
GENERATING NETWORKS OF SPLICING PROCESSORS

Jürgen Dassow1, Florin Manea2, 3 and Bianca Truthe1

Abstract. In this paper, we introduce Generating Networks of Splic-
ing Processors (GNSP for short), a formal languages generating model
related to networks of evolutionary processors and to accepting net-
works of splicing processors. We show that all recursively enumerable
languages can be generated by GNSPs with only nine processors. We
also show, by direct simulation, that two other variants of this comput-
ing model, where the communication between processors is conducted
in different ways, have the same computational power.

1991 Mathematics Subject Classification. 68Q05, 68Q42, 68Q45.

Networks of language processors have been introduced in [9] by E. Csuhaj-Varjú
and A. Salomaa. Such a network can be considered as a graph where the nodes
contain sets of word rewriting rules and, at any moment of time, a language is
associated with a node. In a derivation step, any node applies the rules to the
words of the associated languages to obtain its new language. In a communication
step, any node sends those words that satisfy an output condition given as a
regular language (called output filter) to the neighbouring nodes and any node
takes words sent by the other nodes, if the words satisfy an input condition also
given by a regular language (called input filter). The language generated by a
network of language processors consists of all (terminal) words which occur in the
languages associated with a given node.

Inspired by biological processes, related to Darwinian evolution, by J. Castel-
lanos, C. Martin-Vı́de, V. Mitrana, and J. M. Sempere in [6], a special type of
networks of language processors was introduced which are called networks with
evolutionary processors. In such networks, the rewriting rules that were used had

Keywords and phrases: Splicing, Networks of Splicing Processors, Networks of Splicing Pro-
cessors with Filtered Connections, Computational Completeness.

1 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik, PSF 4120, D-39016

Magdeburg, Germany; e-mail: {dassow,truthe}@iws.cs.uni-magdeburg.de
2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik, Christian-Albrechts-Platz 4,
D-24098 Kiel, Germany; e-mail: flm@informatik.uni-kiel.de
3 Faculty of Mathematics and Computer Science, University of Bucharest, Academiei 14,
RO-010014 Bucharest, Romania

2

a very simple form: they modelled the point mutation known from biology. The
sets of productions had to be substitutions of one letter by another letter, inser-
tions of letters or deletions of letters; the nodes were then called substitution node
or insertion node or deletion node, respectively. The computation in such a net-
work was conducted in a very similar fashion to the computation in networks of
language processors. Results on networks of evolutionary processors can be found,
e. g., in [6], [7], [18]. For instance, in [7], it was shown that networks of evolution-
ary processors are complete in that sense that they can generate any recursively
enumerable language; other investigations concerned the finding of the minimum
number such that the class of networks with that number of nodes generates the
class of recursively enumerable languages [3, 4].

In the paper [17], an accepting version of such systems was introduced by
M. Margenstern, V. Mitrana, and M. Pérez-Jiménez; such networks are called
Accepting Networks of Evolutionary Processors (ANEPs, for short). A word w is
accepted by such a network, if a special input node contains initially {w}, all other
nodes are initially empty, and after some derivation and communication steps a
word arrives in a special output node. Again, this type of networks is computa-
tionally complete. A summary on accepting networks of evolutionary processors
can be found in [16]. Besides the results on the computational power of this model,
other results worth mentioning regarded the computational complexity of ANEPs-
based computations, their descriptional complexity, and the way ANEPs can be
used as problem solvers; the aforementioned survey presents also some results on
the way ANEPs can be used to accept picture languages.

The point mutations modelled by substitutions, insertions, and deletions be-
long to the basic operations which occur in evolution. Another basic operation is
splicing. Intuitively, two DNA strands are cut at special positions given by recog-
nition sites (i. e., special DNA sequences) under the effect of some enzymes and
then the obtained parts are recombined. It is now natural to consider networks
where splicing is used instead of point mutations.

The accepting variant of networks with splicing processors was introduced in [14]
by F. Manea, C. Martin-Vı́de, and V. Mitrana. Again, the computational com-
pleteness was shown. Results on the complexity of such networks and the possibil-
ity of using them as problem solvers were developed in [14,15]. They were followed
by a series of results regarding the descriptional complexity of the model [12,13].

In all the types of networks mentioned above, the filters are associated with the
nodes. Each node has an input filter and an output filter which determine the
words which can enter and leave the node in a communication step. Obviously,
one can also introduce variants where the filters are connected with edges and a
word can only pass along an edge if it satisfies the filter conditions. For accept-
ing networks with evolutionary or splicing processors, such variants with filters
associated with edges are introduced in [1, 2] and [5], respectively.

Surprisingly, a generating variant of networks with splicing processors, in the
fashion of the initial model of networks of language processors, has not been con-
sidered hitherto. The aim of this paper is to close this gap. We start with a

3

definition of a generating network of splicing processors where we follow as accu-
rately as possible the definition of a network with evolutionary processors. We
introduce two types of networks; in the first one, the filters are connected with the
nodes; in the second type, the filters are associated with the directed edges. The
filters are given by sets of letters which have to be present or absent in the current
sentential form.

We prove that each generating network with splicing processors of one of these
types (filters associated with nodes or edges) can be transformed into an equiv-
alent generating network with splicing processors of the other type. In addition,
we show that these two models are equivalent to a more restricted variant of
networks with filters on edges, but where the edges are undirected. It is worth
mentioning that the proofs showing that all these models are equivalent are made
by direct simulations without using any intermediate model. Moreover, we show
the computational completeness of generating networks with splicing processors
by showing how one can construct a network that simulates the derivations of a
phrase structure grammar.

Finally, we mention that generating networks of splicing processors are closely
related to test tube systems (see e. g. [8] and [10]). A test tube behaves as a node
of the network and the communication is done via filters which are given by the
presence/absence of letters or length conditions. However, a derivation step does
not consist of an application of a splicing rule as in the case of networks; in test
tube systems the words produced in a derivation step are all the words which can
be obtained by iterated applications of splicing rules. Therefore, one has no time
bound in which all words are produced since the number of iteration steps can be
arbitrarily large. Thus, it seems to us that it is more natural to have a time bound
given by one application of a splicing rule. Hence, generating networks of splicing
processors can be seen as similar to test tube systems with a special bound on the
duration of a splicing step.

1. Basic Definitions

We assume that the reader is familiar with the basic concepts of formal language
theory (see e. g. [20]). We here only recall some notations used in the paper.

By V ∗ we denote the set of all words over an alphabet V (including the empty
word λ). The length of a word w is denoted by |w|. The number of occurrences
of a letter a or of letters from a set A is denoted by |w|a and |w|A, respectively.
For the number of elements of a set A, we write |A|. The minimal alphabet of a
word w and a language L is denoted by alph(w) and alph(L), respectively.

In the proofs, we shall often add new letters of an alphabet U to a given alpha-
bet V . In all these situations, we assume that V ∩ U = ∅.

A phrase structure grammar is a quadruple

G = (N,T, P, S)

4

where N is a finite set of non-terminals, T is a finite set of terminals, P is a
finite set of productions which are written as α→ β with α ∈ (N ∪ T)+ \ T ∗ and
β ∈ (N ∪ T)∗, and S ∈ N is the axiom.

A splicing rule over a finite alphabet V is a tuple of the form [(u1, u2), (v1, v2)]
where u1, u2, v1, and v2 are in V ∗. For a splicing rule

r = [(u1, u2), (v1, v2)]

and words x, y, w, z ∈ V ∗, we say that the rule r produces the pair (z, w) from the
pair (x, y) – denoted by

(x, y) `r (z, w)

if there exist words x1, x2, y1, y2 ∈ V ∗ such that

x = x1u1u2x2,

y = y1v1v2y2,

z = x1u1v2y2, and

w = y1v1u2x2.

For a language L over V and a set of splicing rules R we define

σR(L) = {z, w ∈ V ∗ | (∃u, v ∈ L, r ∈ R)[(u, v) `r (z, w)]}
∪ {u ∈ L | ∀v ∈ L,∀r ∈ R, r is not applicable on (u, v) or (v, u)}.

For two disjoint subsets P and F of an alphabet V and a word w over V , we
define the predicates

ϕ(s)(w;P, F) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅,
ϕ(w)(w;P, F) ≡ (P = ∅ ∨ alph(w) ∩ P 6= ∅) ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions de-
fined by the two sets P of permitting contexts/symbols and F of forbidding con-
texts/symbols. Informally, the first condition requires that all permitting symbols
are present in w and no forbidding symbol is present in w, while the second one
is a weaker variant of the first, requiring that – for a non-empty set P – at least
one permitting symbol appears in w and no forbidding symbol is present in w.

