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Abstract 

The ontogenetic development of the gut hormone cholecystokinin (CCK) and the key 

proteolytic enzyme trypsin was described in Atlantic cod larvae (Gadus morhua) from 

first-feeding until 38 days post first-feeding (dpff). CCK is known to play a major role in 

the endocrine control of digestive processes in mammals and adult fish, but its 

regulatory role in the larval stages of marine fish is largely unknown. Only small 

amounts of CCK were found in the body (excluding head) in cod larvae at first-feeding, 

but CCK levels increased exponentially with development, suggesting a more 

pronounced role of CCK during ontogeny. Tryptic enzyme activity increased slightly until 

a standard length of ca. 8 mm (approx. 33 days dpff) with a significant increase in larvae 

larger than 8 mm standard length, indicating limited digestive capacity in the early 

stages. To entangle the short-term feedback mechanism between CCK and tryptic 

enzyme activity, we conducted a 12 hour feeding experiment at 21 dpff. Cod larvae 

receiving only algae revealed a noticeable response in tryptic enzyme activity within two 

hours in the morning, whereas larvae fed algae and rotifers at the same time showed a 

slightly delayed response up to four hours. Tryptic enzyme activity remained low in the 

group receiving only algae as well as the two fed groups in the afternoon. No reaction in 

tryptic enzyme activity was observed in larvae that received a second meal of rotifers in 

the afternoon, indicating limited regulatory and digestive capacity to handle several 

meals in a short period. CCK levels remained relatively constant throughout the day but 

increased in the afternoon in all three groups when tryptic enzyme activity was low, 

suggesting that a negative feedback mechanism between CCK and tryptic enzyme 

activity is present in larval cod at least from 21 dpff.  

 

Key words: Atlantic cod larvae, trypsin, CCK, digestion, ontogeny, endocrine control 
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1. Introduction 

The unstable and unpredictive production of juveniles of many marine fish species for 

aquaculture still prevents commercialization of many candidate species. One reason is 

the lack of knowledge of the function and efficiency regarding digestive physiology in 

the early stages that hampers formulation of proper feeds and feeding regimes. There is 

a good understanding of how the tissues and organs of the digestive system develop 

during larval fish ontogeny. Accordingly, the developmental gene expression and 

secretion patterns of the digestive enzymes have been well described (reviewed by 

Lazo et al., 2011). However, research on the endocrine control of digestive functions in 

fish larvae is still in its infancy (Webb and Rønnestad, 2011) and also lags behind that 

of adult fish (e.g. Murashita et al., 2008). Consequently, models derived from mammals 

and adult fish in most cases serve as starting points to discover similar mechanisms in 

developing fish larvae.  

Until altricial fish larvae acquire an adult-like mode of digestion, characterized by a fully 

functional stomach including gastric glands and acidic digestion, they rely mainly on 

serine proteases with trypsin-like enzymes as the most significant proteolytic enzymes 

in the early larval stages. These alkaline proteases are synthesized in the pancreas and 

secreted into the gut, following the ingestion of feed. Among these enzymes, trypsin is 

considered to be a key enzyme in the digestive process (Zambonino Infante and Cahu, 

2001). Trypsin is secreted as its inactive precursor trypsinogen from the acinar cells of 

the pancreas into the gut lumen and either auto-activated or activated by the enzyme 

enteropeptidase. In marine fish larvae, the amount of tryptic enzyme activity in the gut 

has been demonstrated to be a function of feed ingestion, gut filling and the composition 

of nutrients (Rønnestad and Morais, 2007; Ueberschär, 1995).  

The gastrointestinal hormone cholecystokinin (CCK) is known to play a key role in 

contraction of the gallbladder, peristalsis in the intestine, delay of gastric emptying and 

pancreatic enzyme secretion in mammals (Silver and Morley, 1991) and adult fish 

(Einarsson et al., 1997). In addition, it acts as a satiation signal in the fish brain (Volkoff 

et al., 2005). In mammals, CCK is considered one of the most important stimulators of 

pancreatic enzyme secretion (Liddle, 2006) and is therefore an obvious candidate to 
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study the same functions in larval fish. Upon the presence of nutrients in the gut, CCK is 

released from enteroendocrine cells in the gut epithelium into the body fluids and acts 

on target cells in the pancreas to release secretions into the gut lumen. The stimulation 

in the gut might be of mechanical and/or biochemical nature. High tryptic enzyme 

activity in the gut acts as a negative feedback control for the release of CCK in humans, 

suggesting a regulatory loop between these two factors (Liddle, 2006) and the same 

mechanism has been described in adult fish (Murashita et al., 2008). The spatial 

distribution of the CCK-producing cells in the larval gut seems to vary between fish 

species (e.g. Kamisaka et al., 2005; Webb et al., 2010), and knowledge of the 

regulatory mechanism between CCK and trypsin still remains limited in developing fish 

larvae. Moreover, the differences in the spatial and temporal appearance of these cells 

indicate species-specific differences in controlling digestive processes (Rojas-García et 

al., 2011). Additionally, it has been shown in mammals that certain food components 

and digestive end products, like intact protein or certain amino acids, stimulate CCK and 

consequently pancreatic enzyme secretion, more than other nutrients (Liddle, 1995). 

