
Finding Pseudo-repetitions
Paweł Gawrychowski∗1, Florin Manea†2, Robert Mercaş‡3, Dirk
Nowotka§2, and Cătălin Tiseanu4

1 Max-Planck-Institut für Informatik,
Saarbrücken, Germany, gawry@cs.uni.wroc.pl

2 Christian-Albrechts-Universität zu Kiel, Institut für Informatik,
D-24098 Kiel, Germany, {flm,dn}@informatik.uni-kiel.de

3 Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik,
PSF 4120, D-39016 Magdeburg, Germany, robertmercas@gmail.com

4 University of Maryland at College Park, Computer Science Department,
A.V. Williams Bldg., College Park, MD 20742, USA, ctiseanu@umd.edu

Abstract
Pseudo-repetitions are a natural generalization of the classical notion of repetitions in sequences.
We solve fundamental algorithmic questions on pseudo-repetitions by application of insightful
combinatorial results on words. More precisely, we efficiently decide whether a word is a pseudo-
repetition and find all the pseudo-repetitive factors of a word.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Stringology, Pattern matching, Repetition, Pseudo-repetition

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.257

1 Introduction

The notions of repetition and primitivity are fundamental concepts on sequences used in a
number of fields, among them being stringology and algebraic coding theory. A word is a
repetition (or power) if it equals a repeated catenation of one of its prefixes. We consider
a more general concept here, namely pseudo-repetitions in words. A word w is a pseudo-
repetition if it equals a repeated catenation of one of its proper prefixes t and its image f(t)
under some morphism or antimorphism (for short “anti-/morphism”) f , thus w ∈ t{t, f(t)}+.

Pseudo-repetitions, introduced in a restricted form by Czeizler et al. [3], lacked so far a well-
developed algorithmic part. Given that the motivation for studying these objects originates
from bioinformatics, where efficient algorithms are crucial, producing such tools seems not
only natural but even necessary. This work is aimed to fill this gap. We investigate the
following two basic algorithmic problems: decide whether a word w is a pseudo-repetition for
an anti-/morphism f and find all k-powers of pseudo-repetitions occurring as factors in a word
w, for an f as above; in these problems w is given as input, while f , although of unrestricted
form, is fixed, thus not a part of the input. We establish algorithms and complexity bounds
for these problems for various types of anti-/morphisms thereby improving significantly the
results from [2]. Apart from the application of standard stringology tools, like suffix arrays,
we extend the toolbox by nontrivial applications of results from combinatorics on words.

∗ Paweł Gawrychowski is supported by the NCN grant 2011/01/D/ST6/07164.
† Florin Manea is supported by the DFG grants 582014 and 596676.
‡ Robert Mercaş is supported by the Alexander von Humboldt Foundation.
§ Dirk Nowotka is supported by the DFG Heisenberg grant 590179.

© P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 257–268

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.257
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

258 Finding Pseudo-repetitions

Background and Motivation. The motivation of introducing pseudo-repetition and pseudo-
primitivity in [3] originated from the field of computational biology, namely the facts that
the Watson-Crick complement can be formalized as an antimorphic involution and both a
single-stranded DNA and its complement (or its image through such an involution) basically
encode the same information. Until now, pseudo-repetitions were considered only in the
cases of involutions, following the original motivation, and the results obtained were mostly
of combinatoric nature (e.g., generalizations of the Fine and Wilf theorem - see, e.g., [3, 8]).

A natural extension of these concepts is to consider anti-/morphisms in general, which is
done in this paper. Considering that the notion of repetition is central in combinatorics of
words and the plethora of applications that this concept has (see [7]), the study of pseudo-
repetitions seems even more attractive, at least from a theoretical point of view. While the
biological motivation seems appropriate only for the case of antimorphic involutions, the
general problem of identifying pseudo-repetitions can be seen as a formalization of scenarios
where we are interested in identifying sequences having a hidden repetitive structure. Indeed,
as each pseudo-repetition is an iterated catenation of a factor and its encoding through some
simple function, such words have an intrinsic, yet not obvious, repetitive structure.

Some Basic Concepts. For more detailed definitions we refer to [7].
Let V be a finite alphabet; V ∗ denotes the set of all words over V and V k the set of all

words of length k. The length of a word w ∈ V ∗ is denoted by |w|. The empty word is denoted
by λ. We denote by alph(w) the alphabet of all letters that occur in w. A word u ∈ V ∗ is
a factor of v ∈ V ∗ if v = xuy, for some x, y ∈ V ∗; we say that u is a prefix of v, if x = λ,
and a suffix of v, if y = λ. We denote by w[i] the symbol at position i in w, and by w[i..j]
the factor of w starting at position i and ending at position j, consisting of the catenation
of the symbols w[i], . . . , w[j], where 1 ≤ i ≤ j ≤ n; we define w[i..j] = λ if i > j. Also, we
write w = u−1v when v = uw. The powers of a word w are defined recursively by w0 = λ

and wn = wwn−1 for n ≥ 1. If w cannot be expressed as a nontrivial power of another word,
then w is primitive. A period of a word w over V is a positive integer p such that w[i] = w[j]
for all i and j with i ≡ j (mod p). By per(w) we denote the smallest period of w.

The following classical result is extensively used in our investigation:

I Theorem 1 (Fine and Wilf [4]). Let u and v be in V ∗. If two words α ∈ u{u, v}+ and
β ∈ v{u, v}+ have a common prefix of length greater than or equal to |u|+ |v| − gcd(|u|, |v|),
then u and v are powers of a common word of length gcd(|u|, |v|).

