the evolution of cell populations. More precisely, a
formal language generating model was used to model some properties of
evolving cell communities at the syntactical level. In this model, cells
were represented by words which describe their DNA sequences and
the possible events that may occur in their evolution (for instance,
mutations and division) were given as formal operations on words.
Informally, at any moment of time, the evolutionary system is described
by a collection of words, a representation of a collection of cells. Cells
belong to species and their community evolves according to the events
(operations) that may be applied on them. Only those cells which are
represented by a word in a given set of words, called the genotype
space of the species, are accepted as the surviving (correct) ones. This
feature parallels with the natural processes of evolution and selection.
Similar ideas may be met in other bio-inspired models, such as tissue-
like membrane systems (Păun, 2000) as well as models from the area of
distributed computing, like parallel communicating grammar systems
(Păun and Sântean, 1989).

In this context, networks of evolutionary processors (NEPs for short)
were defined (Castellanos et al., 2003). More precisely, one considers
that in each node of such a network (a directed graph) there exists a
processor which is able to perform very simple operations that mimic
the point mutations in a DNA sequence (insertion, deletion, or sub-
stitution of a pair of nucleotides). Moreover, each node is specialized
just for one of these evolutionary operations. Furthermore, the data
in each node are organized in the form of multisets of words, each
word appearing in an arbitrarily large number of copies and all the
copies are processed as follows: if at least one rule can be applied to
a word w, we obtain all the words that are derived from the word w
by applying exactly one of the possible rules at exactly one feasible
position in the word w; otherwise, w remains unchanged. We stress

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.2

Normal Forms for NEPs 3

that this computational process is not exactly an evolutionary process
in the Darwinian sense, but the rewriting operations considered might
be viewed as mutations and the filtering process might be viewed
as a selection process. Recombination is missing but it was asserted
that evolutionary and functional relationships between genes can be
captured by taking only local mutations into consideration ((Sankoff
et al., 1992)). The computation of a NEP is conducted just as in the
case of networks of language processors: initially, the nodes contain
some finite sets of words, further, these words are processed according
to the rules in each node, and then, they are communicated to the
other nodes, as permitted by some filtering condition associated with
the nodes, and so on; the language generated by a NEP consists of
all the words which appear in a given node, called the output node.
Results on NEPs, seen as formal languages generating devices, can
be found, e. g., in (Mart́ın-Vide and Mitrana, 2005; Castellanos et al.,
2003; Alhazov et al., 2009b; Alhazov et al., 2009a; Castellanos et al.,
2001). In the seminal paper (Castellanos et al., 2003), it was shown
that such networks are computationally complete, i. e., they are able to
generate all recursively enumerable languages; however, in these various
constructions, different types of underlying graphs and relatively large
automata for the control of the communication were used.

In this paper, we show that some aspects of evolutionary networks
can be normalized or simplified while preserving the generative power.
Especially, we are interested in a use of very small finite automata for
the control of the communication. We first prove that the networks
with evolutionary processors remain computationally complete if one
restricts the control automata to have only one state. However, the
resulting underlying graphs have no fixed structure and the rules are
applied in three different modes. In the remaining part of the paper,
we show that one can generate all recursively enumerable languages
by networks where the rules are applied arbitrary (any rule can be
applied to any position) and either all the rule sets are singletons or
the underlying graph is a complete graph. However, the automata used
to control the communication are a little larger; they have at most two
states.

2. Definitions

We assume that the reader is familiar with the basic concepts of formal
language theory (see, e. g., Handbook of Formal Languages (Rozenberg
and Salomaa, 1997)). We here only recall some notations used in the
paper.

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.3

4 J. Dassow, F. Manea, B. Truthe

By V ∗ we denote the set of all words (strings) over an alphabet V
(including the empty word λ). The length of a word w is denoted by |w|.
The number of occurrences of a letter a or of letters from a set A is
denoted by |w|a and |w|A, respectively. For the number of elements of a
set A, we write #(A). The minimal alphabet of a word w (respectively,
of a language L) is denoted by alph(w) (and, alph(L), respectively). In
the proofs we shall often add the letters of an alphabet U to a given
alphabet V ; in all these situations, we assume that V ∩ U = ∅.

A phrase structure grammar is a quadruple G=(N,T, P, S) where N
is a set of non-terminals, T is a set of terminals, P is a finite set of
productions which are written as α → β with α ∈ (N ∪ T)+ \ T ∗ and
β ∈ (N ∪ T)∗, and S ∈ N is the axiom. A grammar G = (N,T, P, S)
is in Geffert normal form (Geffert, 1991) if the set of non-terminals
only consists of the axiom S and three additional letters A,B,C and
all rules in P have the form ABC → λ or S → v with v ∈ (N ∪ T)∗.

By REG and RE we denote the families of regular and recursively
enumerable languages, respectively. For i ∈ N, we designate the fam-
ily of all languages L that can be accepted by a deterministic finite
automaton with at most i states working over the alphabet alph(L)
by MIN i.

We call a production α → β a substitution rule if |α| = |β| = 1,
and, respectively, a deletion rule if |α| = 1 and β = λ. We introduce
insertion rules as a counterpart of deletion rules and write such a rule
as λ→ a, where a is a letter.

Besides the usual context-free rewriting we also consider derivations
where the rules are applied to the left or right end of the word. Formally,
for a substitution, deletion or insertion rule p : α→ β and words v and
w, we define

− v =⇒∗,p w by v = xαy, w = xβy for some x, y ∈ V ∗,

− v =⇒l,p w by v = αy, w = βy for some y ∈ V ∗,

− v =⇒r,p w by v = xα, w = xβ for some x ∈ V ∗.

The indices are omitted in most of the cases, as they can be easily
determined from the context.

We now introduce the basic concept of this paper, the networks of
evolutionary processors with regular filters.

DEFINITION 1.

− A network of evolutionary processors (for short, NEP) of size n
with filters of the set X is a tuple

N = (V,N1, N2, . . . , Nn, E, j)

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.4

Normal Forms for NEPs 5

where

• V is a finite alphabet,

• for 1 ≤ i ≤ n, Ni = (Mi, Ai, Ii, Oi, αi) where

∗ Mi is a set of evolutionary rules of a certain type, i. e.,
Mi ⊆ { a→ b | a, b ∈ V } or Mi ⊆ { a→ λ | a ∈ V }, or
Mi ⊆ { λ→ b | b ∈ V },

∗ Ai is a finite subset of V ∗,

∗ Ii and Oi are regular languages over V ,

∗ αi ∈ {∗, l, r} indicates the way the rules from Mi are
applied: arbitrary in the word (∗), at the left (l) or right
(r) end of the word,

• E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and

• j is a natural number such that 1 ≤ j ≤ n.

− A configuration C of N is an n-tuple C = (C(1), C(2), . . . , C(n))
where C(i) is a subset of V ∗ for 1 ≤ i ≤ n.

− Let C = (C(1), . . . , C(n)) and C ′ = (C ′(1), . . . , C ′(n)) be two
configurations of N . We say that C derives C ′ in one

• evolutionary step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n,
C ′(i) consists of all words w ∈ C(i) to which no rule of Mi

is applicable and of all words w for which there are a word
v ∈ C(i) and a rule p ∈Mi such that v =⇒αi,p w holds,

• communication step (written as C ` C ′) if, for 1 ≤ i ≤ n,

C ′(i) = (C(i) \Oi) ∪
⋃

(k,i)∈E

(C(k) ∩Ok ∩ Ii).

The computation of N is a sequence of configurations

Ct = (Ct(1), Ct(2), . . . , Ct(n)), t ≥ 0,

such that

• C0 = (A1, A2, . . . , An),

• C2t derives C2t+1 in an evolutionary step:C2t =⇒ C2t+1 (for
all t ≥ 0),

• C2t+1 derives C2t+2 in a communication step: C2t+1 ` C2t+2

(for all t ≥ 0).

