Rainfall response to orbital and millennial forcing in northern Peru over the last 18 ka.

Mollier-Vogel, Elfi, Leduc, Guillaume, Böschen, Tebke, Martinez, Philippe and Schneider, Ralph (2013) Rainfall response to orbital and millennial forcing in northern Peru over the last 18 ka. Quaternary Science Reviews, 76 . pp. 29-38. DOI 10.1016/j.quascirev.2013.06.021.

[img] Text
1-s2.0-S0277379113002412-main.pdf - Published Version
Restricted to Registered users only

Download (1894Kb) | Contact

Supplementary data:


We present a high-resolution marine record of sediment input from the Guayas River, Ecuador, that reflects changes in precipitation along western equatorial South America during the last 18ka. We use log (Ti/Ca) derived from X-ray Fluorescence (XRF) to document terrigenous input from riverine runoff that integrates rainfall from the Guayas River catchment. We find that rainfall-induced riverine runoff has increased during the Holocene and decreased during the last deglaciation. Superimposed on those long-term trends, we find that rainfall was probably slightly increased during the Younger Dryas, while the Heinrich event 1 was marked by an extreme load of terrigenous input, probably reflecting one of the wettest period over the time interval studied. When we compare our results to other Deglacial to Holocene rainfall records located across the tropical South American continent, different modes of variability become apparent. The records of rainfall variability imply that changes in the hydrological cycle at orbital and sub-orbital timescales were different from western to eastern South America. Orbital forcing caused an antiphase behavior in rainfall trends between eastern and western equatorial South America. In contrast, millennial-scale rainfall changes, remotely connected to the North Atlantic climate variability, led to homogenously wetter conditions over eastern and western equatorial South America during North Atlantic cold spells. These results may provide helpful diagnostics for testing the regional rainfall sensitivity in climate models and help to refine rainfall projections in South America for the next century.

Document Type: Article
Additional Information: WOS:000324449200003
Keywords: ITCZ; Speleothem; XRF; Holocene; Deglaciation; Younger Dryas; Heinrich 1; climate change; Heinrich events
Research affiliation: OceanRep > SFB 754
OceanRep > SFB 754 > A6
Kiel University
OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-P-OZ Paleo-Oceanography
Refereed: Yes
Open Access Journal?: No
DOI etc.: 10.1016/j.quascirev.2013.06.021
ISSN: 0277-3791
Projects: SFB754
Date Deposited: 17 Oct 2013 09:01
Last Modified: 23 Sep 2019 23:58
URI: http://oceanrep.geomar.de/id/eprint/22129

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...