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Abstract

The predictability of North Atlantic sea surface temperature (SST), that results

from the delayed oceanic response to atmospheric forcing is investigated by means

of a partial coupling experiment performed with the Kiel Climate Model. Observed

North Atlantic Oscillation (NAO)-related heat flux anomalies from 1865 to 2000 force

the model’s ocean component to the climatic trajectory of the NAO but enable an

otherwise free interaction between ocean and atmosphere. Hence, the model simulates

a Meridional Overturning Circulation (MOC) that is consistent with the NAO and

with observed SST. However, the simulated SST variability suffers from systematic

errors. Statistical investigations with Canonical Correlation Analysis (CCA) identify

a delayed link of 21 years between MOC and observed SST that corresponds to the

Atlantic Multidecadal Oscillation (AMO). Using CCA as predictive tool leads to a

prognosis of future changes in North Atlantic SST variability until 2021. Subsequently

to the current positive phase of the AMO the results yield that North Atlantic SST

is expected to cool after 2015.





Zusammenfassung

Die Vorhersagbarkeit von Meeresoberflächentemperaturen (SST), die aus der verzö-

gerten ozeanischen Reaktion auf atmosphärischen Antrieb resultiert, wird im Nordat-

lantik mittels eines gekoppelten Experiments mit dem Kieler Klimamodell untersucht.

Beobachtete, im Zusammenhang mit der Nordatlantischen Oszillation (NAO) ste-

henden, Wärmeflussanomalien von 1865 bis 2000 binden die Ozean-Komponente

des Modells and die Klimatrajektorie der NAO aber erlauben gleichzeitig eine sonst

freie Interaktion zwischen Ozean und Atmosphäre. Das Modell simuliert demnach

eine meridionale Umwälzbewegung (MOC), die vereinbar mit den Beobachtungen

von NAO Index und SST ist. Die simulierte SST hingegen beinhaltet systemati-

sche Fehler. Statistische Untersuchungen mittels Kanonischer Korrelationsanalyse

(CCA) identifizieren einen verzögerten Zusammenhang von 21 Jahren zwischen MOC

und beobachteter SST, der mit der Atlantischen Multidekaden Oszillation (AMO)

übereinstimmt. CCA wird als Methode zur statistischen Vorhersage verwendet und

ermöglicht so die Entwicklung der nordatlantischen SST bis 2021 zu prognostizieren.

Auf die aktuelle Warmphase der AMO ist folglich eine Abkühlung der nordatlantischen

SST ab 2015 zu erwarten.
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Greek Symbols

α Coefficient of the EOF analysis that refers to the PC

β Canonical variable

∂
∂x Partial derivative with respect to x

ε Error

η Explained variance

λ Eigenvalue of the associated eigenvalue-problem

µ, ~µ Expected value

~Ψ Vector of kY regarded PCs

ψ Stream function

ρ Correlation coefficient

Σ ~X,~Y Covariance matrix of ~X, ~Y

σ Covariance of X,Y

Σ̂ Sample covariance matrix

~χ Vector of kX regarded PCs

Superscripts

x̄ Mean of x

i, j, k superscript indices

α+, ~e+ Re-normalized version of α,~e

~X ′ Anomalies of ~X

T Transposition of the assigned vector

Subscripts

t declares the time-dependancy of the assigned variable

i, j, k subscript indices

viii



Nomenclature

Other Symbols

Cov( ~X, ~Y ) Covariance matrix of ~X, ~Y

Cov(X,Y ) Covariance of X,Y

E Expectation operator

F Matrix of canonical correlation patterns

〈~a,~b〉 inner product (scalar product) of two vectors ~a,~b

SSE Sum of squared errors

Var(X) Variance of X

Acronyms

AMOC Atlantic Meridional Overturning Circulation

AR(1) Autoregressive process of first order

CCA Canonical Correlation Analysis

CDO Climate Data Operators

ECHAM Atmospheric general circulation model

ECMWF European Center for Medium-Range Weather Forecasts, Reading, UK

EOF Empirical Orthogonal Function

ERA ECMWF Reanalysis Project

ERSST Extended Reconstructed Sea Surface Temperature

GFDL Geophysical Fluid Dynamics Laboratory

HadISST Hadley Centre Global Sea Ice and Sea Surface Temperature

KCM Kiel Climate Model

MOC Meridional Overturning Circulation

NAC North Atlantic Current

NADW North Atlantic Deep Water

ix



Nomenclature

NAO North Atlantic Oscillation

NCAR National Center for Atmospheric Research

NCEP National Center for Environmental Predicition

NEMO Nucleus for European Modelling of the Ocean

NOAA National Oceanic and Atmospheric Administration

LIM Louvain-la-Neuve Ice Model

OASIS Ocean atmosphere coupler
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Chapter 1

Introduction

One of the key regions of oceanic circulation is the North Atlantic due to its feature in forming

North Atlantic Deep Water (NADW), a water mass that penetrates the world’s oceans following

the paths of the three-dimensional conveyor belt circulation [Broecker, 1991]. The picture of a

few simplified streams connecting the ocean basins was critizied, but it still provides the idea of a

global ocean circulation including flow at depth, where signals of local changes have the potential

to propagate globally. Several efforts were carried out to divide the ocean circulation into

components that are impacted by different sources of energy: the wind-driven circulation (mainly

the upper few hundred meters) as well as the thermohaline circulation, that is supposed to result

from changes in density due to cooling at high-latitudes. Nevertheless, it is still controversial

were the energy comes from, that drives the ocean in regions which are not directly wind-affected

[Wunsch, 2002]. Nowadays, the term Meridional Overturning Circulation (MOC) is widely used

to refer to an oceanic circulation that includes the deep ocean, as there is an explicit definition:

It is the meridional flow dependent on latitude and depth, that remains after zonally averaging

[Stewart, 2008]. In the North Atlantic this involves features such as the gulf stream, its extension

farther north: the North Atlantic Current (NAC), the sinking regions (Labrador Sea, Irminger

Sea) that form NADW, as well as the southward return flow at depth (see Fig. 1.1). The amount

of transported heat by the MOC is in the order of 1 PW (=1015 W) [Hall & Bryden, 1982],

hence changes of its strength have a large impact on the climate of the North Atlantic and its

adjacent land areas [Pohlmann et al., 2006] and presumably world wide. Understanding the

physical processes that drive MOC variability is motivated due to the benefit that results if

understanding leads to the ability of prediction. But, is there potential to predict changes in the

MOC, or are they following a fully chaotic behaviour?

In the last decades many studies contributed to the understanding of spatial and temporal

variations of the MOC. Bjerknes [1964]; Kushnir [1994] stated that the North Atlantic region

1



1. Introduction

[Sv]

Figure 1.1: Mean Atlantic Meridional Overturning Circulation stream function [Sv]. The flow is parallel
to isolines. Positive values indicate clockwise overturning yielding northward flow near the surface and
southward flow at depth. From Grist et al. [2009], the stream function was calculated from a 100 year
control run of GFDL2.1.

needs to be regarded as a coupled ocean-atmosphere system, in the sense that air and sea interact

with each other through heat, momentum and freshwater fluxes. Additionally, it is suggested

that the interactions are timescale-dependent: The atmosphere impacts the ocean on annual1

time scales, whereas it is the ocean that influences the atmosphere on decadal time scales, in

turn. In the North Atlantic, the dominant mode of atmospheric variability, that forces changes

in the ocean is the North Atlantic Oscillation [Hurrell, 1995]. The NAO describes simultaneous

variations of atmospheric pressure at high- and mid-latitudes (Fig. 1.2). The centers of action

are located over Iceland and the Azores, hence, its index (Fig. 1.3) is a measurement for the

strength of westwinds between 40°N and 60°N over the North Atlantic ocean and imprints many

climatic parameters [Hurrell & Deser, 2010]. The NAO shows strongest variability on annual

time scales as well as some power on the decadal band (Fig. 1.3). How do NAO and the MOC

influence each other?