Results of controlled tube-feeding studies (Koven et al., 2002), as well as standard 

feeding trials (Cahu et al., 2004; Naz and Türkmen, 2009), suggest that similar 

mechanisms are present in early larval stages of fish. Low amounts of these stimulatory 

components in commercial microdiets may contribute to the inability of most marine fish 

larvae to utilize these diets efficiently from first-feeding (Yúfera et al., 2000).  

Although functional studies on daily rhythms in marine fish larvae exist (e.g. feed 

uptake; Kotani and Fushimi, 2011; Pedro Cañavate et al., 2006), physiological studies 

on digestive processes are not widespread in the literature and focused mostly on the 

response of proteolytic enzyme activity in relation to feeding schedules (Applebaum and 

Holt, 2003; MacKenzie et al., 1999; Ueberschär, 1995). Nevertheless, knowledge of 

diurnal cycles of physiological aspects, including digestive processes, has gained some 

attention in recent studies (Fujii et al., 2007; Harboe et al., 2009; Rojas-García et al., 

2011; Yúfera, 2011). They may provide insight, for instance, on feeding times, feeding 

amounts and number of meals in larviculture practices in relation to digestive capacities 

and endogenic rhythms of the larvae. 
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Aquaculture of Atlantic cod (Gadus morhua) is a relatively young industry with many 

challenges, including larviculture. Moreover, as wild cod stocks are being highly 

exploited in the North Atlantic and there are many unknown factors involved in the 

recruitment and mortality of year classes, this species serves as a model organism to 

tackle basic questions in larval digestive physiology. Here, we describe the ontogenetic 

development of CCK and tryptic enzyme activity in Atlantic cod larvae to provide 

insights into the capacity to regulate digestive processes in early cod. We conducted a 

short-term feeding experiment to evaluate the interaction between CCK and tryptic 

enzyme activity over 12 hours following different numbers of meals. Previous studies 

have shown that there is a relatively large amount of CCK found in the head part 

(central nervous system mainly) which may mask changes of CCK in the 

gastrointestinal tract (Rojas-García et al., 2011). Therefore, all analyses in the present 

study were done on dissected larvae excluding the head.  

Apart from disclosing the postulated mechanisms of CCK and tryptic enzyme activity, 

this provides valuable information on the diurnal digestive capacity in early cod related 

to practical feeding conditions.  
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2. Materials and Methods 

2.1 Larval rearing 

Fertilized cod eggs were incubated in a 75 L hatching incubator for 17 days with full-

strength seawater at 5.5 - 5.9°C. Gentle bubbling from the bottom kept the eggs in 

suspension and the water was exchanged at 4 L min-1 to maintain optimal water quality. 

Newly hatched cod larvae (3 days post-hatch) were counted using density estimates of 

three tube samples and 50000 larvae were transferred to a first-feeding tank (450 L) to 

establish a density of around 110 larvae L-1. The black feeding tank was equipped with 

a two-directional water inlet immediately below the water surface at 50% of the tank 

radius and was aerated with fine bubbling using an aeration ring in the middle bottom of 

the tank. Water flow was gradually increased from 0.6 L min-1 on day 1 of the 

experiment (1 day post first-feeding, dpff) to 3.0 L min-1 at the end of the experimental 

period (38 dpff). Oxygen remained between 93 - 99% saturation throughout the 

experiment. Water temperature was gradually increased from 6°C to 11°C. Light was 

provided 24 hours a day applying indirect illumination of the rearing room and a weak 

light bulb (100 lux) above the tank. Dead larvae and debris were removed daily by 

siphoning the tank bottom and by using an automatic and rotating cleaner arm later in 

the experiment. A surface skimmer was installed to keep the water surface clean. 

Microalgae Nannochloropsis sp. paste (Nanno 3600, Reed Mariculture, USA) was pre-

mixed with seawater and added daily in the morning (10 ml, 1 - 16 dpff; 15 ml, 17 - 38 

dpff). Enriched rotifers (Brachionus plicatilis; LARVIVA Multigain, BioMar, Denmark) 

were administered twice a day in the morning (10:00) and afternoon (15:00) with 

increasing rotifer densities in the tank throughout the experiment (5 rotifers ml-1 to 30 

rotifers ml-1). In addition, algae paste and rotifers were provided continuously after the 

second feeding using a separate storage tank and a peristaltic pump. Enriched Artemia 

instar II nauplii (EG Artemia, INVE, Belgium) were co-fed with rotifers at densities of 1 

ml-1 from 32 dpff until the end of the experiment. The larval rearing followed the best 

larviculture practices at the Austevoll Research Station. 

10 - 15 larvae were sampled randomly each sampling day prior to feeding in the 

morning using a pipette with a large opening. The larvae were transferred with minimum 
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of seawater into an Eppendorf vial and then immediately frozen on dry ice and 

subsequently stored at -80°C until analysis. 

