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Diatoms of the iron-replete continental margins and North Atlantic
are key exporters of organic carbon. In contrast, diatoms of the
iron-limited Antarctic Circumpolar Current sequester silicon, but
comparatively little carbon, in the underlying deep ocean and
sediments. Because the Southern Ocean is the major hub of
oceanic nutrient distribution, selective silicon sequestration there
limits diatom blooms elsewhere and consequently the biotic carbon
sequestration potential of the entire ocean. We investigated this
paradox in an in situ iron fertilization experiment by comparing
accumulation and sinking of diatom populations inside and out-
side the iron-fertilized patch over 5 wk. A bloom comprising
various thin- and thick-shelled diatom species developed inside the
patch despite the presence of large grazer populations. After the
third week, most of the thinner-shelled diatom species underwent
mass mortality, formed large, mucous aggregates, and sank out en
masse (carbon sinkers). In contrast, thicker-shelled species, in
particular Fragilariopsis kerguelensis, persisted in the surface
layers, sank mainly empty shells continuously, and reduced silicate
concentrations to similar levels both inside and outside the patch
(silica sinkers). These patterns imply that thick-shelled, hence
grazer-protected, diatom species evolved in response to heavy co-
pepod grazing pressure in the presence of an abundant silicate
supply. The ecology of these silica-sinking species decouples silicon
and carbon cycles in the iron-limited Southern Ocean, whereas car-
bon-sinking species, when stimulated by iron fertilization, export
more carbon per silicon. Our results suggest that large-scale iron
fertilization of the silicate-rich Southern Ocean will not change
silicon sequestration but will add carbon to the sinking silica flux.

evolutionary arms race | top-down control | geo-engineering

Diatoms—sﬂica-shelled unicellular phytoplankton—are ma-
jor exporters of organic carbon from the surface to the deep
ocean and sediments and, hence, influence ocean nutrient cycles
and atmospheric CO, levels (1, 2). However, silicate concen-
trations, for which diatoms have an obligate demand, vary widely
over the nutrient-rich regions of the oceans (3). This is largely
due to processes decoupling silicon cycling from that of other
nutrients and carbon in surface waters of the Antarctic Zone
(AZ), the southernmost belt of the Antarctic Circumpolar Cur-
rent (ACC) (4). Thus, Si concentrations decline across the AZ
from >70 mmol Sim~ in upwelling waters along its southern
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boundary (the Antarctic Divergence) (5) to <5 mmol Si-m™~
along the Antarctic Polar Front (APF) (6). The corresponding
decline in nitrate is much smaller, from 30 to 23 mmol N-m™>
The resulting Si/N export ratio of 9/1 is much higher than the
average diatom Si/N ratio of ~1/1 (7, 8). The paradox (9) can
partly be explained by increasing Si/N ratios with iron deficiency
recorded in many species (10-13) in addition to the exceptionally
thick frustules of some ACC diatom species (14), which can
reach Si/N ratios of >4:1 in Fragilariopsis kerguelensis (15).

A portion of the silica shells (frustules) sinking out of the
northward-propagating surface Ekman layer dissolves in the south-
ward-propagating deep water and is returned as Si to the surface in
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upwelling water along the Antarctic Divergence (1). This vertical
recycling loop between surface and deep water supports growth of
thick-shelled diatoms in the surface and functions as a global ocean
silicon trap in the deep-water column. Another portion, mainly
comprising robust frustules of comparatively few species, of which
Fragilariopsis kerguelensis and Thalassiothrix antarctica are particu-
larly common (16-18), is buried as diatom ooze in sediments un-
derlying the iron-limited ACC, which functions as a major global
silicon sink (19), accounting for 42-48% of the total marine silica
removal (20). In contrast, the sediments underlying productive
regions in the ACC, where phytoplankton blooms fertilized by iron
input from land masses (21, 22), shelf sediments or dust occur
regularly (23), have 10-fold higher carbon contents (>2% C of dry
matter) (24), and are dominated by spores of the ubiquitous diatom
genus Chaetoceros (25, 26).

