Evaluation of Technologies for
Communication between
Monitoring and Analysis

Component in Kieker

Bachelor’s Thesis

Jan Beye

September 26, 2013

KieL UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
SOFTWARE ENGINEERING GROUP

Advised by: Prof. Dr. Wilhelm Hasselbring
M. Sc. Florian Fittkau
Dipl.-Inf. Jan Waller

Eidesstattliche Erklarung

Hiermit erklare ich an Eides statt, dass ich die vorliegende Arbeit selbststandig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

ii

Abstract

The number of distributed software systems is increasing. This makes reliable and efficient
communication more important then ever. In the past years and decades many different
technologies for communication have been developed. The purpose of this thesis is to
evaluate different technologies for the communication of the monitoring and the analysis
component of the monitoring software Kieker. Four different technologies have been
implemented and evaluated with the metrics throughput of records per time interval and
the loss rate.

Two low level protocols, i.e., TCP and UDP have been implemented. The evaluation turned
out that TCP is the most efficient technology for the communication. UDP did not fulfill
the expectation to be the fastest communication technology and stays behind TCP. The
other two protocols are high level protocols. These are a JMS solution on the example of
RabbitMQ and RMI. The evaluation showed that the overhead of RMI is too heavy to be an
efficient communication technology. JMS is more efficient then RMI but the overhead for
the communication with the JMS provider is still to heavy to be really efficient.

The reliability is given by all technologies besides UDP which has a loss rate of six percent
in the evaluation. This maybe acceptable in streaming and multimedia applications but for
many uses cases this circumstance is not acceptable.

1ii

Motivation

Introduction
1.1
1.2

Foundations and Technologies
Kieker.,
ExplorViz.
Benchmarking
Communication Technologies

2.1
2.2
2.3
2.4

Project Module - “Kieker in the Cloud”
3.1 Kieker Architecture and Requirement Analysis
Cloud
Implementation
Evaluation

3.2
3.3
34

Communication Implementation in Kieker
TCP .. oo

4.1

Goals
1.3 Document Structure

Performance Evaluation

51
52

5.3 Experimental Setup

54 Results
5.5 Discussion of the Results

5.6 Threats to Validity

Related Work

Conclusions and Outlook

71 Summary
72 Discussion
73 FutureWork

GOM
Measurement Technique

Contents

Contents

Bibliography
A Acronyms
B Detailed Results for the Experiments

C Attachment

vi

33

37

39

43

2.1
2.2
2.3
24
25
2.6
2.7
2.8

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8

4.1
4.2
43

5.1

List of Figures

Kieker Overview 4
ExplorViz landscape view L L oL 4
ExplorViz system view L L L 5
TCP handshake 6
JMS overview 8
JMSpointtopoint 8
JMS publish subscribe Lo o o 9
RMIoverview e 9
Kieker reverse engineered L L. 11
Packages in the Kieker analysis component 12
Packages in the Kieker monitoring component 12
Packages in the Kieker common component 13
Packages in the Kieker tools component 14
Deployment diagram of Kieker in thecloud 15
Nodes and Network for OpenStack 16
SLAstic Lite sequence diagram 17
Class diagram of the writer thread on the example of TCP 20
Class diagram of the writer on the example of TCP 20
Class diagram of the reader on the example of TCP 21
Average throughput of the five experiments 25

vii

51
52
53

B.1
B.2
B.3
B4
B.5
B.6

B.7
B.8

List of Tables

Average throughput per minuteinrecords 26
Loss rate per experiment in percent 0L 26
Standard deviation of the throughput 26
Results for the first experiment in records per minute 39
Results for the second experiment in records per minute 39
Results for the third experiment in records per minute 40
Results for the fourth experiment in records per minute 40
Results for the fifth experiment in records per minute 41
Transmisson Control Protocol (TCP) compared to User Datagram Protocol

(UDP), Remote Method Invocation (RMI) and Java Message Service (JMS) . . 41
UDP compared to RMIand JMS 42
JMScomparedtoRMI 42

ix

Chapter 1

Introduction

1.1 Motivation

Distributed software systems and cloud computing are getting more and more important
in our days. A cloud in this context is not a data-storage cloud like ownCloud [ownCloud]
or iCloud [iCloud]. By cloud computing we refer to, for instance, Amazon EC2 [Amazon
EC2], Eucalyptus [Eucalyptus], or OpenStack [OpenStack]. Two of the major advantages
are the flexibility and scalability of those systems. However, there are also challenges that
have to be solved. One of them is the communication between the different components of
the distributed software system in the cloud. Whether to use direct communication via
TCP/IP or more high-level protocols like JMS [Hapner et al. 2002] or JMX [Process 2006] is
an very important decision. This decision is important because it has a major impact on the
performance of the application. Reliability becomes important in this context. Unreliable
protocols can be faster than reliable because the overhead is much smaller, but how much
messages are getting lost? And is the lost arguable? So this isn’t only interesting for cloud
computing and distributed systems, its interesting for all applications, which exchange
data and communicate with other applications.

In our days, another important topic is application monitoring. This Monitoring provides a
live view onto the software, which is necessary for reacting on load peaks. The gathered
information can be used to start new cloud instances. Monitoring also gives an insight to
the application and shows where potentials for improvements are and it can be used for
reengineering of the systems, to determine the important parts of the application and how
often a part of an application is called. The live view approach is followed by the ExplorViz
project [Fittkau 2012]. This project tries to visualize traces from monitored applications in
real time with different views.

1.2 Goals

The goal of the thesis is to evaluate the best suited technology for the communication
between the monitoring and analysis component in Kieker [van Hoorn et al. 2012] in the
cloud. Technologies in this context can be low-level protocols like TCP or UDP, but also
more high-level technologies like JMS or RMI. The evaluation should figure out which
technology provides the best ratio between throughput and reliability requirements.

1. Introduction

G1 - Development of a Performance Evaluation Method and Matrix

The most important goal of this thesis is to develop a reliable method for performance
evaluation for Kieker in the cloud. For this purpose, it is also very important to define a
good matrix for the evaluation which fits to the context. Metrics for the evaluation will
be throughput and reliability of the technology. In our context, throughput describes the
received monitoring records in respect to a timing frame. Reliability means that all send
packets are getting received.

G2 - Performance Evaluation

As the second goal the implemented technologies will be evaluated, based on the developed
evaluation method and matrix.

G3 - Analysis of the Results

The last goal of the thesis will be the analysis of the results with statistical means [Georges
et al. 2007]. After finishing the analysis, the results will be used to determine the best
fitting technology for the communication between the monitoring and analysis component
in Kieker in the cloud.

1.3 Document Structure

In Chapter 2 the foundations are presented. Chapter 3 describes the project in whose
context this thesis is written. The next chapter provides details about the implementation.
Afterwards Chapter 5 shows the details of the performance evaluation. That chapter is
followed by a chapter which discusses related work. In the last chapter, the results will be
summarized and a outlook is given.

Chapter 2

Foundations and Technologies

2.1 Kieker

Kieker [van Hoorn et al. 2012] is a Monitoring Software, which monitors the execution of
methods in a program. It is also possible to monitor resources like the CPU Utilization
with Kieker. Kieker is developed by the Software Engineering Group of the Department of
Computer Science at the University of Kiel, Germany. It is used in research projects and
by industrial company’s. Kieker is licensed under the Apache License, Version 2.0., which
allows everybody to use and modify Kieker.