 

2.2 Short-term diurnal rhythm experiment 

A 12 hour experiment was conducted in seven, green 40 L tanks on 21 dpff. Each tank 

was equipped with a water inlet right below the water surface and was aerated the 

same way as the main black tank described above. Water flow was set to 0.3 L min-1 

and water parameters (Temperature, O2%) were not different from the main black tank. 

One day in advance, 150 larvae were transferred to each tank after the second meal in 

the afternoon for acclimatization. 

On the day of the experiment, 1.25 ml algae paste was added to each tank at 9:30 and 

15:15, respectively. Three tanks were fed enriched rotifers once at 10:30 (“one meal”)  

at a density of 22 rotifers ml-1 and another three tanks were fed twice at 10:30 and 

15:30 (“two meals”) at densities of 22 rotifers ml-1 and 11 rotifers ml-1, respectively. One 

tank was only given algae paste (considered as the “control” group). 5 - 10 larvae were 

sampled hourly as quickly as possible from each tank between 8:00 - 20:00 as 

described above and stored at -80°C until analysis. 

 

2.3 Sample preparation 

Individual samples were analyzed for CCK and tryptic enzyme activity according to 

Rojas-García et al. (2001) and Ueberschär (1993). Described briefly, frozen samples 

were allowed to thaw on ice, rinsed with distilled water and the standard length (mm, tip 

of upper jaw to end of notochord) was measured on an ice-cold petridish under a 

microscope. Gut fullness was evaluated, using a simple gut fullness index after Rojas- 

García et al. (2011): 0% (empty), <25%, 25 - 50%, 50 - 75%, 75 - 100% (full). The head 

was dissected from each larva and excluded from the analyses. Each larva was then 

transferred to an individual Eppendorf vial and homogenized in 50 µl ice-cold distilled 

water using a motorized pestle. For extraction of CCK, 750 µl Methanol were added, the 

sample was vortex-mixed thoroughly and incubated on ice for 30 min. After 

centrifugation (15 min., 1700 g, 4°C) each sample was split in two by transferring the 
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supernatant to a new Eppendorf vial. Both, the remaining pellet (methanol-insoluble fish 

precipitate) and the supernatant (CCK methanol extract) were evaporated to dryness 

using a vacuum desiccator attached to a water-jet pump and stored at -20°C until 

analysis. 

 

2.4 Analysis of CCK and tryptic enzyme activity 

The individual CCK extracts were assayed by a competitive radioimmunoassay (RIA) 

using CCK-RIA kits (RB302, Euro-Diagnostika, Sweden) according to the supplier’s 

instructions and Rojas-García et al. (2001). CCK levels were interpolated from a 

standard curve (0.78 - 25 pmol CCK L-1) and concentrations are expressed as fmol 

larva-1. Recovery of known amounts of CCK added to samples throughout the extraction 

procedure was 71%. 

Tryptic enzyme activity in individual pellets was measured using a highly specific 

fluorescence substrate (Nα-benzoyl-L-arginine-methyl-coumarinyl-7-amide-HCl) 

according to Ueberschär (1993). Values for tryptic enzyme activity are expressed as 

hydrolysed fluorescence products MCA (methyl-coumarinyl-7-amide, nmol MCA min-1 

larva-1). The coefficient of variation between triplicate measurements of samples was 

1.6% (n = 4 samples). 

 

2.5 Statistical analysis 

CCK concentrations and tryptic enzyme activity levels during ontogenetic development 

were averaged for length classes in steps of 0.5 mm (4.0 – 4.5, 4.5 – 5.0 etc.). Data of 

the diurnal rhythm experiment were tested for normality and homogeneity of variance 

using the Shapiro-Wilks-test and Levene’s test, respectively. Significant differences in 

standard length, gut fullness, CCK concentration and tryptic enzyme activity were 

analyzed using a nested One-way ANOVA with measurements of individuals in each 

tank nested in treatment groups for each sampling point. Upon significance, differences 

between groups were assessed with Student-Newman-Keul’s test. Significant 

differences between sampling points within each fed group were analyzed using a 

nested One-way ANOVA followed by a post hoc Duncan's multiple-comparison test. 
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Values of gut fullness were transformed using the formula gut fullness’=arcsin√gut 

fullness. Statistics were performed with SPSS 19.0 for Windows and the level of 

significance was set to p < 0.05. Data are presented as mean ± SD.  
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3. Results  

3.1 Ontogeny 

The mean standard length of cod larvae was 4.59 ± 0.24 mm on 1 dpff and increased to 

8.14 ± 0.41 mm at the end of the experimental period (38 dpff, Fig. 1). Growth was 

gradual during the first 3 weeks but tended to stagnate between 23 and 30 dpff. 

CCK was present in the dissected body at the earliest developmental stage and 

increased exponentially with increasing larval standard length (Fig. 2). Tryptic enzyme 

activity increased slightly until the larvae reached a standard length of approx. 8 mm 

with a sharp increase afterwards and ranged between 0.04  and 54.35  hydrolysed 

MCA, nmol min-1 with increasing variability over time among individuals of comparable 

size (Fig. 3). 