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.5

6 J. Dassow, F. Manea, B. Truthe

− The language L(N) generated by N is defined as

L(N) =
⋃
t≥0

Ct(j)

where the sequence of configurations Ct = (Ct(1), . . . , Ct(n)), with
t ≥ 0, is a computation of N .

Intuitively, a NEP as above is a graph consisting of n nodes (called
processors) N1, N2, . . . , Nn and the set of edges given by E such that
there is a directed edge from Nk to Ni if and only if (k, i) ∈ E. Any
processor Ni consists of a set of evolutionary rules Mi, a set of words
Ai, and two regular languages, namely an input filter Ii and an output
filter Oi. We say that Ni is a substitution, deletion, or insertion node
if Mi ⊆ { a→ b | a, b ∈ V } or Mi ⊆ { a→ λ | a ∈ V } or, respectively,
Mi ⊆ { λ→ b | b ∈ V }, respectively. The input filter Ii and the output
filter Oi define the words which are allowed to enter and to leave the
node, respectively. With any node Ni and any time moment t ≥ 0,
we associate a set Ct(i) of words (the words contained in the node at
time t). Initially, Ni contains the words of Ai. In an evolutionary step,
we derive from Ct(i) all words applying rules from the set Mi. In a
communication step, any processor Ni sends out all words Ct(i) ∩ Oi
(which pass the output filter) to all processors to which a directed edge
exists (the words from Ct(i) \Oi remain in the set associated with Ni)
and, moreover, it receives from any processor Nk such that (k, i) ∈ E
all words sent by Nk and passing the input filter Ii of Ni, i. e., the
processor Ni gets in addition all words of Ct(k) ∩ Ok ∩ Ii. We start
with an evolutionary step and then communication and evolutionary
steps are alternately performed. The language generated by the NEP
consists of all words which appear in a distinguished node Nj (called
output node) during the computation.

We say that a NEP N = (V,N1, N2, . . . , Nn, E, j) is in weak normal
form if the working mode of Ni (1≤ i≤n) is ∗ and we say it is in normal
form if it is in weak normal form and E = {(i, j) | 1 ≤ i 6= j ≤ n} (i. e.,
it has a complete underlying graph). We call two networks equivalent
to each other if they generate the same language.

For a family X ⊆ REG , we denote the family of languages generated
by networks of evolutionary processors (in weak normal form and nor-
mal form, respectively), where all filters are of type X by E(X) (E∗(X)
and EN (X), respectively).

The following results are known (see, e. g., (Castellanos et al., 2003),
(Dassow et al., 2011, Theorem 4)).

THEOREM 1. i) EN (REG) = RE. ii) E∗(MIN 2) = RE. 2

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.6

Normal Forms for NEPs 7

3. Simplifying the Filters

We start by showing that the second part of Theorem 1 is optimal in
that sense that one state automata are not sufficient.

LEMMA 1. The regular language L = { wb | w ∈ {a, b}∗ } is not con-
tained in E∗(MIN 1).

Proof. Suppose L ∈ E∗(MIN 1). Then there is a NEP N which has
only filters that belong to the class MIN 1 (i. e., each filter has the form
W ∗ for some alphabet W or is the empty set) and which generates the
language L. Since L is infinite and networks with only substitution and
deletion nodes generate finite languages, N contains an insertion node.
The number of a’s is unbounded (for each natural number n, there is
a word w ∈ L with more than n occurrences of a). Hence, there are a
natural number s ≥ 0 and letters x0, x1, . . . , xs with xs = a such that
the network contains the rules λ→ x0 and xi → xi+1 for 0 ≤ i ≤ s− 1
and there is a word w1aw2 ∈ L which is derived from a word v1v2
by applying these rules (possibly, not only these rules), starting with
the insertion of x0 between v1 and v2. But x0 can also be inserted
at the end of the word v1v2. All words derived from v1x0v2 are letter
equivalent to those derived from v1v2x0. Thus, if a word derived from
v1x0v2 can pass a filter then also a word that is derived from v1v2x0 in
the same manner can pass that filter. Hence, in the same way as w1aw2

is derived and communicated to the output node, the word w1w2a is
derived and communicated to the output node. But w1w2a /∈ L. Thus,
the language L cannot be generated by a NEP where the filters belong
to MIN 1. This implies L /∈ E∗(MIN 1). As EN (MIN 1) is included in
E∗(MIN 1), it follows that L /∈ EN (MIN 1) as well. 2

However, if we also allow the other two modes of derivation, then
we can improve the bound given in the second part of Theorem 1 by
proving that every recursively enumerable language can be generated
by a network of evolutionary processors where each filter is accepted
by a deterministic finite automaton with one state only.

THEOREM 2. E(MIN 1) = RE.
Proof. Let L be a recursively enumerable language, G be a grammar

in Geffert normal form generating the language L(G) = L where the
set of non-terminals is N = {S,A,B,C } with the axiom S, the set of
terminal symbols is T , and the set of rules is P with the rules being
S → v with v ∈ (N ∪ T)∗ or ABC → λ. We construct a NEP N that
simulates the derivation process in G and, hence, generates the same
language. The idea is to rotate the sentential form until the subword

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.7

8 J. Dassow, F. Manea, B. Truthe

which has to be replaced is a suffix and then to delete and insert (if
necessary) at the right end of the word.

Let V = N ∪ T and # /∈ V be a symbol that marks the actual end
of a word during the rotation. Let U = V ∪ {#}, u = #(U) be the
number of the elements of U , x1, x2, . . . , xu be the elements of U , and
U ′ = { x′ | x ∈ U }. Furthermore, let p be the number of the rules of
the form S → v and let these rules be Pi = S → ai,1ai,2 · · · ai,li with
1 ≤ i ≤ p, li ≥ 0, and ai,j ∈ V for 1 ≤ j ≤ li.

We construct subnetworks for rotating a word and for simulating
the application of a rule. These subnetworks are connected by a special
node (the ‘master’ N0) that belongs to every subnetwork. The structure
of the network can be seen in Figure 1.

�
 �	0

sshhhhhhhhhhhh

,,YYYYYYYYYYYYYYYYYYYYYYY�
 �	1

xxqqq
q

&&MMM
M

�
 �	4

sshhhhhhhhhhhh
�� ++VVVVVVVVVVVV�
 �	2, x1

��

· · ·
�
 �	2, xu

��

�
 �	5, C

��

�
 �	5, S

xxqqq
q

&&MMM
M

�
 �	5,#

���
 �	3, x1`a bc

OO

· · ·
�
 �	3, xu@A BC

OO

�
 �	6, C

��

�
 �	6, 1

��

· · ·
�
 �	6, p

��

�
 �	6,#�
 �	7, B

��

�
 �	7, 1, 1

��

· · ·
�
 �	7, p, 1

���
 �	8, B

��

�
 �	7, 1, 2

��

· · ·
�
 �	7, p, 2

���
 �	9, ABC@A

OO

...
��

...
���
 �	7, 1, l1BC@A

OO

· · ·
�
 �	7, p, lpbc`a

OO

Figure 1. NEP for a Geffert normal form grammar

The master N0 is defined by A0 = {S# }, M0 = ∅, I0 = U∗,
O0 = U∗, and α0 = ∗. The work starts with the first sentential form
of G where the end is marked by #. This node does nothing but in the
next communication step the word will be sent to the nodes N1 where
the rotation will start and N4 where the simulation of a rule will start.

The initial languages Ai of all other nodes Ni will be empty. If the
mode αi is not explicitly given then it is ∗.

