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1. Introduction

Besides the efficiency of algorithms and devices for the acceptance of lan-
guages with respect to time and space a very important topic of theoretical com-
puter science is the study of succinct descriptions of algorithms and languages.
For instance, algorithms are described by programs whose size is measured by
the number of commands (or lines of codes). If languages are described by (fi-
nite) automata, then the number of states is one of the possible measures of
descriptional complexity; and the minimization of finite automata is very early
result in the theory of automata. With respect to the generation of languages
by (different types of) grammars, the number of nonterminals, or the number
of productions, or the total number symbols in rules are well-known measures
of size.

The study of the descriptional complexity with respect to regulated gram-
mars started in [1, 4, 5, 6, 21]. In recent years several interesting results on this
topic have been obtained. There are results which compare the conciseness of
minimal descriptions of languages by different types of regulated grammars as
well as statements that grammars with a bounded size suffice to generate all
languages of certain language classes. For instance, the nonterminal complexity
of programmed and matrix grammars is studied in [9], where it is shown that
three nonterminals for programmed grammars with appearance checking, and
four nonterminals for matrix grammars with appearance checking are enough
to generate every recursively enumerable language. A more detailed investi-
gation with respect to the appearance checking is given in [10]. There are
several papers which present analogous results for scattered context grammars
[2, 11, 12, 17, 24], semi-conditional grammars [18, 19, 21, 24], and multi-parallel
grammars [16].

In this paper we study the nonterminal complexity of tree controlled gram-
mars. A tree controlled grammar is specified as a pair (G,G′) where G is a
context-free grammar and G′ is a regular grammar. Its language consists of all
terminal words with a derivation in G such that all levels of the correspond-
ing derivation tree – except the last level – belong to L(G′). We define the
nonterminal complexity Var(H) of H = (G,G′) as the sum of the numbers of
nonterminals of G and G′. In contrast to most of the papers cited above, we
do not only take the number of nonterminals of G, we also add the number
of nonterminals of G′, i. e., we also measure the complexity of the control de-
vice (however, we note that, for the matrix, programmed and scattered context
grammars, it is not clear how one can measure the complexity of the matri-
ces and the success field and failure field in terms of nonterminals). In [23],
it is shown that there is an infinite hierarchy with respect to the nonterminal
complexity, if we consider tree controlled grammars with non-erasing rules only.
It is worth to note that the proof uses regular languages. On the other side,
the allowance of erasing rules leads to the result that every recursively enumer-
able language can be generated by a tree controlled grammar with not more
than nine nonterminals in G and G′. In this paper we continue the research by
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showing that some known language classes can be generated by tree controlled
grammars with three, four, or seven nonterminals.

The paper is organized as follows. In Section 2, we recall the necessary
concepts and notations. In Section 3, we improve the bound for recursively
enumerable languages from nine to seven. In Section 4, we show that all lin-
ear and regular simple matrix languages can be generated by tree controlled
grammars with a nonterminal complexity bounded by three, and we prove that
this bound is optimal for the mentioned language families. In Section 5, we
show that tree controlled grammars with the nonterminal complexity bounded
by four are sufficient to generate all context-free languages. Finally, we add
some concluding remarks which summarize the results and mention some open
problems and directions for further research.

2. Definitions

We assume that the reader is familiar with formal language theory (see
[7, 22]).

Let T ∗ denote the set of all words over an alphabet T . The empty word is
denoted by ε. The cardinality of a finite set X is denoted by |X|.

A (phrase structure) grammar is specified as a quadruple G = (N,T, P, S)
where N and T are the disjoint alphabets of nonterminals and terminals, re-
spectively, P is a finite set of productions (of the form α → β, where α ∈
(N ∪ T )∗N(N ∪ T )∗, and S ∈ N .

A grammar is called context-free if all rules have the form A −→ w where
A ∈ N and w ∈ (N ∪ T )∗).

A context-free grammar is called regular, if all production are of the form
A −→ wB or A −→ w with A,B ∈ N and w ∈ T ∗.

A context-free grammar is called linear, if all production are of the form
A −→ wBv or A −→ w with A, B ∈ N and w, v ∈ T ∗.

By L(REG), L(LIN ), L(CF ), and L(RE ) we denote the families of all reg-
ular, linear, context-free, and recursively enumerable languages, respectively.

With each derivation in a context-free grammar G, one associates a deriva-
tion tree. The level associated with a node is the number of edges in the path
from the root to the node. The height of the tree is the largest level number of
any node. With a derivation tree t of height k and each number 0 ≤ i ≤ k, we
associate the word of level i which is given by all nodes of level i read from left to
right, and we associate the sentential form of level i which consists of all nodes
of level i and all leaves of level less than i read from left to right. Obviously, if u
and v are sentential forms of two successive levels, then u =⇒∗ v holds and this
derivation is obtained by a parallel replacement of all nonterminals occurring in
the sentential form u.
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In [13], it was shown that every recursively enumerable language is generated
by a grammar

G = ({S, A, B, C}, T, P ∪ {ABC → ε}, S)

in the Geffert normal form where P contains only context-free rules of the form

S → uSa where u ∈ {A,AB}∗, a ∈ T ,
S → uSv where u ∈ {A,AB}∗, v ∈ {BC, C}∗,
S → uv where u ∈ {A,AB}∗, v ∈ {BC,C}∗.