The massive removal of silicon relative to nitrogen from the
surface layer by the diatoms of the low-productive, iron-limited
AZ ecosystem implies that, in addition to the heavy silicification
of ACC diatoms (14), a significant proportion of their nitrogen
demand will have to be provided by a highly efficient recycling
system in the surface layer (27). In contrast to phytoplankton,
copepod-dominated zooplankton stocks of high-nutrient, low-
chlorophyll (HNLC) regions of the oceans are comparatively
large (28, 29). In fact, their grazing pressure was considered to
control phytoplankton biomass in HNLC regions before iron
limitation was firmly established (30). It has since been hypoth-
esized that copepod feeding and defecation are part of the
recycling system (31) and that the phytoplankton species that
accumulate biomass in the face of heavy grazing pressure will
have evolved some form of defense (32), most likely the heavily
silicified frustules characteristic of ACC diatoms (14).

As the Si-depleted northern ACC surface layer is the major
source of nutrients upwelling in low latitudes (4), Si retention in
the ACC constrains diatoms from forming blooms over large,
nutrient-rich areas of the ocean (3) with far-reaching repercus-
sions on food webs and ocean carbon sequestration. A better
understanding of the deep water silicon trap and sedimentary
sink is necessary to explain functioning of the glacial Southern
Ocean (33) and its impact on CO, drawdown, but also to predict
the response of Southern Ocean biota to large-scale and long-
term artificial iron fertilization (34). Ocean iron fertilization
experiments provide the necessary conditions for the quantita-
tive investigation of these mechanisms because they simulate the
effect of natural iron input on pelagic ecosystems with their full
complement of grazers and pathogens (34).

Results and Discussion

The Experiment. The European Iron Fertilization Experiment
(EIFEX) was carried out during RV Polarstern cruise ANT-XXI1/3
in late austral summer [11 February (day —1) to 20 March (day
36) 2004] in the 60-km diameter, clockwise rotating core of
a mesoscale, vertically coherent eddy extending to the seafloor at
~3,700-m depth and enclosed in a meander of the APF centered
at 49°S, 2°E in the Atlantic sector of the Southern Ocean (35).
The circular patch of initially 167 km* had spread to 798 km? by
day 19 and completed four rotations within the eddy by day 36.
In-stations were placed in the least diluted region (the hot spot)
of the patch, hence sampled the same water mass throughout.
Out-stations were always located within the closed core of the
eddy, well away from the patch (35). Vertical coherence of the
deep-water column with the overlying surface layer was con-
firmed by the trajectories of four autonomous APEX floats po-
sitioned between 200- and 1,000-m depth, as well as two independent
models based on hydrographical profiles to the seafloor and on
satellite altimetry (35).

Here, we show that the strong biogeochemical response to
iron addition (35) was closely linked to temporal changes in the
populations of dominant diatom species in surface, subsurface,
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and deeper layers. Standing stocks (carbon per square meter) are
derived from trapezoidal integration of measurements carried
out on six to nine discrete water samples taken from standard
depths at 10- to 20-m intervals in the 100-m mixed layer (35),
50-m intervals in the 200- to 350-m depth layer, and larger
intervals for the deep-water column down to the seafloor. In
addition to full (living) cells, intact empty and broken diatom
frustules, empty and damaged tintinnid loricae and copepod
fecal pellets were counted under a light microscope to assess
species-specific diatom and tintinnid mortality and grazing by the
copepod assemblage. Empty frustules and loricae can be caused
by (i) cell death, (ii) sexual reproduction, (iii) viral infection, or
(iv) protozoan and metazoan grazing, whereas broken frustules
and damaged loricae are due to handling by copepod mandibles
(36). Stocks of particulate organic carbon (POC) and nitrogen
(PON), chlorophyll a (Chl a), and biogenic silica (BSi) were
highly correlated (P << 0.05) with total plankton, phytoplankton,
and diatom carbon (DC), respectively, as estimated from or-
ganism counts (Figs. 1 and 2B).