First, we have to note that NAO and MOC are spatially connected via the sea surface, hence

every interaction between both will leave its imprint on the sea surface characteristics. Following

the review paper of Latif et al. [2006b] there are at least two modes of oceanic variability that

act on annual and longer time scales, one of them immediately related to the NAO, the other one

heavily dependent on the MOC. Delworth & Greatbatch [2000]; Eden & Willebrand [2001] and

Eden & Jung [2001] quantify that heat fluxes are the dominant atmospheric forcing to reproduce

the oceanic variability on time scales of 60-70 years in models. In contrast, the momentum and

1Altough the terms annual and decadal are not concise, we use them in a sense that: annual refers to variations
that are apparent while regarding annual mean values, but vanishing when an 11-year running mean is applied;
decadal will be used for variability that is emphasized while regarding time series that are filtered with an 11-year
running mean, hence decadal may cover periods up to a century as well.

2
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[hPa]

Figure 1.2: Spatial pattern of the North Atlantic Oscillation during winter. The positive phase of the
NAO is associated with higher pressure over the Azores and lower pressure over Iceland yielding enhanced
westwinds in the North Atlantic region. The geostrophic winds as follow from the strengthend pressure
gradient are illustrated schematically. (The figure was calculated as first EOF from monthly ERA-Interim
data, 1979-2012, December through March, over the illustrated region.)

freshwater fluxes are of minor importance. Since then, it is clear, that both modes leave their

imprint on North Atlantic sea surface temperature (SST).

The former mode of oceanic variability, is known to be the immediate response of the sea

surface due to NAO-related heat flux forcing. According to Eden & Jung [2001] there are three

regions, where the NAO index explains most of the monthly heat flux anomalies: Labrador and

Irminger Sea; the western mid-latitude North Atlantic and off the west coast of North Africa.

Hence, this leads to a stationary three band pattern [Álvarez Garćıa et al., 2008; Latif et al.,

2000a; Visbeck et al., 1998] of SST anomalies mostly prevailing on annual time scales. Associated

with this mode are positive (negative) SST anomalies in the Labrador and Irminger Sea during

negative (positive) phases of the NAO.

The latter mode of oceanic variability, was identified by Schlesinger & Ramankutty [1994,

1995] as an oscillation of the North Atlantic SST, that varies basin-wide with a period of 50-

70 years. Commonly used is the term Atlantic Multidecadal Oscillation (AMO, Kerr [2000]).

In contrast to the annual mode described above, the AMO is explained by ocean dynamics

[Eden & Greatbatch, 2003; Eden & Jung, 2001]. The signal of decadal changes in the NAO

is simultaneously apparent in Labrador Sea Water thickness [Eden & Willebrand, 2001; Latif

3
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year

Figure 1.3: Station-based annual index of the North Atlantic Oscillation resulting from the difference in
sea level pressure at Ponta Delgada, Azores and Stykkisholmur/Reykjavik, Iceland [Hurrell, 1995]. The
red line indicates decadal changes as calculated by an 11-year running mean. The index is dimensionless
through standardization.

et al., 2006a], a measure for the strength of deep water formation. Consequently, a stronger

subpolar gyre circulation after 2-3 years and a stronger subtropical circulation after nearly a

decade is induced [Eden & Willebrand, 2001]. A contributively strengthened MOC leads to

enhanced oceanic heat transport [Eden & Greatbatch, 2003; Eden & Jung, 2001], which is

reflected 10-20 years later in North Atlantic SST anomalies [Latif et al., 2004]. There have been

several discussions whether this mode is (i) a passive response of the ocean on atmospheric forced

deep water formation; (ii) according to Bjerknes [1964] hypothesis a partial coupled mode, where

the ocean integrates the annual atmospheric forcing and impacts the atmosphere on decadal

time scales; or (iii) a fully coupled ocean-atmosphere covariability similar to those of the El-Niño

Southern Oscillation phenomenon [Delworth & Greatbatch, 2000; Latif et al., 2000a].

Some evidence has been provided that (i) is not the case as it is possible to reproduce

decadal NAO variability, similiar to those observed, with an atmosphere-only model, driven with

prescribed observed SST anomalies [Latif et al., 2000a]. Hence, the ocean feeds back to the

atmosphere at least on decadal time scales, supporting Bjerknes [1964] hypothesis. On the other

hand, the NAO seems to be impacted not solely by the North Atlantic ocean, but is sensitive to

changes in the Indian ocean and the Pacific region [Dima & Lohmann, 2007; Latif et al., 2006b].

We recognize that the covariability of ocean and atmosphere in the North Atlantic is governed

by an accumulation of climatic feedbacks (including momentum and freshwater fluxes, which

is beyond the scope of this study), many of them poorly understood. Some of these feedbacks

are, although physically reasonable, instantaneous reactions that do not provide any predictive

skill. Looking for a potential for prediction it is necessary to focus on the ocean, as delayed

feedbacks and slowly propagating signals [Getzlaff et al., 2005] may lead to the application

of a prognosis for the future [Sutton & Allen, 1997]. There is one mechanism, prevailing the

4
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NAO

Heat flux anomalies

Deep convection

Meridional Overturning Circulation

Oceanic heat transport

SST anomalies

Figure 1.4: Schematic drawing of the predictive skill in the North Atlantic.

generation of SST anomalies on decadal time scales: Following the results that (i) NAO-related

heat flux forcing leads to a consistent MOC [Eden & Jung, 2001] and (ii) the strength of the

MOC determines North Atlantic decadal SST anomaly, Latif et al. [2006b] conclude that ”the

state of the multidecadal mode in the Atlantic may be predictable from the history of the NAO”.

The objective of this study is to test whether the physical mechanism as drawn in Fig. 1.4

is statistically included in a coupled climate model and to perform a prediction of the future

evolution of North Atlantic decadal SST variability based on statistical relationships between

observations and model output. In order to attach the climate model to the climatic trajectory

of the NAO during the twentieth century we follow the strategy of Eden & Jung [2001]. But,

and this is in contrast to Eden & Jung [2001], we allow ocean and atmosphere to interact freely,

since a coupled model is used.

The thesis is structured as follows: The data is presented in section 2.1 and a comprehensive

introduction to the used methods are given in 2.2. Chapter 3 will discuss the models ability

to reproduce SST variability which leads to the focus on simulated MOC in chapter 4. Having

found a predictive skill we complete the present study with a prognosis of future North Atlantic

SST evolution in chapter 5. In summary, the conclusions are drawn in chapter 6.