 

3.2 Short-term diurnal rhythm experiment 

The observations of the gut fullness over the 12 hour feeding period are given in Fig. 4 

for all three groups. Ingestion of rotifers is indicated by an immediate increase in gut 

fullness both in the “one meal” and “two meals” group as short as 30 min. after feeding 

in the morning. Mean levels of gut fullness remained relatively stable over the whole day 

in both fed groups with the values in the “two meals” group being slightly higher 

compared to the “one meal” group. Gut fullness in the “control” group refers to 

aggregation of algae trapped in the hindgut in some of the individuals and was generally 

lower compared to larvae of the two fed groups with significant differences (except 

12:00 and 17:00) compared to the two fed groups after feeding in the morning. Highly 

significant differences in gut fullness between samplings points within groups were 

found before (10:00) and immediately after feeding (11:00) in the one-meal group (F12,26 

= 5.187; p < 0.0001) as well as in the two-meals group (F12,26 = 18.914; p < 0.0001). The 

standard length was 7.09 ± 0.46 mm, 7.34 ± 0.57 mm and 7.32 ± 0.52 mm for the 

“control”, “one meal” and “two meals” group, respectively. The larvae were not 

significantly different in standard length between all three groups at any sampling point 

(data not shown). 
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CCK levels increased between 9:00 and 14:00 in all groups with fluctuating levels 

afterwards until the end of the sampling period (20:00). The highest levels were 

recorded one hour earlier at 19:00 with 2.69 ± 1.52 fmol larva-1, 1.89 ± 0.16 fmol larva-1 

and 1.94 ± 0.22 fmol larva-1 in the “control”, “one meal” and “two meals” group, 

respectively (Fig. 5). This time point represents 8.5 hours after the addition of rotifers in 

the “one meal” group and 3.5 hours after the second addition in the “two meal” group. 

The lowest levels were recorded one hour later at the end of the sampling period at 

20:00 with 0.70 ± 0.33 fmol larva-1, 0.75 ± 0.15 fmol larva-1 and 0.58 ± 0.27 fmol larva-1 

in the “control”, “one meal” and “two meals” group, respectively. CCK levels were not 

significantly different between groups at all sampling points. 

Tryptic activity in the “control” group increased gradually with a marked drop at 11:00 

which was 1.5 hours after the addition of algae (1.89 ± 1.41 hydrolysed MCA nmol min-1 

larva-1, Fig. 5), reaching a peak at 12:00 (7.51 ± 3.70 nmol min-1 larva-1) and decreased 

successively between 12:00 and 19:00, irrespective of the second addition of algae at 

15:15. The development of tryptic activity showed almost similar patterns in the “one 

meal” and the “two meals” groups. After an initial increase in the morning, tryptic 

enzyme activity dropped at 11:00 in both groups, 30 min. after the addition of rotifers 

(3.55 ± 0.56 nmol min-1 larva-1 for “one meal” and 4.07 ± 1.64 nmol min-1 larva-1 for “two 

meal” larvae). 4.5 hours after the administration of rotifers tryptic activity increased to 

reach a peak at 15:00 (7.51 ± 1.76 nmol min-1 larva-1 for “one meal” and 7.15 ± 2.73 

nmol min-1 larva-1 for “two meal” larvae). Tryptic enzyme activity leveled off afterwards in 

both fed groups reaching lowest levels at 20:00 9.5 hours after the addition of rotifers 

(2.10 ± 0.81 nmol min-1 larva-1) in the “one meal” group and 19:00 3.5 hours after the 

second addition of rotifers (2.60 ± 1.24 nmol min-1 larva-1) in the “two meal” group (Fig. 

5). No significant differences in tryptic enzyme activity were found between all groups at 

any sampling point.  
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4. Discussion 

4.1 Ontogeny 

We conducted the present study to examine the ontogenetic development of CCK and 

tryptic enzyme activity in cod larvae between 1 - 38 dpff. An additional aim was to 

examine the dynamic dependency of both factors based on a 12 hour monitoring of 

CCK and tryptic enzyme activity related to a different number of meals. 

Growth expressed as standard length showed a gradual increase in the experimental 

period and was comparable to growth reported in recent literature on cod larvae (Busch 

et al., 2011; Meyer et al., 2012; Penglase et al., 2010). A noticeable growth depression 

was evident between 23 - 30 dpff. In this period, a disease referred to as the “Distended 

Gut Syndrome” appeared, which symptoms have been described in several marine fish 

larvae, including cod, and causes cumulative mortality due to loss of appetite (Kamisaka 

et al., 2010). Around 20 - 30% of the larvae sampled in this period revealed signs of 

DGS and this might have been the reason for reduced growth. These larvae had 

generally lower gut fullness and tryptic enzyme activity values (data not shown). All 

larvae with signs of DGS were excluded from further statistical analysis. 