Plankton Trends. The initial situation. During the initial mapping of
the eddy, nitrate, phosphate, and silicate concentrations inside
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Fig. 1. Chl a, phytoplankton carbon (PPC), and integrated stocks of plank-
ton composition in the 100-m surface layer inside and outside the fertilized
patch. (A) PPC calculated from biovolume data (blue circles) and Chl a stocks
(red circles). The full and open circles are for inside and outside the fertilized
patch, respectively. Total plankton carbon (bars) and particulate organic
carbon (POCQ) (stars) stocks inside (B) and outside (C) the patch with the
contributions of diatoms, nondiatom phytoplankton (largely nanoflagellates:
solitary Phaeocystis cells and Prorocentrum spp.), bacteria, protozooplankton
(largely heterotrophic dinoflagellates, ciliates, and acantharia), small cope-
pods <1 mm (including nauplii, small copepodites, and Oithona), and large
copepodites and adult copepods >1 mm.
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Fig. 2. Silicon dynamics in relation to carbon and nitrogen. (A) Uptake of Si
inside (full circles) and outside (open circles) the patch expressed as Si* (Si-
nitrate concentrations). Because nitrate decreased only slightly, Si* values
parallel Si concentrations. The greater scatter in out-patch values is explained
by spatial heterogeneity in the core outside the patch (in-patch: r* = 0.96,
P < 0.0001; out-patch: r* = 0.58, P < 0.0001). (B) Biogenic silica (BSi) (blue)
and diatom carbon stocks including equivalent carbon content of empty and
broken frustules (DC) (red) for direct comparison with BSi. (C) Ratios of
biogenic silica to particulate organic carbon (BSi/POC) (red), and of biogenic
silica to particulate organic nitrogen (BSi/PON) (blue). Note similarity in ra-
tios outside and inside the patch.

the core were 24.5-25 mmol N-m~3, 1.7-1.8 mmol P-m~3,
and 14-19 mmol Si-m~>, respectively, which, together with the
hydrographical properties, demonstrated that the core origi-
nated from the AZ (35). Chl a within the core was patchy,
ranging between 0.7 and 1.2 mg-m~>, which is twofold to five-
fold higher than average AZ concentrations (37). Phytoplank-
ton carbon (PPC) was dominated by large, spiny, heavily
silicified (thick-shelled) diatoms typical of the AZ with nano-
flagellate species contributing <30%. Heterotrophic biomass
exceeded that of autotrophs and comprised bacteria (26%),
protozooplankton (22%), and metazooplankton dominated by
copepods (52%), including all larval stages (Fig. 1 B and C). The
initial small salp populatlon dechned during the experiment to
negligible biomass (38). ’N and '*C isotope ratios of suspended
organic particles indicated that community biomass was pri-
marily based on recycled nitrogen (39).

Trends outside the patch. Outside the patch, dissolved inorganic
carbon (corrected for air-sea exchange), nitrate, and phosphate
declined by 1, 0.4, and 0.04 mmol~m_3, respectlvely (35), but
silicate decreased considerably by 8 mmol-m~ over 5 wk. This
decoupling of silicate and nitrate is reflected in the decline of the
already low Si* values [Si — nitrate concentrations (4)] from —6
to —14 mmol-m~ (Fig. 24). The decrease of Si* cannot be
explained by horizontal mixing inside the eddy (35) and only
partly by local patchiness (Fig. S1) and thus is largely due to
silicate uptake, which must have been matched by an equally
high sedimentation rate, as BSl levels in the mixed layer
remained stable at 0.2 mol Si-m~2 (Fig. 2B). The substantial di-
atom growth was apparently supported by ammonium reminer-
alized from the dissolved organic nitrogen (DON) pool, which
declined linearly from ~4 to ~2 mmol N-m~> during the ex-
periment (35). However, after about 3 wk, r1s1ng ammonium
concentrations (from <0.5 to >0.7 mmol N-m™ ) suggest that
the system switched to net heterotrophy due to iron limitation
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of autotrophs [low photochemical efficiency (Fv/Fm ratio) of
0.32] compounded by mounting grazing pressure. This scenario
is supported by low autotrophic/heterotrophic biomass ratios
between 0.4 and 0.5 (Fig. 1C) and by low primary and bacterial
production rates (35). Copepods comprised >50% of hetero-
trophic biomass, but, although fecal pellet stocks increased sev-
enfold during the 5 wk, the contribution of whole pellets and
recognizable remnants to vertical flux was minor as the bulk were
fragmented in the surface layer and stocks in the subsurface layer
were only a small fraction of surface stocks (Fig. S2). In contrast,
the stocks of empty and damaged tintinnid loricae, of similar size
to pellet fragments, hence with similar sinking rates, did not
differ between layers (Fig. S2), indicating that sinking and not
destruction was the major loss term here. We conclude that
copepods will have played a key role in maintaining the silica-
sinking, nitrogen-recycling ecosystem.