For every language L ⊆ V ∗ and β ∈ {(s), (w)}, we define:

ϕβ(L,P, F) = {w ∈ L | ϕβ(w;P, F)}.

We now introduce the basic concept of this paper, the generating networks of
splicing processors (GNSP, for short). See [14, 15] for a closely related accepting
model.

5

Definition 1.1.

(1) A generating network of splicing processors (of size n) is a tuple

N = (V,N1, N2, . . . , Nn, E,No)

where
• V is a finite alphabet,
• for 1 ≤ i ≤ n, Ni = (Mi, Ai,PI i,FI i,PO i,FO i, βi) where

– Mi is a set of splicing rules, the rules of node Ni,
– Ai is a finite subset of V ∗, called the set of axioms of node Ni,
– PI i,FI i,PO i,FO i are finite subsets of V , and PI i and FI i are

the input filters of node Ni, while PO i and FO i are the output
filters of node Ni,

– βi ∈ {(s), (w)} indicates the way the input and output filters of
the node are used, as follows

input filter: ρi(·) = ϕβi(·; PI i,FI i),

output filter: τi(·) = ϕβi(·; PO i,FO i).

• E is a subset of {N1, N2, . . . , Nn} × {N1, N2, . . . , Nn}, defining the
directed edges of the network, and
• No is the output node of the network (1 ≤ o ≤ n).

(2) A configuration C of N is an n-tuple C = (C(1), C(2), . . . , C(n)) where
C(i) is a subset of V ∗ for 1 ≤ i ≤ n.

(3) Let C = (C(1), C(2), . . . , C(n)) and C ′ = (C ′(1), C ′(2), . . . , C ′(n)) be two
configurations of N . We say that C derives C ′ in one
• splicing step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n,

C ′(i) = σMi(C(i)),

• communication step (written as C ` C ′) if, for 1 ≤ i ≤ n,

C ′(i) = (C(i) \ τi(C(i))) ∪
⋃

(Nj ,Ni)∈E

ρi(τj(C(j))).

The computation of N is a sequence of configurations

Ct = (Ct(1), Ct(2), . . . , Ct(n)), t ≥ 0,

such that
• C0 = (A1, A2, . . . , An),
• C2t derives C2t+1 in a splicing step: C2t =⇒ C2t+1 (t ≥ 0),
• C2t+1 derives C2t+2 in a communication step: C2t+1 ` C2t+2 (t ≥ 0).

(4) The language L(N) generated by N is defined as

L(N) =
⋃
t≥0

Ct(o)

6

where the sequence of configurations Ct = (Ct(1), Ct(2), . . . , Ct(n)), t ≥ 0,
is the computation of N .

The following example shows how GNSPs can be used to generate a language.

Example 1.2. Let V = {a, b} and let w ∈ V ∗ be a word over V with |w| ≥ 2.
Let L = {x | x ∈ V ∗, w is not a factor of x}.

In order to generate L, we construct the network

N = (U,N1, N2, N3, N4, {(N1, N2), (N2, N3), (N3, N1), (N3, N4)}, N4)

depicted in Figure 1, where U = {a, b, $,#,⊥}.

ONMLHIJKN1
// ONMLHIJKN2

// ONMLHIJKN3
//BC89OO
ONMLHIJKN4

Figure 1. Graph of the GNSP N used in Example 1.2

The processors of N are defined as follows:

• N1 = (M1, A1,PI 1,FI 1,PO1,FO1, (w)), where:

M1 = {[(⊥s′, $), (#, s)], [(⊥s, $), (⊥s, $)] | s, s′ ∈ V },
A1 = {#a,#b,⊥a$,⊥b$,#$},

PI 1 = {#}, FI 1 = {⊥, $}, PO1 = {⊥}, FO1 = {$},

• N2 = (M2, A2,PI 2,FI 2,PO2,FO2, (w)), where:

M2 = {[(⊥, w), ($,#)], [($,#), ($,#)]},
A2 = {$#,⊥#},

PI 2 = {⊥}, FI 2 = ∅, PO2 = U, FO2 = {#},

• N3 = (M3, A3,PI 3,FI 3,PO3,FO3, (w)), where:

M3 = {[(⊥, s), (#, $)], [(⊥, s), (λ,#$)], [(#, $), (#, $)] | s ∈ V },
A3 = {#$,⊥#$,⊥$},

PI 3 = {⊥}, FI 3 = {$}, PO3 = U, FO3 = {$},

• N4 = (M4, A4,PI 4,FI 4,PO4,FO4, (w)), where:

M4 = ∅,
A4 = {a, b},

PI 4 = U,FI 4 = U \ {a, b}, PO4 = ∅, FO4 = U.

7

We show that N generates the language L by induction. We show that, for
k ≥ 1, before the execution of the 3(k − 1) + 1th splicing step of the computation
(thus, after 6(k−1) computation steps) the following statements hold: N1 contains
all the strings #x, where x is an arbitrary string over V of length k that does not
contain w, as well as the strings ⊥a$, ⊥b$, and #$; N2 contains the strings $#
and ⊥# and no other strings; N3 contains the strings #$, ⊥$, and ⊥#$; N4

contains all the strings over V of length less or equal to k that do not contain
the factor w. Clearly, this holds for k = 1, at the beginning of the computation.
Assume now that it is also true for some k ≥ 1. After the execution of the
3(k − 1) + 1th splicing step of the computation, the configurations of the nodes
change as follows. The node N1 contains the strings ⊥s′x, for all s′ ∈ V and the
words x ∈ V k that do not contain w, and the string #$, obtained by splicing
#x with ⊥s′$, as well as the strings ⊥s$, with s ∈ V , obtained by splicing ⊥s$
with a copy of itself. The configurations of the other nodes remain unchanged.
Now the 3(k − 1) + 1th communication step is executed. The configurations of
the nodes become: the node N1 contains #$ and ⊥s$, with s ∈ V ; the node N2

contains the strings $# and ⊥# and the words ⊥s′x, for all s′ ∈ V and the words
x ∈ V k that do not contain w, that came from N1; the configurations of N3

and N4 remain unchanged. A new splicing step is executed now and we obtain the
following configurations. The node N2 contains $# and ⊥# and the words ⊥y,
for all y ∈ V k+1 that do not contain w, and $y, for all y ∈ V k+1 that start with w
and do not contain the factor w on other positions. All the other configurations
of the nodes remain unchanged. After the following communication step, the
configurations of N1 and N4 remain unchanged. The node N2 contains the strings
$# and ⊥# and N3 contains the words ⊥y, for all y ∈ V k+1 that do not contain
w, that came from N2 as well as the words #$, ⊥$, and ⊥#$. It is worth noting
that in this step the strings $y, for all y ∈ V k+1 that start with w and do not
contain the factor w on other positions, left the node N2 but were not accepted
in N3 so they were lost. In the following splicing step, the configurations of N1,
N2 and N4 remain unchanged. In N3 we obtain the strings the words #y and y,
for all y ∈ V k+1 that do not contain w, and the words #$, ⊥$, and ⊥#$; note
that #y is obtained by splicing ⊥y with #$ using the rule [(⊥, s), (#, $)], where
s is the first symbol of y, while y was obtained from ⊥y and #$ using the rule
[(⊥, s), (λ,#$)], where s is the first symbol of y. In the next communication step,
the configuration of N2 remains unchanged. The node N1 contains all the strings
#x, where x is an arbitrary string over V of length k+ 1 that does not contain w,
which came from N3, as well as the strings ⊥a$,⊥b$, and #$; the node N3 will
contain only the words #$, ⊥$, and ⊥#$; the node N4 contains all the strings
over V of length less or equal to k+1 that do not contain the factor w, considering
that all such strings of length k + 1 came in this step from N3. The next step to
be executed is the 3k+ 1th splicing step of the computation, and we note that the
configuration of the four nodes are exactly as we wanted to prove. Therefore, we
have shown that the claim we made at the beginning of this discussion is true.
Further, it follows that after 6(k− 1) computation steps, where k ≥ 1, the output

8

node N4 contains all the strings from V k that do not contain w. It is immediate
now that the language generated by N is L. ♦

We also consider a variant of networks of splicing processors where the com-
munication is conducted in a different manner, namely generating networks of
splicing processors with filtered connections (GNSPFC, for short). See [5] for a
closely related accepting model.

Definition 1.3.