A function f : V ∗ → V ∗ is a morphism if f(xy) = f(x)f(y) for all x, y ∈ V ∗; f is an
antimorphism if f(xy) = f(y)f(x) for all x, y ∈ V ∗. In order to define a morphism or an
antimorphism it is enough to give the definitions of f(a) for all a ∈ V . An anti-/morphism
f : V ∗ → V ∗ is an involution if f2(a) = a for all a ∈ V . We say that f is uniform if there
exists a number k with f(a) ∈ V k for all a ∈ V ; if k = 1 then f is called literal. If f(a) = λ

for some a ∈ V , then f is called erasing, otherwise non-erasing.
We say that a word w is an f -repetition, or, alternatively, an f -power, if w is in t{t, f(t)}+,

for some prefix t of w. If w is not an f -power, then w is f-primitive. As an example, the
word ACGTAC is primitive from the classical point of view (i.e., 1-primitive, where 1 is
the identical anti-/morphism) as well as f -primitive for the morphic involution f defined by
f(A) = T , f(C) = G, f(T) = A, and f(G) = C. However, for the antimorphic involution
f(A) = T and f(C) = G (which is, in fact, a formalization of the Watson-Crick complement,
from biology), we get that ACGTAC = AC · f(AC) ·AC, thus, it is an f -repetition.

Finally, the computational model we use to design and analyse our algorithms is the
standard unit-cost RAM (Random Access Machine) with logarithmic word size, which is
generally used in the analysis of algorithms.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 259

2 Algorithmic problems

In the upcoming algorithmic problems, we assume that the words we process are sequences
of integers (called letters, for simplicity). In general, if the input word has length n then we
assume its letters are in {1, . . . , n}, so each letter fits in a single memory-word. This is a
common assumption in algorithmics on words (see, e.g., the discussion in [6]).

In the first problem, which seems to us the most interesting one in the general context of
pseudo-repetitions, we approach the fundamental problem of deciding whether a word is an
f -repetition, for a fixed anti-/morphism f .

I Problem 1. Let f : V ∗ → V ∗ be an anti-/morphism. Given w ∈ V ∗, decide whether this
word is an f -repetition.

We solve this problem in the general case of erasing anti-/morphisms in O(n lgn) time.
However, in the particular case of uniform anti-/morphisms we obtain an optimal solution
running in linear time. The latter covers the biologically motivated case of involutions
from [3]. This optimal result seems interesting to us, as it shows that pseudo-repetitions
can be detected as fast as repetitions, if the way we encode the repeated factor (i.e., the
function f) is simple enough, yet not the identity. We also extend our results to a more
general form of Problem 1, testing whether w ∈ {t, f(t)}+ for a proper factor t of w. Except
for the most general case (of erasing anti-/morphisms), where we solve this problem in
O(n1+ 1

lg lgn lgn) time, we preserve the same time complexity as we obtained for Problem 1.
Two other natural algorithmic problems are related to the fundamental combinatorial

property of freeness of words, in the context of pseudo-repetitions. More precisely, we are
interested in identifying the factors of a word which are pseudo-repetitions.

I Problem 2. Let f : V ∗ → V ∗ be an anti-/morphism and w ∈ V ∗ a given word.
(1) Enumerate all (i, j, `), 1 ≤ i, j, ` ≤ |w|, such that there exists t with w[i..j] ∈ {t, f(t)}`.
(2) Given k, enumerate all (i, j), 1 ≤ i, j ≤ |w|, so there exists t with w[i..j] ∈ {t, f(t)}k.

Question (2) was originally considered in [2], while the first one is its natural generalisation.
Our approach to question (1) is based on constructing data structures which enable us to
retrieve in constant time the answer to queries rep(i, j, `): “Is there t ∈ V ∗ such that
w[i..j] ∈ {t, f(t)}`?”, for 1 ≤ i ≤ j ≤ n and 1 ≤ ` ≤ n, where n = |w|. For unrestricted f ,
one can produce such data structures in O(n3.5) time. When f is non-erasing, the time taken
to construct them is O(n3), while when f is a literal anti-/morphism we can do it in time
O(n2). Once we have these structures, we can identify in Θ(n3) time, in the general case, all
the triples (i, j, `) such that w[i..j] ∈ {t, f(t)}`, answering (1) in O(n3.5) time. Similarly, for
f non-erasing (respectively, literal) we answer question (1) in Θ(n3) (respectively, Θ(n2 lgn))
time and show that there are input words on which every algorithm solving this question has a
running time asymptotically equal to ours (including the preprocessing time). Unfortunately,
the time bound obtained for most general case is not tight.

Exactly the same data structures are used in the simplest case of literal anti-/morphisms
to answer the more particular question (2). We obtain an algorithm that outputs in O(n2)
time, for given w and k, all pairs (i, j) such that w[i..j] ∈ {t, f(t)}k; this time bound is shown
to be tight. Taking advantage of the fact that k is given as input (so fixed throughout the
algorithm) we can refine our solution for question (1) in order to get a Θ(n2)-time solution
of question (2) for f non-erasing, again a tight bound, and a O(n2k)-time solution for the
general case. Our results improve significantly the algorithmic results reported in [2].

STACS’13

260 Finding Pseudo-repetitions

2.1 Prerequisites
We begin this section by presenting several number theoretic properties. Lemma 2 is used in
the time complexity analysis of our algorithms, while Lemma 3 and its corollary are utilised
in the solutions of Problem 2. Given two natural numbers k and n, we write k | n if k
divides n. We denote by d(n) the number of divisors of n and by σ(n) their sum.

I Lemma 2. Let n be a natural number. The following statements hold:
(1)

∑
1≤`≤n d(`) ∈ Θ(n lgn),

∑
1≤`≤n d(`) ≥ n lgn, d(n) ∈ o(nε) for all ε > 0 (see [1]); (2)

σ(n) ∈ O(n lg lgn) (see [1]); (3)
∑

1≤`≤n(n− `+ 1)d(`) ∈ Θ(n2 lgn). J

I Lemma 3. Let n be a natural number. We can compute in O(n3) time a three dimensional
array T [k][m][`], with 1 ≤ k,m, ` ≤ n, where T [k][m][`] = 1 if and only if there exists a
divisor s of ` and the numbers k1 and k2 such that k1 + k2 = k and k1s+ k2sm = `. J

I Corollary 4. Let R be a fixed natural constant, and n and k be given natural numbers.
We can compute in O(n lgn) time a matrix Tk[m][`] with 1 ≤ m ≤ R and 1 ≤ ` ≤ n, where
Tk[m][`] = 1 if and only if there exists a divisor s of ` and the numbers k1 and k2 such that
k1 + k2 = k and k1s+ k2sm = `. The constant hidden by the O-notation depends on R. J