Trends inside the patch. Inside the fertilized patch, stocks of Chl a,
POC, and BSi increased linearly following iron addition due to
the growth of various large diatom species whose biomass accoun-
ted for 97% of the 100-m depth-integrated Chl a increase (76—
286 mg Chl a-m~?) from day —1 to day 21 (Figs. 1 4 and B and
2B). The subsequent decline was due to mass mortality and
sinking of some diatom species, which was partially compensated
by continued accumulation of other species, reflected in the
uninterrupted linear decline of Si* until the end of the experi-
ment (Fig. 24). Nitrate and DON concentrations declined by 1.6
and 1.8 mmol N-m™, respectively, whereas the corresponding
decline in Si was 11 (from 19 to 8) mmol Si-m~ with an uptake
ratio of Si/(DON + nitrate) of 3.2 and Si/nitrate of 6.9. This
indicates that diatoms were responsible for new production and
that the species involved were heavily silicified. Inside the patch,
BSi/DC, BSi/POC, and BSi/PON ratios increased from 0.5 to 0.8,
0.2 to 0.5, and 1.3 to 2.7, respectively (Fig. 2 B and C). Similar
ratios were found in iron-limited waters outside the patch (Fig.
2C). Assuming a diatom C/N ratio of 5, based on the slope of the
linear regression between POC and PON inside the patch, the
BSi/DN (diatom nitrogen) ratio increased from 2.5 to 4, implying
that several of the dominant diatom species had Si/N ratios well
above 4 to compensate for weaker silicification of other domi-
nant species. The differential accumulation of BSi in the surface
layer was due to a combination of sinking out of less-silicified
diatoms and increasing populations of heavily silicified species.
Our results support the finding that diatom community compo-
sition largely determines community silicification in the Southern
Ocean (40). Although silica export did not increase in-patch
compared with out-patch, iron-induced export of carbon with the
sinking frustules amounted to 0.9 mol (10.8 g) C-m~2 during the
flux event (35).

The populations of 45 of the 55 diatom taxa recorded during
EIFEX increased their abundance inside the patch, indicating
that artificial iron fertilization can stimulate growth of a broad
range of diatom species. Maximum species-specific accumulatlon
rates of the domlnant species ranged between 0.03 and 0.10 d~!
(0.04-0.13 d™! corrected for dilution) with highest rates associ-
ated with largest size and lowest mortality. The species-specific
contribution to bloom biomass also depended on cell size, initial
cell abundance (which varied by two orders of magnitude), and
timing of the decline phase. As a result, the EIFEX bloom was
highly diverse with 21 species contributing >85% of bloom biomass.

The species composition of nondiatom phytoplankton changed
over the experiment, but, in contrast to the diatoms, their bio-
mass remained more or less constant (Fig. 1B), apparently kept
in check by grazing pressure of protozooplankton and copepods.
The same trends and checks applied to the protozooplankton
(Fig. S3), including specialized diatom grazers (e.g., Proto-
peridinium spp.), which are known to be preferred food of
copepods (32). Tintinnid ciliates, despite protection by their lo-
ricae, were subject to heavier grazing pressure than diatoms as
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Fig. 3. Stocks of three representative diatom species and total tintinnids in
surface and subsurface layers. Integrated stocks of full (red filled circles),
intact empty (black open circles), and broken diatom frustules and damaged
tintinnid loricae (blue triangles) of (A) Fragilariopsis kerguelensis, (B) Chae-
toceros dichaeta, (C) Thalassiothrix antarctica, and (D) total tintinnids. In
each block, the left and right panels are integrated stocks inside and outside
the patch, and upper and lower panels in the surface (SL: 0-100 m) and
subsurface (SSL: 200-350 m) layers, respectively. Tintinnid stocks are shown
for the SL only, and SSL values are in Fig. S2. Full frustules and loricae contain
plasma. Empty and broken frustule and loricae numbers are presented as
carbon equivalents for comparison with biomass in full frustules and living
tintinnids, respectively; bars represent SEs. Note similarity between F.
kerguelensis stocks inside and outside the patch in SL and SSL, in contrast
to the differences in other species. This is supported by a one-sample one-
sided t test applied to these data (Table S1).