In addition, any terminal derivation in G is of the form

• S =⇒∗ w′Sw by productions of the form S → uSa, where w′ ∈ {A,AB}∗
and w ∈ T+,

• w′Sw =⇒∗ w1w2w by productions of the form S → uSv and S → uv,
where w1 ∈ {A,AB}∗ and w2 ∈ {BC,C}∗, or

• w1w2w =⇒∗ w by ABC → ε

In order to distinguish the phases in a terminal derivation, we use a new
nonterminal and slightly modify the rules of the grammar. A grammar G is in
the modified Geffert normal form if

G = ({S, S′, A, B,C}, T, P ∪ {ABC → ε}, S)

where P contains only context-free rules of the form

(a) S → uSa where u ∈ {A,AB}∗, a ∈ T ,

(b) S → S′,

(c) S′ → uS′v where u ∈ {A,AB}∗, v ∈ {BC,C}∗,
(d) S′ → ε.

In addition, any terminal derivation in G is of the form

(α) S =⇒∗ w′Sw =⇒ w′S′w by productions of the form S → uSa and S → S′,
where w′ ∈ {A,AB}∗ and w ∈ T ∗+,

(β) w′S′w =⇒∗ w1S
′w2w =⇒ w1w2w by productions of the form S′ → uS′v

and S′ → ε, where w1 ∈ {A,AB}∗ and w2 ∈ {BC, C}∗,
(γ) w1w2w =⇒∗ w by ABC → ε.

For the sake of completeness, we also recall definitions concerning regular
simple matrix grammars and tree controlled grammars.

A regular simple matrix grammar of degree n, n ≥ 1, is an (n+3)-tuple G =
(V1, V2, . . . , Vn, T,M, S), where V1, V2, . . . , Vn are pairwise disjoint alphabets of
nonterminals, T is an alphabet of terminals, S is a nonterminal which is not in⋃n

i=1 Vi, and M is a set of matrices of the following forms:
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1. (S → x) with x ∈ T ∗,
2. (S → A1A2 · · ·An) with Ai ∈ Vi for 1 ≤ i ≤ n,
3. (A1 → x1B1, A2 → x2B2, . . . , An → xnBn) with Ai, Bi ∈ Vi and xi ∈ T ∗

for 1 ≤ i ≤ n,
4. (A1 → x1, A2 → x2, . . . , An → xn) with Ai ∈ Vi and xi ∈ T ∗ for 1 ≤ i ≤ n.

We say that G is a regular simple matrix grammar, if it is a regular simple
matrix grammar of some degree n.

A direct derivation step in a regular simple matrix grammar G is defined by

• S =⇒ z if and only if there is a matrix (S → z) ∈ M ,

• z1A1z2A2 · · · znAn =⇒ z1x1B1z2x2B2 · · · znxnBn if and only if there ex-
ists a matrix (A1 → x1B1, . . . , An → xnBn) ∈ M ,

• z1A1z2A2 · · · znAn =⇒ z1x1z2x2 · · · znxn if and only if there exists a ma-
trix (A1 → x1, A2 → x2, . . . , An → xn) ∈ M .

The language L(G) generated by a regular simple matrix grammar is defined
as L(G) = {z | z ∈ T ∗, S =⇒∗ z} where =⇒∗ is the reflexive and transitive
closure of =⇒.

Simple matrix grammar and languages have been introduced by O. Ibarra
in [15]. A summary of results on them can be found in Section 5.1 of [7].

Intuitively, a regular matrix grammar of degree n performs in parallel the
derivations of n regular grammars. Moreover, in the corresponding derivation
tree, the word of any level t is obtained by a concatenation of words of level t
of the derivation trees from the regular grammars.

We now show that the rules of type 1 can be omitted without a decreasing
of the generative power.

Lemma 1 For any regular simple matrix grammar G = (V1, V2, . . . , Vn, T, M, S)
there is a regular simple matrix grammar G′ = (V ′

1 , V ′
2 , . . . , V ′

n, T, M ′, S) such
that M ′ only contains matrices of the forms 2, 3, and 4 and L(G′) = L(G)
holds.

Proof. Let G = (V1, V2, . . . , Vn, T,M, S) be a regular simple matrix grammar.
If M does not contain matrices of type 1, we choose G′ = G. Otherwise, let
M ′′ be the set of matrices of type 1. Furthermore, let B1, B2, . . . , Bn be new
pairwise different nonterminals not contained in V1 ∪ V2 ∪ · · · ∪ Vn. Then we
consider the regular simple matrix grammar

G′ = (V1 ∪ {B1}, V2 ∪ {B2}, . . . , Vn ∪ {Bn}, T, (M \M ′′) ∪Q,S)

where Q consists of all rules of the following forms

(S −→ B1B2 . . . Bn)
(B1 −→ x,B2 −→ ε,B3 −→ ε, . . . , Bn −→ ε) with (S −→ x) ∈ M ′′.
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Obviously, the application of (S −→ x) in G is simulated by the applica-
tion of (S −→ B1B2 . . . Bn) followed by an application of (B1 −→ x,B2 −→
ε, . . . , Bn −→ ε). Therefore it is easy to see that L(G) = L(G′). Moreover, in
the set (M \M ′′)∪Q is no matrix of type 1. Thus G′ satisfies all requirements.

