
Live Trace Visualization for Comprehending Large
Software Landscapes: The ExplorViz Approach

Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring
Software Engineering Group, Department of Computer Science, Kiel University, Kiel, Germany

Email: (ffi, jwa, chw, wha) @informatik.uni-kiel.de

Abstract—The increasing code complexity in modern enter-
prise software systems exceeds the capabilities of most software
engineers to understand the system’s behavior by just looking at
its program code. Large software landscapes, e.g., applications
in a cloud infrastructure, further increase this complexity.

A solution to these problems is visualizing the applications
of the software landscape to ease program comprehension and
to understand the respective communication. An established
visualization concept is the 3D city metaphor. It utilizes the famil-
iarity with navigating a city to improve program comprehension.
Dynamic analysis, e.g., monitoring, can provide the required
program traces of the communication.

In this paper, we present our live visualization approach of
monitoring traces for large software landscapes. It combines a
landscape and a system level perspective. The landscape level
perspective provides an overview of the software landscape
utilizing the viewer’s familiarity with UML. The system level
perspective provides a visualization utilizing the city metaphor
for each software system.

I. INTRODUCTION

In many enterprises the number of systems is constantly

increasing, forming large software landscapes. The knowledge

of the communication, internal behavior, and utilization of

these software landscapes often gets lost. This circumstance

renders tools supporting the system comprehension important.

For visualizing the communication between multiple soft-

ware systems in a software landscape, UML deployment

diagrams are in wide use. For visualizing a single software

system, several approaches [e. g., 1, 2] utilize a city metaphor

since UML class diagrams provide poor scalability.

We propose a combination of both presentations to support

the comprehension process of large software landscapes. Our

landscape level perspective provides knowledge about the

interaction of different applications and nodes in the software

landscape utilizing the familiarity with UML deployment and

activity diagrams. This leads to a fast overview. Our system

level perspective is concerned with a single software system.

It utilizes the 3D city metaphor to support the comprehension

of the internal communication on the system level.

Software visualizations are either performed live or offline.

Offline approaches usually require manual steps in gathering

the required traces for the visualization. Live trace visual-

ization inherently shows the collected data over a limited

time span [3]. Therefore, it requires an automation of the

required trace gathering which also becomes important in the

comprehension process of large software landscapes consisting

of hundreds of applications.

Our approach is based on incrementally revealing relations

rather than showing all of them at once. Groups of objects are

substituted by a single object until the user requests to reveal

its content [4]. Thus, our approach provides higher scalability

than showing all relationships at once and follows the Visual

Information-Seeking Mantra of Shneiderman [5].

We propose our ExplorViz (http://www.explorviz.net) ap-

proach for live trace visualization as a solution to support

system and program comprehension in large software land-

scapes. Possible scenarios include the discovery of the real

communication between components and the amount of usage

for each component on both the landscape and system level.

In summary, our main contributions are:

• An interactive approach for the live, explorable visualiza-

tion of monitoring traces

• A combination of the software landscape perspective with

the system level perspective

• A landscape level live visualization based on a mix of

UML deployment and activity diagram elements

• A system level live visualization utilizing the city

metaphor for each software system

The rest of the paper is organized as follows. Section II

describes our ExplorViz approach. An overview of our vi-

sualization is provided in Section III. Finally, related work

(Section IV) and our conclusions (Section V) are discussed.

II. EXPLORVIZ APPROACH

Our live trace visualization approach includes five activities

(A1 to A5) which are detailed in the following. Figure 1

provides an overview of the activities.

A1 – Monitoring: The existing applications in the software

landscape are monitored with, e. g., Kieker [6]. Besides moni-

toring operation calls in each application, remote calls are also

monitored. This provides information on the communication

between applications. The result of this activity is a stream of

monitoring logs for the executed operations.

A2 – Preprocessing: Most servers cannot process huge

amounts of incoming monitoring records typical for large

software landscapes. Therefore, we use many worker nodes to

preprocess the monitoring logs utilizing, for example, cloud

computing. For this purpose, the logs are consolidated into

traces. Due to the large amount of data, we employ trace

reduction techniques [7], e. g., equivalence classes, on each

worker node. The result of this activity are preprocessed traces.