We briefly present the data structures we use. For a word u with |u| = n over V ⊆
{1, . . . , n} we can build in linear time a suffix array structure as well as data structures
allowing us to return in constant time the answer to queries “How long is the longest common
prefix of u[i..n] and u[j..n]?”, denoted LCPref (u[i..n], u[j..n]). For more details, see [5, 6],
and the references therein. Also, for u and an anti-/morphism f , we compute an array
len with n elements defined as len[i] = |f(u[1..i])|, for 1 ≤ i ≤ n. For f non-erasing we
also compute an array inv, having |f(u)| elements, such that inv[i] = j if len[j] = i and
inv[i] = −1 otherwise. These computations are done in O(n) time. Note the following result:

I Lemma 5. Let w ∈ V ∗ be a word of length n. We compute the values per[i], the period of
w[1..i], for all i ∈ {1, . . . , n} in linear time O(n). Also, we compute the values per[i][j], the
period of w[i..j], for all i, j ∈ {1, . . . , n} in quadratic time O(n2). J

Next we show an important property of pseudo-repetitions, for non-erasing morphisms.

I Lemma 6. Let f be a non-erasing anti-/morphism, and x, y, z be words over V such that
f(x) = f(z) = y. If {x, y}∗x{x, y}∗ ∩ {z, y}∗z{z, y}∗ 6= ∅ then x = z.

Proof. We sketch the proof only for the case when f is a morphism; a similar argument works
for antimorphisms. If {x, y}∗x{x, y}∗ ∩ {z, y}∗z{z, y}∗ 6= ∅ then we may assume without
losing generality there exists w such that w = xw′, w′ ∈ {x, y}∗, and w ∈ {z, y}∗z{z, y}∗.

If z is a prefix of w, as f(x) = f(z) and f is non-erasing, we get easily that x = z.
Assume now that w = yzw′′ with w′′ ∈ {z, y}∗. It is not hard to see that from |x| ≤ |y|

and w = xw′ we obtain that |x| is a period of y, and, thus, y = x`u where ` > 0 and u is a
prefix of x. If y and x are powers of the same word v, then x = vk1 , y = vk2 and u = vk3 , so
z is also a power of v. Since f(x) = f(z) we conclude again that x = z. Further, assume
that x and y are not powers of the same word. Hence, u is a proper prefix of x, i.e., x = uv

for u 6= λ 6= v. Consequently, w′ has a prefix of the form xpy, with p ≥ 0, and it follows that
after the first |y| symbols of w both the factor vu and the factor z occur (as vu occurs after
the first |y| − |x| symbols of w′). Since |vu| = |x| we get easily that z = vu. So, |z| = |x|,
y = f(z) = f(vu) = f(v)f(u) and y = f(x) = f(u)f(v). It follows that y is a power of
a primitive word t. By an involved case analysis, it follows that x is a power of the same
primitive word as y, a contradiction.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 261

In the case when w = yyzw′′ for some w′′ ∈ {z, y}∗, we can apply Theorem 1 to the
prefix of length 2|y| of w (which is a prefix of a word from x{x, y}∗, as well) and obtain that
x and y are powers of the same word. Once again, we obtain that z = x. J

The next lemmas provide insights to the combinatorial properties of f -repetitions, for f a
general morphism, and are utilised in showing the soundness and efficiency of our algorithms.
When using them, we take x to be the shorter and y the longer of the words t and f(t).

I Lemma 7. Let x and y be words over V such that x and y are not powers of the same
word. If w ∈ {x, y}∗ then there exists a unique decomposition of w in factors from {x, y}. J

I Lemma 8. Let x, y ∈ V + and w ∈ {x, y}∗ \ {x}∗ be words such that |x| ≤ |y| and
x and y are not powers of the same word. Let M = max{p | xp is a prefix of w} and
N = max{p | xp is a prefix of y}. Then M ≥ N . Moreover, if M = N then w ∈ y{x, y}∗
holds, while if M > N then either it is the case that w ∈ xM−Ny{x, y}∗ \ xM−N−1yxV ∗, or
we have w ∈ xM−N−1y{x, y}+ \ xM−NyV ∗ and N > 0. J

2.2 Solution of Problem 1
§A general solution. We first assume that f is a morphism and let n = |w|. We construct in
linear time the word x = wf(w) of length m = n+ |f(w)| (which is in O(n)); note that the
length of x (hence, the constant hidden by the O-notation) depends on the fixed morphism f .
Moreover, we build in O(n) time data structures enabling us to answer LCPref queries for x.

Using these data structures, Algorithm 1 tests whether w is an f -repetition or not.

Algorithm 1 Test(w, f): decides whether w is an f -repetition

1: Test whether there exists a word x such that w = xk, with k ≥ 2. If yes, then we halt
and decide that w is an f -repetition. Otherwise, go to step 2.
{If the result of the test is positive we decide that w is an f -repetition, as repetitions can
be seen as trivial f -repetitions. The algorithm continues for w primitive.}

2: for t = w[1..i], such that i < n, len[i] ≥ 1, t and f(t) are not powers of some x ∈ V ∗ do
3: Set x = t and y = f(t) if i ≤ len[i] or x = f(t) and y = t, otherwise;
4: Set s = i+ 1, `′i = |y|, `′′i = |x|; {We have `′i = max{len[i], i} and `′′i = min{i, len[i]}}
5: If s = n+ 1 halt and decide that w is an f -repetition;
6: Compute M = max{p | xp is a prefix of w[s..n]}, N = max{p | xp is a prefix of y};
7: If w[s..n] = xM , set s = n+ 1, go to step 5;{If w[s..n] ∈ {x}+ then w ∈ t{t, f(t)}∗}
8: If xM−Ny occurs at position s, set s = (M −N)`′′i + `′i, go to step 5;
9: IfM > N and xM−N−1yx occurs at position s, set s = (M−N−1)`′′i +`′i, go to step 5;

{By Lemma 8, w[s..n] should have either xM−Ny or xM−N−1yx as prefix. By Lemma 8,
if xM−N−1yx occurs at position s, we shall check whether w[s..n] ∈ xM−N−1y{x, y}+.}
{If none of the above holds, we get that w[s..n] /∈ {t, f(t)}+, so w /∈ t{t, f(t)}+.}

10: end for
11: Halt and decide that w is not an f -repetition.