(1) A generating network of splicing processors with filtered connections (of
size n) is a tuple

N = (V,N1, N2, . . . , Nn, E, f,No)

where
• V is a finite alphabet,
• for 1 ≤ i ≤ n, Ni = (Mi, Ai) where

– Mi is a set of splicing rules, the rules of node Ni,
– Ai is a finite subset of V ∗, called the set of axioms of node Ni,

• E is a subset of {N1, N2, . . . , Nn} × {N1, N2, . . . , Nn}, defining the
edges of the network,
• f : E → 2V × 2V × {(s), (w)} defines the filters on every edge; that

is, for an edge (Ni, Nj) with f((Ni, Nj)) = (P, F, (x)) we have:

edge filter: ρ(Ni,Nj)(·) = ϕ(x)(·;P, F),

• No is the output node of the network (1 ≤ o ≤ n).
(2) A configuration C of N is an n-tuple C = (C(1), C(2), . . . , C(n)) where

C(i) is a subset of V ∗ for 1 ≤ i ≤ n.
(3) Let C = (C(1), C(2), . . . , C(n)) and C ′ = (C ′(1), C ′(2), . . . , C ′(n)) be two

configurations of N . We say that C derives C ′ in one
• splicing step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n,

C ′(i) = σMi
(C(i)),

• communication step (written as C ` C ′) if, for 1 ≤ i ≤ n,

C ′(i) =
(
C(i) \

⋃
(Ni,Nj)∈E

ρ(Ni,Nj)(C(i))
)
∪

⋃
(Nj ,Ni)∈E

ρ(Nj ,Ni)(C(j)).

The computation of N is a sequence of configurations

Ct = (Ct(1), Ct(2), . . . , Ct(n)), t ≥ 0,

such that
• C0 = (A1, A2, . . . , An),
• C2t derives C2t+1 in a splicing step: C2t =⇒ C2t+1 (t ≥ 0),

9

• C2t+1 derives C2t+2 in a communication step: C2t+1 ` C2t+2 (t ≥ 0).
(4) The language L(N) generated by N is defined as

L(N) =
⋃
t≥0

Ct(o)

where the sequence of configurations Ct = (Ct(1), Ct(2), . . . , Ct(n)), t ≥ 0,
is the computation of N .

We stress that both in the case of GNSPs and GNSPFCs the number of nodes
of a network is said to be the size of the network.

It is worth noting that the filtering process that takes place during the commu-
nication steps is performed by the nodes in the case of GNSPs while in the case of
GNSPFCs it is performed by the edges. Also, in the case of GNSPs, a word can
be lost during a communication step (if it leaves a node but does not enter any
other node), while in the case of GNSPFCs, no word is lost during such a step.

We briefly outline the way GNSPFCs can be used to generate a simple language
in the following example.

Example 1.4. As in Example 1.2, let V = {a, b} and let w ∈ V ∗ be a word over V
with |w| ≥ 2. Once more, take L = {x | x ∈ V ∗, w is not a factor of x}. In this
case, we construct the network with filtered connections

N = (N1, N2, N3, N4, N5, {(N1, N2), (N2, N3), (N2, N5), (N3, N1), (N3, N4)}, f,N4)

depicted in Figure 2.

ONMLHIJKN1
// ONMLHIJKN2

//
GF =< ��ONMLHIJKN3

//BC89OO
ONMLHIJKN4

ONMLHIJKN5

Figure 2. Graph of the GNSPFC N used in Example 1.4

The definitions of the splicing rules and of the axioms of nodes N1, N2, N3, and
N4 is the same as in Example 1.2. However, these nodes do not have filters any
more. Further, we define completely the rest of the network.

First, the set of rules and the set of axioms of the node N5 are empty. Then,
the filters placed on edges of the network (i.e., the values of the function f) are
defined as follows:

• f((N1, N2)) = ({⊥}, {$}, (w))
• f((N2, N3)) = (U, {#}, (w))
• f((N2, N5)) = ({$}, {⊥}, (w))
• f((N3, N1)) = ({⊥}, U \ {⊥, a, b}, (w))
• f((N3, N4)) = (U,U \ V, (w))

The computation of this network goes on exactly as that of the GNSP designed
in Example 1.2. There is only one difference: in the previous case, the words that

10

left node N3 and had the form $y, such that y starts with w and the factor w did
not occur on any other position of y, were lost during some of the communication
steps of the network, and did not influence the computation any more. In this
case, no string can be lost. Therefore, we simulate the disappearance of these
strings from the computation by sending them to the node N5 from the node N2

and trapping them there for the rest of the computation. ♦

Before moving on to the main results of this paper, note that any GNSP or
GNSPFC with exactly one node can be simulated by a network with two nodes.
This allows us to assume in the sequel that any network has at least two nodes.

2. Simulation Results

First, we show that all the languages generated by GNSPFCs can be also gener-
ated by GNSPs. The result is obtained in a constructive manner: we start with a
GNSPFC and give an effective method to construct a GNSP generating the same
language.

Theorem 2.1. For any GNSPFC, a GNSP generating the same language can be
constructed.

Proof. LetN = (V,N1, N2, . . . , Nn, E, f,No) be a GNSPFC. We may assume with-
out loss of generality that n ≥ 2 and that E = {N1, . . . , Nn} × {N1, . . . , Nn};
indeed, if an edge (Ni, Nj) is not in E we may assume that it is in fact in E
but f((Ni, Nj)) = (V, V, (w)). In the following, we construct a GNSP N ′, over
the same alphabet, that accepts the same language. More precisely, we con-
struct for each node Ni of the network N a subnetwork s(Ni), contained in the
new network N ′, that simulates the computation of the processor found in the
node Ni and the communication between this node and its neighbours. We denote
by nodes(s(Ni)) the set of the nodes of the subnetwork s(Ni) and by edges(s(Ni))
the set of the edges of the subnetwork.

Let us assume that Ni = (Mi, Ai) is a node of N and recall that for all the
nodes Nt, with 1 ≤ t ≤ n, we have (Ni, Nt) ∈ E. Let f((Ni, Nt)) = (Pt, Ft, βt).
The network that simulates the computation performed by the node Ni is defined
in the following.

The nodes from nodes(s(Ni)) are:

• N ′i = (Mi, Ai, V, ∅, V, ∅, (w)).
• For k ∈ {1, . . . , n}, we have the nodes

Ni,k,1 = (∅, ∅, Pk, Fk, V, ∅, βk) and

Ni,k,j = (∅, ∅, V, ∅, V, ∅, (w)) for 2 ≤ j ≤ n.

• For k ∈ {1, . . . , n}:

11

– If f((Ni, Nk)) = ({a1, . . . , at}, F, (s)), we have mk = t+ 1 nodes

N ′i,k,1 = (∅, ∅, F, ∅, F, ∅, (w)) and

N ′i,k,j+1 = (∅, ∅, V, {aj}, V, ∅, (w)) for j ∈ {1, . . . , t}.

– If f((Ni, Nk)) = (P, F, (w)), we have mk = 2 nodes

N ′i,k,1 = (∅, ∅, F, ∅, F, ∅, (w)) and

N ′i,k,2 = (∅, ∅, V, P, V, ∅, (w)).

The edges from edges(s(Ni)) are:

• for k ∈ {1, . . . , n}, we have

(N ′i , Ni,k,1), (Ni,k,j , Ni,k,j+1) for 1 ≤ j ≤ n− 1, and (Ni,k,n, N
′
k),

• (N ′i , N
′
i,1,t) for 1 ≤ t ≤ m1,

• for 1 ≤ k ≤ n−1, we have (N ′i,k,`, N
′
i,k+1,t) for 1 ≤ ` ≤ mk, 1 ≤ t ≤ mk+1,

• (N ′i,n,t, N
′
i) for 1 ≤ t ≤ mn.

The new network of splicing processors N ′ has the nodes
⋃

1≤i≤n nodes(s(Ni))

and the edges
⋃

1≤i≤n edges(s(Ni)). The output node of the new network is N ′o.

GF ED@A BCN ′i

uujjjjjjjjjjjjjjjjjjjjj

~~||
||

||
||

�� &&MMMMMMMMMMM

++VVVVVVVVVVVVVVVVVVVVVVVVVVV

GF ED@A BCNi,1,1

��

· · · GF ED@A BCNi,n,1

��

GF ED@A BCN ′i,1,1

�� &&MMMMMMMMMMM

++VVVVVVVVVVVVVVVVVVVVVVVVVVV · · · GF ED@A BCN ′i,1,j1

��xxqqqqqqqqqqq

&&MMMMMMMMMMM
· · · GF ED@A BCN ′i,1,m1

��
tthhhhhhhhhhhhhhhhhhhhhhhhhhh

xxqqqqqqqqqqq

GF ED@A BCNi,1,2

��

· · · GF ED@A BCNi,n,2

��

GF ED@A BCN ′i,2,1

�� &&MMMMMMMMMMM

++VVVVVVVVVVVVVVVVVVVVVVVVVVV · · · GF ED@A BCN ′i,2,j2

��xxqqqqqqqqqqq

&&MMMMMMMMMMM
· · · GF ED@A BCN ′i,2,m2

��
sshhhhhhhhhhhhhhhhhhhhhhhhhhh

xxqqqqqqqqqqq

...