5



Chapter 2

Data and methodology

2.1 Data

We analyze sea surface temperatures (SST) and the Meridional Overturning Circulation (MOC)

stream function from a partial coupling experiment of the Kiel Climate Model (KCM), which is

described in section 2.1.1. In order to compare the experiment with observations we use two

different SST reconstructions: NOAA’ Extended Reconstructed Sea Surface Temperture (ERSST,

section 2.1.2) and Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST, section

2.1.3).

2.1.1 Kiel Climate Model

A brief description of the KCM setting is following, further details are given in Park et al.

[2009]. The KCM is a coupled climate model that consists of the ECHAM51 atmospheric model

[Roeckner et al., 2003] coupled via OASIS3 [Valcke, 2013] to the ocean and sea-ice model NEMO2

[Madec, 2008]. NEMO contains the ocean general circulation model OPA93 and the sea-ice

model LIM24. ECHAM5 is a spectral model with a resolution of T31 (3.75° × 3.75°) including 19

vertical levels for the atmosphere. The ocean model OPA9 is based on the tripolar ORCA2 grid,

which provides a horizontal ocean resolution of 1.3° on average, with an equatorial refinement of

0.5°. The vertical is divided into 31 levels, including a free surface formulation and partial bottom

cells. The tripolar ORCA2 grid divides the North Pole into two poles, one of them located in

1European Centre for Medium-Range Weather Forecasts (ECMWF) Hamburg atmospheric general circulation
model version 5, developed at the Max Planck Institute for Meteorology (MPI), Hamburg

2Nucleus for European Modelling of the Ocean
3Océan Parallélisé version 9, developed at the Laboratory of Oceanography and Climatology (LOCEAN),

Institut Pierre Simon Laplace (IPSL)
4Louvain-la-Neuve Ice Model version 2

6



2. Data and methodology

North Canada, the other one in Siberia (Fig. Appendix .2). To exchange fields between ocean

and atmosphere the OASIS3 coupler interpolates between the different grids that are used.

In general, the KCM is not using any form of flux correction or anomaly coupling, neither

in heat fluxes, freshwater, nor in wind stress. However, the experiment analyzed here contains

prescribed heat fluxes anomalies as explained in the next section.

Experimental design

The experimental setting implemented into the KCM is according to Eden & Jung [2001]. Heat

flux anomalies from the NCEP-NCAR reanalysis [Kalnay et al., 1996] were regressed onto the

normalized monthly NAO index from 1958 to 2000 [Hurrell, 1995]. This leads to spatial regression

patterns that are associated to the phase of the NAO. As the observed NAO Index is available

from 1865 onwards it allows to reconstruct NAO-related heat fluxes since 1865. Thus, the forcing

patterns were calculated by multiplying the NAO timeseries from 1865 to 2000 with the regression

patterns yielding a term QNAO that is space and time dependent. QNAO is biggest in the regions

where the NAO index explains most of the local heat fluxes (see Eden & Jung [2001], their Fig.

1(b)) and is added upon the simulated heat flux Qmod yielding the total heat flux Q which is

then felt by the model:

Q = Qmod +QNAO (2.1)

In general, as QNAO contains anomalies this term is small compared to Qmod. This is especially

the case for regions where the heat fluxes are not affected by the NAO: The term QNAO vanishes

here. The experiment was performed five times resulting in five ensemble members, which differ

in the stochastically perturbed initial conditions. In the following, we consider only the ensemble

mean which is motivated as there is no particular interest in the chaotic behaviour of every

member but in the oceanic response due to the forcing.

2.1.2 Extended Reconstructed Sea Surface Temperature

The Extended Reconstructed Sea Surface Temperature data set [Smith et al., 2008] provides

monthly 2° gridded SST from 1854 to present. The reconstruction was performed using statistical

methods such as Empirical Orthogonal Function analysis to enlarge the sparsely available in situ

data to a global set of SST data. The version used here is V3b, which does not contain satellite

data to preserve a cold bias due to the availability of satellite records only during clear-sky

conditions.

The analysis presented here is simultaneously performed with two data sets: ERSST and

additionally the HadISST for comparison. We will primarily refer to the ERSST for clarity,

7



2. Data and methodology

but in order to investigate the uncertainties that are included in the reconstructed SST we will

present some aspects of the analysis of HadISST as well.

2.1.3 Hadley Centre Global Sea Ice and Sea Surface Temperature

The Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) is a global data set

of 1° gridded monthly SST. It is available since 1870 and is very similar to the ERSST data, but

derived with different statistical methods. The similarity emphasizes the small uncertainties in

both reconstructions, although we recognize that the uncertainties are considerable decreasing

throughout the last half of the twentieth century [Smith et al., 2008]. The version of HadISST

used here is v1.1 and described in further detail in Rayner et al. [2003].

2.2 Methods

A short collection of some of the used statistical nomenclature is given in the Appendix. For

clarification most of the methods are not presented in their empirical notation, which follows

by substitution through the empirically estimated statistical moments: mean and (co-)variance.

The methods explained here are given in further detail in Emery & Thomson [2001]; von Storch

& Zwiers [1999]; Wilks [1995].

2.2.1 Data restriction

Prior to the present analysis we restrict the data temporally to the period of 1870-2000 and

spatially to the region of the North Atlantic (100°W–10°E, 0°N–70°N). Additionally, we mask

the following regions: Mediterranean sea, Hudson Bay, Pacific and partially the Labrador Sea.

The spatial restriction is enlarged to 30°S for the MOC stream function.

All variables are considered as annual mean values and we regard only anomalies by sub-

tracting the climatology that was calculated from 1870 to 2000 for every grid point, respectively.

Furthermore, the data has been detrended as described in the next section.

2.2.2 Linear regression: detrending data

Linear regression is the approach of finding a model dependend on X that is able to represent Y

upon an error ε. Regarding (xi, yi), for i = {1, ..., n} as the realizations of X,Y . Then

yi = a0 + a1xi + εi (2.2)

8



2. Data and methodology

is the simple regression model with a0, a1 as unknown coefficients. The errors (or often called

residuals) follow by rearranging equation 2.2

εi = yi − a0 − a1xi (2.3)

To fit the regression model to Y we want to minimize the sum of the squared errors SSE =
∑n

i=1 ε
2
i .

Therefore, the partial derivatives of SSE with respect to a0, a1

n∑
i=1

(yi − a0 − a1xi) = 0 (2.4)

n∑
i=1

(yi − a0 − a1xi)xi = 0 (2.5)

are set to zero. With solutions

a0 = ȳ − a1x̄ (2.6)

a1 =

∑n
i=1 xiyi − nx̄ȳ∑n
i=1 x

2
i − nx̄2

. (2.7)

where x̄, ȳ are the mean values. We regard Y as a function of time, with n time steps that

correspond to the realizations yi. X is then a vector containing xi the n time steps in an

increasing order. The trend is then defined as the slope a1 of the linear regression. Hence,

detrending a time series means subtracting the regression model

Ydetr = Y − (ao + a1X). (2.8)

Note that, detrending a time series eliminates the trend a1 as well as the bias a0. The model

output data from KCM and both SST reconstructions have been detrended prior to the present

analysis. This is motivated to preserve the correlations from being affected by trends and was

applied on every grid point, respectively. Furthermore, it is not the objective of this study to

analyze trends which are included in the SST reconstructions [Rayner et al., 2003; Smith et al.,

2008] and in the MOC stream function (not shown). In case of the MOC the imprint of global

climate change is not clear [Latif et al., 2000b, 2006a]. However, trends in the MOC during

the regarded period may result from variability on centennial and multi-centennial time scales

[Menary et al., 2012; Park & Latif, 2008, 2012].