Architecture

As Figure 2.1 shows, Kieker consists mainly of two components, i.e., monitoring and the
analysis component. These components communicate with a writer and reader system,
which can be extended as needed. Its possible to store the data for later analysis in a
repository like a database or a file or send it directly to the analysis with, for instance, JMS.
Records are used for the communication. This record can also be created as it is needed for
the context.

Analysis

The analysis component follows the pipe and filter architectural style. This system is
designed as a plugin system. The plugin system easily allows to connect a reader, which
reads the monitored records, with the various filters. This filters again can be designed as
needed for the analysis. A second important concept about the plugin system is that with
the plugin system the filters can be plugged together. Therefore, it is possible to combine
various analysis steps.

Monitoring

The main function of the monitoring component is to collect monitoring information
with interception technologies like Aspectj [Aspect]]. The collection is done by probes.
The collected data gets stored or send to analysis applications with writers. Again one
important features is that everything can be extended as needed.

2. Foundations and Technologies

A

A =
S s S S

S 2 8
A f23¢
() 8 8 § S
Q SN ISl FON
S 2 5 5 9
A A Q S o 3 2
5 & § 5 3 S8 3
S ¢ kS 3] 8 £ 2 o
S 5§ A N ° ° 5 8 ¢
s 2 g 2 2 2 S 2%
25 3 5 5 § Visualization || ¢ 5§
S8 et g g g § 8
21k g : s 1 © S
LS B S s < S Avhitecure reconstr. 7
8 8 8 8 8 .
v @ v ¢ ¢ ¥ Pipe and fiter ramework

Pipe & Filter Configuration

Monitoring Analysis |
Reader ""9 Visualization
Plugin

Monitoring £3]
Writer

O
Monitoring £
Ol controller

Monitoring £

Analysis
Probe

Controller

Kieker.Monitoring Kieker.Analysis

Figure 2.1. Kieker Overview
Source: http://kieker-monitoring.net/features/

Hyper-
rove e s
sau
e
10.008
10.0.0.3

.—’— s & ! MQ'_}M“'QF*'WJ

Web Requests

10.004
10.0.0.1
= 10.0.0.9
-10.0.0.2 10.0.0.7

Figure 2.2. ExplorViz landscape view on the example of PubFlow
Source: http://www.explorviz.net/

2.2 ExplorViz

ExplorViz [Fittkau et al. 2013] is an approach to visualize applications in large software
landscapes on demand and online. To visualize the application ExplorViz uses application
monitoring, e.g., Kieker. To avoid the problem that most servers couldn’t process such
huge amount of monitoring records, which will be generated in large software landscapes,
the work is distributed on worker nodes, for instance, with cloud computing. On these
worker nodes a preprocessing of the monitoring data is done. During this preprocessing
the records are consolidated to traces. To reduce the amount of data reductions techniques
are used, e.g., equivalence classes. Afterwards the preprocessed data gets collected on
a single node. The preprocessed data gets aggregated. The aggregated data and the

http://kieker-monitoring.net/features/
http://www.explorviz.net/

2.3. Benchmarking

(a) System level view of the four compo- (b) System level view of the jPetStore
nents of the jPetStore with opend servcie component

Figure 2.3. ExplorViz system view on the example of jPetStore
Source: http://www.explorviz.net/

landscape model get transformed into a visualization model, which only includes the
relevant informations. Since all this should take place in real time, it is very important that
the communication between the nodes is efficient.

As visualization perspective two views are at the moment possible. An landscape view
(see Figure 2.2) and a system view (see Figure 2.3). Figure 2.3a shows the four components
of the jPetStore (http://sourceforge.net/projects/ibatisjpetstore/) and Figure 2.3b shows the
relationships of the components with the opened service component. The landscape view
is a 2D visualization and combines elements from the deployment and activity diagrams
from the Unified Modeling Language (UML). The system view is a 3D visualization which
uses the city metaphor for visualization. ExplorViz will be implemented as web application
utilizing WebGL.

2.3 Benchmarking

Benchmarking describes the process of comparing different things which can be measured
in the same unit. It is used in a lot of different sectors with different methods and goals,
for example, for processes and products or in business economics. In this thesis we are
using technology benchmarking. Technology benchmarking describes the comparison of
similar or different technologies. It requires that all technologies have identical purpose.
"In computing, a benchmark is the act of running a computer program, a set of programs,
or other operations, in order to assess the relative performance of an object, normally
by running a number of standard tests and trials against it. The term 'benchmark’ is
also mostly utilized for the purposes of elaborately-designed benchmarking programs

http://www.explorviz.net/
http://sourceforge.net/projects/ibatisjpetstore/

2. Foundations and Technologies

Client Server
sy'nwseq\x
o i
A 589°
syn 2
ack:
d y+7 eq\)w
[dat]
-
i

Figure 2.4. TCP handshake
Source: http://upload.wikimedia.org/wikipedia/commons/c/c7/300px-Tcp-handshake.png

themselves." As described in Kalibera and Jones [2013] to do an benchmarking with force
of expression isn’t easy. Modern software systems are quite complex and the execution
is influenced by a lot of different factors, which can vary from run to run and aren’t
controllable. The difficulty is to find a methodology, which takes care of these problems
and is repeatable. Advances in performance are often small in our field, which makes it
very important to provide measurements of variation to eliminate the risk of measurement
errors. This also makes the use of methods with statistical meaning very important. A lot
of different benchmarks like the DaCapo benchmarks [Blackburn et al. 2006] have been
developed to take care of all these problems. The concrete benchmarking design of this
thesis is described in Chapter 5.

2.4 Communication Technologies

In the following, the four communication technologies for the evaluation are explained.

2.4.1 Transmission Control Protocol

The TCP is a transport protocol for communication in networks [Cerf et al. 1974]. It is
a reliable protocol because as shown in Figure 2.4 the sender and the receiving server
do a three way handshake to create a connection. During this handshake the sender
sends an sequence number to the sever. This has to be acknowledged by the server. The
acknowledgment of the server again has to be acknowledged by the receiver. Now the data
can be transfered. Every transfered data has again to be acknowledged by the receiver.

http://upload.wikimedia.org/wikipedia/commons/c/c7/300px-Tcp-handshake.png

2.4. Communication Technologies

This gives TCP the ability to react on damaged or lost data. The data transfer is done by
sockets. On the network layer [ITU 1994] the internet protocol (IP) [Defense Advanced
Research Projects Agency 1991] is used. TCP was developed in 1970 and became an
industry-standard. Today, it is used in most networks.

2.4.2 User Datagram Protocol

The UDP is like TCP a transport protocol for communication in networks [RFC 1980]. In
difference to TCP, UDP is an unreliable protocol. A sender just sends his data and gets
no acknowledgment that the data was successfully received by the receiver, since no real
connection is established between sender and receiver. The data packets are sent to the
network with a destination and will be successfully received if something is listening at
the destination. Otherwise the data will be lost. An important difference to TCP is that
UDP can’t deal with data in the wrong order. Therefore, the data must contain information
about how it can be reconstructed when needed. Like in the case of TCP, UDP uses sockets
for the communication and IP for the network layer. UDP had been developed in 1980
after TCP was marked as to heavy for multimedia streaming. Still UDP is mostly used for
streaming, e.g., music streaming, because it is faster and the reliability is less important in
such applications.