Following the comments inserted in its description, it is not hard to see that Algorithm 1
is sound. In the following, we compute its complexity. The step where we test whether w
is a repetition takes O(n) time, as it can be done by locating the occurrences of w in ww.
Further, note that the computation in each of the steps 6−9 of the algorithm can be executed
in constant time using the data structures we already constructed. Indeed, for some s ≤ n,
we can compute the largest ` such that w[s..`] is a power of x in constant time as follows. In

STACS’13

262 Finding Pseudo-repetitions

the worst case, ` = s− 1, or, in other words, w[s..`] = λ, when x does not occur at position s.
Otherwise, ` is the largest number less than or equal to LCPref (w[s..n], w[s+ |x|..n]) such
that `− s+ 1 is divisible by |x|. This strategy is used in step 6 to compute M and N . The
verification from step 7 takes clearly constant time: we just check whether n− s+ 1 = M |x|.
Moreover, step 8 and 9 can also be implemented in constant time using LCPref queries;
indeed, we know that xM−N occurs at position s, and then we just have to check whether y
occurs at position s+ (M −N)|x| by a LCPref query, for step 8, or, respectively, whether yx
occurs at position s+(M−N−1)|x| by two LCPref queries, for step 9. Further, the iterative
process in steps 3 − 9 is executed for each prefix w[1..i] of w, and during each iteration
the algorithm makes at most O(b n`′

i
c) steps, as s can take at most b n`′

i
c different values (in

the cycle defined by the “go to” instruction from step 8). Since `′i ≥ i, the overall time
complexity of the algorithm is upper bounded by O(

∑
1≤i≤nb

n
i c). Thus, the time complexity

of Algorithm 1 is O(n lgn). As a side note, in the case when f is erasing, w ∈ t{t, f(t)}+ for
some t with f(t) = λ if and only if w ∈ {t}+, that is, w is a repetition. Hence, we run the
iterative process starting in step 2 only for prefixes w[1..i] with len[i] ≥ 1.

The case when f is an antimorphism is similar. We take x = wf(w), build the same data
structures, and proceed just as in the former case. As the single difference, now we have
w[s+ 1..s+ len[i]] = f(w[1..i]) iff LCPref (s+ 1,m− len[i] + 1) = len[i], where m = |x|.

When f is uniform we can easily obtain a more efficient algorithm. In this case, |t|
divides n, so we only need to run the iterative instruction for the prefixes w[1..i] of w with
i | n. Hence, the total running time of the algorithm is, in this case, upper bounded by
O(

∑
i|n

n
i) ∈ O(n lg lgn), by Lemma 2.

§A linear time solution for the case when f is uniform. We can obtain an even faster solution
for Problem 1 for the case when f is uniform by using some more intricate precomputed data
structures in order to speed-up Algorithm 1. To this end, we analyse again the computation
performed by Algorithm 1 on an input word w.

The main phase of the algorithm is the following. For a prefix t = w[1..i] of w with i | n
we run a cycle (steps 5−9) that extends iteratively a prefix w[1..s−1], where s ≥ i+1, of the
word w such that the newly obtained prefix is in t{t, f(t)}∗. However, at each iteration the
prefix is extended with a word of the form tkf(t), with k ≥ 0. As k can be actually equal to 0,
we can only say that the number of iterations of the cycle is upper bounded by n

|f(t)| ≤
n
|t| .

Here we plug in our speed-up strategy: we try to extend the prefix in each of the iterations
of the cycle from steps 5− 9 with a word that belongs to {t, f(t)}α for some fixed number
α that depends on n, but not on t. In this way, we upper bound the number of iterations
of the cycle by n

α|t| , and the overall complexity of the algorithm by O(n lg lgn
α). Finally, in

order to obtain an algorithm solving Problem 1 in linear time, we choose α = dlg lgne.
Let R = |f(a)|, for a ∈ alph(w); as f is uniform, the definition of R does not depend on the

choice of a from V , and we also have R = |f(u)|
|u| , ∀u ∈ V ∗. Let rt = max{` | t` prefix of f(t)}.

Clearly, rt ≤ R and we can assume without losing generality that α > R. Indeed, this holds
for n > 22R , which is the case when we want to optimise Algorithm 1; for smaller n the
algorithm runs in constant time O(1), as n lg lgn ≤ R22R and R is constant (f being fixed).

It only remains to show how we can implement efficiently the above mentioned extension
of the prefix. First, note that there exists a constant C such that (lgn)4(lg lgn)2

n ≤ C for all n.
Therefore, running the original form of Algorithm 1 for the prefixes t of w with |t| > n

(lgn)2 lg lgn
and |t| | n (that is, at most (lgn)2 lg lgn prefixes) takes O(n) time. Therefore, from now on,
we only consider prefixes t such that |t| | n, |t| < n

(lgn)2 lg lgn , and, assuming that the input
word is not a repetition, t and f(t) are not powers of the same word.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 263

Now consider a prefix t, as above. There are 2α ∈ O(lgn) words in {t, f(t)}α. Every such
word can be encoded by a bit-string of length α: each occurrence of t is encoded by 0 and an
occurrence of f(t) by 1. Denote these bit-strings v1, . . . , v2α , and let vi be the word encoded
by vi, for all 1 ≤ i ≤ 2α. Further, for a bit-string v` we can determine by binary search
two values b` and e` such that all the suffixes contained in the suffix array of w between the
positions b` and e` have the word v`trt as a prefix. From Theorem 1, applied for two strings
vit

rt and vjtrt with i 6= j, and the facts that t and f(t) are not powers of the same word and
rt is the maximal power of t occurring as a prefix of f(t), we get that the intervals [bi, ei] and
[bj , ej] are disjoint. The time needed to compute these values for each ` is O(lgn lg lgn), as
a comparison between the word v`trt and a suffix of w can be done in O(lg lgn) by looking
at the encoding v` and the string trt (a prefix of f(t)) and, consequently, comparing only the
factors of length |t| and |f(t)| of v`trt with those of the words from the suffix array. Thus,
the time needed to compute b` and e` for all ` is O((lgn)2 lg lgn). Next, we construct a
set Et containing the values e` ordered increasingly, while keeping track for each e` of the
corresponding values of ` and b`. Note that Et contains O(lgn) integers from {1, . . . , n}.