9



2. Data and methodology

2.2.3 Empirical Orthogonal Function

Empirical Orthogonal Function (EOF) analysis is the approach to expand a multivariate vector

~X into a finite series of empirically derived basis vectors ~ei (which is actually the Empirical

Orthogonal Function) and associated time-dependent coefficients αi (Principal Components, PCs).

This method was introduced to meteorology by Lorenz [1956] and described by Hotteling [1935]

and Pearson [1902] in advance. First, we calculate anomalies of ~X by subtracting the expected

value ~µ = E( ~X).

~X ′ = ~X − ~µ (2.9)

The finite series is then

~X ′ ≈
k∑
i=1

αi~ei (2.10)

Equality in 2.10 is in general only possible for k → mX , the dimension of ~X. Indeed, in most

cases the sum converges quickly to ~X ′, therefore it is possible to choose k � mX . The PCs αi

are retained from projecting ~ei onto ~X ′ via the inner product

αi = 〈 ~X ′, ~ei〉 (2.11)

The EOFs ~ei are chosen to be orthogonal and accounting for a maximum of variation in ~X ′. The

first EOF ~e1 is therefore found so that the error ε1

ε1 = E
(
‖ ~X ′ − 〈 ~X ′, ~e1〉~e1‖2

)
(2.12)

of reconstructing ~X ′ is minimized. ‖ · ‖ is the norm of a vector. Equation 2.12 is solved with

Langrangian multipliers and given in von Storch & Zwiers [1999]. Minimizing the error ε1 is the

same as maximizing the variance of ~e1 that explains variations of ~X ′. The Lagrangian multiplier

λi is the eigenvalue of the eigenvector ~ei, which is representing a proportion of the total variance.

Hence, the explained variance ηk of the kth EOF is

ηk =
λk∑
i λi

(2.13)

If the first EOF is calculated, the second EOF can be found with equation 2.12 by replacing ~X ′

with the vector ~X ′ − 〈 ~X ′, ~e1〉~e1 that contains the variations of ~X ′ that can not be explained by

the first EOF. This procedure is repeated analogously to obtain further EOFs.

In a physical sense, applying EOF analysis onto data that contains a spatial field of variables,

each with a large sample of time steps, leads to patterns that are representing the dominant modes

10



2. Data and methodology

of variability. Hence, the EOFs ~ei are the spatial patterns and the PCs αi their corresponding

time series. In the case of equation 2.12 the patterns are dimensionless and the unit of ~X

is carried by the time series. We replace the coefficients αi and the eigenvectors ~ei by their

re-normalized versions indicated by + as superscript

α+
i =

1√
λi
αi , ~ei

+ =
√
λi~ei (2.14)

so that

Var(α+
i ) = 1. (2.15)

Hence, the time series is now dimensionless. Instead, the patterns ~ei have now the unit of ~X.

For the present analysis the EOF analysis was applied on detrended data as described in section

2.2.2.

2.2.4 Canonical Correlation Analysis

The classical correlation as defined by Pearson is designed to study the linear relation between

two univariate variables X,Y . The Canonical Correlation Analysis (CCA) was introduced by

Hotteling [1936] and allows to study the linear relation of two multivariate variables ~X and

~Y . Let mX ,mY be the dimensions of ~X, ~Y , respectively. First, considering linear combinations

βX , βY of ~X, ~Y by calculating the inner products of ~X, ~Y with vectors ~fX , ~fY of same dimensions

mX ,mY .

βX = 〈 ~X, ~fX〉 , βY = 〈~Y , ~fY 〉 (2.16)

βX , βY are called canonical variables. The objective of CCA is now that the correlation of the

canonical variables

ρ =
Cov(βX , βY )√
V ar(βX)V ar(βY )

(2.17)

is maximized. The solution of equation 2.17 is derived with Langrangian mulitpliers and given in

von Storch & Zwiers [1999]. This leads to an eigenvalue-problem of the eigenvectors ~fX , ~fY . The

associated eigenvalue λ is related to the correlation ρ that we wanted to maximize by ρ =
√
λ.

Therefore, choosing the largest eigenvalue λ1 leads to the first pair of eigenvectors ~f1
X ,

~f1
Y and the

associated first pair of canonical variables β1
X , β

1
Y . More pairs of canonical variables are found

by chosing next smaller eigenvalues λi+1 < λi. Having found the canonical variables βiX , β
i
Y for

i = {1, ...,m}, whereas m is the minimum of {mX ,mY } we arrange them in vectors

~βX = {β1
X , ..., β

m
X} , ~βY = {β1

Y , ..., β
m
Y }. (2.18)

11



2. Data and methodology

Similarly, we arrange the eigenvectors ~f iX ,
~f iY in m×m matrices fX , fY with the ith eigenvector in

the ith column. Following von Storch & Zwiers [1999], it is now possible to obtain ~X, ~Y through

~X = FX ~βX , ~Y = FY ~βY (2.19)

with matrices FX ,FY that are derived as follows

FX = Σ ~X, ~XfX , FY = Σ~Y ,~Y fY (2.20)

where Σ ~X, ~X is the covariance matrix of ~X. The canonical correlation patterns ~F iX ,
~F iY are

contained in the columns of FX ,FY and can be used to expand ~X, ~Y into a finite series with

~F iX ,
~F iY as basis vectors. Hence, we are now able to reconstruct ~X, ~Y by

~X =
∑
i

βiX ~F
i
X , ~Y =

∑
i

βiY ~F
i
Y (2.21)

2.2.5 CCA in EOF space

Canonical correlation analysis is applied in the EOF space, instead of the normal coordinate

space (see e.g. Barnett & Preisendorfer [1987]; Eden & Willebrand [2001]; Latif et al. [2000a])

Using the re-normalized versions α+
i and ~ei

+ (see equation 2.14) CCA is then applied on the

vectors ~χ, ~Ψ

~χ =
(
αX+

1 , ..., αX+
kX

)
, ~Ψ =

(
αY+

1 , ..., αY+
kY

)
(2.22)

which contains the number of kX , kY regarded PCs from the EOF analysis of ~X ′, ~Y ′ (the anomalies

of ~X, ~Y ). This comes along with several advantages. First, the algebra of the eigenvalue-problem

is simplified since the coefficients αi are uncorrelated as follows from the orthogonality of

the eigenvectors ~ei. Therefore, Σ~χ,~χ and Σ~Ψ,~Ψ are both identity matrices. Additionally, it is

possible to choose the number of considered EOFs kX , kY . We set kX = kY = 5 to represent

a large proportion of explained variance (approx. 60–70%, see Fig. 3.1) of the original field.

Simultaneously, we are able to eliminate small scale variabilities by disregarding the high order

EOFs.