2.4.3 Java Message Service

JMS is developed under the Java Community Process and has the identification number
JSR914 [Hapner et al. 2002]. It was developed for communication of distributed systems
in a loosely coupled way. It guarantees reliability and the messages are exchanged
asynchronously. As shown in Figure 2.5 for JMS a provider\server and one or more
producers and one or more consumers are required [Basic J]MS API Concepts]. JMS
supports two main messaging concepts. The Point-to-Point Messaging Domain concept
visualized in Figure 2.6 and the Publish/Subscribe Messaging Domain concept shown
in Figure 2.7. In both cases the producer sends his message to the queue and has no
knowledge about the receivers. The receiver also has no knowledge about the sender. Only
the exchange format is known from both sides.

In the Point-to-Point concept the consumers consume the messages actively from the queue.
After consumption, the consumer sends an acknowledgment. This concept is followed by,
for instance, RabbitMQ [RabbitM Q)]

In the Publish/Subscribe concept the message is sent to a topic. The consumers must
register at the provider for the topic. The incoming messages will be delivered from the
provider to the consumer. This concept is followed by, for instance, ActiveMQ [ActiveMQ)].
JMS is not bound to a single protocol. Two common protocols for JMS are Advanced
Message Queuing Protocol (AQMP) and TCP.

2. Foundations and Technologies

Message
consumer

Figure 2.5. JMS overview

Source: http://software.intel.com/en-us/articles/bitter-messages-java-messaging-anti-patterns

Msg
Sends

Consumes

| client 1 —{Msg — @ ? | Client 2
Queue Acknowledges

Figure 2.6. JMS point to point
Source: http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

2.4.4 Java Remote Method Invocation

RMI is based on client-server communication [Java Remote Method Invocation]. The server
registers an object at the RMI-Registry. This is shown in step one in Figure 2.8. Now
the object can be look up by the client in the RMI-Registry, as in step two of the figure.
The RMI-Registry returns the server stub on a lookup, this is done in step three. The
communication is established between the sever stub on the client side and the server
skeleton on the server side as shown in step four. The client can call all methods on the
object like it would be a local object. In difference to real local calls and objects, exceptions
concerning the network communication must be handled by the method calls. In the call,

http://software.intel.com/en-us/articles/bitter-messages-java-messaging-anti-patterns
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

2.4. Communication Technologies

Subscribes
‘/ .
Publishes —— Delivers —>| Client 2
Client 1 ‘IMsg — Msg
<«Subscribes —1 Client 3
Topic Delivers —

Figure 2.7. JMS publish subscribe
Source: http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html

Client Host Server Host

[Server Object Interface J [Server Object Interface J

(4) Data
Client Server Communication Server Server
Program Stub Skeleton Object

(1) Register server object

¥

' Y
(3) Return server stub RMI Registry Host
RMI
(2) Look for serverobject N Registry

Y
.

Figure 2.8. RMI overview
Source: http://lycog.com/wp-content/uploads/2011/03/java- rmi-overview.png

all necessary data can be put and transfered to the server. After receiving the call the
server can process the data provided with the call. In comparison to the other technologies,
RMI has the ability to provide informations with the return value. This makes an direct
feedback possibly.

http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
http://lycog.com/wp-content/uploads/2011/03/java-rmi-overview.png

Chapter 3

Project Module - “Kieker in the Cloud”

The challenge of the project module - “Kieker in the Cloud”, was to bring the monitoring
software Kieker into the cloud [Rohr et al. 2008]. One requirement had been that the
analysis of the monitored data is done in real time on nodes in the cloud. Another
requirement had been to develop a software which takes care to scale the nodes for the
analysis and to distribute the monitoring to the analysis.

3.1 Kieker Architecture and Requirement Analysis

The first step of the project started with an analysis of the architecture of Kieker and the
requirements. The architecture analysis was done by reverse engineering of the compiled
jar file and some research in the source code of Kieker. We figured out that Kieker, as
shown in Figure 3.1, consists of four packages.

=-kieker

kieker.tools
,/ \\

4 .

4

208 9

’ .
K N
kieker.analysis 452 Ekieker.monitoring

/
-
%

424 599

\sN h'/'
l=-kieker.common

Figure 3.1. Kieker reverse engineered

11

3. Project Module - “Kieker in the Cloud”

= kieker.analysis

419 b i

N v/
analysis.pl

P
B.analygjs.[epository

w e s v o
.analysis.analysisComponent H .analysis.exception

Figure 3.2. Packages in the Kieker analysis component

The two main packages are the Analysis package (Figure 3.2) and the Monitoring package
(Figure 3.3). These two packages contain the main functionality for recording the monitor-
ing data and analyze them. The Common package (Figure 3.4) is a helper package, which
contains the different records and some other functionality needed by the Analysis and the

Monitoring package. The last package, the Tools package (Figure 3.5) contains some useful
tools like an player to replay logs.

== kieker.monitoring

.monitoring.annotation B.moqitoriqg.probe

"0,

I’—“— \3
B.monitgring.writer 365 B.monitor[ng.sampler.sigar

57

6,53 21"

B.moni‘go[ing.core

B .monitoring.timer

Figure 3.3. Packages in the Kieker monitoring component

12

3.2. Cloud

= =kieker.common

EE‘.common.gonFiguration # .common. namedRecordPlpe

6 6 3
Vo y
.common. logglng &#*.common.record
8 1

¥ g
H# .common.exception & .common.util

Figure 3.4. Packages in the Kieker common component

In the requirement analysis we discovered that we needed to write a new writer and
a corresponding reader to send the monitored data to the analysis. For the project we
decided to use RabbitMQ. From this requirement the question come up "Which technology
provides the best performance for the communication between the monitoring and anylsis
component of Kieker in the cloud?", which will be answered by this thesis. As the next
requirement we defined, that we needed a tool what is responsible for the scaling of the
analysis nodes. We first considered to extend the tool SLAstic [van Hoorn et al. 2009] to
fulfill our requirements. After an analysis of the tool we decided to build a new tool based
on SLAstic, called SLAstic Lite. We decided to split the analysis into multiple analysis
workers and a single master, the installation is shown in Figure 3.6. All analysis nodes
have there own RabbitMQ server. The analysis worker do a filtering of the monitored data
to find similarities. This part is marked with the blue lines in Figure 3.6. Afterwards the
analyzed data gets send to the master, where the data is collected and gets again analyzed
for similarity with the data of the other nodes. This part is marked with the yellow lines
in Figure 3.6. For the analysis we decided that we needed new filters. The new filters
had to be compatible with JBPM work flows [[BPM], which are, for example, used in the
Pubflow Project [Pubflow]. The last requirement we defined, was that we needed resource
monitoring on the analysis nodes to give SLAstic Lite the information, which are necessary
for scaling the number of cloud instances. The way of the cpu utilization monitoring is
shown with the red lines in Figure 3.6.

13

3. Project Module - “Kieker in the Cloud”

= kieker.analysis

222223 . P . ‘(»"’ :‘u . 61 T g T
i analysis.model.analysisMetaModel | 8 .analysis.annotation i /
115 :.}; \‘1 .