The node N1 is defined by I1 = U∗, M1 = { x→ x′ | x ∈ U }, α1 = l,
and O1 = (U ∪ U ′)∗. This node marks the left-most symbol by changing
it to a primed version. Then the word is sent to all nodes N2,x where
x ∈ U but only one of these nodes gives access to the word, namely
the node N2,x where x is the symbol whose primed version stands at
the beginning of the word. Thus, the node N2,x for x ∈ U is defined by
I2,x = ({x′} ∪ U)∗, M2,x = {x′ → λ }, and O2,x = U∗. The primed x is
deleted (which is allowed to occur everywhere but because of node N1

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.8

Normal Forms for NEPs 9

it appears only in the left-most position). Then the word is sent to
the corresponding node N3,x where x is inserted at the right end of
the word (appended to the word). Hence, N3,x for x ∈ U is defined by
I3,x = U∗, M3,x = {λ→ x }, α3,x = r, and O3,x = U∗. Now, the word
was rotated by one symbol and will be sent to the master.

The simulation of a rule will start in the node N4. This node is
defined by I4 = U∗, M4 = { x→ x′ | x ∈ U }, α4 = r, and O4 = (U ∪
U ′)∗. In this node, the right-most symbol will be changed to the primed
version. If the last symbol was C and the rule ABC → λ exists in P
then this rule can be started to be simulated (maybe C is not preceded
by AB then the simulation does not work which will be noticed later).
If the last symbol was S then one of the rules Pi (1 ≤ i ≤ p) can be
simulated. If the last symbol was # then this end marker should be
removed to obtain a real sentential form of G (which is the end of the
simulation of G). In all other cases, we do not need the word anymore.

We now construct subnetworks for these three cases.
If the rule ABC → λ exists in P then we define the following nodes:

N5,C is defined by I5,C = ({C ′} ∪ U)∗ (the primed symbol is allowed
everywhere and arbitrarily often but N4 ensures that there is exactly
one occurrence and this is in the last position), M5,C = {C ′ → λ },
and O5,C = U∗. This node takes a word if the last symbol is C ′, it
deletes this symbol and passes on the word to the next node N6,C

which is responsible for the B. The node N6,C is defined by I6,C = U∗,
M6,C = { x→ x′ | x ∈ U }, α6,C = r, and O6,C = (U ∪ U ′)∗. This node
marks the last symbol and sends the word to node N7,B defined by
I7,B = ({B′} ∪ U)∗, M7,B = {B′ → λ }, and O7,B = U∗. If the last
symbol of the word sent is B′ then the simulation continues, otherwise
the word is lost (the previously selected C does not belong to a subword
ABC and therefore the rule cannot be applied). In N7,B the symbol B′

is deleted and the word moves to the node N8,B defined by I8,B = U∗,
M8,B = { x→ x′ | x ∈ U }, α8,B = r, and O8,B = (U ∪U ′)∗. This node
again marks the last symbol. If it is A then the simulation continues,
otherwise the word is lost (the previously selected word BC does not
belong to a subword ABC and therefore the rule cannot be applied).
The word is sent to node N9,A defined by the sets I9,A = ({A′} ∪ U)∗,
M9,A = {A′ → λ }, and O9,A = U∗. There, A′ is deleted. Then a word
u#v has been derived by simulating the rule ABC → λ where vu is a
sentential form of G. The word u#v is sent to the master node N0.

For the context-free rules (the rules S → v), we define the node N5,S

by the sets I5,S = ({S′} ∪ U)∗, M5,S = { S′ → Si | 1 ≤ i ≤ p }, and
O5,S = (U ∪ { Si | 1 ≤ i ≤ p })∗. This node chooses a rule Pi that is
simulated afterwards. The word obtained is sent to all nodes N6,j with
1 ≤ j ≤ p but it is accepted only by node N6,i which corresponds to

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.9

10 J. Dassow, F. Manea, B. Truthe

the rule selected.
For each rule Pi with 1 ≤ i ≤ p, we define the following nodes: the node
N6,i is defined by I6,i = ({Si} ∪ U)∗, M6,i = {Si → λ }, and O6,i = U∗.
This node deletes Si (the symbol corresponding to the left hand side
of the rule under consideration). If Pi = S → λ then this word is sent
back to the master node, otherwise the rule is S → ai,1ai,2 · · · ai,li for
a natural number li ≥ 1 and symbols ai,j ∈ V for 1 ≤ j ≤ li. These
symbols will now be appended to the word in a chain of nodes (one
node for each symbol). For each number j with 1 ≤ j ≤ li, we define
the node N7,i,j by I7,i,j = U∗, M7,i,j = {λ→ ai,j }, α7,i,j = r, and
O7,i,j = U∗. After the right hand side of the rule Pi is appended, the
rule has been simulated, and the word is sent to the master node.

For the case that the last symbol inN4 is the end marker #, we define
the following nodes: N5,# by I5,# = ({#′} ∪ U)∗, M5,# = {#′ → λ },
O5,# = U∗ and N6,# by I6,# = T ∗, M6,# = ∅, O6,# = T ∗. In N5,#, the
end marker is deleted. The word obtained is a sentential form of G and
it is sent to node N6,# which serves as the output node and accepts the
word only if it is a terminal word.

The NEP N is defined as N = (X,N0, . . . , N6,#, E,N6,#) with the
working alphabet X = U ∪ U ′ ∪ { Si | 1 ≤ i ≤ p }, the nodes defined
above, the set E of edges given in Figure 1, and the output node N6,#.
From the explanations given along with the definitions of the nodes and
edges, it follows that the network N generates the same language as the
grammar G: L(N) = L. Moreover, all filters are sets of the form Y ∗

for some alphabet Y . Hence, RE ⊆ E(MIN 1). With Theorem 1, the
equality E(MIN 1) = RE follows. 2

We note that in (Dassow and Truthe, 2011) the bound 2 was given
for the number of states accepting the filter languages and that this
bound cannot be improved. However, in that paper, for each regular
language L used as a filter the authors count the number of states
of a (completely defined) deterministic finite automaton accepting L
but having as input alphabet the entire alphabet of the network. Here,
when a regular language L is used as a filter we only count the states
of a (completely defined) deterministic finite automata accepting L
and having as input alphabet alph(L). The transformation from an
automata with input alphabet alph(L) to one having as input alphabet
the whole alphabet of the network often requires one additional state.
For instance, in the previous proofs we have often filters equal to U∗

and we say that they are accepted by automata with one state; if we
would consider that this automata may have as input letters from X \
U , not only from U , then each of them would need an extra error-

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.10

Normal Forms for NEPs 11

state, in which the automaton moves as soon as it reads a letter from
X setminusU .

Moreover, it is worth noting that Theorem 2 does not follow from
the constructions in (Dassow and Truthe, 2011).

4. Transformations into Weak Normal Form

The results in this section show how a given NEP can be transformed
into a NEP in weak normal form such that the sets of rules of all nodes
are singletons.

LEMMA 2. Let k ≥ 1 and k′ = max{k, 2}. Further, let N be a NEP
with filters from MIN k. Then a NEP N ′ = (U,N ′1, N

′
2, . . . , N

′
m, E

′, j′)
can be algorithmically constructed such that L(N ′) = L(N), all nodes
N ′i , 1 ≤ i ≤ m, have input and output filters from the class MIN k′,
N ′j′ = (∅, ∅, I ′, O′, ∗), and no edge is leaving N ′j′.

Proof. Let N = (V,N1, N2, . . . , Nn, E, j) be a network of evolution-
ary processors where the output node Nj has not the required property:
Nj 6= (∅, ∅, Ij , Oj , ∗) for any sets Ij , Oj or there is an edge leaving node
Nj . We define a new network N ′ = (V,N ′1, N

′
2, . . . , N

′
n+4, E

′, n+ 4) by

N ′i = Ni for 1 ≤ i ≤ n,
N ′i = (Mi, ∅, Ii, Oi, αi) for n+ 1 ≤ i ≤ n+ 4,

E′ = E ∪ { (i, n+ 1) | (i, j) ∈ E } ∪ { (n+ 1, n+ 2), (n+ 1, n+ 4) }
∪ { (n+ 2, n+ 3), (n+ 2, n+ 4), (n+ 3, n+ 2) }

where

Mn+1 = ∅, Mn+2 = Mj , Mn+3 = ∅, Mn+4 = ∅,
An+1 = Aj , An+2 = ∅, An+3 = ∅, An+4 = ∅,
In+1 = Ij , In+2 = V ∗, In+3 = V ∗ \Oj , In+4 = V ∗,
On+1 = V ∗, On+2 = V ∗, On+3 = V ∗, On+4 = V ∗,
αn+1 = ∗, αn+2 = αj , αn+3 = ∗, αn+4 = ∗.