illustrated by the low ratio of full to empty intact and damaged
loricae (Fig. 3D). The total consumption by microzooplankton
(protozooplankton plus small copepods) estimated by the serial
dilution method amounted to 17 g C-m~2 in 36 d, of which about
30% was provided by bacteria exploiting the DON pool (35).
Bacterial biomass was stable but declined at the end of the ex-
periment (Fig. 1B). The total bacterial carbon demand over the
duration of EIFEX based on measured bacterial production and
respiration amounted to 23 g-C m™2 of which about one-half
was based on prefertilization DON (35), hence independent of
primary production.
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Biomass of large (>1 mm) copepods increased until the end of
the experiment, due to a combination of growth (development of
larval stages) and upward migration from below 160 m. Total
ingestion by copepods inside the fertilized patch over 36 d, es-
timated from fecal pellet production rates (Fig. S44), amounted
to 20 g C:m™2 of which 15 g C-m™ was attributed to phyto-
plankton carbon indicated by gut evacuation experiments (Fig.
S4B). Total primary production measured with the 14C.method
amounted to 50 g C:m™2 over 36 d (35). Given the large
uncertainties associated with all of the above rate measurements,
the budget between primary production (50 g C-m~2), hetero-
trophic carbon consumption [~12 g C-m~? (microzooplankton
grazing) + 15 g C:m~2 (copepod grazing) + ~12 g C-m~? (nitrate-
based bacterial carbon demand) ~ 40 g C-m™?], and carbon
exported (10.8 g C-m~2) is reasonably well balanced. Although
crushed and intact diatom frustules were prominent in pellets as
well as in copepod guts (41), the relative grazing pressure on
diatom populations estimated from ratios of full to empty and
broken frustules was much lower than on other protists, exem-
plified here by tintinnid ciliates (Fig. 3D). Trends in *°N and *C
isotope ratios of suspended particulates indicated that the initial
biomass increase was based primarily on nitrate uptake; follow-
ing the flux event, recycled nitrogen contributed a larger fraction
to community biomass (39).

Silica and Carbon Sinking Species. The species comprising the di-
verse assemblage of large diatoms typical of the ACC differed in
their impact on magnitude and composition of the vertical flux.
This is illustrated by temporal trends in surface and subsurface
layers of stocks and relative proportions of full, empty, and
broken frustules of three representative species (Fig. 3). These
different behavior patterns are of relevance to the silicon para-
dox. The surface-layer stocks of Fragilariopsis kerguelensis dou-
bled inside the patch after 3 wk and maintained the new level for
the next 2 wk. Stocks remained more or less constant outside the
patch, whereas most other diatom species declined significantly.
The contribution of F. kerguelensis to total diatom biomass
outside the patch rose from 10% to 21% over the 5 wk, implying
its superior survival ability under conditions of iron limitation but
sufficient silicate and heavy copepod grazing pressure (Fig. 1C).
In the subsurface layers below and outside the patch, stocks were
fairly constant and at similar levels throughout (Fig. 34), im-
plying a steady, downward flux of largely empty chains and sol-
itary frustules. This is consistent with the distribution of F.
kerguelensis stocks in the deep-water column (Fig. 44), which are
threefold higher below 250 m than the deficit between peak and
minimum stocks in the surface layer inside and outside the patch.
The near constancy of the ratios of empty to broken frustules in
the surface layers inside (2.1 + 0.4) and outside the patch (2.0 +
0.5), also recorded in a previous experiment (EisenEx) con-
ducted in spring (36), provides further support for controlled,
low-level, quasiconstant mortality in this species with sinking out
of empty frustules and recycling of cytoplasm in the surface layer
(Fig. S5).