419 w\ N v/
= gr]gly/sis/.plygin

4

1411

[e :‘4 30
B.analygjs‘[gpository E# analysis.display

S el I
.analysis.analysisComponent H .analysis.exception

Figure 3.5. Packages in the Kieker tools component

3.2 Cloud

As the cloud system we used OpenStack in the version Grizzly from spring 2013. OpenStack
is designed as a three component system as shown in Figure 3.7. The first component is
the Controller node, which is responsible for the administration and hosts the web interface.
This node contains all tools for user and project management, upload of images, and
administration. The second node is the Network node, which handles the virtual network
for the instances and the access from or to public networks. The external access has to be
configured explicitly and is forbidden by default. The third node is the Compute node. This
node is responsible for the virtualization of the images. OpenStack uses for this the libvirt
virtualization, which is an open source virtualization api applicable for many virtualization
technologies. OpenStack is designed as a service oriented software. All components serve
as a service. There are different linux operating systems supported as host. For the project
an ubuntu distribution was used. Its also possible to combine the components from the
different nodes on a single node. The Controller and Network node had to be combined
on a single node for the project. Its possible to add as many severs for compute nodes as
needed. After the cloud has been installed, an image needs to be created. This image gets
executed in the cloud. Its possible to create your own by using libvirt for creation, there are
many tutorials on the Internet or an complete image can be downloaded from the Internet.
The image can be modified as needed. After finishing the installation the image has to be
added to the cloud. This can be done by command line or with the web interface.

For the project one image with a script which starts the analysis or the monitoring software

14

3.3. Implementation

ApplicationNode Analysis-WorkerNode

<<compona1t>> <<component>> <<component>>
‘Workfl a| Kieker.monitoring EI @77{ QServer El
<<component>> E”

I O/ Kieker.monitoring
<<component>> g]

W lowRecords Kieker.analysis

<<component>>
ker a

ApplicationNode

<<component>> g] <<component>>]
Workflow Kieker.monitoring

Analysis-WorkerNode
<<component>> El

QServer
<<component>>
O/ Kieker.monitoring al O
ApplicationNode /(‘ <<component>> g] CPUUtilization o
<<compona1t>> 8] 1 Kieker.analysis
Workfl Kllk.rmonlcorlng

WorkflowTrace

<<component>>
ker a

[
T
| Master/SLAsticLite-Node

<<component>> El <<component>> El
RabbitMQServer AnalysisMaster

<<component>> E]
Kieker.analysis
HTTP Request <<component>> €|

SLAsticLite

Figure 3.6. Deployment diagram of Kieker in the cloud

had been designed. This made changes easier because through the development only one
image had to be administrated.

3.3 Implementation

To bring Kieker to the cloud it was necessary to develop an analysis application and on
demand communication for Kieker. For the communication a RabbitMQ based solution for
Kieker was implemented. The implementation included a reader for the analysis and a
writer for the monitoring. Details of the implementation will be described in Chapter 4.
For the analysis two standalone jars have been developed. This jars consist only of a
controller, a reader and the filters needed for the analysis. The first jar was designed for the
preprocessing on the analysis nodes of the cloud, the second was designed as the master
analysis jar. The jars are configurable by parameters at start or by configuration files.

To analyze the given jars consisting of JBPM work flows, new filters had to be developed.
The two main filters are reconstruction filters. A partial trace reconstruction filter for
aggregation of partial traces and a trace reconstruction filter for complete traces. The filters
are configurable. The main parameter is a time interval for the time frame in which the
data is collected.

For the scaling of the number of cloud instances, SLAstic Lite had to be developed.

15

3. Project Module - “Kieker in the Cloud”

Management Network

1 quantum-server

1 nova-api

1
quantum-metadata-agent 1 nova-scheduler
quantum-dhcp-agent nova-compute keystone
quantum-I3-agent quantum-*-plugin-agent
RabbitMQ
quantum-*-plugin-agent
Compute Node MysaL
g Network Node
- Cloud Controller Node
External API
Network Network

Figure 3.7. Nodes and Network for OpenStack
Source: http://docs.openstack.org/grizzly/basic-install/apt/content/basic-install_architecture.
html

An example how the scaling works is given in Figure 3.8. SLAstic Lite uses Kieker to
analyze the resource monitoring from the analysis nodes. First the components to execute
commands on the command line and via SSH had been developed. Afterwards cloud
specific controllers for start, shutdown and information gathering were implemented.
These controllers use the ssh and command line components to execute the commands.
In the next step strategies for the scaling had be developed. For the project an simple
strategy had been developed, which starts an new instance if the load is higher then ninety
percent and suspends an node if the load is lower then ten percent and shuts down the
node if the load is lower then five percent. For distributing the workload, a simple load
balancer was developed. This load balancer assigns the analysis nodes to the monitoring
nodes. The load balancer is implemented as simple http service. To distribute the nodes
the monitoring nodes are asking after a specified time interval for a new analysis node.
For the distribution are several strategies possible, for the project a Round-Robin strategy
was implemented, but also strategies which, for instance, take care of the load of an node

16

http://docs.openstack.org/grizzly/basic-install/apt/content/basic-install_architecture.html
http://docs.openstack.org/grizzly/basic-install/apt/content/basic-install_architecture.html

3.4. Evaluation

SLAstic Lite Analysis Instance 1 Analysis Instance 2 Monitoring Instance 1
1: start analysis instance

\‘ 1.1: send cpu records

2: ask for analysis instance

3: send mohiton’ng records

[i

4: evaluate cpu data : :
5: start next analysis instanice if cpu load is too high |

|]

5.1: send chl records

t
|
|
5.1.1: evaluate cpu data :
6: shutdown analysis instarice if load is low enough
I

| i

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

b

|

|

|

[

I =

|

3

I g

| 3

|5

Ie

s

13

|2
<

| a

| @

|3

| &
by

I3

|2

\ n

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

SRS N S—

|

|
;i
it

|

|

Figure 3.8. SLAstic Lite sequence diagram

are possible.

3.4 Evaluation

During the implementation, the evaluation of the new Kieker classes was conducted on the
development computers. After this tests were successful kieker was tested in the cloud.
For the evaluation of SLAstic Lite the test was started with component tests. First the
components for ssh and command line execution have been tested. After this tests had
been successful, the controller for controlling the cloud was tested separately. After the
starting, stopping and information gathering was successful tested, an integration test with
the missing components was started. As show on Figure 3.6 SLAstic Lite and the master
node have been combined on a single machine, the cloud controller. For the workload
generation a JBPM work flow has been used. These work flow had also been used to
evaluate the new implemented filters.

17

Chapter 4

Communication Implementation in
Kieker

For all technologies a writer and reader was implemented. The writers are implemented
as asynchronous writers. Therefore, all writers implement the AbstractAsyncWriter and
the AbstractAsyncThread of Kieker. The actual communication is done by the writer
thread, the installation is shown in Figure 4.1. The writer, as Figure 4.2 shows, only reads
all necessary properties from the given configuration and adds a writer thread to the
monitoring controller of Kieker. The thread needs to implement a constructor and the two
methods consume(final IMonitoringRecord monitoringRecord) and cleanup(). Both methods
are of the return type void. In case of an error during consumption the consume method
throws a exception. The consume method is responsible to send an IMonitoringRecord to
an repository or direct to the analysis. The cleanup method is called on termination and is
responsible that all used resources are closed and freed.