2

We mention the normal form given in Lemma 1 does not necessarily hold for
regular simple matrix grammars without erasing rules since the construction in
the proof of Lemma 1 introduces erasing rules and the elimination of erasing
rules (see Theorem 1.5.3 and Lemma 1.5.7 in [7]) introduces rules of form (1).

By L(RSM ) we denote the family of all languages generated by regular
simple matrix grammars.

A tree controlled grammar is a quintuple H = (N,T, P, S, R) where G =
(N, T, P, S) is a context-free grammar and R ⊆ (N ∪ T )∗ is a regular set. The
language L(H) consists of all words w generated by the underlying grammar G
such that there is a derivation tree t of w with respect to G, where the words
of all levels (except the last one) are in R.

Since R = L(G′) for some regular grammar G′ = (N ′, T ′, P ′, S′), a tree
controlled grammar H can be given as a pair H = (G,G′).

For a context-free grammar G = (N, T, P, S), by Var(G), we denote the
number of the nonterminals of a grammar , i. e., Var(G) = |N |.

Let the tree controlled grammar H be given as a pair H = (G,G′) where G
is the underlying context-free grammar and G′ generates the control language.
Then we set

Var(H) = Var(G) + Var(G′).

By this measure we take into consideration the size of the underlying gram-
mar G as well as the size of control grammar G′.

For a tree controlled language L, we define

Var(L) = min{Var(H) | H = (G, G′), G is a context-free grammar
G′ is a regular grammar and L(H) = L}.

Note that, by definition, Var(H) ≥ 2 for each H = (G,G′) since G as well
as G′ have at least one nonterminal.

Moreover, we set

Ln(TC ) = {L(H) | H is a tree controlled grammar and Var(H) ≤ n}

and
L(TC ) =

⋃

n≥2

Ln(TC ).

By definition and [23], we have the following statements.

Lemma 2 i) For any n ≥ 2, Ln(TC ) ⊆ Ln+1(TC ).
ii) L9(TC ) = L(TC ) = L(RE).

6



3. A Bound for Recursively Enumerable Languages

In this section we show that the bound for recursively enumerable languages
established in [23] can be improved from nine to seven.

Theorem 3 L(RE ) ⊆ L7(TC ).

Proof. Let L ⊆ T ∗ be a recursively enumerable language generated by the
grammar

G = ({S, S′, A, B,C}, T, P ∪ {ABC → ε}, S)

in the modified Geffert normal form. We define the morphism φ : {A, B,C}∗ →
{0, $}∗ by setting

φ(A) = 0$, φ(B) = 02$, φ(C) = 03$,

and construct a tree controlled grammar H ′ = (N ′, T, Pφ ∪ P ′′, S, R′) where

N ′ ={S, S′, 0, 1, $,#},
Pφ ={S → φ(u)Sa | S → uSa ∈ P, u ∈ {A,AB}∗, a ∈ T}

∪ {S → S′}
∪ {S′ → φ(u)S′φ(v) | S′ → uS′v ∈ P, u ∈ {A,AB}∗, v ∈ {BC, C}∗}
∪ {S′ → ε},

P ′′ ={0 → 0, 0 → 1, $ → $, $ → #, 1 → ε, # → ε},
R′ =({S, S′, 0, $, 1#12#13#} ∪ T )∗.

First we show that any terminal derivation in G can be simulated by a
derivation in H. It is clear that the first and second phases of the derivation for
w ∈ T ∗ in the grammar G

S =⇒∗ w′Sw =⇒ w′S′w =⇒∗ w1S
′w2w =⇒ w1w2w,

w′, w1 ∈ {A,AB}∗, w2 ∈ {BC,C}∗, w ∈ T ∗, can be simulated in H using the
corresponding rules of Pφ and chain rules 0 → 0, $ → $, which result in the
sentential form

S =⇒∗ φ(w′)Sw =⇒ φ(w′)S′w =⇒∗ φ(w1)S′φ(w2)w =⇒ φ(w1)φ(w2)w.

Since the rules of Pφ generate words from ({S, S′, 0, $} ∪ T )∗, every control
word of R in these phases of the derivation is also in ({S, S′, 0, $} ∪ T )∗.