��

· · · ...

��

...

�� &&MMMMMMMMMMM

++VVVVVVVVVVVVVVVVVVVVVVVVVVV · · · ...

��xxqqqqqqqqqqq

&&MMMMMMMMMMM
· · · ...

��
sshhhhhhhhhhhhhhhhhhhhhhhhhhh

xxqqqqqqqqqqq

GF ED@A BCNi,1,n

��

· · · GF ED@A BCNi,n,n

��

GF ED@A BCN ′i,n,1

&&MMMMMMMMMMM
· · · GF ED@A BCN ′i,n,jn

��

· · · GF ED@A BCN ′i,n,mn

xxqqqqqqqqqqq

GF ED@A BCN ′1 · · · GF ED@A BCN ′n
GF ED@A BCN ′i

Figure 3. Graph of the subnetwork s(Ni), defined in the proof
of Theorem 2.1

Further, we describe how the network N ′ simulates the computation of the
network N . At the beginning of the computation of N , the node Ni contains Ai
and no other words for i ∈ {1, . . . , n}. Similarly, the node N ′i contains the words

12

of Ai and no other words in N ′ for i ∈ {1, . . . , n}; all the other nodes of N ′ are
empty.

We will show how a splicing and a communication step of N are simulated
in exactly n + 1 splicing and n + 1 communication steps by the network N ′.
For k ∈ N and for all i ∈ {1, . . . , n}, we assume that after k(n + 1) splicing
and k(n + 1) communication steps the nodes N ′i contain exactly the same words
as Ni contains after k splicing and k communication steps and all the other nodes
of N ′ do not contain any word. This assumption clearly holds at the beginning of
the computation, that is for k = 0. Also, we will show that the words obtained in
N ′i after k(n + 1) + 1 splicing steps of N ′ are exactly those obtained in Ni in N
after k + 1 splicing steps.

Let i be a number from {1, . . . , n}. In the network N , the splicing rules of Mi

are applied on the words contained in the node Ni; this ends the application of
the splicing step. Then, in a communication step, all the words of Ni are sent
to the node Nj , for 1 ≤ j ≤ n, if they can pass the filters on the edge (Ni, Nj);
the words that cannot go to any of the neighbours of Ni remain inside this node.
This behaviour is simulated in the network N ′ as follows. First the rules from
Mi are applied to all the words from N ′i . Clearly, the words that are found now
in N ′i are exactly those obtained in one splicing step in Ni. Now, all these words
exit N ′i . Those that entered Nj in the network N enter now Ni,j,1 in N ′; now,
in exactly n splicing and n communication steps, these words enter N ′j . Further,
we must select the words that should return to N ′i from those that just left this
node; but these are exactly those words that cannot enter any other node. To this
end, from the words that exit N ′i , each word that cannot enter N1 in N (because
the word cannot pass the filters of (Ni, N1)) enters in N ′ one of the nodes N ′i,1,t
where 1 ≤ t ≤ m1 and m1 is defined as above. More precisely:

• If f((Ni, N1)) = (P, F, (w)) then m1 = 1 and all the words that contain a
symbol from F enter N ′i,1,1 and all the words that do not contain at least
one symbol from P enter N ′i,1,2. The rest of the words are lost (they enter
N1 in N , so they do not remain in Ni, and we should not return them to
N ′i , in N ′).

• If f((Ni, N1)) = ({a1, . . . , at}, F, (s)) then m1 = t + 1 and all the words
that contain a symbol from F enter N ′i,1,1 and all the words that do not
contain aj enter N ′i,1,j+1, where 1 ≤ j ≤ t. The rest of the words are lost
(by the same reason as above).

Now we have selected the words that cannot enter N1. From them, using in a
similar method the nodes N ′i,2,j with 1 ≤ j ≤ m2 + 1, we select the words that
cannot enter N2. By iteration, we select the words that cannot enter any of the
nodes N1, . . . , Nn and return them to N ′i . More precisely, for k ≤ n − 1, the
nodes N ′i,k,j with 1 ≤ j ≤ mk select the words that cannot enter Nk (and could

not enter N1, . . . , Nk−1) and send them to the nodes N ′i,k+1,j with 1 ≤ j ≤ mk+1;

in the end, the nodes N ′i,n,j with 1 ≤ j ≤ mn select the words that cannot enter Nn
(and could not enter N1, . . . , Nn−1) and return them to N ′i . The whole process
described above takes n splicing and n communication steps.

13

As none of the nodes of the network N ′ has output filters that can retain
words inside a node, it follows immediately from the above explanations that
after (k+ 1)(n+ 1) splicing and (k+ 1)(n+ 1) communication steps of N ′ we will
have, for all i ∈ {1, . . . , n}, in the node N ′i exactly the words that were obtained
after k+1 splicing and k+1 communication steps in Ni in N ; all the others nodes
of N ′ are empty. Also, in the configuration obtained after exactly k(n + 1) + r
splicing or communication steps ofN ′ were executed, with r < (n+1), the nodesN ′i
are empty as well.

According to the above, w is present after some time in the node No of N if
and only if w is present after some time in the node N ′o of N ′.

Therefore, L(N) = L(N ′). �

The next result comes as a completion of the previous theorem and shows that
GNSPFCs and GNSPs have actually the same computational power. We stress
the fact that the proof of this result as well as the proof of the previous one are
based on direct constructions that do not use any intermediate generative models;
these proofs seem interesting to us, as they connect directly two related models
and show some ideas and methods that may be useful in simulating one massively
parallel model by another one.

Theorem 2.2. For any GNSP, a GNSPFC generating the same language can be
constructed.

Proof. Let N = (V,N1, N2, . . . , Nn, E,No) be a GNSP. In the following, we con-
struct a GNSPFC N ′ that generates the same language. More precisely, we con-
struct for each node Ni of the network N a subnetwork s(Ni) contained in the
new network N ′ that simulates the computation of the processor found in the
node Ni and the communication between this node and its neighbours. We denote
by nodes(s(Ni)) the set of the nodes of the subnetwork s(Ni) and by edges(s(Ni))
the set of the edges that connect the nodes of this subnetwork and the edges that
connect the nodes of s(Ni) with the nodes of other subnetworks.

The new network N ′ contains a special node G = (∅, ∅), which collects all the
words that are produced during the computation of N , in any of its nodes; the
main reason why this node exists is to collect the words that were lost during the
computation of N and to ensure that they cannot remain in any other nodes of N ′
(as no word can be lost during the computation of this network).

Let us now assume that Ni = (Mi, Ai,PI i,FI i,PO i,FO i, βi) is a node of N .
The nodes of the subnetwork s(Ni) that simulates the computation by a node Ni
are defined as follows (the set of all those nodes is denoted by nodes(s(Ni))):

• We set

N ′i = (Mi, Ai) and N ′′i = (∅, ∅).

• If βi = (w), we have the nodes

N ′i,1 = N ′i,2 = (∅, ∅).

14

• If βi = (s) and PO i = {a1, . . . , at}, we have the t+ 1 nodes

N ′i,j = (∅, ∅) for 1 ≤ j ≤ t+ 1.

The edges from edges(s(Ni)) are the following:

• for i ∈ {1, . . . , n}:

(N ′i , N
′′
i) with the filter f((N ′i , N

′′
i)) = (PO i,FO i, βi),

• for all i, k with i, k ∈ {1, . . . , n} and (Ni, Nk) ∈ E:

(N ′′i , N
′
k) with the filter f((N ′′i , N

′
k)) = (PI k,FI k, βk),

• (N ′′i , G) with the filter f((N ′′i , G)) = (V, ∅, (w)),
• for all i with i ∈ {1, . . . , n}, βi = (s), and PO i = {a1, . . . , at}:

– (N ′i , N
′
i,1) with the filters f((N ′i , Ni,1)) = (FO i, ∅, (w)),

– for 1 ≤ ` ≤ t:

(N ′i , N
′
i,`+1) with the filter f((N ′i , N

′
i,`+1)) = (V, {a`}, (w)),

– for 1 ≤ j ≤ t+ 1:

(N ′i,j , N
′
i) with the filter f((N ′i,j , N

′
i)) = (V, ∅, (w)),

• for all i with i ∈ {1, . . . , n} and βi = (w):

(N ′i , N
′
i,1) with the filter f((N ′i , N

′
i,1)) = (FO i, ∅, (w)),

(N ′i , N
′
i,2) with the filter f((N ′i , N

′
i,2)) = (V,PO i, (w)),

(N ′i,1, N
′
i) and (N ′i,2, N

′
i)

with the filters f((N ′i,1, N
′
i)) = f((N ′i,2, N

′
i)) = (V, ∅, (w)).