The readers implement the AbstractReaderPlugin. Therefore, the readers need to implement
three methods and a constructor. In Figure 4.3 a class diagram on the example of the TCP-
implementation is shown. The constructor reads like the writer all needed properties from
the given configuration and sets an analysis controller. The first method is the read method
which reads an record and passes it to the analysis. For this the deliver method of the
super class can be used. As second method a terminate method must be implemented. This
method is responsible for the clean termination of the reader and that all used resources
are closed and freed.

The last method is the getCurrentConfiguration. This methods returns the current configura-
tion.

4.1 Transmission Control Protocol

On the reader side a server-socket waits for a request to establish a connection. If the
connection has successfully been established, the server-socket returns a socket. The data is
read from the socket input stream by an ObjectInputStream. This is done in a loop while
the reader is active. From the ObjectInputStream an object can be read directly by the
readObject method. The read object can be delivered to the analysis without casting. The
setReuseAddress flag is set. This will handle the problem of too many sockets in the TIME_-

19

4. Communication Implementation in Kieker

Figure 4.1. Class diagram of the writer thread on the example of TCP

Figure 4.2. Class diagram of the writer on the example of TCP

WAIT state. Under normal conditions this should be no problem, it is only a problem if to
many reconnects occur.

On the writer side a socket to the reader is opened and a ObjectOutputStream with the
socket output stream. Objects can be send directly with the writeObject method. The
ObjectOutputStream should be reseted after a few records because the ObjectOutputStream
holds a reference to every send Object which will slow down the connection at first and
will be followed by an out of memory exception. For this implementation the interval for
the reset is set to three million records. As in the reader the setReuseAddress flag was set.

20

4.2. UDP

TcpReader
+OUTPUT_PORT _NAME RECORDS : String = "monitoringRecords"
+CONFIG PROPERTY NAME PORT : String = "port"
#LOGGER : Log = LogFactory.getLog(TcpReader.class)
-port : int
-serversocket : ServerSocket
-active : boolean = true

+TcpReader{configuration : Configuration, projectContext : IProjectContext)
-connect() : void

+read() : boolean

#deliverindirect(outputPortName : String, data : Object) : boolean
+terminate(error : boolean) : void

+getCurrentConfiguration() : Configuration

Figure 4.3. Class diagram of the reader on the example of TCP

4.2 User Datagram Protocol

UDP opens a datagram socket on the reader side and waits for incoming data. The data
is sent as a byte array. UDP writes the incoming data into a local datagram packet, from
which the byte array gets fetched. Afterwards the byte array is converted with streams to a
object, which gets delivered to the analysis controller. The difference compared to TCP is
that the data isn’t send directly via an stream, it has to be extracted from the datagram
packet.

The writer doesn’t establish a connection. The writer packs the record with streams to an
byte array. This byte array is packed into a datagram packet. The destination informations
are added to the datagram packet and the packet gets send over the network.

4.3 Java Message Service on the Example of RabbitMQ

For RabbitMQ [RabbitMQ] a new library was added. This library contains the client to
communicate with the RabbitMQ provider. RabbitMQ follows the point-to-point messaging
concept of JMS. When the connection gets established, a factory with all needed informa-
tions like host and port is built and a connection is created. From the connection a channel
needs to be created which declares the queue if not present at the provider. To receive
messages a consumer is created which gets connected with the queue. After the connection
is made, the consumer asks actively in a loop for the next message. The message arrives as
byte array and will be passed through streams to an object. This object then gets delivered

21

4. Communication Implementation in Kieker

to the analysis controller.
The writer establishes a connection in the same way the reader does. The record gets
transformed with streams to a byte array. This byte array gets sent through the connection.

4.4 Java Remote Method Invocation

For RMI a new export class and interface was generated. This object provides a method for
delivering the record. The reader exports this object via the RMI-Registry. After the export,
the reader waits for the termination, the communication is done with the export object. An
important aspect is that the reader needs to know his own address. Otherwise RMI uses
the reverse lookup which will return an entry from /etc/hosts (on linux based operating
systems).

The writer looks up the exported object in the RMI-Registry. After the writer has done the
lookup, the records get sent as parameter with the method call on the remote object.

An important aspect is that all methods throw a RemoteException in the case of connection
problems, which has to be handled.

22

Chapter 5

Performance Evaluation

51 GOM

Goal Question Metric (GQM) [Abib and Kirner 1999] is an goal oriented approach to
specify a quality model for software engineering. It was developed by Prof. Victor R. Basili
and Dr. David Weiss at the NASA Goddard Space Flight Center and is still used as a
quality model there.

For GQM first an goal, which characterizes the project, the company, the mission statement
and the measurement goals, has to be defined. For definition of such a goal, the question
“Which goal should be reached with this measurements?” has to be answered. Afterwards
questions have to be defined which characterize the goals more exactly. For this the
question: “What should be measured?” has to be answered. In the last step a metric has to
be defined which can answer the questions.

So GQM can be interpreted as a tree structure, which gets more and more specific from the
root to the leafs. The gaol is the root, the questions are the nodes and the metrics are the
leafs.

Goal

The goal of the evaluation is to find the best suited communication technology for the
communication between the analysis and monitoring component of Kieker in the cloud.

Questions

The first question is: “Which technology provides the best performance for the communi-
cation?”
The second question is: “How reliable are the technologies?”

Metrics

As metric for the performance of the technologies the throughput of records per time
interval has been defined.
For the reliability the loss rate of records in percent has been chosen.

23

5. Performance Evaluation

5.2 Measurement Technique

To eliminate most external influences, it had been decided to build two jars for the mea-
surement which include only the necessary parts. One which contains the writer and a
controller which gives the ability to send OperationExecutionRecords over an specified period
of time. When the time limit is exceeded, the number of send records is printed to the
command line. On startup the writer and all the parameters needed by the writer have to
be specified via the command line. Here also the time interval in which records should be
sent has to be specified.

The second jar contains the reader and a modified CountingThroughputFilter. The filter
counts the number of received records and the number of received records per time interval.
As in the jar with the writer, the reader and all his parameters have to be specified via
command line at the startup. When the execution of the jar gets terminated, the number of
received records and the number of received records for every time interval is printed to
the command line.

5.3 Experimental Setup

In the following, the hardware configuration, the deployment and the measurement
technique are presented.

5.3.1 Hardware Configuration

For the evaluation two servers with Ubuntu 12.04 LTS [Ubuntu] have been used. The server
for receiving the data had a dual core processor with 2.5 GHz per core and 4GB of RAM.
This server also contained the RabbitMQ server in the version 3.1.5.

The server for sending the data had an Intel core i3 processor with 2.93 GHz per core and
8GB RAM. The servers have been connected through a 100 Mbit network switch with five
meter cables each.

5.3.2 Deployment

The jars have been placed on the two different servers. First the jar with the reader
needed to be started for every experiment and afterwards the jar with the writer. After
an experiment finished the data printed to the command line had to be saved and the
next experiment could be started. For the evaluation a interval size of one minute had
been used. Every technology was evaluated in five experiments. Four with a length of ten
minutes and two seconds and one with a length of twenty minutes and two seconds. The
two seconds were added to guarantee that on the reader side also for the last minute a
throughput could be determined.