The network is illustrated in Figure 2.

?> =<89 :;N ′1

((RRRRRRRRRRRRR · · ·

""DD
DD

DD
DD

?> =<89 :;N ′i

��

· · ·

zzvvv
vv

vv
vv

?> =<89 :;N ′n

uujjjjjjjjjjjjjjjj

?> =<89 :;N ′n+1
//

��

?> =<89 :;N ′n+4

?> =<89 :;N ′n+2
//

::vvvvvvv ?> =<89 :;N ′n+3oo

Figure 2. NEP for the proof of Lemma 2

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.11

12 J. Dassow, F. Manea, B. Truthe

The new output node N ′n+4 = (∅, ∅, V ∗, V ∗), from which no edge
leaves, satisfies the condition. We now show that L(N ′) = L(N).

The subnetwork consisting of N ′1, N
′
2, . . . , N

′
n is the same as N . The

initial sets of N ′j and N ′n+1 as well as the input filters and incoming
edges coincide. Hence, if a word w is in Nj at an even moment t, then
w is also in this moment in node N ′j and N ′n+1. The word is then sent

unchanged to the output node N ′n+4. Thus, w ∈ L(N) and w ∈ L(N ′).
Additionally, w is also sent to N ′n+2 where the same rules as in Nj can
be applied. Hence, if a word v is derived in Nj (and, hence, v ∈ L(N))
then v is derived in N ′n+2 and will be sent to the output node in the next
communication step, hence, v ∈ L(N ′). If the word v remains in Nj

then a word u ∈ L(N) will be derived from v in Nj . In N ′, the word
v will also be sent to N ′n+3 which takes the word and sends it back to
N ′n+2 where it will be derived to u which will be sent to the output node
afterwards. Hence, as long as a word is modified in Nj , the same word
is modified in N ′n+2 with intermediate communication to N ′n+3 and all
these words also arrive in the output node. Thus, L(N) ⊆ L(N ′).

Every word w ∈ L(N ′) came to node N ′n+4 from node N ′n+1 or
N ′n+2. If it came from N ′n+1 then the word was also in node Nj , hence,
w ∈ L(N). If it came from N ′n+2 then it has been derived from a word
v which came from N ′n+1 or N ′n+3. If v came from N ′n+1 then v was
also in Nj and has derived w, hence, w ∈ L(N). If v came from N ′n+3

then v was previously in node N ′n+2 and was derived from a word u.
Furthermore, v /∈ Oj . If u came from N ′n+1 then u was also in Nj and
has derived v which remained there and derived w, hence, w ∈ L(N). If
u came from N ′n+3 then the argumentation can be repeated because for
every word in u in N ′n+2 there was a word ũ in N ′n+1 with ũ =⇒∗Mj

u and

all words during this derivation did not belong to Oj . Hence, ũ was also
in Nj where the same derivation of u took place. Thus, L(N ′) ⊆ L(N).

Since L(N ′) = L(N), the network N ′ has the required properties. 2

After normalizing the output node, we continue with normalizing
the remaining nodes.

LEMMA 3. Let k ≥ 1 and N = (V,N1, N2, . . . , Nn, E, j) be a NEP
with n nodes with filters from MIN k and k′ = max{k, 3}. Then an
equivalent network N ′ = (U,N ′1, N

′
2, . . . , N

′
m, E

′, j′) in weak normal
form can be algorithmically constructed such that all nodes N ′i for
1 ≤ i ≤ m have input and output filters in the class MIN k′.

Proof. We can assume without losing generality that the output node
of N has no rules and axioms. We will show how we can construct, for
each node x of the network, a subnetwork s(x) that simulates its compu-
tation; altogether, these subnetworks will form the new network N ′. We

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.12

Normal Forms for NEPs 13

denote by n(s(x)) the nodes of the subnetwork s(x), and distinguish two
nodes of this subnetwork, namely i(s(x)) and o(s(x)) that facilitate the
communication with the subnetworks constructed for the other nodes of
the original network (these two nodes can be seen as the entrance node,
and, respectively, the exit node of the subnetwork). We also denote by
e(s(x)) the set of edges of the subnetwork (that is, the edges connecting
the nodes of the subnetwork). Note that all the processors of the new
network work in arbitrary mode. Finally, let V# = {#a | a ∈ V } be a
set of symbols with V ∩ V# = ∅, and U = V ∪ V# ∪ {#}.

First we approach the simple cases: nodes with no rules, nodes that
have only substitutions of the type a→ a with a ∈ V , and nodes where
rules can be applied anywhere in the words. If x is such a node we will
simply copy it in the second network with the only difference that the
way it applies the rules is set now to arbitrary (i. e., ∗). Therefore, if
x is associated with the processor (M,A, I,O, α) with α = ∗ or M ⊆
{a→ a | a ∈ V } we construct the subnetwork that has n(s(x)) = {x},
i(s(x)) = o(s(x)) = x, e(s(x)) = ∅ and the processor placed in the
node is (M,A, I,O, ∗).

Now, let us consider the case of left-insertion nodes. Assume that the
processor in x is (M,A, I,O, l). Let V1 = { a ∈ V | λ→ a ∈M } and
V2 = alph(O). For this node, we define the following subnetwork s(x):

− n(s(x)) = {x0, x1, x2, x3}; �� ���� ��x0 //�� ���� ��x1 //

��

�� ���� ��x3

�� ���� ��x2

OO

− e(s(x)) = {(x0, x1), (x1, x2), (x1, x3), (x2, x1)};

− i(s(x)) = x0 and o(s(x)) = x3.

The processors in the nodes are:

− x0 = ({λ→ #}, A, I, (V ∪ {#})∗, ∗);

− x1 = ({#→ a | a ∈ V1 } , ∅, {#}(V ∪ {#})∗, V ∗, ∗);

− x2 = ({λ→ #}, ∅, U∗ \O, (V2 ∪ {#})∗, ∗) where V2 = alph(O);

− x3 = (∅, ∅, O, V ∗, ∗).

All the filters of this subnetwork are in MIN k, given that I and O
are in MIN k, or in MIN 3 (where exactly 3 states are needed for a
deterministic finite automaton accepting the input filter of node x1
and one state is needed for the other filters that do not depend on I
or O).

To see that the subnetwork s(x), presented above, simulates the
behaviour of the node x, let us assume that w is a word that is commu-
nicated to x in N , and it was also communicated to x0 in N ′. Clearly,

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.13

14 J. Dassow, F. Manea, B. Truthe

w enters x if and only if it enters x0. The word becomes in the initial
network akak−1 . . . a1w, with a1, a2, . . . , ak ∈ V1 and k ≥ 1 such that
a`a`−1 . . . a1w /∈ O for all ` < k as well as akak−1 . . . a1w ∈ O and the
word exits the node or remains blocked in the node. In the subnetwork
s(x) it first enters the node x0. In this node exactly one symbol # is
inserted in w and the word is sent out; it goes to x1, but only in the case
when it has the form #w. Here it becomes aw with a ∈ V1 and leaves
the node towards x2 or x3. It enters x3 if and only if aw ∈ O and then
goes out of the network. Otherwise, it enters x2 where a new # symbol
is inserted; then it is sent back to x1, if the word contains only symbols
that may appear in the words of O and #, and the process described
above is restarted. If a word does not belong to O and contains a
symbol which is not in V2, then it is trapped in node x forever and it
is blocked in the node x2 of the subnetwork s(x) which means in both
cases that the word is lost for the computation. Hence, the subnetwork
s(x) simulates correctly the node x.