The new network N ′ has as nodes the elements of the set

{G} ∪
⋃

1≤i≤n

nodes(s(Ni))

and as edges the elements of the set⋃
1≤i≤n

edges(s(Ni)).

The function f is defined as above and the output node of the network is N ′o.
We describe how the network N ′ simulates the computation of the network N .

At the beginning of the computation of N , the node Ni contains Ai and no other
words for i ∈ {1, . . . , n}. Similarly, the node N ′i contains the words of Ai and no
other words in N ′ for i ∈ {1, . . . , n}; all the other nodes of N ′ are empty.

15

GF ED@A BCN ′i

��~~||
||

||
||

&&MMMMMMMMMMM

++VVVVVVVVVVVVVVVVVVVVVVVVVVV

GF ED@A BCG GF ED@A BCN ′′i
oo

~~}}
}}

}}
}}

 A
AA

AA
AA

A
GF ED@A BCN ′i,1

&&MMMMMMMMMMM
· · · GF ED@A BCN ′i,j

��

· · · GF ED@A BCN ′i,m1

xxqqqqqqqqqqq

GF ED@A BCN ′j1
· · · GF ED@A BCN ′jp

GF ED@A BCN ′i

Figure 4. Graph of the subnetwork s(Ni) where {Nj1 , . . . , Njp}
is the set of neighbours of Ni, defined in the proof of Theorem 2.2

We will show how a splicing and a computation step of N are simulated in
exactly 2 splicing and 2 communication steps by the network N ′. For k ∈ N and
for all i ∈ {1, . . . , n}, we assume that, after 2k splicing and 2k communication
steps, the nodes N ′i of N ′ contain exactly the same words as the nodes Ni of
N after k splicing and k communication steps, while all the other nodes of the
network, except for G, do not contain any word. The node G contains all the
words produced so far during the computation, but this has no effect on the rest
of the computation, as there are no edges leaving this node. Also, we will show
that the words obtained in N ′i after 2k + 1 splicing steps of N ′ are exactly those
obtained in Ni in N after k + 1 splicing steps. These assumptions clearly hold at
the beginning of the computation, for k = 0.

Let i be a number from {1, . . . , n}. In the network N , the splicing rules of Mi

are applied on the words contained in the node Ni; this ends the application of the
splicing step. Then, in a communication step, all the words of Ni that can pass
its output filters are sent to the nodes Nj such that (Ni, Nj) ∈ E and, if they can
pass the input filters of one of these nodes, they are accepted in it. The words that
cannot pass the output filters of Ni remain inside this node. This behaviour is
simulated in the network N ′ as follows. First the rules from Mi are applied to all
the words of the node N ′i . Clearly, the words that are found now in N ′i are exactly
those obtained in one splicing step in Ni. Now, the simulation of a communication
step begins. All the words that can pass the output filters of Ni enter the node N ′′i
and from here they are sent to the nodes N ′j with (Ni, Nj) ∈ E. Clearly, only the
words that can enter one of these nodes will be further processed by the network;
all the others are trapped for the rest of the computation in the node G. The
words that cannot pass the output filters of Ni are processed as follows:

• If Ni = (Mi, Ai,PI i,FI i,PO i,FO i, (w)) then all the words that contain a
symbol from FO i leave N ′i and enter N ′i,1 and all the words that contain
no symbol of PO i enter in N ′i,2.

• If Ni = (Mi, Ai,PI i,FI i, {a1, . . . , at},FO i, (s)) then all the words that
contain a symbol from FO i leave N ′i and enter N ′i,1 and all the words that
do not contain the symbol aj enter in N ′i,j+1.

16

The words that are accepted in the nodes N ′i,j must be returned to N ′i and this ac-
tually happens during the next communication step. The whole process described
above takes two splicing and two communication steps.

As none of the nodes of the network N ′ has output filters that can retain
words inside a node, it follows immediately from the above explanations that after
2(k+ 1) splicing and 2(k+ 1) communication steps of N ′ we will have in the node
N ′i for i ∈ {1, . . . , n} exactly those words that were obtained after k + 1 splicing
and k + 1 communication steps in Ni in N ; all the others nodes of N ′, except for
the G node, are empty. Also, in the configuration obtained after exactly 2k + 1
splicing steps of N ′ the node N ′i contains the words obtained after k + 1 splicing
steps of N in Ni. Moreover, after 2k + 1 communication steps of N ′ the node N ′i
contains no word.

Now it is clear that a word w appears at a given point of the computation of N
in No if and only if w appears at a given point of the computation of N ′ in N ′o.
Thus, L(N) = L(N ′). �

We now give several remarks on the efficiency of the simulations presented
above. As far as the descriptional complexity is concerned, one may note that when
constructing a GNSP that simulates a GNSPFC the new network has a number
of nodes that is proportional to the maximum between the cube of the number
of nodes of the initial network and the number of nodes in the initial network
times the size of the working alphabet. Therefore, usually there is a big difference
between the size of the initial GNSPFC and the size of the constructed GNSP. As
Examples 1.2 and 1.4 show, there may be the case when a language is accepted
by a GNSP and a GNSPFC whose size differs only by a small amount. This leads
us to the open question of whether one can find a more efficient (from the size
point of view) procedure of simulating a GNSPFC by a GNSP. When we simulate
a GNSP by a GNSPFC, the size of the constructed network is proportional to the
number of nodes of the initial network times the size of its alphabet. Although
this construction seems more efficient, it is an interesting task to improve it as
well.

One may also consider a computational complexity measure. That is, given a
GNSP/GNSPFC N and a word w ∈ L(N) we may define the measure nrN (w)
as the number of steps performed by the network before w appears for the first
time in its output node. We have already shown that in the case of Theorem 2.1,
when the GNSPFC N is simulated by the GNSP N ′, we obtain that for each
word w ∈ L(N) = L(N ′) we have nr′N (w) ≤ (n + 1)(nrN (w)), where n is the
size of N . One may also be interested in improving the computational efficiency
of this simulation. This question seems motivated as we note that in the case of
Theorem 2.2, when the GNSP N is simulated by the GNSPFC N ′, we obtain that
for each word w ∈ L(N) = L(N ′) we have nr′N (w) ≤ 2(nrN (w)).

To end this section, we show by a somehow similar approach to that in Theo-
rem 2.2 (but with more involved technicalities) a stronger result. A GNSPFC is
called uniform if each time it contains an edge (Ni, Nj) then it also contains the
edge (Nj , Ni) and the filters on these two edges coincide. Basically, in a uniform

17

GNSPFC the underlying graph is an undirected graph. If we consider that in fact
any GNSPFC can be seen as a network with a complete underlying graph (as the
missing edges can be seen as edges that do not allow any communication), we can
think of uniform GNSPFCs as networks that have as underlying graph a complete
undirected graph; therefore, such networks may be seen as networks that have a
normal form.

We can show the following result regarding uniform GNSPFCs.

Theorem 2.3. For any GNSP, a uniform GNSPFC generating the same language
can be constructed.

Proof. Let N = (V,N1, N2, . . . , Nn, E,No) be a GNSP. Let U = {#,⊥,⊥′, $} ∪ V
be a new alphabet.

First, we define three sets of splicing rules that will become useful in the sequel:

R0 = {[(λ,#), ($,⊥)], [($,⊥), ($,⊥)]},
R1 = {[($,#), ($,#)], [($,#), (λ,⊥)], [(λ,#), (⊥′,⊥′)], [(⊥′,⊥′), (⊥′,⊥′)]},
R2 = {[(⊥′,⊥′), (λ,⊥)], [(⊥′,⊥′), (⊥′,⊥′)]}.

The network N ′ contains a special node G = (R2, {⊥′⊥′}).
Let us assume that Ni = (Mi, Ai,PI i,FI i,PO i,FO i, βi) is a node of N .
The nodes of the network s(Ni), that simulates the computation performed by

the node Ni, are defined as follows.

• We set

N ′i = (Mi, {w# | w ∈ Ai}),
N ′′i = (R0, {$⊥}),

Nout
i = (R1, {⊥′⊥′, $#}),

• if βi = (w), we have the three nodes

N ′i,j = (R0, {$⊥}) for j ∈ {1, 2} and Nr
i = (R1, {⊥′⊥′, $#}),

• if βi = (s) and PO i = {a1, . . . , at}, we have the nodes

N ′i,j = (R0, {$⊥}) for 1 ≤ j ≤ t+ 1 and Nr
i = (R1, {⊥′⊥′, $#}).