24

5.4. Results

5
8
g 4 |
&
-
2 s :
2]
e
=
S
g 2f -
-
=
g
= 1} |
E l
0 |
TCP UDP RMI JMS
technologies

Figure 5.1. Average throughput of the five experiments

5.4 Results

In the evaluation the fastest technology was TCP, followed by UDP then JMS and the
slowest technology is RMI. The results are visualized in Figure 5.1 TCP has an average
throughput as shown in Table 5.1 of 4.3 million records per minute. This is 2.5 times
faster then UDP, which can process 1.7 million records per minute. UDP is 2.1 times faster
then JMS which has an average throughput of nearly eight hundred thousand records per
minute, what is 5.7 times faster then RMI is, which can only process one hundred forty
thousand records per minute. The throughput for every technology for every experiment
is shown in the appendix.

The highest standard deviation as shown in Table 5.3 with 138,579.01 has TCP, again
followed by UDP with 5,413.91 and JMS with 3,527.34. The lowest standard deviation has
RMI with 309.61.

A loss rate is only present with UDP. The average loss rate, displayed in Table 5.2, of UDP
is six percent.

5.5 Discussion of the Results
We expected that UDP is faster then TCP, because UDP is a connection less protocol and
doesn’t inherits the overhead for the connection and the acknowledgments like TCP does.

As explanation two possibilities have been found. On the one hand, for UDP for every
record a new byte array and datagram needs to be packed. First the record gets packed

25

5. Performance Evaluation

Experiment TCP uDP RMI JMS
1 4,413,257.80 1,719,275.00 138,870.00 792,831.70
2 4,452,472.00 1,708,467.80 138,785.90 792,834.30
3 4,089,780.40 1,724,217.80 138,767.00 794,132.60
4 4,414,080.60 1,717,469.10 138,873.80 793,327.50
5 4,230,990.45 1,712,778.65 139,590.65 802,019.50
average 4,320,116.25 1,716,442.27 138,977.47 795,029.12
Table 5.1. Average throughput per minute in records
Technology 1 2 3 4 5 average
TCP 0.00 0.00 0.00 0.00 0.00 0.00
UDP 0.06 0.07 0.06 0.06 0.06 0.06
RMI 0.00 0.00 0.00 0.00 0.00 0.00
JMS 0.00 0.00 0.00 0.00 0.00 0.00

Table 5.2. Loss rate per experiment in percent

by a stream into a byte array. This byte array is packed into the datagram packet which
gets sent through the network. TCP uses the stream from the connection and can send
the records directly. On the other hand, TCP use an algorithm called nagle’s algorithm
[Minshall et al. 2000], this algorithm is used by default with TCP in Java. The algorithm
improves the performance of TCP by reducing the number of packets, which need to be
sent over the network. The improvement is that the number of small packets to sent gets
reduced. For this the data is buffered until a minimum of segments to send is achieved.
This algorithm isn’t applicable for UDP because the data can’t be buffered before sent. The
buffering can also be the explanation for the high standard deviation by TCP.

That JMS is slower than TCP or UDP had been expected. The message\record has to be
send twice. First from the message producer, the writer, to the JMS provider and then from
the JMS provider to the message consumer, which is the reader. In the meantime the record
has to be stored to the queue or topic and read again, what also takes time.

Technology standard deviation
TCP 138,579.01
uDP 5,413.91

RMI 309.61

JMS 3,527.34

Table 5.3. Standard deviation of the throughput

26

5.6. Threats to Validity

RMI uses TCP as basic transport protocol, which indicates that it can’t be faster than TCP.
On top of this a overhead has to be managed, for example, for the return value. So a
bigger amount of data has to be exchanged and more calls are made, what slows down the
communication.

The evaluation also showed that with increasing throughput of an technology the standard
deviation increases. This is reasonable because with higher throughput the impact of small
interferences is higher then with a smaller throughput.

Only UDP did not provide reliability for receiving sent messages. This circumstance stems
from the fact that UDP is an connection less protocol and the data only gets packed and
sent without any acknowledgment. The missing acknowledgment makes it impossible to
react on damaged or lost packets like TCP does.

5.6 Threats to Validity

Implementation

The implementation was done with care, but it is still possible that during the implementa-
tion mistakes had been made. For example, it is possible that important flags have been
forgotten, which could be important for the performance of a technology. It is also possible
that better techniques are available which haven’t been know and so have been ignored.

Server

The systems for the evaluation haven’t been optimized. So interferences by the system like
checking for new updates are possible. A second thing about the server is that they had
been normal computer hardware and no server hardware.

Network

The 100 Mbit network may have reduced the technologies in their full performance. So
maybe all technologies can be more effective with a 1 Gbit network.
It is also possible that breaks in the network cables prevented an optimal performance.

27

Chapter 6

Related Work

In the past different evaluations of the performance of communication technologies have
been conducted. Most of them had the goal to evaluate low level technologies, normally
TCP or UDP, in a special environment like in a wireless LAN [Xylomenos and Polyzos 1999]
or on mobile networks [Lee et al. 2001]. Other works tried to optimize special technologies
like TCP. These works had, for example, the goal to answer the question whether to use
the nagle algorithm or not [Minshall et al. 2000].

29

Chapter 7

Conclusions and Outlook

7.1 Summary

The goal of this thesis was to evaluate the best suited communication technology for
the monitoring software Kieker. To achieve this, four technologies were successfully
implemented for use in a productive environment. The chosen technologies were TCP,
UDP, RMI, and JMS on the example of RabbitMQ. The four technologies have been
evaluated with the defined metrics throughput per minute and loss rate. Only UDP did
have an loss rate from six percent. All other technologies are reliable. In our evaluation
TCP provides the best throughput accompanying no loss rate. TCP is followed by UDP
and JMS. The slowest technology is RMI.

7.2 Discussion

The evaluation done by this thesis showed that for a good performance the use of low
level technologies like TCP or UDP is fundamental. High level technologies like RMI or
JMS normally use low level technologies for the communication and have to deal with
a overhead on top of this. The evaluation also showed that the use of UDP has to be
deliberated. A loss rate of six percent is too high for most applications.

The evaluation only toke care of small data packets. This has to be remembered when
working with bigger data packets.

7.3 Future Work

Optimizations

As mentioned in Section 5.6 the implementation is done with care, but still there needs to
be evaluated which flags can be helpful to improve the performance of the implemented
technologies. Another thing which has to be optimized is the reset of the ObjectOutputStream
in the TCP writer implementation. At the moment this reset is done after three million
records, but this doesn’t have to be the optimum. Furthermore, it should be evaluated if
the loss rate of UDP can be optimized.

31

7. Conclusions and Outlook

Message Batching

Another important issue which is left open by this thesis, is how effective message batching
would be. The discussion of the results showed that UDP, for example, is slow for
many small packets. This indicates that message batching could significantly increase the
performance of UDP. For message batching, it should be evaluated how many records have
to batched before sending, for the optimum performance.

Multi Threading

In the current implementation, writing and reading is done with a single thread. It would
be definitely interesting how the communication can be optimized by multi threading. At
the moment this would be time-consuming, because some major changes in the Kieker
architecture are necessary to do this.