Let
z = uABCvw, u ∈ {A, AB}∗, v ∈ {BC,C}∗, w ∈ T ∗,

be a sentential form in the third phase of the derivation in G. Then

z′ = φ(u)0$02$03$φ(v)w, φ(u) ∈ {0, $}∗, φ(v) ∈ {0, $}∗, w ∈ T ∗,
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is the corresponding sentential form in the derivation in H, and z′ is continued
as follows:

φ(u)0$02$03$φ(v)w
(0→1)6($→#)3(0→0)∗($→$)∗

===================⇒ φ(u)1#12#13#φ(v)w
(1→ε)6(#→ε)3(0→0)∗($→$)∗

===================⇒ φ(u)φ(v)w,

which simulates the elimination of the substring ABC in z.
Now we show that L(H) ⊆ L(G) also holds.
Let D : S =⇒∗ w = x1x2 · · ·xn ∈ T ∗, x1, x2, . . . , xn ∈ T , be a derivation in

the grammar H.
Since x1x2 · · ·xn can be generated only by rules S → φ(u)Sa ∈ P ′′,

S =⇒∗ w′Sx1x2 · · ·xn =⇒∗ w′′S′x1x2 · · ·xn, w′, w′′ ∈ {0, 1, $,#}∗, (1)

is a phase of the derivation D.
If w′, w′′ have occurrences of 1 or #, then they must have the subword

1#12#13# by the construction of R. Since rules of the form S → φ(u)Sa
can generate at most subwords 0$02$, i. e., 03$ cannot be generated. Therefore
w′, w′′ cannot contain the subword 1#12#13#. Thus, in this phase, rules of the
form S → φ(u)Sa and chain rules 0 → 0, $ → $ are applied. It follows that

w′ = w′′ = φ(un) · · ·φ(u2)φ(u1)

for some φ(un), . . . , φ(u2), φ(u1) ∈ {0, $}∗. Then

S =⇒∗ un · · ·u2u1Sx1x2 · · ·xn =⇒ un · · ·u2u1S
′x1x2 · · ·xn

is the first phase of a derivation in G, which simulates (1).
Let from S′ some sentential form w1S

′w2 with w1w2 ∈ {0, 1, $, #}∗ be gen-
erated, i. e., in H we have the derivation

S =⇒∗ w′S′w =⇒∗ w′w1S
′w2w. (2)

Though the subwords 0$, 02$ and 03$ can be generated in the first part of
this phase, w1w2 cannot contain a subword 0$02$03$, as S′ separates subwords
0$02$ and 03$ or 0$ and 02$03$, i. e., 0$02$S′03$ and 0$S′02$03$ can be possible
subwords. Thus a subword 1#12#13# cannot be generated, and in S′ =⇒∗

w1S
′w2, only rules of the form S′ → φ(u)S′φ(v), φ(u), φ(v) ∈ {0, $}∗ and the

chain rules 0 → 0, $ → $ are applied. It follows that

w1 = φ(u′m) · · ·φ(u′2)φ(u′1) and w2 = φ(v′1)φ(v′2) · · ·φ(v′m)

for some φ(u′1), φ(u′2), . . . , φ(u′m), φ(v′1), φ(v′2), . . . , φ(v′m) ∈ {0, $}∗.
Then

un · · ·u2u1S
′x1x2 · · ·xn =⇒∗ un · · ·u2u1u

′
m · · ·u′2u′1S′v′1v′2 · · · v′mx1x2 · · ·xn

is the second phase of a derivation in G, which simulates the second phase of
(2).
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Let us now consider the sentential form

w′w1S
′w2w. (3)

As it is stated above, 0$02$S′03$ and 0$S′02$03$ are possible subwords con-
taining nonterminals S′, 0 and $, (3) can be in the form

w′10$S′02$03$w′2w, where w′10$ = w′w1, 02$03$w′2 = w2

or
w′10$02$S′03$w′2w, where w′10$02$ = w′w1, 03$w′2 = w2.

By eliminating S′, we obtain the sentential form

w′w1w2w

by rules S′ → ε and 0 → 0, $ → $ or the sentential form

w′11#12#13#w′2w

by rules S′ → ε, 0 → 0, $ → $, and 0 → 1, $ → #.
Further, the subword 1#12#13# is erased by 1 → ε and # → ε, resulting

in w′1w
′
2w.

In the former case,

w′w1S
′w2w =⇒∗ w′w1w2w

is simulated by

uS′vw =⇒ uvw, φ(u) = w′w1, φ(v) = w2,

which is obtained by S′ → ε.
In the latter case,

w′w1S
′w2w =

{
w′10$S′02$03$w′2w
w′10$02S′$03$w′2w

}
=⇒∗ w′1w

′
2w

is simulated by
uS′vw =⇒ u′ABCv′w =⇒∗ u′v′w,

φ(u) = w′w1, φ(v) = w2, φ(u′) = w′1, φ(v′) = w′2, which is obtained by S′ → ε
and ABC → ε.

Any sentential form z ∈ {0, 1, $, #}∗ of D associated with some level (except
the last one) and containing occurrences of 1 and #, has to be of the form

z = x1#12#13#yw for some x, y ∈ {0, $}∗

by the definition of R′.
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Then the possible sentential forms z− and z+ associated with the previous
and next levels of the derivation tree are

z− ∈ {x0$02$03$yw, x0$S′02$03$yw, x0$02$S′03$yw,

x0$1#12#13#02$03$yw, x0$02$1#12#13#03$yw}
and

z+ ∈ {xyw, x′0$1#12#13#02$03$y′w, x′0$02$1#12#13#03$y′w},
respectively, where x′, y′ ∈ {0, $}∗.