As the original field has been transformed into EOF space in advance, it is necessary to

reverse the transformation of equation 2.10 to obtain the canonical correlation patterns ~F iX ,
~F iY

in normal coordinate space by

~F iX =

kX∑
j=1

(
~fχ
i
)
j
~eX
j+ , ~F iY =

kY∑
j=1

(
~fΨ
i
)
j
~eX
j+ . (2.23)

12



2. Data and methodology

where (·)j denotes the jth element of ~f i. Note that the EOFs are used in their normalized version

(see eq. 2.14), so that ~e carries the unit of the original field. We reconstruct the original field as

described in equation 2.21. The canonical variables βX , βY are then a linear combination of the

kX , kY regarded PCs and ~F iX ,
~F iY refers to a linear combination of the spatial EOF patterns, as

shown in equation 2.23.

2.2.6 Explained variance

The amount of variance η of ~X that can be explained by ~Y is

η =
Var( ~X)−Var( ~X − ~Y )

Var( ~X)
. (2.24)

Here ~X is the original field that we want to reconstruct with ~Y . Note that, in the case of EOF

(CCA) ~Y refers to the kth EOF (CCA) eigenmode as described in equation 2.10 (equation 2.21).

For the classical correlation between two univariate variables the calculation of explained

variance is simplified. η is here defined as the squared correlation ρ2.

2.2.7 Significance and simulation of random processes

We recognize that CCA is a technique that is to some degree always able to find eigenvectors
~fX , ~fY to correlate the canonical variables βX , βY . Hence, it is necessary to investigate confidence

levels for CCA to clearify whether the correlation ρ is significantly larger than the correlation

that results from a random process with same degrees of freedom. Applying CCA in EOF space

we consider two vectors ~χ, ~Ψ that contain the first kX = kY = 5 PCs of the EOF analysis. Given

a length of 131 years (1870-2000), or subsequently less while considering the application of a lag,

determines the degrees of freedom. Thus, the null hypothesis is phrased by: The leading 5 PCs

represent independent realizations of random process noise.

The elements of random vectors for ~χ, ~Ψ are simulated with a first order autoregressive model,

which is called AR(1)-Process, as the next value yt of the process is dependent on the previous

one yt−1. In general, AR(1)-Process is defined as

yt = ayt−1 + εt. (2.25)

The coefficient a results from the autocorrelation function for lag = 1 of each PC. The error εt is

normally distributed with unit variance.

We are now able to estimate the probability density distribution of the canonical correlation

ρ from a number of n = 10000 random processes. We proceed in calculating the 95th- and
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2. Data and methodology

the 99th-percentile whose values are then taken as threshold to estimate whether the canonical

correlation is significant or not.

Note that for the classical correlation significance levels can be derived from Student’s t-

distribution. In this study, for timeseries spanning 131 years (111 years while regarding a lag of

20 years) the threshold whether a correlation is significant at the 99%-level is 0.25 (0.24).

2.2.8 Stream function

A stream function is a scalar field that describes velocities defined in a vector field. The velocity

needs to satisfy the two dimensional continuity equation

∇ · ~u =
∂v

∂y
+
∂w

∂z
= 0 (2.26)

which is here given on y-z-coordinates (y: Latitude, z: Depth). The velocity vector ~u = (v, w)

contains the meridional velocity v and the vertical velocity w. The stream function ψ is then

defined by

v = −∂ψ
∂z

, w =
∂ψ

∂y
(2.27)

(see Olbers et al. [2012]). Given the meridional velocity v as model ouput, we can average v

zonally in the North Atlantic with the boundary conditions that there is no flow through the

western or eastern boundary. ~u then satisfies the continuity equation 2.26. Integrating v = ∂ψ
∂z

from bottom (z = h) to top (z = 0) with boundary conditions

ψ|z=h = 0 , ψ|z=0 = 0 (2.28)

yields the stream function on y-z-coordinates that represents the Atlantic Meridional Overturning

Circulation.

In the case of the Kiel Climate Model, the stream function is calculated on the tripolar

ORCA2 grid. Therefore, zonal averaging was applied on grid cells (where the laws of conservation

are valid) with the same meridional index, which do not represent the same latitude (see Fig.

Appendix.2). We chose the latitudes of zonal index 130, which lays approximately at 25°W to

reassign the stream function with latitudes.
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Chapter 3

Comparison of observed and

simulated SST variability

This chapter presents the results of the respective analyses of variability patterns in space and

time of the SST simulated by KCM as well as of the SST reconstructions ERSST and HadISST.

Both SST reconstructions are considered to provide information about the their uncertainties.

3.1 Spatial patterns - EOF modes

The dominant modes of SST variability in the North Atlantic (0°N-70°N) are investigated by

applying an EOF analysis from 1870 to 2000 as described in section 2.2.3. The explained

variance of the respective EOF modes is shown in Fig. 3.1(a). The first EOF mode (hereafter

EOF1, higher orders analogously) of ERSST and HadISST accounts for approximately 33% of

the total variance (derived by equation 2.13). This most energetic mode represents basinwide

SST variability of the same sign in ERSST and HadISST (Fig. 3.2(a)) and varies strongly on

multi-decadal time scales as shown by the associated PC1 (Fig. 3.3(a)). Indeed, the time series

of this mode is, with a correlation coefficient of 0.97 in ERSST and HadISST, nearly identical

to the index of the Atlantic Multidecadal Oscillation (Schlesinger & Ramankutty [1994, 1995],

defined as mean North Atlantic SST at 0°–60°N, Fig. 3.5).

In contrast, the dominant mode of SST variability EOF1 in the KCM ensemble mean accounts

only for 24.6% of the total variance and represents a three band pattern as shown in Fig. 3.2(c).

This pattern is known to result directly from the circulation anomalies of the lower atmosphere

associated to the phase of the NAO [Latif et al., 2000a; Visbeck et al., 1998]: Anomalously high

pressure over the Azores and low pressure over Iceland enhance the trade and west winds which

impact the mixed-layer temperature through anomalous heat fluxes [Eden & Jung, 2001]. The

15



3. Comparison of observed and simulated SST variability

KCM

ERSST

HadISST

KCM MOC

Figure 3.1: Eigenvalue spectrum of EOF analysis applied on detrended annual anomalies of North Atlantic
SST (0°N–70°N, 1870-2000) of ERSST, HadISST, KCM Ensemble mean SST and of KCM ensemble mean
MOC stream function (30°S–70°N, 1870-2000). (a) Explained variance [%], (b) accumulated explained
variance [%].

relation between this mode of SST variability and the NAO is verified by a correlation coefficient

of 0.56 on annual time scales and 0.81 on decadal time scales (11-year running mean is applied)

calculated from PC1 (Fig. 3.3(a), black line) and the station-based annual NAO index (Fig. 1.3,

Hurrell [1995]). Both correlations are significant at the 99%-level.

Although the three band pattern is dominant in KCM (Fig. 3.2(c)), this does not hold for

ERSST and HadISST, where this pattern as shown in Fig. 3.2(b) accounts for the second most

energetic mode EOF2, explaining 13.5% of the total variance. In contrast, EOF2 of KCM (expl.

variance: 13.5 %, Fig. 3.2(d)) represents a basinwide pattern of mostly the same sign, which is

contributing most of the variance to KCM’s simulated AMO index (Fig. 3.5, black line).