A right-insertion node can be simulated similarly. We only change
the input filter of node x1 to (V ∪{#})∗{#} (we check for the inserted
symbol # at the end of a word rather than in the beginning). This filter
can be accepted by a deterministic finite automaton with two states.

Next, we discuss the case of left-deletion nodes. Let (M,A, I,O, l)
be the processor in node x. Also, let V1 = { a ∈ V | a→ λ ∈M } and
V2 = alph(O). For this node, we define the subnetwork s(x):

− n(s(x)) = {x0, x1, x2, x3, x4, x5};

− e(s(x)) as in the picture:

�� ���� ��x2

��

�� ���� ��x3

{{vvvvv

�� ���� ��x0 //

##HHHHH
�� ���� ��x1 //

OO ;;vvvvv �� ���� ��x5

�� ���� ��x4

;;vvvvv− i(s(x)) = x0 and o(s(x)) = x5;

The processors in the nodes are defined by:

− x0 = ({ a→ #a | a ∈ V1 } , A, I, (V ∪ V#)∗, ∗);

− x1 = ({#a → λ | a ∈ V1 } , ∅, V#U∗, V ∗, ∗);

− x2 = ({ a→ #a | a ∈ V1 } , ∅, U∗ \O, (V2 ∪ V#)∗, ∗);

− x3 = ({ a→ #a | a ∈ V1 } , ∅, U∗BU∗, (V ∪ V#)∗, ∗)
where B = V \ V2;

− x4 = ({#a → a | a ∈ V1 } , ∅, B′U∗, V ∗, ∗), where B′ = V \ V1;

− x5 = (∅, ∅, O, V ∗, ∗).

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.14

Normal Forms for NEPs 15

All the filters of this subnetwork are in MIN k, given that I and O are
in MIN k, or in MIN 3 (the input filters of nodes x1, x3, and x4 as well
as all output filters).

We show that the subnetwork s(x) presented above simulates the
behaviour of the node x. Let w be a word communicated to x in N
which was also communicated to x0 in the new network. This word
enters x in N if and only if it enters x0 in N ′. It is processed by x in
the following manner: the processor deletes successively zero or more
symbols from the beginning of the word according to the rules until it
can leave the node. We will show that the subnetwork s(x) implements
the same behaviour. First, assume that w enters the node x0; as in the
previous case, two things may happen here to the word: it can be left
unchanged (if no rule can be applied to it) or an a symbol for a ∈ V1
can be replaced by #a (by applying a rule a → #a with a ∈ V1). All
the obtained words leave this node. The words that start with a symbol
that cannot be deleted by x may go to x4; in this node, any #a symbol
contained in these words is restored to a, then they are sent to x5 and
finally exit the subnetwork if w ∈ O. The word that contains a #a

symbol on the left-most position goes to x1. The words that contain
a #a symbol not on the left-most position but start with a symbol that
can be deleted in x are lost. The computation continues as follows for
the word beginning with #a for some a ∈ V1: in x1 the #a symbol is
deleted and copies of the newly obtained word are sent to the nodes x2,
x3, and x5. The node x5 will accept the word obtained from w after the
deletion of the left-most symbol if this word is in O. If the word is not
in O, it goes to x2 and x3. The node x3 takes the word if it contains a
symbol which is not in V2.

In any of these nodes, a symbol a is substituted by a #a symbol. A
newly obtained word leaves x2 only if all appearing letters belong to V2
or are symbols of V marked for deletion; a new word leaves x3 only if all
appearing letters belong to V or are symbols of V marked for deletion.
Then the processed word goes back to x1 where the simulation of the
deletion is repeated. Finally, the word will enter x5 when it becomes
part of O (if this eventually happens) and can leave the network. The
above reasoning shows that the words obtained from w in s(x) which
can leave the subnetwork are exactly those that are obtained in the
node x and leave it.

For the case of left-substitution nodes, we only change the set V1 of
all left hand side symbols to V1 = { a ∈ V | ∃c ∈ V : a→ c ∈M } and
the rule set of x1 to {#a → c | a→ c ∈M }.

The right-deletion and right-substitution nodes can be simulated
similarly. We only change the input filter of node x1 to U∗V# and the
input filter of node x4 to U∗B′ (we check for the inserted symbol #a

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.15

16 J. Dassow, F. Manea, B. Truthe

or the impossibility of applying a rule at the end of a word rather
than in the beginning). All the filters, except for I and U∗ \O, can be
accepted by deterministic finite automata with two states; the filters I
and U∗ \O, respectively, can be accepted with as many states as I and
O, respectively.

Finally, for given network N = (V,N1, . . . , Nn, E, j) we define the
network N ′ = (V ∪ V# ∪ {#}, N ′1, . . . , N ′m, E′, j′) where

− N ′1, . . . , N
′
m is an enumeration of the nodes from the set⋃

i∈{1,...,n}

n(s(Ni));

− the output node of the network is the only node from the subnet-
work s(Nj) (which contains only a copy of Nj , since the original
node had no rules);

− the set E′ of edges is

{ (o(s(Ni)), i(s(Nk))) | (i, k) ∈ E } ∪
⋃

i∈{1,...,n}

e(s(Ni));

− the rules, axioms, and filters of the nodes are defined as above.

From the remarks made when we explained how each subnetwork
works it follows that the network N ′ generates exactly L(N). 2

Obviously, the application of Lemma 3 to the networks constructed in
Theorem 2 gives only the bound 3 for the number of states whereas
Theorem 1 ii) gives the better bound 2. Nevertheless, Lemma 3 is of
interest since we have to consider the form in which a recursively enu-
merable language is given; Lemma 3 requires a description by a network
with evolutionary processors, whereas Theorem 1 ii) uses a description
by a grammar in Kuroda normal form.

Now we normalize the number of rules present in each node.

LEMMA 4. Let k ≥ 1, N = (V,N1, N2, . . . , Nn, E, j) be a NEP in weak
normal form with filters from the class MIN k, and k′ = max{k, 2}.
Then an equivalent network N ′ = (V,N ′1, N

′
2, . . . , N

′
m, E

′, j′) in weak
normal form can be algorithmically constructed such that each node
N ′i = (M ′i , A

′
i, I
′
i, O

′
i, ∗), 1 ≤ i ≤ m, has a singleton set M ′i and input

and output filters from the class MIN k′.
Proof. Without loss of generality, we can assume that the output

node of N has the form Nj = (∅, ∅, Ij , Oj , ∗). Those nodes in N that

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.16

Normal Forms for NEPs 17

have at most one rule can be used for N ′ without change. The other
nodes can be simulated by a network in which there is a node for each
rule that takes a word if and only if the rule can be applied and a
node for the case that no rule can be applied. As shown in the proof of
Lemma 3, we need three more nodes that simulate the original output
filter. We construct for each node x of the networkN a subnetwork s(x),
contained in the new network N ′, that simulates the computation of
the processor found in the node x. Again, we denote by n(s(x)) the set
of the nodes of the subnetwork s(x), by i(s(x)) and o(s(x)) the entrance
and exit nodes, and by e(s(x)) the set of the edges of the subnetwork.

Let us assume that the node x is the processor (M,A, I,O, ∗) with
M = {r1, . . . , rp} where p ≥ 1. If the node is a deletion or substitution
node, any rule ri has the form ai → ci (1 ≤ i ≤ p) and we define
Ii = V ∗{ai}V ∗ for 1 ≤ i ≤ p and I0 = (V \ {a1, . . . , ap})∗. If the node
is an insertion node we define Ii = V ∗ for 1 ≤ i ≤ p and I0 = ∅. Then
we construct the subnetwork as follows:

− n(s(x)) = {x0, x′0, x1, x2, x3} ∪ {xr1, . . . , xrp},

e(s(x)) = {(x′0, x3)} ∪
2⋃

k=0

({(xk, x′0)} ∪
p⋃
i=1
{(xk, xri), (xri , xk+1)})

− i(s(x)) = x0 and o(s(x)) = x3;

− x0 = (∅, A, I, V ∗, ∗);

− xri = ({ri}, ∅, Ii, V ∗, ∗) for i ∈ {1, . . . , p};

− x′0 = (∅, ∅, I0, V ∗, ∗);

− x1 = (∅, ∅, V ∗ \O, V ∗1 , ∗), where V1 = alph(O);

− x2 = (∅, ∅, (V \B)∗BV ∗, V ∗, ∗), where B = V \ alph(O);

− x3 = (∅, ∅, O, V ∗, ∗).