Other Technologies

Furthermore, it should be evaluated if there are other more effective technologies than the
ones used in this thesis evaluated technologies. This thesis only evaluated four technologies
out of many. Maybe JMX or other JMS provider then RabbitMQ like ActiveMQ [ActiveMQ]
are more effective.

32

Bibliography

[Abib and Kirner 1999] J. C. Abib and T. G. Kirner. A GQM-based tool to support the
development of software quality measurement plans. SIGSOFT Softw. Eng. Notes 24.4
(July 1999), pages 75-80. (Cited on page 23)

[ActiveM Q] ActiveMQ. last visited: 2013-09-23. URL: http://activenq.apache.org/. (Cited on
pages 7 and 32)

[Amazon EC2] Amazon EC2. last visited: 2013-06-14. URL: http://aws.amazon.com/ec2/. (Cited
on page 1)

[Aspect]] Aspect] language extension. Eclipse Foundation. URL: http://www.eclipse.org/aspectj/.
(Cited on page 3)

[Blackburn et al. 2006] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanovi¢, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In: Proceedings of the 21st ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2006). ACM,
2006, pages 169-190. (Cited on page 6)

[Cerf et al. 1974] Cerf, Dalal, and Sunshine. RFC 675. last visited: 2013-06-14. 1974. URL:
http://www.rfc-editor.org/rfc/rfc675.txt. (Cited on page 6)

[Defense Advanced Research Projects Agency 1991] Defense Advanced Research Projects
Agency. RFC 791. last visited: 2013-06-18. Sept. 1991. URL: http://www.rfc-editor.org/rfc/
rfc79l.txt. (Cited on page 7)

[Eucalyptus] Eucalyptus. last visited: 2013-06-21. URL: http://www.eucalyptus.com/. (Cited on
page 1)
[Fittkau 2012] F. Fittkau. Online trace visualization for system and program comprehension

in large software landscapes. In: KoSSE-Symposium Application Performance Management
(Kieker Days 2012). 2012. (Cited on page 1)

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live trace visualization
for comprehending large software landscapes: The ExplorViz approach. In: 1st IEEE
International Working Conference on Software Visualization (VISSOFT 2013). 2013. (Cited
on page 4)

[Georges et al. 2007] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In: Proceedings of the 22nd Annual ACM SIGPLAN Conference
on Object-Oriented Programming Systems and Applications (OOPSLA 2007). ACM, 2007,
pages 57-76. (Cited on page 2)

33

http://activemq.apache.org/
http://aws.amazon.com/ec2/
http://www.eclipse.org/aspectj/
http://www.rfc-editor.org/rfc/rfc675.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.eucalyptus.com/

Bibliography

[Hapner et al. 2002] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout. Java Message
Service. last visited: 2013-06-14. 2002. URL: http://download.oracle.com/otn-pub/jcp/7195- jms-
1.1-fr-spec-oth-Jspec/jms-1_1-fr-spec.pdf. (Cited on pages 1 and 7)

[{Cloud] iCloud. last visited: 2013-09-24. URL: https://www.icloud.com/. (Cited on page 1)

[ITU 1994] T. S. S. O. ITU. last visited: 2013-06-18. July 1994. URL: http://www.itu.int/rec/
dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items. (Cited on page 7)

[Java Remote Method Invocation] Java Remote Method Invocation. last visited: 2013-06-24.
URL: http://www.oracle.com/technetwork/java/javase/tech/index- jsp-136424.html. (Cited on page 8)

[JBPM] JBPM. last visited: 2013-09-05. URL: http://www.jboss.org/jbpm/. (Cited on page 13)

[Basic JMS API Concepts] Java Message Service. last visited: 2013-05-26. Oracle. URL:
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx. html. (Cited on page 7)

[Kalibera and Jones 2013] T. Kalibera and R. Jones. Rigorous benchmarking in reasonable
time. In: Proceedings of the ACM SIGPLAN International Symposium on Memory Management
(ISMM "13). ACM, June 2013, pages 2—4. (Cited on page 6)

[Lee et al. 2001] S. B. Lee, G. S. Ahn, and A. T. Campbell. Improving udp and tcp
performance in mobile ad hoc networks with insignia. Comm. Mag. 39.6 (June 2001),
pages 156-165. (Cited on page 29)

[Minshall et al. 2000] G. Minshall, Y. Saito, J. C. Mogul, and B. Verghese. Application
performance pitfalls and tcp’s nagle algorithm. SIGMETRICS Perform. Eval. Rev. 27.4
(Mar. 2000), pages 36—44. (Cited on pages 26 and 29)

[OpenStack] OpenStack. last visited: 2013-06-21. URL: http://www.openstack.org/. (Cited on
page 1)

[ownCloud] ownCloud. last visited: 2013-09-24. URL: http://owncloud.org/. (Cited on page 1)

[Process 2006] J. C. Process. Java Mamagment Extension. last visited: 2013-06-14. 2006. URL:
http://download.oracle.com/otn-pub/jcp/jmx-1.4-mrel3-jsr003a-oth-JSpec/jmx-1_4-mrel3- spec.pdf.
(Cited on page 1)

[Pubflow] Pubflow. last visited: 2013-09-05. URL: http://www.pubflow.uni-kiel.de/. (Cited on
page 13)

[RabbitM(Q] RabbitMQ. last visited: 2013-09-02. Pivotal. URL: http://www.rabbitmq.con/. (Cited
on pages 7 and 21)

[RFC 1980] RFC. RFC 768. last visited: 2013-06-14. 1980. URL: http://www.rfc-editor.org/rfc/
rfc7e8.txt. (Cited on page 7)

[Rohr et al. 2008] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Stoever, S. Giesecke,
and W. Hasselbring. Kieker: continuous monitoring and on demand visualization of
java software behavior. In: Proceedings of the IASTED International Conference on Software
Engineering 2008 (SE’08). Edited by C. Pahl. Anaheim, CA, USA: ACTA Press, 2008,
pages 80-85. (Cited on page 11)

34

http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf
http://download.oracle.com/otn-pub/jcp/7195-jms-1.1-fr-spec-oth-JSpec/jms-1_1-fr-spec.pdf
https://www.icloud.com/
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.200-199407-I!!PDF-E&type=items
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.jboss.org/jbpm/
http://docs.oracle.com/javaee/6/tutorial/doc/bncdx.html
http://www.openstack.org/
http://owncloud.org/
http://download.oracle.com/otn-pub/jcp/jmx-1.4-mrel3-jsr003a-oth-JSpec/jmx-1_4-mrel3-spec.pdf
http://www.pubflow.uni-kiel.de/
http://www.rabbitmq.com/
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt

Bibliography

[Ubuntu] Ubuntu. last visited: 2013-09-02. Canonical Ltd. URL: http://www.ubuntu.con/. (Cited
on page 24)

[Van Hoorn et al. 2009] A. van Hoorn, M. Rohr, A. Gul, and W. Hasselbring. An adaptation
framework enabling resource-efficient operation of software systems. In: Proceedings of
the Warm Up Workshop for ACM/IEEE ICSE 2010. WUP '09. Cape Town, South Africa:
ACM, 2009, pages 41-44. (Cited on page 13)

[Van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework
for application performance monitoring and dynamic software analysis. In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
Boston, Massachusetts, USA, April 22-25, 2012: ACM, Apr. 2012, pages 247-248. (Cited
on pages 1 and 3)

[Xylomenos and Polyzos 1999] G. Xylomenos and G. Polyzos. Tcp and udp performance
over a wireless lan. In: INFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE. Volume 2. 1999, 439446 vol.2.
(Cited on page 29)

35

http://www.ubuntu.com/

AQMP Advanced Message Queuing Protocol.