Without loss of generality we can assume that

x0$02$03$yw
x0$S′02$03$yw

x0$1#12#13#02$03$yw



 =⇒∗ z =⇒∗

{
xyw
x′0$1#12#13#02$03$y′w,

Since the application of rules 0 → 1 and $ → # can be delayed without
changing z and still generating words of R′, we replace

x0$S′02$03$yw
(S′→ε)(0→1)6($→#)3(0→0)∗($→$)∗

========================⇒ x1#12#13#yw

with

x0$S′02$03$yw
(S′→ε)(0→0)∗($→$)∗

==============⇒ x0$02$03$yw

(0→1)6($→#)3(0→0)∗($→$)∗
===================⇒ x1#12#13#yw.

The same changes can be done with the derivation

x0$1#12#13#02$03$yw
(1→ε)6(#→ε)3

==========⇒
(0→1)6($→#)3(0→0)∗($→$)∗

===================⇒ x1#12#13#yw,

which is replaced with

x0$1#12#13#02$03$yw
(1→ε)6(#→ε)3(0→0)∗($→$)∗

===================⇒ x0$02$03$yw

(0→1)6($→#)3(0→0)∗($→$)∗
===================⇒ x1#12#13#yw.

We also do similar changes with the derivation

x1#12#13#yw
(1→ε)6(#→ε)3(0→1)6($→#)3(0→0)∗($→$)∗

=============================⇒ x′0$1#12#13#02$03$y′w,

i. e.,

x1#12#13#yw
(1→ε)6(#→ε)3(0→0)∗($→$)∗

===================⇒ x′0$02$03$y′w
(0→1)6($→#)3(0→0)∗($→$)∗

===================⇒ x′1#12#13#y′w.
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Now, from all cases above, we can see that z = x1#12#13#yw is generated
from x0$02$03$yw, and results in xyw, i. e.,

x0$02$03$yw =⇒∗ x1#12#13#yw =⇒∗ xyw.

This phase of the derivation D can be simulated by

uABCvw =⇒∗ uvw, φ(u) = x, φ(v) = y,

in G by using ABC → ε.
Thus, for every derivation D in H, we can construct a derivation in G

simulating D, i. e., L(H) ⊆ L(G).
Since R′ can be generated by the regular grammar G′ = ({S′′}, T ′′, P ′′, S′′)

where

T ′′ = {S, S′, 0, 1, $,#} ∪ T,

P ′′ = {S′′ → xS′′ : x ∈ {S, S′, 0, $, 1#12#13#} ∪ T} ∪ {S′′ → ε},
we have Var(H) = 7 and, consequently, VarTC (L) ≤ 7.

Thus every recursively language is generated by a tree controlled grammar
with at most seven nonterminals. 2

4. A Bound for Linear and Regular Simple Matrix Languages

In this section, for regular, linear and simple matrix languages, we improve
the bound seven given in the preceding section to three.

Theorem 4 L(REG) ⊆ L3(TC ).

Proof. Let L be a regular language and G = (N, T, P, S) a regular grammar
which generates L. Let N = {A1, A2, . . . , An} and S = A1. We now construct
the tree controlled grammar H = ({A,B}, T, P ′, A, R) with

P ′ ={A → BwAi | Aj → wAi ∈ P for some 1 ≤ i, j ≤ n}
∪ {A → Bw | Aj → w ∈ P for some 1 ≤ j ≤ n}
∪ {A → B, B → ε},

R ={A} ∪ {BjwAi | Aj → wAi ∈ P} ∪ {Bjw | Aj → w ∈ P}.
Any derivation in H has the form

A =⇒ Bw1A
i1 =⇒∗ w1B

i1w2A
i2 =⇒∗ w1w2B

i2w3A
i3

=⇒∗ w1w2 · · ·wn−2B
in−2wn−1A

in−1 =⇒∗ w1w2 · · ·wn−2wn−1B
in−1wn (4)

=⇒∗ w1w2 · · ·wn−2wn−1wn

(by the structure of R, in the sentential form w1w2 . . . wr−1B
ir−1wrA

ir , we have
to replace the first ir − 1 occurrences of A by B’s and the last occurrence of
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A by Bwr+1A
ir+1 or by Bwn for r = n− 1) and the words at the levels of the

corresponding derivation tree are

A, Bw1A
i1 , Bi1w2A

i2 , . . . , Bin−2wn−1A
in−1 , Bin−1wn. (5)

According to R, we have the rules

S =A1 → w1Ai1 , Ai1 → w2Ai2 , Ai2 → w3Ai3 , . . . ,

Ain−2 → wn−1Ain−1 , Ain−1 → wn (6)

in P . Hence we have the derivation

S = A1 =⇒ w1Ai1 =⇒ w1w2Ai2 =⇒ w1w2w3Ai3 =⇒ · · ·
=⇒ w1w2 · · ·wn−2Ain−2 =⇒ w1w2 · · ·wn−2wn−1Ain−1 (7)
=⇒ w1w2 · · ·wn−2wn−1wn

in G. Therefore, L(H) ⊆ L(G).