The edges connecting the nodes of these subnetworks are defined in the follow-
ing. For the rest of the proof, we make the convention that, each time we define
an edge (x, y), we also have the edge (y, x) with the same filters. The edges are:

• for i ∈ {1, . . . , n}:

(N ′i , N
′′
i) with the filter f((N ′i , N

′′
i)) = (PO i,FO i ∪ {$,⊥}, βi),

(N ′′i , N
out
i) with the filter f((N ′′i , N

out
i)) = ({⊥}, {$,⊥′}, (s)),

(Nout
i , G) with the filters f((Nout

i , G)) = (U, {⊥′, $,#}, (w)).

18

• for all i, k with (Ni, Nk) ∈ E:

(Nout
i , N ′k) with f((Nout

i , N ′k)) = (PI k,FI k ∪ {$,⊥,⊥′}, βk),

• for all i with i ∈ {1, . . . , n}, βi = (s), and PO i = {a1, . . . , at}:
– (N ′i , N

′
i,j) for 1 ≤ j ≤ t+ 1 with the filters

f((N ′i , N
′
i,1)) = (FO i, {⊥, $}, (w)) and

f((N ′i , N
′
i,`+1)) = (U, {a`,⊥, $}, (w)) for 1 ≤ ` ≤ t,

– (N ′i,j , N
r
i) for 1 ≤ j ≤ t+ 1 with the filter

f((N ′i,j , N
r
i)) = ({⊥}, {$,⊥′}, (s)),

– (Nr
i , N

′
i) with the filter

f((Nr
i , N

′
i)) = (U, {$,⊥,⊥′}, (w)),

• for all i with i ∈ {1, . . . , n} and βi = (w):
– (N ′i , N

′
i,1) with the filter

f((N ′i , N
′
i,1)) = (FO i, {⊥, $}, (w)),

– (N ′i , N
′
i,2) with the filter

f((N ′i , N
′
i,2)) = (U,PO i ∪ {⊥, $}, (w)),

– for j ∈ {1, 2}:

(N ′i,j , N
r
i) with the filter f((N ′i,j , N

r
i)) = ({⊥}, {$,⊥′}, (s)),

– (Nr
i , N

′
i) with the filter

f((Nr
i , N

′
i)) = (U, {$,⊥,⊥′}, (w)).

For the case of the output node, we add to N ′ three more nodes N1
o , N2

o ,
and N3

o :

N1
o = ({[(λ,#), (⊥,⊥′)], [(⊥,⊥′), (⊥,⊥′)]}, {⊥⊥′}),

N2
o = ({[(λ,⊥), (λ,⊥)], [(⊥, λ), (λ,⊥′)]}, {⊥}),

N3
o = (∅, Ao).

The edges that connect them to the other nodes are defined as follows:

• (Nout
i , N1

o) for all i such that (i, o) ∈ E with the filters

f((Nout
i , N1

o) = (PI o,FI o ∪ {$,⊥,⊥′}, βo),

19

• (N ′o, N
1
o) with the filters

f((N ′o, N
1
o) = ({#}, {$,⊥,⊥′}, (w)),

• (N1
o , N

2
o) with the filters

f((N1
o , N

2
o) = ({⊥′}, {$,⊥,#}, (w)),

• (N2
o , N

3
o) with the filters

f((N2
o , N

3
o) = (V,U \ V, (w)).

The network N ′ has as nodes the elements of the set⋃
1≤i≤n

nodes(s(Ni))

and as edges the elements of the set⋃
1≤i≤n

edges(s(Ni)).

The function f is defined as above and the output node of the network is N3
o .

We describe how the network N ′ simulates the computation of the network N .
At the beginning of the computation of the network N , every node Ni with i ∈
{1, . . . , n} contains the words of the set Ai and no other words. Similarly, every
node N ′i contains the words of {w# | w ∈ Ai} and no other words in N ′ for
i ∈ {1, . . . , n}; all the other nodes of N ′ contain only words from (U \ V)∗, except
for N3

o that contains all words of the set Ao.
The basic difference between this simulation and the simulation of GNSPs by

GNSPFCs is that, in this case, the edges of N ′ are basically undirected: each time
we have an edge (x, y) in N ′, we also have the edge (y, x) in the network, and
each time a word goes through the edge in one direction it can also go in the other
direction. Due to this aspect, we cannot apply directly the former simulation:
there were words that remained unchanged in some splicing steps, thus, it may
occur the possibility that they return to the nodes that already processed them.
Unfortunately, in this case the network with filtered connections could generate
more words than the original network. To overcome this drawback, we use some
extra nodes (actually two extra nodes, Nout

i and Nr
i , for the simulation of each

node Ni of the original network, and another three extra nodes associated with
the output node No) and the symbols {$,#,⊥,⊥′}.

For simplicity, let us begin with a brief analysis of the way the axioms associated
with the output node of the original network are processed in the new network
in the nodes N3

o and N2
o . These words are found in N3

o at the beginning of the
computation. In the first splicing step, they remain unchanged and, then, they go
to node N2

o , where they cannot be changed either. Then they go back to N3
o once

20

again and the process continues this way for the rest of the computation. Anyway,
they are part of the generated language, as they were once present in N3

o ; this is
correct, as Ao was part of the language generated by N as well.

A key remark in seeing how the rest of the words are processed is to note that if
the pair of words (u, v) is obtained in one splicing step from (x, y), then (u#, v#)
is obtained in one splicing step from (x#, y#); the reverse implication holds as
well, in the case when the splicing rule contains no occurrence of the # symbol.

We will show how a splicing and a communication step of N are simulated in
exactly three splicing and three communication steps by the network N ′.

For k ∈ N and for all i ∈ {1, . . . , n}, we assume that after 3k simulation and 3k
communication steps the nodes N ′i contain exactly the words w#, where w is a
word that is present in Ni exactly after k splicing and k communication steps.
Also, assume that, at this point of the computation, N ′′i contains the word $⊥
and if k ≥ 1 it also contains $#; Nout

i contains ⊥′⊥′ and $# and may contain
some words from (V ∪ {$})∗⊥′. Similarly, the nodes N ′i,j contain the word $⊥
and if k ≥ 1 they also contain $# and Nr

i contains ⊥′⊥′ and $# and may contain
some words from (V ∪{$})∗⊥′. The node N1

o contains ⊥⊥′ and may contain ⊥#,
the node N2

o contains ⊥ and may contain some words from V ∗ (which cannot be
spliced with anything) and ⊥⊥′; the node N3

o contains some words from V ∗ which
can be processed as described above. Finally, G contains ⊥′⊥′ and some other
words that end with ⊥′ and cannot leave this node any longer.

This assumption clearly holds at the beginning of the computation, in the case
when k = 0.

Let i be a number from {1, . . . , n}. In the network N , the splicing rules of Mi

are applied to the words contained in the node Ni; this ends the application of
the splicing step. Then, in a communication step, all the words of Ni that can
pass its output filters are sent to the nodes Nj such that (Ni, Nj) ∈ E and, if they
can pass the input filters of one of these nodes, they are accepted in it; the words
that cannot pass the output filters of Ni remain inside this node. This behaviour
is simulated in the network N ′ as follows. First, the rules from Mi are applied
to all the words of the node N ′i . After one splicing step (the (3k + 1)th splicing
step of the computation of N ′) we obtain in N ′i the words w# where w is a word
obtained after k + 1 splicing steps in Ni; the content of the rest of the nodes still
fulfils the assumptions made above. Now, the simulation of a communication step
begins. All the words w# leave the node N ′i and can enter the nodes Nout

j with
(Nj , Ni) ∈ E, if they can pass the filters of that edge, the node N ′′i , when w can
pass the output filters of Ni, or go to the nodes N ′i,j , with 1 ≤ j ≤ m + 1 where
m = 1 if βi = (w) and m = |PO i| if βi = (s).

In the first case, they become w⊥′ and are blocked forever in Nout
j .

In the second case, when w# enters N ′′i , it becomes w⊥, and is sent out by
this node; in the same splicing step the words $⊥ and $# are obtained, but they
will remain blocked in N ′′i . The word w⊥ cannot go back to N ′i due to the ⊥
symbol, so it can only go to Nout

i . Here we obtain from it the word w#; in the
same splicing step the words ⊥′⊥′, $⊥, $⊥′, ⊥′#, and $# are also obtained, but
they will remain blocked in this node. All the other words contained in this node

21

(words of the form x⊥′) are left unchanged. Now, only w# can exit the node and
it can only go to a node N ′j with (i, j) ∈ E if w can pass the filter defined by PI j
and FI j ; otherwise, it goes to the node G, where it becomes w⊥ and is blocked.
The simulation above is restarted.