Legend
A1: Monitoring
A2: Preprocessing
A3: Aggregation
A4: Transformation
A5: Navigation

Existing
Application

Existing
Application

A1

A4

Landscape ModelAggregated TracesPreprocessed Traces

132743373;CartBean;addItem;52.168
132416973;CartBean;addItem;58.163
132419877;CartBean;addItem;52.188
132419877;CartBean;addItem;52.188

…

Monitoring Data

Visualization

Landscape Level Perspective System Level Perspective

A5

A2 A3

Figure 1. Activities in our ExplorViz approach for live trace visualization of large software landscapes

A3 – Aggregation: To enable a global view of the software

landscape, the distributed, preprocessed traces are collected

and aggregated on a single node (using the trace reduction

techniques of A2). In addition, a model representation of

the software landscape is created and updated. This model

keeps track of the entities (e. g., nodes, applications, and com-

ponents) that were discovered during runtime. This activity

provides the aggregated traces and the landscape model.

A4 – Transformation: This activity consists of a transfor-

mation from the aggregated traces and the landscape model

into a visualization model. The resulting visualization model

only includes information relevant for the requested view.

A5 – Navigation: Our live trace visualization includes two

perspectives – one for the landscape level and one for the

system level. We decided to provide two different perspectives

and thus metaphors because we want the user to clearly differ-

entiate between landscape and system level. In the following

section, we describe the two perspective and their navigation

in more detail.

III. LIVE TRACE VISUALIZATION

In this section, our live trace visualization approach for large

software landscapes, named ExplorViz, is presented. It consists

of two perspectives, namely a landscape and a system level

perspective. The former perspective uses a 2D visualization

employing a mix of UML deployment and activity diagram

elements. The latter perspective consists of a 3D visualiza-

tion. Our ExplorViz approach will be implemented as a web

application utilizing WebGL.

In a large software landscape, information must be pre-

sented in a limited time span. Hence the presentation of

the information must be quickly comprehensible and only

reveal required information. Therefore, the major concept of

ExplorViz is based on revealing additional details, e.g., the

communication on deeper system levels, on demand. This

provides the scalability of our approach.

For some analyses, particular traces or situations are of

interest. During a live trace visualization the software engineer

can only analyze a situation for a short duration before the

visualization updates itself. ExplorViz supports the analysis of

specific traces through a time shift mode. The user can pause

the visualization to switch into an offline mode where she is

able to forward or rewind the traces to a particular timestamp.

A switch back to live visualization is always possible resulting

in a combination of live and offline trace visualization.
Our approach is not relying on upfront static information

since it would be necessary to conduct a static analysis for

every application in the software landscape. Therefore, our

approach needs consistent layouts [8], i.e., minimal layout

changes during runtime for preserving the viewer’s mental

model. An additional advantage of this approach is not dis-

playing unused code.
A visualization should provide macro, relationship, and

micro views [9]. In the following, we introduce these three

views for the landscape and system level perspective.

A. Landscape Level Perspective
For the layout, we utilize a layout by Klauske et al. [10]

conceptualized for data-flow diagrams, i.e., communication

direction is represented by layout direction. We choose this

layout because the visual noise is reduced by encoding the

communication direction. To support a stable layout, our

landscape model introduced in A3 stores discovered entities

of the software landscape.
A sketch of the macro view on the landscape level is

displayed in Figure 2. It visualizes the application nodes and

the communication between each application. Furthermore,

it automatically combines similar node configurations into a

single entity to support quick comprehension of the existing

applications and their respective communication. The commu-

nication is visualized by edges from one application to another.

The thickness of the edges represents the number of requests in

the current time window. In the relationship view, the user can

request additional details from the combined entities to further

explore the relationships between instances of applications.

This action results in showing the previously combined entities

as single entities revealing the communication of each entity.

The micro view on the landscape level is provided by linking

to the macro view of the system level perspective.