We need one more result before concluding this preprocessing phase. We want to store a
static set S ⊆ {1, . . . , n} so that finding the successor in S of a given x ∈ {1, . . . , n} takes
constant time. Thus, we use a static d-ary tree of depth 2, where d = dn0.5e, so that the whole
tree has n leaves corresponding to different values of x. We mark all leaves corresponding to
the elements of S, and remove all nodes with no marked leaf in the corresponding subtree.
At each remaining inner node v we store a table of length d where for each child of v
(both remaining and already removed) we store the successor of the rightmost leaf in its
corresponding subtree. The total size of the structure is O(|S|n0.5) and we can construct
it in the same time if we start with an empty S and add its elements one-by-one, creating
new inner nodes when necessary. Furthermore, using the tables we can find the successor of
any x in O(1) time by traversing the path from the root of the tree towards x as long as the
nodes exist and taking the minimum of the successors stored for these nodes. If we store
each Et in this way the query time is constant and the total construction time and space is
in O(d(n)n0.5 lgn) ⊆ O(n), where the final upper bound follows from Lemma 2.

By the previously given explanations, this entire preprocessing takes linear time. We now
use it to solve in linear time Problem 1.

Assume now that we run step 5 of the algorithm for some prefix t of w as above and the
word w[s..n] with s ≤ n− (α+ rt)|t|+ 1. There is at most one ` such that the index is of
w[s..n] in the suffix array of w is between b` and e` (that is, v`trt is a prefix of w[s..n]). This
` can be found, if it exists, in O(1) using the precomputed data structures (i.e., the sets Et,
organised as described above): return the value ` such that e` is the minimal element of Et
greater than or equal to is and b` ≤ is. Then, we repeat the procedure for the word w[s′..n]
where w[s..s′−1] = v`, but only if n−s′+1 ≥ (α+rt)|t| or s′ = n+1. If n−s′+1 ≤ (α+rt)|t|
we run the processing of the original algorithm. Clearly, this process takes O(nαt + 2α) steps
for each t, so the complete algorithm runs in O(n) time. We only have to show that it works
correctly, i.e., it decides whether w ∈ t{t, f(t)}+. The soundness is proven by the following
remark. If w[s..n] starts with vjtrt for some j ≤ 2α, then it is enough to consider in the next
iteration only the word w[s+ |vj |..n], and no other word w[s+ |vk|..n] where k ≤ 2α such
that vk is also a prefix of w[s..n]. Indeed, if there exists vk leading to a solution, we get a
contradiction with either the fact that rt is the maximal power of t occurring as a prefix of
f(t), or with the fact that t and f(t) are not powers of the same word.

To conclude, this implementation of Algorithm 1 runs in optimal linear time for f uniform.

STACS’13

264 Finding Pseudo-repetitions

§Summary. We were able to show the following theorem.

I Theorem 9. Let f : V ∗ → V ∗ be an anti-/morphism. Given w ∈ V ∗, one can decide
whether w ∈ t{t, f(t)}+ in O(n lgn) time. If f is uniform we only need O(n) time. J

The more general problem of testing whether there exists t with w ∈ {t, f(t)}{t, f(t)}+

for f a fixed anti-/morphism is also worth considering. Solving this problem seems to
require a different strategy than the one in Algorithm 1. There we take prefixes t of w,
which determine uniquely f(t), and check whether w ∈ t{t, f(t)}∗. Here, a prefix y does not
determine uniquely, in general, a factor x such that f(x) = y, so more possibilities have to be
considered when checking whether there exists t such that w ∈ f(t){t, f(t)}∗. However, the
cases of f non-erasing and uniform anti-/morphisms have solutions based on results in the
line of Lemmas 6 and 7, leading to similar complexities as for Problem 1. The case of erasing
anti-/morphisms is solved by a more involved algorithm, based on both combinatorics on
words and number theoretic insights.

I Theorem 10. Let f : V ∗ → V ∗ be an anti-/morphism. Given w ∈ V ∗, we decide whether
w ∈ {t, f(t)}{t, f(t)}+ in O(n1+ 1

lg lgn lgn) time. If f is non-erasing we solve the problem in
O(n lgn) time, while when f is uniform we only need O(n) time. J

2.3 Solution of Problem 2
Recall that our approach to solve the first question of Problem 2 is based on constructing,
for the input word w, data structures that enable us to obtain in constant time the answer
to queries rep(i, j, `): “Is there t ∈ V ∗ such that w[i..j] ∈ {t, f(t)}`?”, for all 1 ≤ i ≤ j ≤ |w|
and 1 ≤ ` ≤ |w|. Moreover, a solution for the second question is derived directly from this
strategy: we only need to construct similar data structures, that allow us to answer, this
time, queries rep(i, j, `) for a single `, given as input of the problem together with w.

§The case of erasing morphisms. We start by presenting the solution of the first question
of the problem. Given an arbitrary anti-/morphism f and a word w of length n, we can
construct the aforementioned data structures in O(n3.5) time. More precisely, we construct
an oracle-structure that already contains the answers to every possible query.

We only give an informal description of our construction. Assume that |w| = n. The idea
is to compute the n×n×n three dimensional array M such that M [i][j][k] = 1 if there exists
a word t with w[i..j] ∈ {t, f(t)}k, and M [i][j][k] = 0, otherwise. We proceed as follows.