Comparing ERSST and KCM directly (see Fig. 3.4) shows the reason for the differences

between simulated SST and observations: SST variability in the regions where the model is

forced with NAO-related heat flux anomalies bear only small resemblance to observations, as

denoted by correlation coefficients in the range of 0.3 to 0.5. In constrast, the regions where no

heat fluxes are explained by the NAO are completely not comparable in model and observations.

All in all, this leads to the conclusion that the KCM is not able to reproduce the majority of

observed spatial SST patterns as seen in the deviation from ERSST and HadISST, although it is

forced by observed heat flux anomalies. The SST simulation suffers from a bias in the regions

where no forcing of prescribed heat flux anomalies is applied, which presumably results as the

forcing term vanishes here (see section 2.1). We may describe the bias in simple terms: The

forcing is overall not strong enough to bind the simulated SST to observed SST.
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EOF1    33.0%

EOF1    24.6%

EOF2    13.5%

EOF2    13.5%

(a) (b)

(d)(c)

Figure 3.2: The dominant modes of SST variability as derived by the first two EOFs [°C]: (a),(b) ERSST
and (c),(d) KCM ensemble mean SST. The respective explained variance is indicated directly below the
pattern. (b) has been multiplied by -1 for clarity. The EOF patterns of HadISST are very similar to those
of ERSST. All data has been detrended prior to analysis.
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3. Comparison of observed and simulated SST variability

KCM ERSST HadISST

(a)

(b)

year

Figure 3.3: Principal Components of EOF analysis of SST in the North Atlantic (0°-70°N, 1870-2000)
from ERSST, HadISST and KCM ensemble mean SST: (a) PC1, (b) PC2. PCs are dimensionless through
re-normalization (section 2.2.3).

3.2 Time development - Atlantic Multidecadal Oscillation

The accuracy to reproduce twentieth century’s evolution of SST variabilty in the North Atlantic

is investigated by regarding the AMO index. Fig 3.5 shows the respective AMO indices calcu-

lated from ERSST, HadISST and KCM. Both reconstructed AMO indices are almost identical

(correlation coefficient: 0.94), however, the AMO index resulting from the KCM ensemble mean

is even negatively correlated to ERSST (coeff. -0.30) and HadISST (coeff. -0.26). Therefore,

we conclude that observed and simulated AMO indices have nothing in common, leading to the

result that the simulated SST is not reproducing the climate trajectory of the twentieth century

North Atlantic SST variability.
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3. Comparison of observed and simulated SST variability

Figure 3.4: The KCM reproduces observed SST variability only in regions were observed heat flux forcing
is applied: Correlation of ERSST and KCM for every grid point, seperatly. The KCM has been linearly
interpolated on the ERSST grid prior to analysis. All data has been detrended prior to analysis.

year

[°C]

KCM
ERSST
HadISST

Figure 3.5: AMO index [°C] from detrended annual mean ERSST, HadISST and KCM ensemble mean
SST. The index is defined as mean SST at 0-60°N in the North Atlantic. Note that ensemble mean yields
smaller variance.

19



Chapter 4

Covariability of simulated MOC and

observed SST

As presented in the last chapter, the KCM is not able to simulate SSTs comparable to observations.

However, here we investigate the performance of the simulated MOC which is, in contrast, closely

linked to variations in observed SST and NAO. Therefore, we use the MOC stream function

instead of simulated SST to analyze the dynamic ocean’s response to the NAO-related forcing.

4.1 NAO impacts the MOC

In the previous analysis we have seen that the simulated SST is directly and simultaneously

affected by the NAO (Fig. 3.2(d)). In contrast, the delayed link through the overturning

circulation seems not to realistically influence the ocean’s surface, as the simulated AMO index

does not reflect the observed SST variability (see Fig. 3.5). However, the simulated KCM

ensemble mean MOC stream function (hereafter referred to simply as MOC) responds clearly to

the NAO-related forcing as shown in Fig. 4.1. We regard the MOC index (maximum stream

function at 30°N), as it accounts for most of the large scale variability of the MOC stream

function: The covariability of NAO and MOC is indicated by an correlation coefficient of 0.74 of

their respective decadal indices, if NAO is shifted 10 years ahead (significant at the 99%-level).

Without shifting the coefficient is solely 0.44, denoting that variations do not occur simultaneously.

This agrees well with findings of Eden & Willebrand [2001]; Latif et al. [2006a] and with the

hypothesis of Fig. 1.4. As the link between observed NAO and simulated MOC is physically

reasonable, we proceed in analyzing the spatial footprint of the MOC on the observed SST.
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4. Covariability of simulated MOC and observed SST

year

MOC
NAO

Figure 4.1: The decadal changes in the North Atlantic Oscillation show an impact on the Meridional
Overturning Circulation several years later: Decadal indices of observed NAO (annual mean, station-based,
see Fig. 1.2) and simulated MOC (max. stream function at 30°N). The decadal indices are calculated by
the respective 11-year running means and are dimensionless through standardization. All data has been
detrended prior to analysis.

4.2 Spatial footprint of the MOC

It is investigated whether the simulated MOC is statistically related to the observed SST. Fig

4.2 shows the lead-lagged explained variance of the MOC index with each grid point of ERSST.

Regarding the explained variance (squared correlation, see section 2.2.6) during lag zero (Fig.

4.2(b)) shows, that changes in MOC and SST do not occur simultaneously. Indeed, shifting the

MOC index 10 years ahead yields a maximum of explained variance of approximately 25% at

Irminger Sea. The corresponding time series are negatively correlated with coefficients between

-0.3 and -0.5 (significant at the 99%-level, not shown). Therefore, cold SSTs in the northwest

North Atlantic are connected to a stronger MOC 10 years later. This mechanism is explained

by the physical process of deep water formation and agrees well with findings of Eden & Jung

[2001]; Eden & Willebrand [2001].

Regarding Fig. 4.2(c), (d), we identify a statistical relationship when MOC leads SST by

several years. A lead of 10 years (Fig. 4.2(c)) indicates that changes in the MOC result in SST

anomalies in the central North Atlantic at mid-latitudes a decade later. This connection emerges

even more clearly while regarding a lead of 20 years (Fig. 4.2(d)): A positive correlation with

maximum coefficients of about 0.5 (significant at the 99%-level) is located close to the gulfstream

area in the western mid-latitude North Atlantic. Furthermore, the signal of explained variance is

extending along the pathway of the North Atlantic current and reaching the eastern boundary at

subpolar latitudes. According to Eden & Greatbatch [2003] this provides some evidence that

”propagating SST anomalies” (i.e., advection of anomalous heat by mean currents, Sutton &

Allen [1997]) are less important than advection of heat by anomalously strong currents, as the

SST anomalies occur simultaneously.
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(a)

(c)

(b)

(d)

[%]

[%]

MOC lags 10yrs MOC lags 0yrs

MOC leads 10yrs MOC leads 20yrs

Figure 4.2: Lead-lagged spatial footprint of the Meridional Overturning Circulation. Explained variance
[%] derived by the squared correlation of the MOC index (max. stream function at 30°N) with ERSST on
every grid point. MOC leads SST by: (a) -10 years, (b) 0 years, (c) 10 years and (d) 20 years. All data
has been detrended prior to analysis.
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4. Covariability of simulated MOC and observed SST

We conclude, that in contrast to the simulated SST the KCM shows a MOC that is statistically

linked to the observed climatic evolution of the North Atlantic and therefore physically reasonable.