As mentioned previously, it has been shown that CCK is quantitatively dominant in the 

brain of larval fish, e.g. as described for  herring (Clupea harengus)(Rojas-García et al., 

2011), halibut (Hippoglossus hippoglossus)(Rojas-García and Rønnestad, 2002) and 

sea bass (Dicentrarchus labrax)(Tillner et al., unpubl. data). Besides its regulatory role 

of the digestive processes, CCK also acts as a satiation signal in the brain of humans 

(Smith, 2009) and adult fish (Volkoff et al., 2005). However, the latter role has not been 

experimentally explored in larval fish. In the present study, our aim was to investigate 

the role of CCK in relation to the regulatory functionality on tryptic enzyme activity in the 

gut. Consequently, the head of all cod larvae was separated before the analyses in 

order to exclude neural sources of CCK. However, it must be pointed out, that no 

differentiation between synthesized CCK in cells in the gut epithelium and released 

CCK into the body fluids was made in the present study. CCK was found in larval cod 

immediately after hatching, although these concentrations were close to the detection 

limit of the RIA, proposing a limited regulatory function of CCK at this developmental 
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stage. The following exponential increase of CCK in larval cod over standard length 

suggests an increasing importance of CCK in the digestive system which is supported 

by data that demonstrated an increasing number of CCK-producing cells during 

ontogeny using immunohistochemical staining from 6 dpff onwards (Hartviksen et al., 

2009). These cells were mainly found in the anterior midgut where contact with 

stimulatory nutrients most likely permits a regulation of gallbladder and pancreas 

secretions but also in the hindgut later in development where the physiological role is 

less clear. A pronounced individual variability in the number of CCK-producing cells 

within comparable developmental stages was revealed, although the authors pointed 

out that different postprandial states or the low sensitivity of the staining method might 

have contributed to this variability (Hartviksen et al., 2009). Nevertheless, individual 

differences in CCK-producing cells might explain the variability of CCK levels in the 

present study. In general, data on the ontogenetic development of CCK content in fish 

larvae are rather scarce and most studies focused on the description of CCK-producing 

cells (Hartviksen et al., 2009; Kamisaka et al., 2001; Kamisaka et al., 2005; Kamisaka et 

al., 2003; Micale et al., 2010; Webb et al., 2010), gene expression of CCK (Kortner et 

al., 2011a; Kortner et al., 2011b) or both (Kurokawa et al., 2000; Kurokawa et al., 2004). 

Kortner et al. (2011b) revealed a moderate but consistent decrease in CCK expression 

in whole larval cod between 3 - 60 days post hatch. Given the assumption that CCK is 

mainly expressed in the brain, the authors contribute the decreased expression to a 

decreasing proportion of brain tissue compared to the whole body. This statement is 

supported by a study from Cahu et al. (2004) on larval sea bass in which a clear 

allometric relationship between dry weight specific CCK content and dry weight was 

evident. In contrast, a study on larval sea bream (Sparus aurata), using the same 

analytical method for CCK as in the present study, revealed almost no increase in whole 

body CCK until 40 days post-hatch in pooled samples (Naz and Türkmen, 2009). To 

reveal the ontogenetic development of CCK in more detail, Rojas-García and 

Rønnestad (2002) described the compartmental distribution of CCK in first feeding 

halibut larvae (Hippoglossus hippoglossus) between 7 - 26 dpff, where the proportion of 

CCK in the gut compared to whole body CCK increased from 2 - 62%. In contrast, a 
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different distribution of CCK was found in larval herring (Clupea harengus) where whole 

body CCK increased 15-fold until 40 days post-hatch, but CCK in the gut remained 

constant at relatively low levels (Rojas-García et al., 2011). This difference between 

halibut and herring could be contributed to morphological and consequently 

physiological differences of the digestive tract, with herring having a straight and halibut 

having a rotated gut (Rojas-García et al., 2011). However, it remains to be proven, if 

these low amounts are able to elicit a regulatory response in first-feeding fish larvae 

(Rojas-García and Rønnestad, 2002) which also counts for the CCK concentrations 

found in the present study in larval cod. 

With regard to tryptic enzyme activity, only a slight increase could be observed in our 

study until the larvae reached a standard length of 8 mm (approx. 33 dpff), which is the 

same pattern found for trypsin by Kortner et al. (2011b). On the transcriptional level, an 

increased mRNA expression for trypsin until 17 days post-hatch was observed by these 

authors, followed by a continuous decline thereafter. This discrepancy between gene 

expression and enzyme activity could be contributed to a post-transcriptional hormonal 

control or to a developing acidic digestion due to a developing stomach towards 

metamorphosis (Kortner et al., 2011b). In the earlier case, CCK levels between 0.5 - 1.0 

fmol larva-1 found for larval cod of comparable age (to 17 dph in Kortner et al., 2011b) in 

the present study might be the threshold for the regulatory role of CCK in larval cod. In 

general, the developmental pattern of different digestive enzymes has been described 

in several species, including California halibut (Paralichthys californicus)(Alvarez-

González et al., 2005), sea bass (Cahu and Zambonino Infante, 1994), cobia 

(Rachycentron canadum)(Faulk et al., 2007), red drum (Sciaenops ocellatus)(Lazo et 

al., 2000a) and Atlantic cod (Wold et al., 2007) and has been found to be species-

specific. It has been proposed, that digestive enzyme activities in early stages of marine 

fish larvae are under transcriptional control, but can be triggered by the nutritional 

composition of the diet (Zambonino Infante and Cahu, 2001). In our study, a decrease 

in tryptic enzyme activity is obvious between 7.5 - 8.0 mm standard length (approx. 25 - 

35 dpff) and might indicate only limited digestive capacity during this developmental 

period in larval cod. This intermediate decrease has been observed in several species 
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and has been proposed as ontogenetic deficiencies in digestive capacity and the 

inability to digest food properly at certain developmental stages (Ueberschär, 1995). 