GOM Goal Question Metric.

JMS Java Message Service.

RMI Remote Method Invocation.
TCP Transmisson Control Protocol.

UDP User Datagram Protocol.
UML Unified Modeling Language.

Appendix A

Acronyms

37

Appendix B

Detailed Results for the Experiments

Minutes TCP UDP RMI JMS

1 4,207,289 1,700,260 133,616 745,483
2 4,447,404 1,727,082 139,766 801,700
3 4,450,471 1,729,440 139,627 797,838
4 4,343,763 1,724,501 139,823 791,718
5 4,509,590 1,723,209 139,388 796,844
6 4,330,236 1,716,275 139,483 796,879
7 4,454,591 1,716,222 139,248 801,843
8 4,419,095 1,719,814 139,522 795,566
9 4,497,599 1,723,456 139,219 798,891
10 4,472,540 1,712,491 139,008 801,555
total 44,132,578 17,192,750 1,388,700 7,928,317

Table B.1. Results for the first experiment in records per minute

Minutes TCP UDP RMI JMS

1 4,347,232 1,689,491 133,352 750,948
2 4,433,250 1,712,463 139,713 792,553
3 4,485,504 1,711,806 139,580 794,591
4 4,372,106 1,713,308 139,416 800,237
5 4,547,228 1,706,251 139,178 791,226
6 4,437,999 1,708,628 139,352 800,254
7 4,401,511 1,710,499 139,382 802,020
8 4,448,082 1,713,524 139,449 797,514
9 4,496,950 1,707,414 139,260 798,696
10 4,554,859 1,711,294 139,177 800,304
total 44,524,720 17,084,678 1,387,859 7,928,343

Table B.2. Results for the second experiment in records per minute

39

B. Detailed Results for the Experiments

Minutes TCP ubDP RMI JMS

1 3,915,251 1,687,825 133,024 746,898
2 4,092,212 1,723,851 139,584 797,139
3 3,956,530 1,728,849 139,563 798,053
4 4,120,412 1,725,764 139,747 798,718
5 4,054,245 1,730,426 139,288 801,622
6 4,144,429 1,722,800 139,213 805,555
7 4,045442 1,731,578 139,396 797,257
8 4,104,646 1,729,230 139,297 800,896
9 4,261,220 1,728,062 139,295 795,118
10 4,203,417 1,733,793 139,263 800,070
total 40,897,804 17,242,178 1,387,670 7,941,326

Table B.3. Results for the third experiment in records per minute

Minutes TCP UDP RMI JMS

1 4,301,107 1,696,995 133,487 745,127
2 4,359,183 1,726,598 139,693 793,657
3 4,403,059 1,721,714 139,590 801,599
4 4,137,664 1,727,730 139,607 801,602
5 4,522,281 1,718,563 138,830 806,102
6 4,448,979 1,718,186 139,495 791,803
7 4,420,857 1,719,200 139,508 795,910
8 4,439,725 1,710,720 139,616 795,048
9 4,534,073 1,718,941 139,628 805,895
10 4,573,878 1,716,044 139,284 796,532

total 44,140,806 17,174,691 1,388,738 7,933,275

Table B.4. Results for the fourth experiment in records per minute

40

Minutes TCP ubDP RMI JMS

1 3,976,330 1,687,184 133,657 749,920
2 4,143,084 1,713,612 141,162 807,277
3 3,899,550 1,707,119 140,129 809,327
4 4,158,180 1,712,460 139,694 807,699
5 4,279,828 1,714,158 139,306 810,918
6 4,146,877 1,716,299 139,679 800,316
7 4,256,806 1,713,767 142,314 798,139
8 4,216,575 1,712,176 140,216 801,969
9 4,354,247 1,715,793 139,286 805,360
10 4,259,475 1,718,955 139,217 809,046
11 4,214,058 1,715,072 139,215 802,692
12 4,251,210 1,712,013 139,428 799,882
13 4,383,320 1,711,172 139,177 797,203
14 4,241,619 1,713,196 139,155 805,097
15 4,217,469 1,716,373 139,255 810,288
16 4,391,897 1,716,189 140,679 807,821
17 4,285,343 1,714,604 140,688 811,050
18 4,305,738 1,712,199 140,989 802,287
19 4,247,531 1,717,791 139,450 803,843
20 4,390,672 1,715,441 139,117 800,256
total 84,619,809 34,255,573 2,791,813 16,040,390

Table B.5. Results for the fifth experiment in records per minute

Experiment uDP RMI JMS

1 2.5669295488 31.7797782098 5.566449727
2 2.6061199397 32.0815875388 5.6158922489
3 2.3719627532 29.4722837562 5.1499968645
4 2.5701077242 31.7848334243 5.5640080547
5 2.4702494102 30.3099845871 5.2754209218
average 2.5170738752 31.0856935032 5.4343535634

Table B.6. TCP compared to UDP, RMI and JMS

41

B. Detailed Results for the Experiments

42

Experiment

RMI

JMS

Gl W N -

12.3804637431
12.3100963426
12.4252725792
12.367121084

12.2700098466

2.1685245431
2.1548863363
2.1711963468
2.1648929351
2.1355823019

average

12.3505927191

2.1590164926

Table B.7. UDP compared to RMI and JMS

Experiment

RMI

G W=

5.7091646864
5.712642999
57227770291
5.7125786145
5.7455101756

average

5.7205347009

Table B.8. J]MS compared to RMI

Appendix C

Attachment

Attached to this work is an CD which contains the source code, developed during this
work, this document as PDF and the compiled jar files. The structure of the CD is explained
by an README.txt on the CD.

43

	1 Introduction
	1.1 Motivation
	1.2 Goals
	G1 - Development of a Performance Evaluation Method and Matrix
	G2 - Performance Evaluation
	G3 - Analysis of the Results

	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Kieker
	Analysis
	Monitoring

	2.2 ExplorViz
	2.3 Benchmarking
	2.4 Communication Technologies
	2.4.1 TCP
	2.4.2 UDP
	2.4.3 JMS
	2.4.4 RMI

	3 Project Module - "Kieker in the Cloud"
	3.1 Kieker Architecture and Requirement Analysis
	3.2 Cloud
	3.3 Implementation
	3.4 Evaluation

	4 Communication Implementation in Kieker
	4.1 TCP
	4.2 UDP
	4.3 JMS
	4.4 RMI

	5 Performance Evaluation
	5.1 GQM
	5.2 Measurement Technique
	5.3 Experimental Setup
	5.3.1 Hardware Configuration
	5.3.2 Deployment

	5.4 Results
	5.5 Discussion of the Results
	5.6 Threats to Validity

	6 Related Work
	7 Conclusions and Outlook
	7.1 Summary
	7.2 Discussion
	7.3 Future Work

	Bibliography
	A Acronyms
	

	B Detailed Results for the Experiments
	C Attachment