Regarding leads and lags up to two decades it is shown, that the MOC accounts for a large

amount of explained variance in the observed SST. We propose from these results that we can

use the simulated MOC to investigate further, whether oceanic response signals that follow from

the history of the NAO, lead to a predictive skill.

4.3 Lead-Lagged covariability of SST and MOC

lag [years]

co
rr

e
la

ti
o
n

MOC lags MOC leads

MOC - ERSST
MOC - HadISST
95%-level
99%-level

Figure 4.3: Lead-lagged correlation coefficients from 1. mode of CCA: KCM MOC ensemble mean stream
function canonically correlated with (black) ERSST and (red) HadISST. CCA was performed in EOF
space regarding the first five modes. Positive lag years indicate a lead of MOC, negative lag years a lead
of the respective SST reconstruction. The dashed lines illustrate the respective 95% and 99%-significance
levels estimated from simulations of n = 10000 random AR(1)-processes for every lag.

In order to investigate the covariability of observed SST and MOC Canonical Correlation

Analysis (CCA, see section 2.2.4) is applied in EOF space on ERSST and MOC stream function.

For CCA only the first 5 EOF modes are considered to eliminate small scale variabilities. Still,

reconstructing the original field from the first 5 EOF modes explains 69% of the total variance in

ERSST and MOC stream function, respectively (see Fig. 3.1(b)). The eigenvalues of the EOF

transformations are shown in Fig. 3.1(a). CCA is applied shifting the time series against each

other as suggested by the previous analysis of lead-lagged spatial footprints. We recognize that

CCA is designed to maximize the correlation between two input variables, therefore it yields

correlations even from random noise processes. Hence, it is important to investigate significance
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(a)

(b)

ERSST
MOC

year

Figure 4.4: Time series of canonical variables: (a) SST leads MOC by 11 years. (b) MOC leads SST by
21 years. Since leads and lags are applied, the time axes belong to SST and the MOC time series are
shifted relative to it. The associated patterns are shown in Fig. 4.5(a),(b),(c) and (d). The time series are
dimensionless and (b) has been multiplied by -1 since the sign is ambiguous (according to 4.5(b), (c))

levels for CCA as described in section 2.2.7. Note that only the first CCA mode (hereafter CCA1)

is considered in the present analysis.

The lead-lagged correlation coefficients for CCA1 are shown in Fig. 4.3 as a function of lag.

We identify two signals that are significant at the 99%-level: First, CCA1 yields a maximum

correlation of 0.61 when ERSST leads MOC by 11 years. Second, while MOC leads ERSST by

21 years the correlation is 0.59. The same analysis is performed with HadISST instead of ERSST

leading to qualitatively the same results, what emphasizes the robustness. The two lead-lagged

links agree well with the findings of section 4.1 and 4.2 and the associated canonical correlation

patterns and time series are discussed in the following sections. For clarity, we will focus solely

on ERSST, disregarding HadISST hereafter. The explained variances of all CCA modes are

given in the Appendix (Tab. 1).

4.3.1 SST leads MOC by 11 years

The leading mode of CCA (CCA1) is investigated while SST leads MOC by 11 years (we will

refer to this mode as MOCLAGS, hereafter). The canonical variables (time series) are shown in

Fig. 4.4(a) and associated patterns in Fig. 4.5(a), (c) for ERSST and MOC stream function,

respectively. This mode accounts for 17.4% of SST variability and 13.3% of MOC stream function
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Figure 4.5: First mode of canonical correlation patterns: (a) CCA1 of ERSST for SST leads MOC by
11 years; (b) CCA1 of ERSST for MOC leads SST by 21 years; (c) CCA1 of MOC stream function for
SST leads MOC by 11 years; (d) CCA1 of MOC stream function for MOC leads SST by 21 years. The
explained variance is denoted in the lower left corner, respectively. Since the sign is ambiguous (b) and (d)
have been multiplied by -1 for clarity. Positive values of stream function indicate clockwise overturning.

variability and their time series correlate well (0.61). Regarding Fig. 4.5(a) we see a negative

SST anomaly of -0.6 °C in Labrador Sea and Irminger Sea which is linked to an intensification of

0.5 Sv of the MOC at 50°N (Fig. 4.5(c)) 11 years later. The time series (Fig. 4.4(a)) mainly

reflect the multi-decadal variations of the observed AMO index (Fig. 3.5) indicated by correlation

coefficients of 0.31 to ERSST and 0.52 to MOC (significant at the 99%-level). Hence, we connect

MOCLAGS to the physical process of deep water formation in Labrador Sea and Irminger Sea

and a delayed response of the MOC through its intensification.

4.3.2 MOC leads SST by 21 years

In the following the leading mode of CCA is investigated while MOC leads SST by 21 years

(we will refer to this mode as MOCLEADS, hereafter). The canonical variables (time series)

are shown in Fig. 4.4(b) and associated patterns in Fig. 4.5(b), (d) for ERSST and MOC

stream function, respectively. This mode accounts for 25.7% of SST variability and 13.0% of

MOC stream function variability and their time series correlate well (0.59). Regarding the time

series (Fig. 4.4(b)), we identify that the low-frequency variations of MOCLEADS are thoroughly

comparable to those of the canonical variables of MOCLAGS (Fig. 4.4(a)). Hence, it is supposed
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[%](a) (b)

Figure 4.6: Locally explained variance [%] of SST reconstructed from CCA1: (a) SST leads MOC by 11
years, (b) MOC leads SST by 21 years. CCA was performed as described in caption of Fig. 4.3.

that these two CCA1 modes are closely connected to each other. This assumption is confirmed

while comparing the canonical correlation patterns of MOC stream function (Fig. 4.5(c) and (d))

as both patterns are nearly identical. This suggests that the same linear combination of MOC

modes is connected to: (i) cold SSTs in the sinking regions 11 years before and (ii) positive SST

anomalies of about 0.6°C located at the northward end of the gulfstream area and spreading

out in the North Atlantic between 40° and 60°N (Fig. 4.5(b)). Furthermore, we see that the

centers of action in the canonical correlation patterns (Fig. 4.5(a), (b)) of MOCLAGS and

MOCLEADS are in coincidence with the respective areas of most explained variance (Fig. 4.6).

Hence, both modes indeed represent most of the local SST variability. Altough, the centers of

action of MOCLAGS and MOCLEADS are not the same, we assume that the positive anomalies

in the mid-latitude North Atlantic (Fig. 4.5(b)) are going to replace the negative anomalies in

the subpolar North Atlantic (Fig. 4.5(a)) several years later, following the path of the subpolar

gyre circulation [Schmitz & McCartney, 1993; Sutton & Allen, 1997]. Thus, adding up the

lags of both CCA modes, we identify a negative feedback whose half-cycle lasts at least three

decades: the AMO. However, it is still unclear whether (i) the negative feedback is actually

realized through propagating SST anomalies, or (ii) how the ocean feeds back onto the NAO. It

should be mentioned that the feedback here is statistically identified and do not provide any

evidence about its physical mechanisms.
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Chapter 5

Prediction of SST until 2021

Following the results of the last chapter simulated MOC variations are closely related to observed

SST variations two decades later, according to the AMO. Thus, we proceed in using the simulated

MOC, which is available until 2000, as predictor for SST until 2021.