This assumption is strengthened by the fact, that trypsin is by far the most important 

enzyme for protein digestion in the larval stages of altricial species (Ueberschär, 1995). 

For example, a decrease in digestive capacity has been observed in larval herring two 

weeks after first-feeding with copepods, independent of food density (Pedersen et al., 

1990). Moreover, certain diets might be inadequate to provoke a digestive response via 

the CCK-trypsin axis, as the decrease in tryptic enzyme activity in our study coincides 

with the transitional feeding period from rotifers to Artemia. Species-specific differences 

and a more rapid development in digestive capacity may, at least in parts, contribute to 

the success in larviculture of different species (Ueberschär, 1995). Furthermore, 

individual variability in tryptic enzyme activity at comparable developmental stages of 

one species may divide individual larvae into “winners” and “losers” and might explain 

individual fates in survival and growth. 

 

4.2 Short-term diurnal rhythm experiment 

In order to evaluate the suggested feedback mechanism between CCK and tryptic 

enzyme activity in dependence on a different number of meals, we conducted a short-

term experiment at 21 dpff. The immediate increase in gut fullness in the “control” group 

after the addition of algae in the morning suggests an active or passive uptake of algal 

cells which are trapped in the hindgut (Kjørsvik et al., 1991). Addition of algae (“green 

water”) is routinely used in larviculture and is believed to aid in water quality, to enhance 

contrast for capturing prey (Conceição et al., 2010; Rocha et al., 2008; van der Meeren 

et al., 2007) and to reduce stress. Ingested algae were, however, not considered to 

represent a full meal in terms of energy and nutrients supplied. In the morning, live 

rotifers were immediately ingested by the larvae, indicated by increased mean gut 

fullness 30 min. after the addition in the two fed groups. The degree of gut fullness in 

those two groups was more or less constant over the sampling period and was only 

slightly higher in the “two meal” group at almost all sampling points. However, there was 

no clear effect of a second feeding in the afternoon, indicated by the gut fullness of the 
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“two meal” group. Although the rotifer density in the tanks was not evaluated, a 

complete water exchange every 2 - 3 hours and the consequent removal of rotifers 

indicates a gut retention time of ingested prey up to several hours in cod larvae at this 

age. CCK increased slightly in all groups until 14:00 without clear differences in all 

groups. A marked increase in all groups was revealed at 19:00 reaching highest levels 

in all groups followed by a drop one hour later reaching lowest levels in all groups which 

points to a delayed response to a nutrient stimulus of newly ingested algae or algae and 

rotifers. The only study on diurnal rhythm of CCK in fish larvae was a recent work on 

Atlantic herring done by Rojas-García et al. (2011). In their investigations, no clear 

response of CCK in the body (excluding head) was observed after feeding over three 

days, although CCK levels were higher in fed larvae compared to starved larvae. An 

increase in the carcass/gut ratio of CCK 30 min. after feeding can be contributed to a 

release and re-synthesis of CCK (Rojas-García et al., 2011). Similarly, an increase in 

the carcass/gut ratio of CCK was also found in tube-fed halibut larvae four hours after 

the administration of protein (albumin) as a nutrient stimulus (Rojas-García and 

Rønnestad, 2002). This underlying effect might be masked in the present study, since 

whole-body homogenates, excluding heads, were analysed. 

Tryptic enzyme activity started from relatively high levels in the morning prior to feeding 

times in all three groups, although almost no larvae had food remainings in their gut at 

this time. This can be considered as the pre-feeding basal level of regularly fed larvae. 

Similarly, larvae of herring and Japanese eel (Anguilla japonica) have been shown to 

retain trypsin in their intestine up to several hours after a meal to be available for newly 

arriving prey (Pedersen and Andersen, 1992; Pedersen et al., 2003). On the other hand, 

it has been shown that adult sea bream are able to synchronize their behavior and 

increase enzyme secretion to a fixed feeding time to prepare for a forthcoming meal 

(Montoya et al., 2010). In addition, a diurnal rhythm in feed ingestion and tryptic enzyme 

activity over three days was observed by Fujii et al. (2007) for malabar grouper larvae 

(Epinephelus malabaricus, 3 - 5 days post-hatch) despite continuous light and stable 

prey densities in the rearing tanks. Similar reasons might be responsible for the 

relatively high tryptic enzyme activity in the morning in larval cod. Interestingly, a 
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marked decrease in tryptic enzyme activity was evident at 11:00 in all groups. Since 

trypsin is retained in the gut and not reabsorbed for up to several hours after a meal 