The boom-and-bust behavior of a group of disparate species
exemplified by Chaetoceros dichaeta (Fig. 3B) contrasted with
the persistent strategy of Fragilariopsis kerguelensis. The former
species underwent mass mortality in the surface layer, signaled
by a sudden increase in empty frustules, followed by a fivefold
population decrease due to sinking. The flux event triggered by
mass mortality of C. dichaeta transported ~10.8 g Cm™ as
rapidly sinking aggregates (Fig. S6 A-C) into the deep-water
column during the last 10 d (35). Sticky, autolyzed cytoplasm,
stretched into mucoid sheets along the spines of various species,
entangled chains with one another into millimeter-sized aggre-
gates (Fig. S6 4 and B). The process was accompanied by in-
creased levels of transparent exopolymer particles (Fig. S7) in
ambient water. Chains of various species were entrained in the
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Fig. 4. Stocks of three representative diatom species in deep layers in
comparison with the surface deficit. Inventories of full (red bars), intact
empty (white bars), and broken (blue bars) frustules of (A and B) Fragilar-
iopsis kerguelensis, (C and D) Chaetoceros dichaeta, and (E and F) Tha-
lassiothrix antarctica. The surface deficit was estimated as the difference
between peak stocks and the stocks present at the station of the deep
profile. Left panels, inside the patch; right panels, outside the patch. The
deep in-patch and out-patch profiles were taken on days 36 and 34, re-
spectively, 6-8 d after the flux event commenced. The higher values of A and
B in the deepest layer are partly due to resuspension of sediment in the
nepheloid layer. The unexpected low biomass of C. dichaeta in deep layers
under the patch is due to undersampling by Niskin bottles of large, rapidly
sinking aggregates in which they were packed.

aggregates (Fig. S6 B and C) and mass presence of Chaetoceros
spp. was only observed under the patch during the flux event,
whereas they were at low levels outside it (Figs. 3B and 4 C and
D and Fig. S6 D and E). However, frustule stocks in the deep-
water column under the patch were lower than the surface deficit
(unlike F. kerguelensis) and the bulk was found in the upper 1,000
m (Fig. 4C). The depth distribution inferred here from discrete
12-L. water samples differed from transmissometer profiles,
which recorded a rapid increase in particle stocks in the entire
deep-water column during the flux event, albeit with fairly uni-
form depth distribution (Fig. S8). The discrepancy can be attrib-
uted to undersampling by Niskin bottles of large, rapidly sinking
aggregates that constituted the bulk of flux below 1,000 m.

The common feature of the remaining, heterogeneous group
of largely centric colonial species (in particular Corethron inerme
and Proboscia alata), but exemplified here by the heavily silici-
fied pennate Thalassiothrix antarctica (Fig. 3C), was the low
mortality rate (the ratio of full to empty and broken frustules
increased from initially 1.9 to 17.6 by the end of the experi-
ment), which resulted in (i) stable or growing populations until
the end of the experiment, (ii) the highest accumulation rates
during the growth phase, and (iii) low concentrations in the
subsurface and deep layers (Figs. 3C and 4 E and F). The low
sinking losses indicate that living cells maintain neutral buoy-
ancy despite massive ballast in the thick cell walls of some
species. Because grazing pressure on these species was low, it is
likely that a substantial portion of their biomass will have
eventually sunk out, indicated by satellite images of fading Chl
a concentrations in the patch after day 36 (35). Mass sinking
events of T. antarctica have been reported from the ACC and,
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presumably because of its thick cell walls, it is a major constituent
of AZ sediments (16, 17).