All the filters of this network are in MIN k or in MIN 2 (we need de-
terministic finite automata with two states to accept the input filters
of x2 and xri for i ∈ {1, . . . , p} and with one state for the other filters
that do not depend on I or O).

To see that the subnetwork s(x) defined above simulates the be-
haviour of the node x, let us assume that w is a word that was sent
towards the node x in a communication step of N , and the same word
was also sent towards x0 in N ′. The word w enters x if and only if it
enters x0. In x, a rule ri is applied to w; this is simulated in s(x) in
the following steps: w goes from x0 to xri , where the rule ri is applied
to it. Back in N , the word exits the node x if it is contained in O

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.17

18 J. Dassow, F. Manea, B. Truthe

or, otherwise, remains in the node and is further processed. In N ′ the
word goes to x3 if it is in O and leaves the subnetwork in the next
communication step; if it is not in O, it goes to x1 (and it is blocked
there unless all its symbols are in alph(O)) and to x2 (if it contains
a symbol from V \ alph(O)). The word is returned by these nodes to
the nodes xr` for ` ∈ {1, . . . , p} to be further processed. Also, there are
words that enter x but are not processed in this node; in N ′, these
strings enter in x0, are sent to x′0, and further they are sent to x3,
and leave the network if they verify the output conditions. Hence, the
subnetwork s(x) behaves exactly like the node x.

If a node x has no rules, it is kept in exactly the same form in the
new network (i. e., n(s(x)) = {x}, i(s(x)) = o(s(x)) = x, e(s(x)) = ∅
and the processor placed in the node remains unchanged).

To finish the construction of the network N ′ we set:

− N ′1, . . . , N
′
m is an enumeration of the nodes in the set⋃

i∈{1,...,n}

n(s(Ni)).

− The output node of the network is the only node from the subnet-
work s(Nj) (which contains only a copy of Nj , since the original
node had no rules).

− The set E′ of edges equals

{ (o(s(Ni)), i(s(Nk))) | (i, k) ∈ E } ∪
⋃

i∈{1,...,n}

e(s(Ni)).

− The rules, axioms and filters of the nodes are defined as above.

From the explanations provided together with the definitions of the
subnetworks follows that the network N ′ generates exactly L(N). 2

5. Transformation into Normal Form

Once we know how to transform the NEPs in order to have only pro-
cessors containing at most one rule and where the rules can be applied
at an arbitrary position, we can focus on normalizing the topology of
the network, i. e., to get networks in normal form.

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.18

Normal Forms for NEPs 19

LEMMA 5. Let k ≥ 1, N = (V,N1, N2, . . . , Nn, E, j) be a NEP in weak
normal form with filters from MIN k which has, for 1 ≤ i ≤ n, nodes
Ni = (Mi, Ai, Ii, Oi, ∗) with #(Mi) ≤ 1 and Nj = (∅, ∅, Ij , Oj , ∗), and
k′ = max{k, 2}. An equivalent NEP N ′ = (V ′, N ′1, N

′
2, . . . , N

′
m, E

′, j′)
in normal form can be algorithmically constructed such that all filters
of N ′i , 1 ≤ i ≤ m, are from the class MIN k′.

Proof. The main idea of the proof is to construct a network N ′ that
simulates the computation of N and implements the following idea:
we always have in the words processed in the new network exactly one
special symbol #x (or primed versions of this symbol), where x is a node
of N , that indicates the processor of the initial network whose actions
must be simulated at that point. Such a symbol #x is inserted in the
axioms corresponding to x, at the beginning of the computation; once
such a symbol is inserted in the word, no other symbol of this type can
be inserted. This special symbol is modified during the computation
of the new network in such a manner that it gives, in parallel, all the
possible paths that the computation may follow in the initial network.
A problem occurs when we deal with the output node: we cannot allow
the entrance of strings with #-symbols in this node. Therefore, the
new network will work with copies of the working symbols from V , and
once we obtain a copy of a word that would have been accepted in the
output node of N , we delete the #-symbol present in that word, we
restore the rest of the symbols to the original version, and send them
to the output node of N ′.

As in the previous proof, we will show how we can construct for
each node x of the network N a subnetwork s(x) contained in N ′ that
simulates the computation of the processor in x. We denote by n(s(x))
the nodes of the subnetwork s(x) but, in this case, we do not have to
care about the edges or special nodes in the subnetwork since every
node of the new network will communicate to all the others.

Assume that V ◦ is an alphabet with copies of the symbols in V , i. e.,
it contains the symbol a◦ instead of a, for all a ∈ V . Moreover, for a
word w, we denote by ◦(w) the word obtained by replacing the symbols
of V in w by their copies and leaving the others unchanged. Also, if L is
a language, we denote by ◦(L) the language obtained by replacing the
symbols of V that appear in the words of L by their copies from V ◦.

For a language L and a symbol x /∈ alph(L), we define the language
Lx as the set of all the words w′ where w′ was obtained by inserting
in a word w from L several symbols x. If L ∈ MIN k then Lx ∈ MIN k.
The definition can be easily extended to finite sets of symbols: for a
language L and the set of symbols S = {x1, . . . , xp}, with xi /∈ alph(L)
for all i ≤ p, we define the language LS as the set of all the words w′

where w′ was obtained by inserting in a word w from L several symbols

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.19

20 J. Dassow, F. Manea, B. Truthe

from the set {x1, . . . , xp}. Again, if L ∈ MIN k then LS ∈ MIN k. Also,

for a language L and a symbol x ∈ alph(L), we define the language Lx
′

as the set of all the words w′ where w′ was obtained by substituting in a
word w from L several symbols x by x′. If L ∈ MIN k then Lx

′ ∈ MIN k.
The alphabet of the network N ′ is defined as:

U = V ∪ V ◦ ∪ {$} ∪
{
b′ | b ∈ V

}
∪ {#o} ∪

{
#x,#

′
x,#

′′
x | x is a node of N

}
.

For each node x of N , we define two sets of symbols that will be
useful in our construction:

Sx = U \
{

#y,#
′
y,#

′′
y | y is a node of N , y 6= x

}
and

Ex = {#y | y is a node of N , (x, y) ∈ E } .

Further, we define the rest of the network, following the main lines
we mentioned before. We will split our discussion in four cases, accord-
ing to the type of each node (with no rules, insertion, substitution,
deletion).

Let us assume that the node x has the processor (∅, A, I,O, ∗); also,
assume that x is not the output node. Then we set

− n(s(x)) = {x0, x′0};

− x0 = ({#x → #y | (x, y) ∈ E } , ∅, ◦(I#x), ◦(OEx), ∗);

− x′0 = ({ λ→ #y | (x, y) ∈ E } , ◦(A), ∅, ◦(OEx), ∗).

In such a subnetwork, we only change the symbol #x into a new symbol
#y telling us that the word can now go towards the nodes of the
subnetwork associated with y, and cannot enter the nodes of any other
subnetwork. Also, at the beginning of the computation, the node x′0
inserts #y in the axioms, with the same effect as the above. In both
nodes, the rest of the word is left unchanged, as it was also the case in
the initial network, where the whole word stayed unchanged.