(Pedersen and Andersen, 1992), this marked decrease in tryptic enzyme activity might 

be the consequence of immediate binding of trypsin to algal cells and rotifers acting as 

a substrate. There was no real starving group represented in the present study, and the 

increase in tryptic enzyme activity at 12:00 in the “control” group is most likely the 

consequence of ingested algae that trigger the digestion process, as proposed by other 

authors (Cahu et al., 1998; Reitan et al., 1997). An additional group without algae and 

rotifers could have shed light on the role of algae in triggering digestive processes and 

also on graded responses in the digestive system to the size and type of ingested 

particles/prey (Hjelmeland et al., 1988). On the long term, the addition of algae might 

facilitate the maturation of the digestive system by triggering digestive processes and 

might contribute to the overall higher success of larviculture in “green-water” described 

in the literature (e.g. Cahu et al., 1998; Faulk and Holt, 2005; Lazo et al., 2000b). 

Consequently, rearing marine fish larvae in “green-water” might be an essential part of 

best larviculture practices. The peak in the “control” group was followed by a gradual 

decrease towards the end of the day, indicating an immediate release of trypsinogen 

from the pancreas after nutritional stimulation followed by empty stores afterwards and 

basal tryptic enzyme activity levels in the gut. The increase in tryptic enzyme activity 

was delayed up to three hours in the two fed groups, reaching high levels at 15:00, 

respectively. This might be due to slow and gradual release of stimulatory components 

from the ingested rotifers although based on visual inspection of cod in the present 

study, the rotifers were rapidly degraded. The fact that maximum tryptic enzyme activity 

levels were not different between the two fed groups and the group receiving only algae 

(control) may imply a dominant role of a chemical stimulus over a mechanical stimulus 

of ingested prey. Alternatively, only slight mechanical stimulation by the algae might be 

sufficient to elicit a digestive response. In contrast, the content of trypsin in the gut is 

found to be a function of ingested prey items in larval herring (Pedersen et al., 1987). 

Similarly to the “control” group, tryptic enzyme activity tended to drop in the afternoon in 

both fed groups with no apparent effect of a second meal in the “2 meals” group. This 
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observation strengthens the indication, that pancreatic resources for trypsinogen in 

larval cod are exhausted after an initial stimulation with no response after subsequent 

ingestion of algae or algae and rotifers. This also emphasizes the importance of 

retaining and re-using trypsin in the intestinal lumen. 

In contrast, tryptic enzyme activity was persistently high in larval herring after two 

consecutive sequences of feeding and digestion, pointing to the ability of larval herring 

to digest several meals within a short period after an initial release of enzymes 

(Pedersen and Hjelmeland, 1988). Similar results were shown for larvae of African 

catfish (Clarias gariepinus) seven days post first-feeding, where, given several meals a 

day, tryptic enzyme activity fluctuated around a stable level over 24 hours, indicating a 

higher capacity to handle several meals a day in this species (García-Ortega et al., 

2000). Similar to the present study, a decrease in tryptic enzyme activity 1 - 2 hours 

after food ingestion was found in the catfish, indicating an immediate utilization of 

trypsin in the gut for protein hydrolysis. Therefore, a response in tryptic enzyme activity 

to a food stimulus after ingestion might be reflected thereafter (García-Ortega et al., 

2000). A delayed postprandial response in tryptic enzyme activity has also been shown 

for larval turbot (Scophthalmus maximus), with a persistent postprandial increase in 

older larvae, indicating an increasing digestive capacity with age in these species 

(Ueberschär, 1995). 

Taken together, CCK and tryptic enzyme activity revealed a reverse diurnal trend in all 

groups in the present study, with a marked increase in CCK when tryptic enzyme 

activity levels were low. Given the high and stable gut filling over the entire sampling 

period in all groups which most likely results in a continuous and stable nutrient stimulus 

in the gut, the data suggest that CCK is synthesized and released as a stimulatory 

response when tryptic enzyme activity in the gut is low and vice versa. When this 

regulatory loop becomes functional still remains to be established. Such negative 

feedback control has been observed in humans (Liddle, 2000) and has been proposed 

to be also effective in fish larvae (Cahu et al., 2004; Rønnestad et al., 2007). In detail, 

the presently available data suggest that in the presence of trypsin a CCK-releasing 

peptide in the gut is degraded, whereas ingested protein competes as a substrate for 
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trypsin and the intact CCK-releasing peptide stimulates the release of CCK (Liddle, 

1995; Miyasaka et al., 1989). In a controlled tube-feeding study on first-feeding herring 

larvae, Koven et al. (2002) found an immediate increase in whole-body CCK after 

administration of solutions containing protein (albumin), protein plus free amino acid and 

free amino acid only (in descending order of CCK response). This was followed by an 

immediate increase in tryptic enzyme activity in all groups (in the same order of 

magnitude). Given the failed postprandial response in body-CCK (excluding head) in the 

same species (Rojas-García et al., 2011) and in the present study, the increase in CCK 

in the study of Koven et al. (2002) is likely to be an increase in CCK in the brain and 

might act as a satiation signal instead of acting as a stimulation of pancreatic 

secretions. Similar conclusions were drawn for adult channel catfish (Ictalurus 

punctatus) and juvenile salmon (Salmo salar)(Peterson et al., 2012; Valen et al., 2011). 