Let i be a position in w. We first consider the prefixes t of w[i..n] such that t and f(t)
are not powers of the same word. Note that, for such a prefix t of w[i..n], with t 6= λ 6= f(t),
and j > i there is at most one number k such that w[i..j] ∈ t{t, f(t)}k−1. The set of
these prefixes is partitioned in n0.5 + 1 sets Si,δ = {t | |f(t)| = δ}, for 1 ≤ δ ≤ n0.5, and
Si = {t | |f(t)| > n0.5}; note that some of these sets may actually be empty. Further, for
each δ we compute fi,δ = max{k | xk is a suffix of w[1..i], |x| = δ}.

We first deal with the case when t ∈ Si, for 1 ≤ i ≤ n. We compute for each j the
number k such that w[i..j] ∈ t{t, f(t)}k−1; this can be done in constant time (for each j)
using LCPref -queries, as in the previous algorithms. More precisely, for some j we only
need to look at the corresponding value for j − |t| and j − |f(t)|, increase them with 1 (if
they are defined) and store as the value corresponding to j the one obtained from j − |t| if t
occurs as a suffix of w[i..j] or the one corresponding to j − |f(t)| if f(t) occurs as a suffix
of w[i..j] (due to Lemma 7, at most one case holds); if none of these values was defined, or
neither t nor f(t) occurs as a suffix of w[i..j], the value corresponding to j remains undefined.

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 265

This entire process takes linear time. Then, for j such that w[i..j] ∈ t{t, f(t)}k−1 and all
k′ ∈ {0, 1, . . . , fi,δ}, where δ = |f(t)|, we set M [i− k′δ][j][k + k′] = 1. It is not hard to see
that for δ > n0.5 we have fi,δ < n0.5, so the process described above takes O(n0.5) time
for each j. Now, we repeat the process for all i ∈ {1, . . . , n} and all prefixes t from Si and
discover all the factors w[i′..j′] and numbers k such that {f(t), t}k, with |f(t)| > n0.5. The
time needed to do the computations described above is O(n3.5).

Further, we consider the case of the words of the sets Si,δ, for some fixed δ < n0.5 and
all 1 ≤ i ≤ n. For each i, for each t in Si,δ, and for each j we compute and put the pairs
(i, k) such that w[i..j] ∈ t{t, f(t)}k−1 in a list Rδj . This takes roughly O(n3) time. Note that
the number of elements of the list Rδj is also bounded by n2, as for each i we have a unique
decomposition of w[i..j] in k parts, starting with a prefix t.

Now, for each j (and, recall, that δ is fixed), we build an n×n matrix T δj , initially with all
the entries set to 0. Now we partition this matrix in diagonal arrays obtained as follows: for
` from 1 to n and for p from 1 to n, if the element T δj [`][p] is not stored already in a diagonal
array, we construct a new diagonal array that stores the elements T δj [`][p], T δj [`− δ][p+ 1], . . .
T δj [`− dδ][p+ d], for 0 ≤ d < `

δ . While constructing this matrix we can keep track for each
element of the array it belongs to. This procedure takes, clearly, O(n2) time. These arrays
partition the elements of the matrix T δj so the total number of their elements is n2.

To continue, for each element (i, k) of the list Rδj , we check in which diagonal array (i, k)
is and memorise that we should mark (i.e., set to 1) in this array the consecutive elements
T δj [i][k], T δj [i− δ][k + 1], . . . , T δj [i− fi,δδ][k + fi,δ]. This, again, can be done in O(n2) time,
as we only need to memorise the first and the last of these elements (called, in the following,
margins). When we are done we have to mark rd groups of consecutive elements in each
diagonal array d, where

∑
d rd ∈ O(n2). To do the marking we sort the margins of the groups

associated with each diagonal array, with the counting sort algorithm, and then traverse each
array, keeping track of how many groups contain each of its elements, and mark the elements
appearing in at least one group. Sorting the lists of intervals takes O(

∑
d rd) = O(n2) time,

and, thus, the marking takes O(n2) time in total. Once the elements of all groups are marked,
for all i and k we set M [i][j][k] = 1 if and only if T δj [i][k] = 1.

The overall complexity of the computation described above for a fixed δ is O(n3). As we
iterate through all δ ≤ n0.5, we get that this case requires O(n3.5), as well. Now, we know all
triples (i, j, k) such that w[i..j] ∈ {t, f(t)}k and t and f(t) are not powers of the same word.

Further, we consider the case of triples (i, j, k) such that w[i..j] ∈ {t, f(t)}k, where t and
f(t) are powers of the same word. By Lemma 5 we compute in O(n2) time the periods of all
the factors w[i..j] of w and of the factors f(w[i..j]) of f(w). We also compute in cubic time
the array T from Lemma 3. Now we can check in constant time using LCPref queries whether
per(t) = p, p | |t|, and f(w[i..i+p−1]) is a power of w[i..i+p−1] (i.e., t and f(t) are powers
of the same word). If this is the case, we compute m = |f(w[i..i+p−1])|

p and set M [i][j][k] = 1
if and only if T [k][m][j − i+ 1] = 1. Indeed, M [i][j][k] = 1 if and only if there exists s, k1, k2
such that s | j − i+ 1, k1 + k2 = k, and w[i..j] = ((w[i..i+ p− 1])s)k1(f((w[i..i+ p− 1])s))k2 ,
that is, sk1 + smk2 = j − i+ 1, which is equivalent to T [k][m][j − i+ 1] = 1

There is a simple case that remained to be discussed. If f(w[i..j]) = ε, thenM [i][j][k] = 1,
for all k ≥ 1. Identifying and memorising all such factors takes O(n3) time.

By the above case analysis, we conclude that we can compute all the non-zero entries of
the matrix M in O(n3.5) time. The answer to rep(i, j, k) is given by the entry M [i][j][k].

Finally, we consider the case when we search f -repetitions with k factors, for a fixed
k. This time, we compute a two dimensional matrix Mk such that Mk[i][j] = M [i][j][k],
defined previously. Fortunately, Mk can be computed much quicker than the whole matrixM .