The case of the output node should be discussed separately. Let us
assume that the node x has the processor (∅, A, I,O, ∗). Then we set

− n(s(x)) = {x0, x1, x2, x3, x4}, and x4 is the output node of N ′;

− x0 = ({#x → #′x,#x → #o}, ∅, ◦(I#x), U∗{#′x,#o}U∗, ∗);

− x1 = ({#′x → #y | (x, y) ∈ E } , ∅, Ix1 , ◦(OEx), ∗)
with Ix1 = (U \ {#o})∗{#′x}(U \ {#o})∗;

− x2 = ({ a◦ → a | a ∈ V } , ∅, U∗{#o}U∗, V ∗#oV
∗, ∗);

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.20

Normal Forms for NEPs 21

− x3 = ({#o → λ}, ∅, V ∗{#o}V ∗, V ∗, ∗);

− x4 = (∅, ∅, V ∗, ∅, ∗).

The processing of this subnetwork follows the idea that each string must
go to the other subnetwork, if it can pass the output filter, and it must
be saved as part of the generated language. In the first case, in x0 and
x1 we can change the symbol #x into a new symbol #y telling us that
the word can now go towards the nodes of the subnetwork associated
with y, if it can pass the output filter of x. In the second case, we
change in x0 the symbol #x into #o, and send the string out. It can
only enter x2 where all the symbols from V ◦ are replaced with their
original versions from V . Further, the string can only enter x3, where #o

is deleted. After the next communication step, the obtained string can
only enter x4, where we collect all the words in the generated language.
All the strings that enter the output node in the original network are
collected in x4 and no other string can enter this node in N ′.

Assume that the node x has the processor ({λ→ a } , A, I,O, ∗).
Then we set:

− n(s(x)) = {x0, x′0, x1, x2};

− x0 = ({#x → #′x}, ∅, ◦(I#x), U∗{#′x}U∗, ∗);

− x′0 = ({λ→ #′x}, ◦(A), ∅, U∗{#′x}U∗, ∗);

− x1 = ({λ→ a′}, ∅, U∗{#′x}U∗, ◦(Oa
′

#′
x
), ∗);

− x2 = (Mx2 , ∅, S∗x{a′}S∗x, (U \ {a′,#′x})∗, ∗)
with Mx2 = {a′ → a◦} ∪ {#′x → #y | (x, y) ∈ E }.

In what follows, we explain how the subnetwork works. Let us as-
sume that w is a word that was sent towards the node x in a com-
munication step of N , and the word w1#xw2, with w1w2 = ◦(w), was
communicated in the complete network N ′. If the string w can pass
the input filter of x then w1#xw2 can also enter x0 (and no other
node); the converse also holds. In the node x, we either obtain from w
a word w′ ∈ O by inserting k a−symbols into w (as long as we have
inserted less than k symbols we get a word that is not contained in O)
or the string is blocked in this node. In the network N ′ the string is
processed as follows. In x0, it becomes w1#

′
xw2 and is sent out. As we

will see after the whole network is defined, it can only enter x1 (no
other node allows it in according to the input filters); here it becomes
w′1#

′
xw
′
2, with w′1w

′
2 = ◦(w′), and may leave the node. However, only

the strings from ◦(O#′
x
) can leave the node x1. Therefore, if the word

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.21

22 J. Dassow, F. Manea, B. Truthe

leaves the node x1 it can only go to node x2 where we obtain all the
strings w′1#yw

′
2, for a node y such that (x, y) ∈ E. Each such string

leaves the node and can go to the nodes of the subnetworks associated
with the node y. Also, x′0 sends, at the beginning of the computation,
all the strings w1#

′
xw2, where w1w2 ∈ ◦(A), to node x1 in order to

be processed as in the node x. Clearly, s(x) simulates correctly the
computation done by x.

Now we move on to substitution nodes. Let us assume that the
node x has the processor ({a→ b}, A, I,O, ∗). Then we set

− n(s(x)) = {x0, x′0, x1, x′1, x2};

− x0 = ({#x → #′x}, ∅, ◦(I#x), U∗{#′x}U∗, ∗);

− x′0 = ({λ→ #′x}, ◦(A), ∅, U∗{#′x}U∗, ∗);

− x1 = ({a◦ → b′}, ∅, U∗{#′x}U∗, ◦(Ob
′
#′

x
), ∗) if b ∈ alph(O);

− x1 = ({a◦ → b′}, ∅, U∗{#′x}U∗, ∅, ∗) if b /∈ alph(O);

− x′1 = ({#′x → #′′x}, ∅, (U \ {b′, a◦})∗{#′x}(U \ {b′, a◦})∗, O#′′
x
, ∗);

− x2 = (M, ∅, S∗x{b′,#′′x}S∗x, (U \ {b′,#′x,#′′x})∗, ∗)
with M = {b′ → b◦} ∪ {#′x → #y,#

′′
x → #y | (x, y) ∈ E }.

In this case, the simulation works as follows. Let us assume that w is a
word that was sent towards the node x in a communication step of N ,
and the word w1#xw2, with w1w2 = ◦(w), was communicated in the
complete network N ′. The string w can pass the input filters of x if and
only if w1#xw2 can also enter x0. In the node x we either obtain from
w a word w′ ∈ O, by substituting several a symbols of w by b symbols
(at least one if w contains an a, otherwise none), or the string is blocked
in this node. In the network N ′ the string is processed as follows. In
x0 it becomes w1#

′
xw2 and is sent out. It can only enter x1 or x′1, but

this only if it has no a◦ symbol. In x1 it becomes w′1#
′
xw
′
2, such that if

we replace the b′ symbols from w′1w
′
2 by b◦ we get ◦(w′), and leaves the

node; in x′1 it becomes w1#
′′
xw2. It is not hard to see that all the other

strings obtained in x1 are blocked, lost, or go to x′1 (where copies of
them were already processed), because the only words that leave this
node are from ◦(Ob′#′

x
), and they can enter only x2, where a b′ is needed,

or x′1, if they contained no a◦ from the beginning. Also, all the strings
obtained in x′1 that are not part of ◦(O#′′

x
) are blocked. Therefore, if

the word leaves the node x1 or x′1 it can only go to node x2 where we
obtain all the strings w′′1#yw

′′
2 with w′′1w

′′
2 = ◦(w′) and (x, y) ∈ E. Each

such string leaves the node and can go to the nodes of the subnetworks

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.22

Normal Forms for NEPs 23

associated with the node y. Also, x′0 sends at the beginning of the
computation all the strings w1#

′
xw2 where w1w2 ∈ ◦(A) to node x1 in

order to process them as in the original network. Hence, s(x) simulates
correctly the computation done by x.

Finally, we present the simulation of the deletion nodes. Let us
assume that the node x has the processor ({a → λ}, A, I,O, ∗). Then
we set:

− n(s(x)) = {x0, x′0, x1, x′1, x2, x3, x4};

− x0 = ({#x → #′x}, ∅, ◦(I#x), U∗{#′x}U∗, ∗);

− x′0 = ({λ→ #′x}, ◦(A), ∅, U∗{#′x}U∗, ∗);

− x1 = ({a◦ → $}, ∅, U∗{#′x}U∗, ◦(O$,#′
x
), ∗);

− x′1 = ({#′x → #′′x}, ∅, (U \ {b′, a◦})∗{#′x}(U \ {b′, a◦})∗, ◦(O#′′
x
), ∗);

− x2 = ({#′x → #′′x}, ∅, S∗x{$}S∗x, O{$,#′′
x}, ∗);

− x3 = ({$→ λ}, ∅, (Sx \ {#′x})∗{$}(Sx \ {#′x})∗, ◦(O#′′
x
), ∗);

− x4 = (M, ∅, (Sx \ {$})∗{#′′x}(Sx \ {$})∗, (U \ {#′′x})∗, ∗)
with M = {#′′x → #y,#

′
x → #y | (x, y) ∈ E }.