Finally, it has to be pointed out that standard length was chosen as the only proxy for 

growth due to several reasons. It reflects very well the developmental stage in larval cod 

(Finn et al., 2002) and is a conservative measure in starving larvae, which quickly lose 

protein and consequently body mass, which might have happened in the “control” 

group, but not in standard length. It has to be noted, that due to the analytical 

procedure, it was not feasible to assess body mass and/or protein content in individual 

larvae without any impact on the tryptic enzyme activity and CCK analytics. The focus 

on the analyses of tryptic enzyme activity and CCK in individual larvae in this study 

required to consider standard length as the reference.  
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5. Conclusions 

Our study shows the individual development of CCK and the key enzyme trypsin in 

larval Atlantic cod and demonstrates a feedback mechanism among CCK and trypsin in 

regulating digestive processes in early larval stages of cod. The role of CCK as a trigger 

of pancreatic secretions is likely to mature as ontogeny proceeds, although spatial and 

temporal differences in CCK in different body compartments complicate the 

interpretation in developing fish larvae. Tryptic enzyme activity increased only slightly in 

early cod pointing towards limited digestive capacity early in development. Results of 

the 12 hour experiment revealed that tryptic enzyme activity increased immediately after 

a nutrient stimulus consisting of algae and rotifers, even with the administration of an 

algae solution without rotifers, which supports earlier findings that algae may play a key 

role in the maturation process of the digestive system in marine fish larvae. A second 

meal of rotifers the same day did not result in increasing enzyme activity, suggesting a 

limited proteolytic capacity in cod larvae to handle several meals in a short time period. 

Therefore, feeding times, frequency and amounts should be matched to the digestive 

capacity of the larvae to maximize nutrient utilization and growth. A reverse trend 

between CCK and tryptic enzyme activity was evident in all groups, indicating a 

negative feedback control in cod larvae similar to that found in mammals.  
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Figure legends 
 
Fig. 1. Standard length (mm) of Atlantic cod larvae during ontogenetic development 2 - 

38 days post first-feeding (dpff). Data are presented as mean + SD (n = 10 - 15 
at each sampling point). 

 
Fig. 2. CCK content (fmol larva-1) for length classes (standard length, 0.5 mm precision, 

4.0 – 4.5, 4.5 – 5.0 etc.) of larval cod (excluding head). Larvae showing signs of 
the “Distended Gut Syndrome” (DGS) were excluded. Data are presented as 
mean + SD and numbers represent the number of larvae in each length class. 

 
Fig. 3. Tryptic activity (hydrolysed substrate, nmol MCA min-1 larva-1) for length classes 

(standard length, 0.5 mm precision, 4.0 – 4.5, 4.5 – 5.0 etc.) of larval cod 
(excluding head). Larvae showing signs of the “Distended Gut Syndrome” (DGS) 
were excluded. Data are presented as mean + SD and numbers represent the 
number of larvae in each length class. 

 
Fig. 4. Relative gut fullness in the three feeding groups between 8:00 and 20:00. Algae 

were provided at 9:30 and 15:15 (all groups), rotifers at 10:30 (“one meal”, ”two 
meals) and 15:30 (“two meals”). Data are presented as mean + SD (“control” n = 

5 individuals; “one meal”, “two meals” n = 3 tanks). 
 

indicates the administration 

of algae, 
 

indicates the administration of rotifers. Different letters indicate 
significant differences between the three groups at a specific sampling point, 
“n.s.” indicates non-significant differences (nested One-way-ANOVA, Student-
Newman-Keuls test, p < 0.05). Values of gut fullness were transformed using the 
formula gut fullness’=arcsin√gut fullness. 

 
Fig. 5. Daily pattern of CCK (fmol larva-1) and tryptic enzyme activity (nmol MCA min-1 

larva-1) for cod larvae (excluding head) at 21 days post first-feeding: A = ”control” 
(n = 5 individuals), B = ”one meal” (n = 3 tanks), C = ”two meals” (n = 3 tanks). 

Data are presented as mean +/- SD. 
 

indicates the administration of algae, 
 

indicates the administration of rotifers. No significant differences in CCK and 
tryptic enzyme activity were found between all groups at each sampling point. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

30 

 

 
Fig. 4 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

31 

 

 
Fig. 5 
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Highlights 

 We describe the ontogenetic development of CCK and tryptic enzyme activity in 

larval cod 

 CCK is known to play a key role in regulating digestive processes 

 CCK concentrations increased during ontogeny suggesting a growing role in 

regulating digestive processes 

 A short-term experiment reveals a feedback mechanism between CCK and 

tryptic enzyme activity 

 Cod larvae have limited regulatory and digestive capacity to handle several 

meals in a short period 