STACS’13

266 Finding Pseudo-repetitions

According to Corollary 4 the case of t and f(t) being factors of the same word can be
implemented in quadratic time (the constant R from the statement of the corollary can be
taken as the maximum length of f(a), for all letters a ∈ alph(w)). Further, when t and f(t)
are not periods of the same word we just need to compute, for each i, t and j the number k′
such that w[i..j] ∈ t{t, f(t)}k′−1 and check (in constant time) whether f(t)k−k′ is a suffix of
w[1..i]; if all these hold, we get that Mk[i][j] = 1. However, note that we do not need to go
through all the possible values of j. Indeed, we first generate all the prefixes of w[i..n] that
have the form t` with ` ≤ k and see if one of them is longer than |t|+ |f(t)|. If yes, we try to
extend the longest such prefix with t or f(t) iteratively until we use k factors t or f(t) in
the constructed word. By Lemma 7 we obtain in this process only O(k) such words, and
these are exactly the prefixes of w[i..n] that can be expressed as the catenation of at most k
factors t and f(t); in other words, this process provides a set that contains all the values j for
which Mk[i][j] = 1. According to these, the whole process of computing the non-zero entries
of the matrix M ′ takes O(n2 · k) time. Note that the answer to a query rep(i, j, k) is given
by Mk[i][j]; as we already mentioned, we only ask queries for the value k given as input.

§The case of non-erasing morphisms. For f non-erasing, the oracle matrix M described
previously can be computed in O(n3) time, where |w| = n. Initially, we set M [i][j][k] = 0,
for i, j, k ∈ {1, . . . , n}.

As in the case of erasing morphisms, by Lemma 5 we compute (and store) in quadratic
time the periods of all the factors w[i..j] of w and of the factors f(w[i..j]) of f(w). We also
compute in cubic time the array T from Lemma 3.

First we analyse the simplest case. We can check in constant time using LCPref queries
whether per(w[i..j]) = p, p | (j− i+1), and f(w[i..i+p−1]) is a power of w[i..i+p−1]. If so,
we compute m = |f(w[i..i+p−1])|

p and set M [i][j][k] = 1 if and only of T [k][m][j − i+ 1] = 1.
Further we present the more complicated cases.
First, let i be a number from {1, . . . , n}. We want to detect the factors w[i..j] that belong

to t{t, f(t)}k−1 for some prefix t of w[i..n] such that t and f(t) are not powers of the same
word (this case was already covered) and k ≥ 2. To do this we try all the possible prefixes t
of w[i..n]. Once we choose such a t = w[i..`] we set M [i][`][1] = 1. Further, starting from the
pair (`, 1), we compute, by backtracking, all the pairs (m, e) such that w[i..m] ∈ t{t, f(t)}e−1;
basically, from the pair (m, e) we obtain the pairs (m+ |t|, e+ 1) if w[m+ 1..m+ |t|] = t and
the pair (m+ |f(t)|, e+ 1) if w[m+ 1..m+ |f(t)|] = f(t). By Lemma 7 we obtain exactly
one pair of the form (m, ·) (as there is an unique decomposition of w[i..m] into factors t and
f(t) as long as t and f(t) are not powers of the same word). Therefore, computing all these
pairs takes linear time. Further, if we obtained the pair (m, k) we set M [i][m][k] = 1.

The whole process just described can be clearly implemented in O(n3) time. At this
point we know all the possible triples (i, j, k) such that w[i..j] ∈ t{t, f(t)}k−1 for some t. It
remains to find also the triples (i, j, k) such that w[i..j] ∈ f(t){t, f(t)}k−1 for some t.

In this case, for each i ∈ {1, . . . , n} we go through all the prefixes y = w[i..`] of w[i..n]
and assume that y = f(t). Further, we compute a set of pairs (m, e) such that w[i..m] = ye;
this can be done easily in linear time, using LCPref -queries. Now, for each of these pairs,
say (m, e), we try to find a factor t = w[m + 1..m′] such that f(t) = y and t and y

are not powers of the same word. Once we found such a factor t (which can be done in
constant time using LCPref queries and the array inv) we store the pair (m+ |t|, e+ 1) and
starting from this pair we compute, as in the previous case, all the pairs (m′′, e′) such that
w[m+ 1..m′′] ∈ t{t, y}e′−e−1. The key remark regarding this process is that, by Lemma 6, no
two pairs having the first component equal to m′′ are obtained for a fixed i. As the number

P. Gawrychowski, F. Manea, R. Mercaş, D. Nowotka, C. Tiseanu 267

of values that m′′ may take is upper bounded by n, the entire computation of these pairs
takes O(n) time. Once this is completed, we set M [i][m][k] = 1 for each (m, k) obtained.

In this way we identified all the triples (i, j, k) such that w[i..j] ∈ {t, f(t)}k, for some t,
in cubic time and stored in the array M the answers to all the possible rep-queries.

Now, consider the case when we search f -repetitions with k factors, for a given k and f
non-erasing. The computation goes on exactly as in the case of general morphisms with the
only difference that when we consider the prefix t of a word w[i..n] we can restrict our search
to the prefixes t shorter than n

k . Thus, the overall complexity of computing the entries of the
matrix Mk decreases to O(n · nk · k) = O(n2) time. Again, the answers to a query rep(i, j, k)
for the given value k is given by the entry Mk[i][j] of the matrix Mk.

§The case of literal morphisms. In the case when f is literal, we are able to construct faster
some data structures enabling us to answer rep queries. More precisely, we do not need
to construct the entire oracle structure, but only some less complex matrix allowing us to
retrieve in constant time the answers to our queries. To this end, we first create for the word
wf(w) the same data structures as in the initial solution of Problem 1. Further, we define
an n × n matrix M such that for 1 ≤ i, d ≤ n the element M [i][d] = (j, i1, i2) stores the
beginning index of the longest word w[j..i] contained in {t, f(t)}+ for some word t of length
d, as well as the last occurrences w[i1..i1 + |t| − 1] of t and w[i2..i2 + |f(t)| − 1] of f(t) in
w[j..i], such that d divides both i− i1 + 1 and i− i2 + 1. If there exist t and t′ with t 6= t′ and
w[j..i] ∈ {t, f(t)}k ∩ {t′, f(t′)}k, we have t = f(t′) and f(t) = t′; in this case, M [i][d] equals
(j, i1, i2) if i1 > i2 or (j, i2, i1), otherwise. The array M can be computed in O(n2) time by
dynamic programming. Intuitively, M [i][d] is obtained in constant time from M [i − d][d]
using LCPref queries on wf(w).