The simulation works pretty similar to the substitution case. Let us
assume that w is a word that was sent towards the node x in a com-
munication step of N , and the word w1#xw2, with w1w2 = ◦(w), was
communicated in the complete network N ′. The string w can pass the
input filters of x if and only if w1#xw2 can also enter x0. In the node x
we either obtain from w a word w′ ∈ O, by deleting several a symbols
(at least one if w contains an a, otherwise none), or the string is blocked
in this node. In the network N ′ the string is processed as follows. In x0,
it becomes w1#

′
xw2 and is sent out. It can only enter x1 or x′1, but this

only if it has no a◦ symbol. In x1 it becomes w′1#
′
xw
′
2, such that ◦(w′)

can be obtained from w′1w
′
2 by deleting the $ symbols, and leaves the

node; in x′1, it becomes w1#
′′
xw2. It is not hard to see that all the other

strings obtained in x1 are blocked, lost, or go to x′1 (where copies of
them were already processed), because the only words that leave this
node are from ◦(O{$,#′

x}) and they can enter only x2 where a $ is needed
or x′1 if they contained no a◦ from the beginning. Also, all the strings
obtained in x′1 that are not part of ◦(O#′′

x
) are blocked; therefore, if

the word leaves the node x′1 it can only go to node x4 where we obtain
all the strings w′′1#yw

′′
2 with w′′1w

′′
2 = ◦(w′) and (x, y) ∈ E. If a string

leaves x1 and goes to x2 (thus, the string has at least one $ symbol),
the #′x contained in it is transformed into #′′x and the string can only

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.23

24 J. Dassow, F. Manea, B. Truthe

go now to x3. In this node, all the $ symbols are deleted, and the string
can go now to x4 where it is transformed in the same way as the strings
that went there from x′1. All the strings obtained in x4 leave the node
and can go to the nodes of the subnetworks associated with the node
y. Also, x′0 sends at the beginning of the computation all the strings
w1#

′
xw2 with w1w2 ∈ ◦(A) to node x1 in order to process them as in

the original network. Hence, s(x) simulates correctly the computation
done by x.

To completely define the subnetwork N ′ just take N ′1, . . . , N
′
m as an

enumeration of the nodes of all the subnetworks defined above. The
new network has E′ = {1, . . . ,m} × {1, . . . ,m}. From the way the
subnetworks work, we can state now that the following two statements
are equivalent:

− w is a word that was sent towards the node x in a communication
step of N and was processed by this node to obtain w′, which was
further communicated to node y;

− the word w1#xw2, with w1w2 = ◦(w), was communicated in the
network N ′ and entered the node x0 from the subnetwork s(x) and
was processed by the networkN ′ (more precisely by the nodes from
s(x)) to obtain w′1#yw

′
2, with w′1w

′
2 = ◦(w′).

Also, by the description of the subnetwork corresponding to the output
node it follows that w is generated by N if and only if it is generated
by N ′. 2

The Lemmas 3, 4, and 5 yield the following result.

THEOREM 3. For a network of evolutionary processors N with filters
from the class MIN k, a network N ′ in normal form can be algorith-
mically constructed such that L(N) = L(N ′) and all filters of N ′ are
from the class MIN k′, where k′ = max{k, 3}. 2

Let L be a recursively enumerable language. By Theorem 1, we have
L = L(N) for a network of evolutionary processors in weak normal
form, where all filters are in the class MIN 2. If we now apply the
Lemmas 4 and 5, then we obtain a network in normal form where all
filters are in MIN 2. This result can be reformulated as follows.

THEOREM 4. EN (MIN 2) = RE. 2

This result shows that the bound for the number of states to accept
the filter languages is not increased if we go from networks in weak
normal form to networks in normal form.

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.24

Normal Forms for NEPs 25

Since EN (MIN 1) is properly contained in RE (by Lemma 1), the
result in Theorem 4 is optimal.

Acknowledgements

Florin Manea’s work was partially supported by the Alexander von
Humboldt Foundation through a Research Fellowship at the Otto-
von-Guericke University Magdeburg, Germany, between July 2009 and
June 2011 and a subsequent Return Fellowship at the University of
Bucharest, Romania, between July 2011 and October 2011. His work
is currently supported by DFG - Deutsche Forschungsgemeinschaft
through the grant 582014.

References

Alhazov, A., E. Csuhaj-Varjú, C. Mart́ın-Vide, and Y. Rogozhin: 2009a, ‘On the
size of computationally complete hybrid networks of evolutionary processors’.
Theoretical Computer Science 410, 3188–3197.

Alhazov, A., J. Dassow, C. Mart́ın-Vide, Y. Rogozhin, and B. Truthe: 2009b, ‘On
Networks of Evolutionary Processors with Nodes of Two Types’. Fundamenta
Informaticae 91, 1–15.

Castellanos, J., C. Mart́ın-Vide, V. Mitrana, and J. M. Sempere: 2001, ‘Solving
NP-Complete Problems With Networks of Evolutionary Processors’. In: Proc.
IWANN 2001, Vol. 2084 of LNCS. pp. 621–628, Springer-Verlag, Berlin.

Castellanos, J., C. Mart́ın-Vide, V. Mitrana, and J. M. Sempere: 2003, ‘Networks of
Evolutionary Processors’. Acta Informatica 39(6–7), 517–529.

Csuhaj-Varjú, E. and V. Mitrana: 2000, ‘Evolutionary Systems: A Language Gen-
erating Device Inspired by Evolving Communities of Cells’. Acta Informatica
36(11), 913–926.

Csuhaj-Varjú, E. and A. Salomaa: 1997, ‘Networks of Parallel Language Processors’.
In: New Trends in Formal Languages – Control, Cooperation, and Combinatorics,
Vol. 1218 of LNCS. pp. 299–318, Springer-Verlag, Berlin.

Dassow, J., F. Manea, and B. Truthe: 2011, ‘Networks of Evolutionary Processors
with Subregular Filters’. In: Proc. LATA 2011, Vol. 6638 of LNCS. pp. 262–273,
Springer-Verlag, Berlin.

Dassow, J. and B. Truthe: 2011, ‘On networks of evolutionary processors with filters
accepted by two-state-automata’. Fundamenta Informaticae 112(2–3), 157–170.

Errico, L. D. and C. Jesshope: 1994, ‘Towards a New Architecture for Symbolic
Processing’. In: AIICSR’94: Proceedings of the sixth international conference on
Artificial intelligence and information-control systems of robots. River Edge, NJ,
USA, pp. 31–40, World Scientific Publishing Co., Inc.

Fahlman, S. E., G. E. Hinton, and T. J. Sejnowski: 1983, ‘Massively Parallel Ar-
chitectures for AI: NETL, Thistle, and Boltzmann Machines’. In: Proc. AAAI
1983. pp. 109–113.

Geffert, V.: 1991, ‘Normal forms for phrase-structure grammars’. RAIRO –
Theoretical Informatics and Applications 25, 473–496.

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.25

26 J. Dassow, F. Manea, B. Truthe

Hillis, W. D.: 1986, The Connection Machine. Cambridge, MA, USA: MIT Press.
Mart́ın-Vide, C. and V. Mitrana: 2005, ‘Networks of Evolutionary Processors: Re-

sults and Perspectives’. In: Molecular Computational Models: Unconventional
Approaches. pp. 78–114.

Păun, G.: 2000, ‘Computing with Membranes’. J. Comput. Syst. Sci. 61(1), 108–143.
Păun, G. and L. Sântean: 1989, ‘Parallel Communicating Grammar Systems: The

Regular Case’. Annals of University of Bucharest, Ser. Matematica-Informatica
38, 55–63.

Rozenberg, G. and A. Salomaa: 1997, Handbook of Formal Languages. Springer-
Verlag, Berlin.

Sankoff, D., G. Leduc, N. Antoine, B. Paquin, F. Lang, and R. Cedergren: 1992,
‘Gene Order Comparisons for Phylogenetic Inference: Evolution of the Mitochon-
drial Genome’. Proceedings of the National Academy of Sciences of the United
States of America 89(14), 6575–6579.

DasManTruNaCoRev.tex; 13/03/2013; 15:22; p.26