Figure 2. Macro view on landscape level showing the communication between applications in the PubFlow (http://pubflow.de) software landscape

B. System Level Perspective

The system level perspective is based on the 3D city
metaphor [1, 2]. In the following, we use the term entity as

generic term for a component, a subcomponent, or a class.

Districts: Components or subcomponents (e. g., packages in

Java) form the districts in our city metaphor. Each component

is visualized as a rectangular layer with a fixed height. Several

components are stacked upon one another to display their

subcomponent hierarchies.

Buildings: Buildings represent entities, i.e., components,

subcomponents, or classes. In our city metaphor, buildings

become districts when they are opened (see Figure 3). The

maximal count of current instances in each entity maps to the

height of the corresponding building. If the entity is a class,

the current instance count of the class forms the height of the

building. Furthermore, the width of a building is determined

by the number of classes inside the represented entity. If the

entity is a class, the width is a constant minimal value.

Streets: The streets visualizing the communication are

represented by pipes between entities. Different to other city

metaphors, components and subcomponents can be part of the

communication in addition to classes. Similar to the landscape

level perspective, the thickness of the streets represents the

current call count between the entities.

The macro view on the system level provides information

on the communication of components. Figure 3a sketches the

four components of jPetStore and their communication. The

layout is a first prototype to show our concept of revealing

details on demand in the city metaphor. In the future, we will

evaluate other layouts, e.g., by Caserta et al. [2]. Again, the

relationship view enables the user to reveal the subentities and

their communication. An example is displayed in Figure 3b.

It shows the opened service component. The micro view is

provided by the link to the source code, if it is available, to

the visualization and vice versa.

IV. RELATED WORK

In this section, we discuss related approaches to our live

trace visualization. Due to space constraints, we only list

closely related work focusing on displaying program traces.

For a more general overview on several 3D visualizations of

software systems, we refer to [11].

A. 2D Visualization of Program Traces

Web Services Navigator [12] provides 2D graph visualiza-

tions of the communication of web services. Contrary, we

cluster similar node configurations in our landscape perspec-

tive. Jive and Jove [3] visualize Java applications during their

execution. They use a 2D visualization to achieve live trace

visualization. Contrary to these tools, our approach utilizes the

familiarity of UML and the city metaphor to visualize program

traces for multiple software systems in a software landscape.

ExtraViz developed by Cornelissen et al. [13] visualizes single

program traces in two synchronized views, namely a circular

bundle view and a massive sequence view. The former view

utilizes hierarchical edge bundles to display the interaction of

the program trace. Trümper et al. [14] visualize traces in a

sequence visualization with sub ranges for details. In contrast

to both approaches, ExplorViz focuses on the visualization of

software landscapes and uses an exploration-based approach

for displaying program traces.

B. 3D Visualization of Program Traces

Balzer and Deussen [4] provide a visualization of relations

in 3D using a software landscape metaphor based on hemi-

spheres. They define the concept of a Hierarchical Net which

substitutes a group of entities with a single entity to display

relations. Bohnet and Döllner [15] combine the static structure

and dynamic properties of a software system in a single

3D view. The programs traces are visualized live during the

runtime of the software system. TraceCrawler [16] visualizes

prerecorded program traces for one feature based upon a

3D graph metaphor. Caserta et al. [2] utilize the hierarchical

edge bundling technique for visualizing relations in the city

metaphor of a single software system. In contrast to the former

approaches, ExplorViz substitutes groups of objects by single

objects for exploring relations and focuses on live visualization

of multiple software systems in a large software landscape.

EvoSpaces [1] represents the underlying system utilizing a 3D

city metaphor. An important feature is the day view for static

analysis and the night view for dynamic analysis. We also use

two perspectives to visualize different properties. However, we

visualize landscape and system level issues.



(a) Macro view visualizing four components of jPetStore (b) Relationship view with opened service component

Figure 3. Mockup of system level perspective on the example of jPetStore for demonstrating the exploration concept

V. CONCLUSIONS

Our ExplorViz approach promises an effective means to

ease comprehension of large and complex software landscape.