The behavior of Fragilariopsis kerguelensis and Chaetoceros
dichaeta reflect two distinctly different life cycle strategies
characteristic of the pelagic realm: (/) maintenance of relatively
constant stocks in the surface layer (persistence strategy) and (i)
cycles of biomass buildup during favorable growth conditions,
followed by mass mortality and rapid population decline (boom-
and-bust strategy). These categories represent end points of a
gradient along which other ACC diatoms fall. Whereas species of
the persistent strategy generally occur at background levels (42),
F. kerguelensis is a dominant species, which increases in abundance,
together with copepod biomass, northward across the AZ (14, 16,
27, 36, 37). This distribution can be explained by its ability to
withstand grazing pressure apparently due to its extraordinarily
strong frustules (43), which reduces the proportion of cells cracked
and crushed by copepod feeding (Fig. S5 B and C) and facilitates
viable gut passage (41, 44). Its increasing abundance across the AZ
is concomitant with declining Si* and increasing deposition of its
frustules in underlying sediments (Fig. SSD; see also refs. 16, 25, and
45). In summary, this species, together with a few others (see be-
low), is a silica sinker responsible for selective silicon export and
burial coupled with carbon and nitrogen retention across the surface
layer of the iron-limited AZ. Coevolution between diatoms and
copepods, which selects for traits at the upper limit of the handling
capacity of the herbivores, hence could explain the heavy silicifica-
tion resulting in high Si/C ratios of open-ocean ACC diatoms (14).

In contrast, species with a boom-and-bust strategy that un-
dergo mass mortality and produce aggregates in the surface layer
are carbon sinkers (14, 27, 46) with spiny and needle-shaped
species, in particular the genus Chaetoceros, most likely to form
the large, rapidly sinking aggregates that are responsible for the
deepest flux (47). Layers of diatom fluff, widely reported on the
seafloor in the aftermath of surface blooms, will be caused by such
flux events (48). In the ACC, blooms of boom-and-bust species
are local, and characteristic of iron-sufficient waters in the prox-
imity of land masses and in regions of dust deposition (49-51).

Zonally persistent species like Fragilariopsis kerguelensis are
apparently geared to the copepod-dominated recycling system,
which also recycles iron (52). It follows that high sedimentary
silica accumulation rates are a proxy for iron-limited diatom
assemblages rather than for high surface productivity, contrary to
the prevailing view (33, 53). As the bulk of the frustules of car-
bon-sinking species are not buried (e.g., Pseudo-nitzschia and veg-
etative cells of Chaetoceros and Thalassiosira except T. lentiginosa),
they fuel the water column silicon trap, which is partially depleted
by burial of exceptionally robust frustules of F. kerguelensis and
a few other species such as Thalassiosira lentiginosa, Thalassiothrix
antarctica, and Thalassionema nitzschioides (16, 25, 45).

During the Last Glacial Maximum (LGM), natural iron fer-
tilization extended the current range of carbon-sinking species
from the Antarctic Peninsula across the entire South Atlantic
sector of the ACC (54). It is likely that artificial iron fertilization
will have a similar effect, i.e., it will extend populations of car-
bon-sinking species over a larger area that will sink more carbon
per silicon than is currently the case. Nevertheless, the upper
limit of carbon sequestration will be determined by how much of
the upwelling silicate is taken up and exported by carbon-sinking
species before exhaustion by silica-sinking species. Given their
persistent life cycle strategy geared to the surface recycling sys-
tem and the silicon-sequestering circulation pattern of the ACC,
silica sinkers will always be present in the ACC. Thus, the sedi-
mentary band dominated by Fragilariopsis kerguelensis moved
north in the LGM (54), implying that its northern boundary will
have coincided with the zone of summer surface silicate limita-
tion as is the case today along the APF (18). Indeed, we suggest
that such a vertical silicon retention loop, maintained by diatoms
and copepods strikingly similar to those of the AZ (14), could
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also be responsible for silicon trapping and burial in the HNLC
region of the subarctic North Pacific (4).

Materials and Methods

Water samples were taken with 12-L Niskin bottles mounted on a CTD rosette
equipped with a profiling transmissometer and treated according to standard
protocols for the various measurements. Prokaryotic abundance was determined
by enumerating DAPI-stained cells under the epifluorescence microscope. All
eukaryotic organisms were identified as far as possible to the species level and
counted by light microscopy. Larger protozoa and copepods <1 mm (including
larvae) were concentrated by passing 12 or 24 L through 20-um mesh gauze.
Diatoms and other suspended particles in the deep-water column below 200 m
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were concentrated over 10-um mesh gauze. Zooplankton >1 mm were sampled
with vertical net tows taken between 0- and 160-m depth to include vertically
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using standard protocols. Detailed methods are described in S/ Materials
and Methods.
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