Conversely, it is easy to see that, for any derivation (7) in G, where the rules
(6) are applied, there is a derivation (4) with the words given in (5) in the levels.
Hence we have L(G) ⊆ L(H).

Since R is a finite set, it can be generated by a regular grammar with one
nonterminal (the nonterminal generates all words in one step by a rule). There-
fore we have Var(H) = 3. 2

We note that the existence of an upper bound for the number of nonterminals
comes from the control since there are regular languages Ln, n ≥ 0, which
require n nonterminals for the generation by context-free grammars (see [14]).

We now generalize the proof to linear languages.

Theorem 5 L(LIN ) ⊆ L3(TC ).

Proof. Let L be a linear grammar. It is well-known that L can be generated
by a linear grammar G = (N, T, P, S), where all rules are of the form A → wB
or A → Bw or A → w with A,B ∈ N and w ∈ T ∗. Moreover, let N =
{A1, A2, . . . , An} and S = A1. Starting from G, we now modify the construction
of H = ({A,B}, T, P ′, A, R) in the proof of Theorem 4 by defining the set of
productions and the control set as follows:

P ′ ={A → BwAi | Aj → wAi ∈ P for some 1 ≤ i, j ≤ n}
∪ {A → AiwB | Aj → Aiw ∈ P for some 1 ≤ i, j ≤ n}
∪ {A → wB | Aj → w ∈ P for some 1 ≤ j ≤ n}
∪ {A → B, B → ε},

R ={A} ∪ {BjwAi | Aj → wAi ∈ P}
∪ {AiwBj | Aj → Aiw ∈ P} ∪ {wBj | Aj → w ∈ P}.

12



If we have a sentential form zAiz
′, then we have the level AivBr or BrvAi for

some r in the corresponding derivation tree. If we apply a rule Ai −→ wAj

or Ai −→ Ajw to zAiz
′, we erase the r occurrences of B, replace the first

i−1 occurrences of A by B and the last of occurrence of A by BwAj or the first
occurrence of A by AjwB and the remaining occurrences of A by B, respectively.
Then we get the sentential forms zBiwAjz′ or zAjwBiz′ and the corresponding
levels BiwAj or AjwBi, respectively.

Now we can follow the arguments given in the proof of Theorem 4 to show
that L(H) = L. Since R is finite, again, we obtain Var(H) = 3. 2

We can transform the proof to regular simple matrix grammars, too.

Theorem 6 L(RSM) ⊆ L3(TC ).

Proof. Let G = (V1, V2, . . . , Vn, T,M, S) be a regular simple matrix grammar.
By Lemma 1, without loss of generality we assume that M does not contain
rules of type 1. Let

V1 ∪ V2 ∪ · · · ∪ Vn = {A2, A3, . . . , Am}.
Then we construct the tree controlled grammar H = ({A,B}, T, P, A,R) with

P ={A −→ BAi1BAi2 . . . BAin | (S −→ Ai1Ai2 . . . Ain) ∈ M}
∪ {A −→ BwrA

ir |
(Aj1 −→ w1Ai1 , . . . , Ajr −→ wrAir , . . . , Ajn −→ wnAin) ∈ M}

∪ {A −→ Bwr | (Aj1 −→ w1, . . . , Ajr −→ wr, . . . , Ajn −→ wn) ∈ M}
∪ {A −→ B,B −→ ε}

and

R ={A} ∪ {BAi1BAi2 . . . BAin | (S −→ Ai1Ai2 . . . Ain) ∈ M}
∪ {Bj1w1A

i1Bj2w2A
i2 . . . BjnwnAin |

(Aj1 −→ w1Ai1 , Aj2 −→ w2Ai2 , . . . , Ajn −→ wnAin) ∈ M}
∪ {Bj1w1B

j2w2 . . . Bjnwn |
(Aj1 −→ w1, Aj2 −→ w2, . . . , Ajn −→ wn) ∈ M}.

It is easy to see (by arguments as given in the proof of Theorem 4) that

q1v1Aj1q2v2Aj2 . . . qnvnAjn =⇒ q1v1w1Ai1q2v2w2Ai2 . . . qnvnwnAin

holds in G if and only if

q1B
k1v1A

j1q2B
k2v2A

j2 . . . qnBknvnAjn

=⇒ q1v1B
j1w1A

i1q2v2B
j2w2A

i2 . . . qnvnBjnwnAin

holds in H and analogous relations hold for the initial and terminating derivation
steps. Thus we get L(G) = L(H). By construction Var(H) = 3 since R is finite.

2

13



We now prove the optimality of the bounds given in the Theorems 4, 5,
and 6.

Lemma 7 The regular language L = {ar#as#at | r, s, t ≥ 0} is not in L2(TC ].

Proof. Assume that this language is in L2(TC ). Then there is a tree controlled
grammar H = (G,G′), where G is a context-free grammar and G′ is a regular
grammar, such that Var(H) = 2. Thus any of these grammars has exactly
one nonterminal. Let S be the unique nonterminal of G. Clearly, if S −→ x
is a production such that x ∈ {a, #}∗, then x belongs to L(H) and contains
exactly two symbols #. Also, the maximum number of nonterminals that may
appear in a level of a sentential form of G, according to the control language,
is 1 (otherwise one would derive words that can have more than two #s by a
termination of all occurrences of S). Finally, the only productions used in a
derivation that is accepted by the control language and introduce a symbol #
are those that end the derivation. So, in a word derived by H, the two symbols
# have at most distance d, where d is the maximum length of the righthand
side of a production. This is a contradiction. 2

Corollary 8 L2(TC ) is properly included in L3(TC ).