In the paper, we presented a web-based visualization approach

which supports in the comprehension process of large software

landscapes by visualizing program traces during execution

of the applications. It combines a 2D visualization similar

to UML deployment and activity diagrams on the landscape

level perspective and a city metaphor-based 3D visualization

perspective for each application. Furthermore, the relations are

explorable providing scalability and information on demand.

Our open research questions are:

• Which stable layout is suitable for our 3D visualization,

especially with regards to explorable relations?

• Does the direction of the communication have to be

directly perceivable in the visualization or can it also be

provided on demand?

• Which clustering approaches are suited to provide a

synthetic hierarchy and thus scalability in our approach,

when no hierarchy is present in the software system?

• Which baseline to choose, when evaluating the assistance

in program comprehension by our ExplorViz approach

with a controlled experiment?

REFERENCES

[1] S. Alam and P. Dugerdil, “Evospaces: 3D visualization

of software architecture,” in Proc. of 19th Int. Conf. on
Soft. Eng. and Know. Eng. IEEE, 2007, pp. 500–505.

[2] P. Caserta, O. Zendra, and D. Bodenes, “3D hierarchical

edge bundles to visualize relations in a software city

metaphor,” in Proc. of 6th IEEE Workshop on Visualizing
Soft. for Understanding and Analysis, 2011, pp. 1–8.

[3] S. Reiss and A. Tarvo, “What is my program doing?

Program dynamics in programmer’s terms,” in Runtime
Verification. Springer, 2012, pp. 245–259.

[4] M. Balzer and O. Deussen, “Hierarchy based 3D vi-

sualization of large software structures,” Visualization
Conference, IEEE, p. 4p, 2004.

[5] B. Shneiderman, “The eyes have it: A task by data type

taxonomy for information visualizations,” in Proc. of the
Symposium on Visual Languages, 1996, pp. 336–343.

[6] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker:

A framework for application performance monitoring

and dynamic software analysis,” in Proc. of the 3rd
ACM/SPEC Int. Conf. on Perf. Eng., 2012, pp. 247–248.

[7] B. Cornelissen, L. Moonen, and A. Zaidman, “An as-

sessment methodology for trace reduction techniques,” in

Proc. of 24th Conf. on Soft. Main., 2008, pp. 107–116.

[8] A. Kuhn, P. Loretan, and O. Nierstrasz, “Consistent

layout for thematic software maps,” in Proc. of the 15th
Working Conf. on Reverse Eng., 2008, pp. 209–218.

[9] M. Lima, Visual Complexity: Mapping Patterns of Infor-
mation. Princeton Architectural Press, 2011.

[10] L. K. Klauske, C. D. Schulze, M. Spönemann, and R. von

Hanxleden, “Improved layout for data flow diagrams with

port constraints,” in Proc. of 7th Conf. on Theory and
App. of Diag., vol. 7352. Springer, 2012, pp. 65–79.

[11] A. R. Teyseyre and M. R. Campo, “An overview of 3D

software visualization,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 15, pp. 87–105, 2009.

[12] W. De Pauw, M. Lei, E. Pring, L. Villard, M. Arnold,

and J. F. Morar, “Web services navigator: Visualizing

the execution of web services,” IBM Systems Journal,
vol. 44, no. 4, pp. 821–845, 2005.

[13] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen,

J. J. van Wijk, and A. van Deursen, “Understanding

execution traces using massive sequence and circular

bundle views,” in Proc. of the 15th IEEE Int. Conf. on
Program Comprehension. IEEE, 2007, pp. 49–58.

[14] J. Trümper, A. Telea, and J. Döllner, “Viewfusion: Corre-

lating structure and activity views for execution traces,”

in Proc. of 10th Theory and Practice of Comp. Graph.
Conf. Euro. Asso. for Comp. Graph., 2012, pp. 45–52.

[15] J. Bohnet and J. Döllner, “Visual exploration of function

call graphs for feature location in complex software

systems,” in Proc. of Symp. Soft. Vis., 2006, pp. 95–104.

[16] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing live

software systems in 3D,” in Proc. of the 2006 ACM
Symposium on Software Visualization, 2006, pp. 47–56.