The matrix M helps us answer rep-queries in constant time. Indeed, the answer to a
query rep(i, j, k) is yes if and only if k | j − i + 1 and the first component of the triple
M [j][j−i+1

k] is lower than or equal to i, and no, otherwise.

§Solving Problem 2. We now give the final solutions for the two questions of Problem 2.
Let us begin with the first question. It is straightforward how one can use the computed

data structures to identify, given a word w of length n, the triples (i, j, k) such that the
factor w[i..j] is in {t, f(t)}k for some t. Indeed, we return the solution-set comprising all
the triples (i, j, k) for which the answer to rep(i, j, k) is yes. The time needed to do so is
Θ(n3) (without the preprocessing), as we go through all possible triples (i, j, k) and check
whether rep(i, j, k) returns yes or no. Furthermore, any algorithm solving this problem needs
Ω(n3) operations in the worst case. Take, for instance, the non-erasing uniform morphism f

defined by f(a) = aa and w = an. It follows that w[i..j] is in {a, f(a)}k, for all i and j with
b(j − i+ 1)/2c ≤ k ≤ j − i+ 1; hence, for these w and f we have Θ(n3) triples (i, j, k) in the
solution set of our problem.

For f a literal anti-/morphism, we propose a Θ(n2 lgn) algorithm solving the discussed
problem. Using the Sieve of Eratosthenes, we compute in O(n lgn) time the lists of divisors
for all numbers ` with 1 ≤ ` ≤ n. Further, for each pair (i, i + ` − 1) with ` ≥ 1 and
all d | ` we check whether rep(i, i + ` − 1, d) returns yes. If so, the triple (i, i + ` − 1, d)
is one of those we were looking for. Clearly, the algorithm is correct. Its complexity
is O(n lgn) + Θ(

∑
1≤`≤n(n − ` + 1)d(`)). Following Lemma 2, the overall complexity of

this algorithm is Θ(n2 lgn). Moreover, any algorithm solving this problem does Ω(n2 lgn)
operations in the worst case: for w = an and the anti-/morphism f(a) = a, a correct
algorithm returns exactly

∑
1≤`≤n(n− `+ 1)d(`) ∈ Θ(n2 lgn) triples. This proves our claim.

STACS’13

268 Finding Pseudo-repetitions

In the case of the second question of our problem, we proceed as follows. Recall that, in
this case, we are given both a word w and a number k. To identify the pairs (i, j) such that
the factor w[i..j] is in {t, f(t)}k for some t we just have to go through all the possible values
for i and j and check the answer of the query rep(i, j, k). Clearly, this takes Θ(n2) time. The
preprocessing, in which the data structures needed to answer rep queries are built, takes in
the more efficient case of non-erasing morphisms O(n2) time, as well; in the general case, the
preprocessing takes O(n2k) time, and this is more than the time needed to actually answer
all the queries. This improves in a more general framework the results reported in [2], where
the same problem was solved in time O(n2 lgn). Finally, note that the bounds obtained for
non-erasing morphisms are tight, since all the factors of length k` of w = an are equal to
(a`)k, thus being solutions to our problem, no matter what anti-/morphism f is used. Hence,
the number of elements in the solution-set of question (2) of Problem 2 for w is in Θ(n2).

§Summary. Before concluding this section, recall that the key idea in our approach is to
solve both parts of Problem 2 using rep queries. In order to assert the efficiency of this
method note that, once data structures allowing us to answer such queries are constructed,
our algorithms solve the two parts of Problem 2 efficiently. In particular, no other algorithm
solving any of the two questions of Problem 2 can run faster than ours (excluding the
preprocessing part), in the worst case. Hence, in general, a faster preprocessing part yields a
faster complete solution for the problem. However, in the case of non-erasing and, respectively,
literal anti-/morphisms (which includes the biologically motivated case of involutions) the
preprocessing is as time-consuming as the part where we use the data structures we previously
constructed to actually solve the questions of the problem. Thus, the time bounds obtained
in these cases are tight.

I Theorem 11. Let f : V ∗ → V ∗ be an anti-/morphism and w ∈ V ∗ a given word, |w| = n.
(1) One can identify in time O(n3.5) the triples (i, j, k) with w[i..j] ∈ {t, f(t)}k, for a proper
factor t of w[i..j].
(2) One can identify in time O(n2k) the pairs (i, j) such that w[i..j] ∈ {t, f(t)}k for a proper
factor t of w[i..j], when k is also given as input.
For a non-erasing f we solve (1) in Θ(n3) time and (2) in Θ(n2) time. For a literal f we
solve (1) in Θ(n2 lgn) time and (2) in Θ(n2) time.

References
1 T. M. Apostol. Introduction to analytic number theory. Springer, 1976.
2 E. Chiniforooshan, L. Kari, and Z. Xu. Pseudopower avoidance. Fundam. Informat.,

114(1):55–72, 2012.
3 E. Czeizler, L. Kari, and S. Seki. On a special class of primitive words. Theoret. Comput.

Sci., 411:617–630, 2010.
4 N. J. Fine and H. S. Wilf. Uniqueness theorem for periodic functions. Proc. of the American

Mathemat. Soc., 16:109–114, 1965.
5 D. Gusfield. Algorithms on strings, trees, and sequences: computer science and computa-

tional biology. Cambridge University Press, New York, NY, USA, 1997.
6 J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J.

ACM, 53:918–936, 2006.
7 M. Lothaire. Combinatorics on Words. Cambridge University Press, 1997.
8 F. Manea, R. Mercas, and D. Nowotka. Fine and Wilf’s theorem and pseudo-repetitions.

In MFCS, volume 7464 of LNCS, pages 668–680. Springer, 2012.

	Introduction
	Algorithmic problems
	Prerequisites
	Solution of Problem 1
	Solution of Problem 2