Proof. The language L of the proof of Lemma 7 is in L(REG). By Theorem 4,
it is in L3(TC ). Now the proper inclusion follows from Lemma 7. 2

We mention that, conversely, L2(TC ) contains the languages {a2n | n ≥ 0}
(the tree controlled grammar ({S}, {a}, {S −→ SS, S −→ a}, S, {S}∗) gener-
ates it, see [7], Example 2.3.2) which does not belong to L(CF ) and L(RSM)
(see [7], Corollary 2 of Section 1.5).

5. A Bound for Context-Free Languages

In this section we prove that four nonterminals are sufficient to generate
context-free languages by tree controlled grammars.

Theorem 9 L(CF ) ⊆ L4(TC ).

Proof. Let G = (N, T, P,A1) be a context-free grammar in Chomsky Normal
Form. Also, assume that the starting symbol A1 does not appear in the right-
hand side of any production of G; the only allowed λ-production is A1 −→ λ.
Let N = {A1, A2, . . . , An} for some n ≥ 1.

Let A,B, # be three symbols not contained in N . We define the context-free
grammar G′ = (N ′, T, P ′, B) having the set of non-terminals N ′ = {A,B, #}
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and the productions set P ′ = M1 ∪M2 ∪M3 ∪M4, where

M1 ={B −→ #Aa | A1 −→ a ∈ P, a ∈ T ∪ {λ}}
∪ {B −→ #ABjABkA | A1 −→ AjAk ∈ P, 2 ≤ j, k ≤ n}

M2 ={B −→ A}
M3 ={B −→ ABjABkA | Ai −→ AjAk ∈ P, 2 ≤ i, j, k ≤ n}

∪ {B −→ AaA | Ai −→ a ∈ P, a ∈ T, 2 ≤ i ≤ n}
M4 ={A −→ #, # −→ λ}.

We also define the regular language R = R∗1R2, where

R1 ={#} ∪ {#AiBjABkA | Ai −→ AjAk ∈ P, i, j, k ≥ 2}
∪ {#AiaA | Ai −→ a ∈ P, i ≥ 2}

R2 ={λ} ∪ {#ABjABkA | A1 −→ AjAk ∈ P, 1 ≤ j, k ≤ n}
∪ {#Aa | A1 −→ a ∈ P} ∪ {B}.

Note that the words of the control language, by its definition, consist of the
catenation of t words from R1, where t ≥ 0, and exactly one word from R2;
however, this last word can be λ, so the control language R contains all the
words from R∗1. Nevertheless, all the words from R2 are in R, as the prefix of
a word from R consisting in the catenation of t words from R1 can actually be
empty, for t = 0.

In the following, we describe the derivations of the tree controlled grammar
H = (N ′, T, P ′, B, R) and show that it generates the same language as G.

The first step in a derivation of H always consists in rewriting B according
to one of the rules from M1. That is, a derivation in H starts only with a rule
B −→ #ABjABkA with A1 −→ AjAk ∈ P or with a rule B −→ #Aa for
A1 −→ a ∈ P . In both these cases, the words found on the second level of
the derivation tree are from R2 and, consequently, from R. No other rule that
rewrites B can be applied, as we would obtain a non-empty word that contains
no symbol # on the second level of the tree; but such a word would not be
contained in R.

In the case when we have #Aa on the second level of the tree, the derivation
continues in only possible way. In the first step, # is rewritten into λ and A is
rewritten into #, to obtain # ∈ R1 on the third level. In the second and final
step, the symbol # is rewritten into λ and the derivation ends. The generated
string was a, and this belonged to L(G) as A1 −→ a ∈ P .

In the case when the second level of the tree contains a word #ABjABkA
with 2 ≤ j, k ≤ n the derivation is continued as follows. The symbol # is
rewritten into λ and the symbols A are all rewritten into #, as there are no
other choice. Hence, we will have on the third level of the tree a word #x#y#,
where x is derived in one step from Bj and y is derived from Bk. In a correct
derivation (with respect to the control language) we should have #x#y# ∈ R.
As this word ends with # it means that its suffix from R2 is the empty word.
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Consequently, no word from R2 can appear as a factor of #x#y#, so no rule
from M1 can be applied at this derivation step. It follows that the symbols
B from the first group can only be rewritten into A, AaA or ABsABtA, with
a ∈ T and 2 ≤ s, t ≤ n. But this means that no other # symbols appears
in x or y, and that #x#y# ∈ R∗1. The only way for this to hold is to have
#x, #y ∈ R1. Moreover, the only possibility to have this is to rewrite the first
j − 1 symbols B into A and the last symbol B into AaA or ABsABtA, with
a ∈ T and 2 ≤ s, t ≤ n. In the first case, #x = #AjaA will be in R1 if an only if
Aj −→ a ∈ P , while in the second case, #x = #AjBsABtA will be in R1 if and
only if Aj −→ AsAt ∈ P . In a similar fashion, one can show that #y = #AkaA
with Ak −→ a ∈ P or #x = #AkBsABtA with Ak −→ AsAt ∈ P .