In the third case, w# enters N ′i,1 if it contains symbols from FO i, or in one of
the nodes N ′i,j with 2 ≤ j ≤ m + 1 if it does not fulfil the conditions imposed by
the permitting output filter PO i. Then, the word is processed exactly as in the
second case above and is finally returned to N ′i for the simulation of a new splicing
step of N .

From the explanations above and the form of the splicing rules, axioms, and fil-
ters of the networks, it is rather clear that after 3(k+1) splicing steps and 3(k+1)
communication steps the assumptions made above hold once more. Moreover, for
all positive integers k, the configuration of N ′i after 3k splicing and 3k commu-
nication steps of N ′ contains the word w# if and only if w is contained in the
configuration of Ni after k splicing and k communication steps of N ; in the rest
of the time, the configuration of N ′i is empty.

A special case occurs when the simulation of the output node is performed. In
this case, each word w# that leaves N ′o or enters N ′o goes also to N1

o . Here it
becomes w⊥′ and can only go the N2

o . Further, it is transformed into w and sent
to N3

o . It is clear now that w appears in N3
o if and only if w is accepted by N ; no

other words appear in N3
o .

According to the above, L(N) = L(N ′). �

3. Computational Completeness

Once we have shown that GNSPs, GNSPFCs, and uniform GNSPFCs have the
same computational power, it seems interesting to us to characterize precisely this
power. The following result answers this question, in an expected manner.

Theorem 3.1. For any recursive enumerable language L, there exists a GNSP N
with L(N) = L.

Proof. In the construction given below, we essentially follow the idea of the proof
of Lemma 7.16 in [19], i. e., we use markers in front and behind the word itself
(these markers ensure that the splicing rules can only be applied at the beginning
or the end of the current word), rotate the word inside the markers where an
additional letter B marks where the beginning of the non-rotated word is, and
simulate the application of a rule replacing a subword by another one only at the
end of the word. The difference is that we ensure the order of applications by
the network whereas this is done in [19] by (an infinite set of) splicing rules with
components of arbitrary length.

Let G = (N,T, P, S) be a phrase structure grammar such that L(G) = L. Let
X,Y, Z,B,C,D be additional letters and N ∪ T ∪ {B} = {x1, x2, . . . , xn}. We
construct the GNSP

N = (V,N0, N1, N2, N3, N4, N5, N6, N7, N8, E,N8),

22

where E is given by the graph presented in Figure 5 and the other components

ONMLHIJKN1 33 ONMLHIJKN0
//

��

ss ONMLHIJKN2
// ONMLHIJKN3 33 ONMLHIJKN4

//ss ONMLHIJKN5BC89OO

ONMLHIJKN6
// ONMLHIJKN7

// ONMLHIJKN8

Figure 5. Graph of the Network N used in the proof of Theorem 3.1

are defined as follows:

V = {X,Y, Z,B,C,D} ∪N ∪ T,
N0 = (∅, {XBSY }, N ∪ T, ∅, ∅, ∅, (s))

(N0 performs no changes during a splicing step; it only distributes the words to N1,
where a simulation of a derivation step of G is done, or to N2, where a rotation
is started, or to N6, where termination is started; moreover, it contains the word
corresponding to the axiom of G; and at any moment, it only contains words of
the form Xw1Bw2Y for some w1, w2 ∈ (N ∪ T)∗),

N1 = (M1, A1, ∅, ∅, {X,Y }, ∅, (s)) with

M1 = {[(λ, uY)(Z, vY)] | u→ v ∈ P} ∪ {[(Z, uY), (Z, vY)] | u→ v ∈ P},
A1 = {ZuY | u→ v ∈ P} ∪ {ZvY | u→ v ∈ P}

(if XwY coming from N0 has a suffix uY such that there is a rule u→ v ∈ P , then
we can apply a rule [(λ, uY)(Z, vY)] to it and a word ZuY ∈ A1 which produces
the words Xw′vY with w′u = w, which is sent back to N0 where it also arrives,
and the word ZuY which remains in N1 and is in A1; if XwY does not have a
suffix uY such that there is a rule u→ v ∈ P , then no rule can be applied to it and
it is sent without change to N0; moreover, by applications of [(Z, uY), (Z, vY)] to
words of A1 we can reproduce the words in A1, i. e., the words of A1 are in N1 at
any moment),

N2 = (M2, {ZCiY | 1 ≤ i ≤ n}, ∅, ∅, {X,Y }, ∅, (s)) with

M2 = {[(λ, xiY), (Z,CiY)], [(Z,CiY), (Z,CiY)] | 1 ≤ i ≤ n}

(by the second type of rules of N2, the words ZCiY ∈ A2 are reproduced and
cannot leave N2, therefore they are in N2 at any moment; if a word coming from N0

has the form XwxiY , then we apply a splicing rule of the first type and get
XwCiY , which is sent to N3, and ZxiY , which remains in N2; to the latter word
we can apply the first splicing rule which leads to ZxiY and ZCiY , again, i. e.,

23

these words remain in N2 for ever),

N3 = ({[(X,λ), (XD,Z)], [(XD,Z), (XD,Z)]}, {XDZ}, {C}, ∅, ∅, {Z}, (s)),
N4 = ({[(λ,CY), (Z, Y)], [(Z, Y), (Z, Y)]}, {ZY }, {C}, ∅, ∅, {Z}, (s))

(by the second rules of N3 and N4, the words XDZ and ZY are reproduced and
cannot leave N3 and N4, respectively, therefore they are in N3 and N4 at any
moment; the word coming from N2 into N3 has the form XwCiY , we apply the
first splicing rule to XwCiY and XDZ and get XDwCiY , which is sent to N4,
and XZ, which stays in N3 and produces XZ and XDZ, again, and thus for
ever; if the word comes from N4 into N3, it has the form XDpwCqY and as above
we get XDp+1wCqY , which is sent to N4, and XZ; if the word comes from N3

into N4, it has the form XDpwCqY , q ≥ 1 and we produce XDpwCq−1Y and
ZCY , which stays in N4 and leads to ZCY and ZY only; if q − 1 ≥ 1, then the
word XDpwCq−1Y leaves N4 and enters N3, and if q − 1 = 0, then it leaves N4

and enters N5; since any sequence N3N4 introduces a D and cancels C, the word
sent to N5 has the form XDiwY if XwxiY was sent from N0 to N2),

N5 = (M5, {XxiZ | 1 ≤ i ≤ n}, ∅, {C}, ∅, {D,Z}, (s)) with

M5 = {[(XDi, λ), (Xxi, Z)], [(Xxi, Z), (Xxi, Z)] | 1 ≤ i ≤ n}

(again, the initial words XxiZ are reproduced; to the word XDiwY and XxjZ
with j ≤ i we can apply the splicing rule [(XDj , λ), (Xxj , Z)]; if i = j, we obtain
XxiwY , which is sent to N0 and it enters N0, and XDiZ, which remains in N5;
thus we have performed a rotation since we started from XwxiY and finished with
XxiwY in N0; if j < i, we obtain XxjD

j−iwY and XDjZ, which both remain
in N5; no rule can be applied to the words XxjD

j−iwY such that these words
remain unchanged in N5 for ever; from the words of the form XDjZ only words
of the form XxkD

j−kZ and XDkZ can be generated, which remain in N5),

N6 = ({[(λ, ZY), (XB,λ)], [(Z, Y), (Z, Y)]}, {ZY }, ∅, ∅, {Y }, {B}, (s))

(by the second rule of N6, the word ZY is reproduced and cannot leave N6,
therefore it is in N6 at any moment; if a word coming from N0 does not start
with XB, then no splicing rule of N6 can be applied to it, and by FO6 = {B}, it
remains for ever in N1; if XBwY comes from N0, then we apply the first rule to it
and ZY , which gives wY , which is sent to N7, and XBZY , which remains in N6,
by the splicing rules it is reproduced and gives λ in addition; therefore XBZY
and λ stay in N6 for ever),

N7 = ({[(λ, Y), (XZ, λ)], [(X,Z), (X,Z)]}, {XZ}, ∅, ∅, ∅, {X,Z} ∪N, (s))

(by the second rule of N7, the word XZ is reproduced and cannot leave N7,
therefore it is in N7 at any moment; the words coming from N6 have the form wY
and applying the first rule to it and XZ gives w, which is sent to N8, and XZY ,

24

which is reproduced and gives the empty word in addition; words over N ∪ T
containing at least one non-terminal stay in N7 and cannot be changed by rules
of N7),

N8 = (∅, ∅,PI 8, N, ∅, ∅, (w))

where PI 8 is the empty set, if the empty word belongs to L, and T otherwise (it
is obvious that only words over T arrive in N8).