Further, we show by induction that the words that may appear on the level
r of a derivation tree of H, for r ≥ 3, have the from

#m(#t1#x1) . . . (#tp#xp)#s

where p,m ≥ 0, s > 0, xi ∈ {A`BjABkA | A` −→ AjAk ∈ P, `, j, k ≥ 2} ∪
{AjaA | Aj −→ a ∈ P, a ∈ V } and ti ≥ 0 for all 1 ≤ i ≤ p, and there is
a derivation tree of G that has on the rth level the word y1 . . . yp such that
yi = AjAk if xi = A`BjABkA and yi = a if xi = Aja.

The property holds for r = 3, by the explanations above. Let us assume that
it holds for some r ≥ 3, and we show that it also holds for r + 1. Let w be the
word appearing on level r of some derivation tree of H. All the # appearing in
this word will be rewritten into λ and all the symbols A will be rewritten into
#, as these are the only rules that can be applied to # and A, respectively. If
w contains no B or terminal symbol, the conclusion follows: the next level will
contain only symbols #. Let us assume now that w contains at least one symbol
B. Therefore, w contains at least one factor of the form #AsBtABpA. Take the
leftmost such factor that occurs in w; it will be followed only by symbols # and
A; anyway, as the last A of that factor is rewritten into #, it is clear that the
word on the next level will end with #. The same reasoning holds for case when
w contains terminal symbols, and we obtain that the word on the next level will
end with #. We continue by looking at the way the factors #x` are rewritten.
First, a factor #x` = #AjaA is transformed into #j+1. Further, let us analyse
how a factor #x` = #AiBjABkA of w is rewritten in a valid derivation step.
This word becomes λ#ix#y#, where Bj is rewritten into x and Bk to y, and
i > 1. By arguments similar to the ones used in the description of the derivation
step transforming the second level of a tree in its third level, we obtain that the
only possibility to rewrite the first group of symbols B is the following. We
rewrite the first j − 1 symbols B into A and the last symbol B into AaA or
ABsABtA, for some a ∈ T and 2 ≤ s, t ≤ n. Similarly, the only possibility
to rewrite the second group of symbols B is to rewrite the first k − 1 symbols
B into A and the last symbol B into AaA or ABsABtA, for some a ∈ T and
2 ≤ s, t ≤ n. We obtain, once more, that #x = #AjaA for some Aj −→ a ∈ P
or #x = #AjBsABtA for some Aj −→ AsAt ∈ P ; also, #y = #AkaA with
Ak −→ a ∈ P or #x = #AkBsABtA with Ak −→ AsAt ∈ P . But this proves
that our statement is true.
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In other words, we showed that there is a bijection between the derivations
in the grammar H and those of grammar G. Now, it follows easily that the
language generated by G′ with respect to the control language R, thus, L(H),
equals L(G).

Since G′ has three nonterminals and R is generated by the grammar

G′′ = ({S}, {A, B, #} ∪ T, {S −→ wS | w ∈ R1} ∪ {S −→ w | w ∈ R2}, S)

with only one nonterminal S, we get that L(G) can be generated by a tree
controlled grammar given by (G′, G′′), with nonterminal complexity 4. 2

6. Conclusions

First we summarize our results in the diagram shown in Figure 6, where
(upward) lines and arrows denote inclusion and proper inclusion, respectively,
and families are incomparable if they are not connected.

L7(TC ) = L(TC ) = L(RE )

L6(TC )

L5(TC )

L4(TC )

L3(TC ) L(CF )

iiSSSSSSSSSSSSSSSS

L2(TC )

OO

L(LIN )

OOiiSSSSSSSSSSSSSSS
L(RSM )

kkXXXXXXXXXXXXXXXXXXXXXXXXXXXX

L(REG)

OO 88rrrrrrrrrr

It is an open problem whether the inclusions Ln(TC ) ⊆ Ln+1(TC ) are
proper for 3 ≤ n ≤ 7.

We know that L2(TC ) does not contain all regular sets (Lemma 7), i. e.,
L(REG), L(LIN ) and L(RSM ) are not included in L2(TC ). However, we do
not know whether or not L(CF ) is included in L3(TC ).
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Moreover, we do not know good bounds for matrix or ET0L languages which
can be obtained by special choices of control languages (see [8]).

The aim of the control is to check that the levels of the derivation tree have
a special form described by a regular language. That means that one has to
check whether the levels belong to some given regular language. Such a check
can easily be done by a finite automata but hardly by a regular grammar.
Therefore it is of interest to study a complexity measure which – besides the
number of nonterminals of the underlying context-free grammar – takes into
consideration the complexity of the finite automaton (for instance, its number
of states). Using this approach, we get much higher bounds since we need more
states to accept the considered regular languages than nonterminals to generate
them. An improvement of such bounds remains to be done.
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