First, we show that, for any sentential form z of G, there is a moment t such
that N0 contains at moment t the word XBzY . Let z = y1uy2 =⇒ y1vy2 in G
by a rule u → v ∈ P . By the above explanations, we first rotate the word such
that we get Xy2By1uY , then we send the word to N1 where it is transformed into
Xy2By1vY , and by further rotations we obtain XBy1vy2Y . Thus the statement
holds.

Conversely, if Xz1Bz2Y is contained in N0 at some moment, then z2z1 is a
sentential form of G. This follows easily by induction because each cycle N0N1N0

and N0N2(N3N4)tN5N0, t ≥ 1, starting with Xz1Bz2Y where z2z1 is a sentential
form ends with Xz′1Bz

′
2Y such that z2z1 =⇒ z′2z

′
1 in G or z2z1 = z′2z

′
1.

Moreover, since only words XBwY with w ∈ T ∗ can be processed by N6, N7

in succession, we can get in N8 only and all terminal sentential forms of G.
Thus, L(G) = L(N). �

From this completeness result together with the Theorems 2.2 and 2.3, we also
obtain the following result.

Corollary 3.2. For any recursively enumerable language L, there is a (uniform)
network N of splicing processors with filtered connections such that L(N) = L.

Following the lines of the discussion started in the previous section about the
computational efficiency of our simulations, one may note that the network con-
structed in the proof of Theorem 3.1 makes, in order to generate a word w, a
number of steps that is proportional to the square of the number of steps made
by the simulated grammar in order to generate w. Indeed, at each step, we first
search in the sentential form (by the so-called rotations) the place where the rule
should be applied; this takes a number of steps linear in the length of the sentential
form, which is less than a constant number (depending on the productions of the
grammar) times the number of steps made by the grammar to generate it. Then
we just apply the rule. It seems interesting to us to investigate the existence of
more efficient simulations.

4. Conclusions

In this paper, we considered a new formal languages generating model, the
generating networks of splicing processors. We have shown that such networks with
nine processors can be used to generate all the recursively enumerable languages.
Moreover, we have shown, by direct simulations of GNSPs, that two variants of
networks of splicing processors, namely networks with filtered connections and
uniform networks with filtered connections, are also computationally complete.

25

Besides the open problems highlighted after Theorem 2.1 and at the end of the
last section, several directions in which this work can be continued seem of interest
to us. Similarly to the case of GNSPFCs, a GNSP is called uniform if the input
and output filters of each node coincide. We think that it is worth investigating
what the computational power of this model is and to find methods to simulate
the non-uniform GNSPs by it. Moreover, our simulation methods can be used
to obtain efficient simulations between different types of accepting networks of
splicing processors (see [5]).

In most of our proofs, we used both strong and weak filters; for instance, the
proof of Theorem 3.1 requires only one node working with weak filters and it is easy
to show that it can be replaced by t+1 strong filters where t is the number of letters
in the terminal alphabet. We are interested to see whether there is a possibility
to get results similar to the ones we presented but with using only one type of
filtering. To this end, it may also be interesting to investigate the relationship
between the class of languages generated by networks of a certain type that only
have strong filters and the class of languages generated by networks of the same
type that only have weak filters.

Finally, we think that it may be an appealing subject to consider networks of
splicing processors with filters from different subclasses of regular languages (not
only filters based on random context conditions), as it was done in the case of
networks of evolutionary processors [11], and to see what classes of languages can
be generated by such networks.

5. Acknowledgements

The authors would like to thank the anonymous referees for their comments
and suggestions that led to a better presentation of this paper.

Florin Manea’s work is currently supported by the DFG – Deutsche Forschungs-
gemeinschaft grant 582014. Also, Florin Manea acknowledges the support of the
Alexander von Humboldt Foundation, through a two-years Research Fellowship at
the Otto-von-Guericke University Magdeburg, Germany, that ended in June 2011,
and a subsequent Return Fellowship at the University of Bucharest, Romania,
between July 2011 and October 2011.

References

[1] Cezara Drăgoi and Florin Manea. On the Descriptional Complexity of Accepting Net-
works of Evolutionary Processors with Filtered Connections. Int. J. Found. Comput. Sci.,
19(5):1113–1132, 2008.

[2] Cezara Drăgoi, Florin Manea, and Victor Mitrana. Accepting Networks of Evolutionary
Processors with Filtered Connections. J. UCS, 13(11):1598–1614, 2007.

[3] Artiom Alhazov, Erzsébet Csuhaj-Varjú, Carlos Mart́ın-Vide, and Yurii Rogozhin. About

Universal Hybrid Networks of Evolutionary Processors of Small Size. In Proc. LATA 2008,
LNCS 5196, pages 28–39. Springer-Verlag, 2008.

26

[4] Artiom Alhazov, Erzsébet Csuhaj-Varjú, Carlos Mart́ın-Vide, and Yurii Rogozhin. On the

size of computationally complete hybrid networks of evolutionary processors. Theor. Com-
put. Sci., 410(35):3188–3197, 2009.

[5] Juan Castellanos, Florin Manea, Luis Fernando de Mingo López, and Victor Mitrana. Ac-

cepting Networks of Splicing Processors with Filtered Connections. In Proc. MCU 2007,
LNCS 4664, pages 218–229. Springer-Verlag, 2007.

[6] Juan Castellanos, Carlos Martin-Vide, Victor Mitrana, and Jose M. Sempere. Solving NP-

Complete Problems With Networks of Evolutionary Processors. In Proc. IWANN 2001,
LNCS 2084, pages 621–628. Springer-Verlag, 2001.

[7] Juan Castellanos, Carlos Mart́ın-Vide, Victor Mitrana, and José M. Sempere. Networks of

Evolutionary Processors. Acta Inf., 39(6-7):517–529, 2003.
[8] Erzsébet Csuhaj-Varjú, Lila Kari, and Gheorghe Paun. Test Tube Distributed Systems

Based on Splicing. Computers and Artificial Intelligence, 15(2-3), 1996.
[9] Erzsébet Csuhaj-Varjú and Arto Salomaa. Networks of Parallel Language Processors. In

New Trends in Formal Languages – Control, Cooperation, and Combinatorics, LNCS 1218,

pages 299–318. Springer-Verlag, 1997.
[10] Erzsébet Csuhaj-Varjú and Sergey Verlan. On length-separating test tube systems. Natural

Computing, 7(2):167–181, 2008.

[11] Jürgen Dassow, Florin Manea, and Bianca Truthe. Networks of evolutionary processors with
subregular filters. In Proc. LATA 2011, LNCS 6638, pages 262–273. Springer-Verlag, 2011.

[12] Remco Loos. On accepting networks of splicing processors of size 3. In Proc. CiE, LNCS

4497, pages 497–506. Springer-Verlag, 2007.
[13] Remco Loos, Florin Manea, and Victor Mitrana. On Small, Reduced, and Fast Universal

Accepting Networks of Splicing Processors. Theor. Comput. Sci., 410(4-5):406–416, 2009.

[14] Florin Manea, Carlos Mart́ın-Vide, and Victor Mitrana. Accepting Networks of Splicing
Processors. In Proc. CiE 2005, LNCS 3526, pages 300–309. Springer-Verlag, 2005.

[15] Florin Manea, Carlos Mart́ın-Vide, and Victor Mitrana. Accepting Networks of Splicing
Processors: Complexity Results. Theor. Comput. Sci., 371(1-2):72–82, 2007.

[16] Florin Manea, Carlos Mart́ın-Vide, and Victor Mitrana. Accepting networks of evolutionary

word and picture processors: A survey. In Carlos Mart́ın-Vide, editor, Scientific Applications
of Language Methods, volume 2 of Mathematics, Computing, Language, and Life: Frontiers

in Mathematical Linguistics and Language Theory, pages 525–560. World Scientific, 2010.

[17] Maurice Margenstern, Victor Mitrana, and Mario J. Pérez-Jiménez. Accepting Hybrid Net-
works of Evolutionary Processors. In Proc. DNA 2004, LNCS 3384, pages 235–246. Springer-

Verlag, 2004.

[18] Carlos Mart́ın-Vide and Victor Mitrana. Networks of evolutionary processors: Results and
perspectives. In Molecular Computational Models: Unconventional Approaches, pages 78–

114, 2005.

[19] Gheorghe Paun, Grzegorz Rozenberg, and Arto Salomaa. DNA computing – new computing
paradigms. Texts in theoretical computer science. Springer, 1998.

[20] Grzegorz Rozenberg and Arto Salomaa. Handbook of Formal Languages. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1997.