5.1 CCA as predictive tool

ERSST
MOC

year

Figure 5.1: Extension of canonical variables of CCA1 from Fig. 4.4(b) until 2021. Since the MOC stream
function is simulated until 2000 and leads SST by 21 years the linear combination of its PCs according to
CCA1 is used to predict SST variability until 2021. The time series are dimensionless.

We recognize that CCA can be used as a predictive tool, since leads and lags are involved.

Considering the MOCLEADS mode we define MOC as predictor and SST as predictand. Hence,

the linear combination of the MOC stream function PCs yields a time series which is an estimator

for the corresponding SST time series, since both are designed for most correlation. The MOC

stream function is simulated until 2000, thus we apply the same linear combination on the PCs

from 1980-2000 yielding a time series that is supposed to correlate most with its associated

SST time series from 2001-2021. Fig. 5.1 shows the extended canonical variable of Fig. 4.4(b).

Therefore, we use the canonical variable of MOC stream function as an estimator for the canonical

variable of SST. Given the canonical correlation pattern of SST we are able to ”reconstruct”
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5. Prediction of SST until 2021

(the future as well as the past) the SST variability in the North Atlantic by multiplying the

canonical variable of MOC stream function (Fig. 5.1, blue) with the canonical correlation pattern

of SST (Fig. 4.5(b)). The result is an SST prediction for the period of 2001-2021. It should be

mentioned, that the prediction may be performed including higher modes of CCA, though not

done in this study.

5.2 North Atlantic SST cooling after 2015

[°C](a) (b)

Figure 5.2: SST anomaly predicition with CCA1: (a) Mean SST anomaly for 2011-2015, (b) mean SST
anomaly for 2016-2020. The anomalies are relative to the 1870-2000 climatology. Since there are no
negative anomalies to illustrate, the colobar does not include negative values for clarity.

The AMO is currently in a positive phase of its 60- to 70-year cycle, as seen in Fig. 5.3 (we

extended the ERSST data set here until 2012 for comparison, as indicated in red). The SST

prediction based on CCA leads to the following conclusion considering the future development

until 2021: The positive SST anomalies in the North Atlantic retain in the first half of the current

decade as shown in Fig. 5.2(a) by the mean anomly during 2011-2015. In contrast, shown in

Fig. 5.2(b), the anomalies decrease for the second half of the current decade, as denoted by a

state, which follows more closely the climatology from 1870 to 2000. Furthermore, the AMO

index (Fig. 5.3, blue) can be reconstructed for the last century as well as predicted until 2021,

by means of the same CCA-based method resulting solely from the simulated MOC stream

function. In comparison to the observed AMO index, we identify that our reconstruction follows

closely the decadal variations, which is quantified by a correlation coefficient of 0.59 for the

illustrated period (1930-2012). While applying an 11-year running mean the higher coefficient of

0.73 emphasizes that our prediction/reconstruction reflects mostly the (multi-)decadal variability
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5. Prediction of SST until 2021

year

ERSST
ERSST (2001-2012)
MOC

[°C]

Figure 5.3: Prediction of AMO index until 2021. Since MOC leads SST by 21 years CCA1 allows a
reconstruction of the SST variability from canonical variables and patterns leading to the AMO index as
shown in blue. The observed AMO index results from ERSST (black). Additionally, the period 2001-2012
(red) was not used for the present analysis, still, as available from ERSST shown for comparison.

of the observed AMO index. Indeed, the period of 2001-2012, which was not included in the

present analysis, suggests that the predicition on annual time scales is still far from satisfactory.

However, on decadal time scales this method leads to an AMO index for the next two decades

that is supposed to correlate well with the observations. Furthermore, we conclude to expect

North Atlantic SST cooling after 2015, which is physically reasonable as the latest high phase of

the simulated MOC has been in the years 1993-1996 (Fig. 4.1). During the next years further

studies would need to compare this to observations.
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Chapter 6

Concluding discussion

6.1 Conclusions

We have considered a coupled climate model to investigate whether the MOC leads to a predictive

skill for North Atlantic SST variability. The model is forced with observed NAO-related heat

flux anomalies in order to produce a MOC that is consistent with the decadal changes of North

Atlantic climate during the twentieth century. Our findings are in summary concluded as follows:

(i) It is shown that the simulated MOC is closely following the decadal changes of the NAO.

Of particular interest is the statistical relation between MOC and observed SST: Decadal

changes in the subpolar North Atlantic as well as in the North Atlantic Current (NAC)

region are consistent with the simulated MOC in a sense that: Subpolar SST anomalies

have been detected to appear 11 years later in the MOC and in turn, another 21 years

later in the NAC region. The negative feedback resulting from this relationship has been

associated with the AMO and is physically reasonable.

(ii) However, the KCM suffers from errors as the simulated SST is, apart from the regions

where the NAO explains heat flux anomalies, thoroughly not comparable to observations.

(iii) Statistical investigations with CCA provide perspectives for predicting North Atlantic

decadal SST variability. Though, we recognize that interannual changes are far from being

predictable by means of heat flux forcing. CCA proposes a technique to forecast SSTs 21

years ahead based on the simulated MOC. Following this method, North Atlantic SST

cooling has to be expected from 2015 onwards, which physically results from the simulated

MOC weakening since the mid 1990’s.
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6. Concluding discussion

Eden & Jung [2001] proposed, with their idea to force a model with NAO-related heat fluxes,

a method to simulate a consistent MOC that clearly reacts on subpolar heat flux anomalies.

In summary, combining their method and the results of this study it is possible to extend the

prediction of North Atlantic SST regularly, provided solely that the observed NAO index is

available. As an outlook, we are looking forward to extend the experiment from 2000 to the near

past.

6.2 Discussions

Finally, it is necessary to discuss critically the results of the present analysis. Throughout the

thesis the term ”realistic” is avoided to describe the simulated MOC for several reasons. One

has to recognize that observational records for the ocean, apart from the sea surface, are very

restricted. Hence, classifying a simulated MOC as ”reaslistic” causes problems, as the true state

of the deep circulation during the last century is unkown. However, some recent efforts have been

carried out to reach a consensus about the current state of the MOC, including observations

(RAPID MOC monitoring array since 2004, Cunningham et al. [2007]; Kanzow et al. [2007]) and

data assimilation projects [Balmaseda et al., 2010, 2013].

Nevertheless, the uncertainties about the MOC during the last decades remain, emphasized in

Fig. 6.1: Different ocean models (with and without data assimiliation) are simulating completely

different evolution of the MOC index (at 26°N for comparison with RAPID). Additionally, a

large unclarity about the future development prevails: As shown by Weaver et al. [2012] many

climate models simulate a weaking of the MOC for the next few decades due to climate change.

But apart from this common feature, the models differ largely in mean value, variability and

stability of the MOC.

Of particular importance for this study is the fact, that even though the here simulated

MOC is consistent with the forcing as well as with the observed SST, there is no way to assess

this simulation. We are therefore not able to describe our MOC as ”realistic”. Every ensemble

member is one possible realization of the MOC, including the discrepancies of the model in

comparison to reality. Considering the ensemble mean, one may even regard it as ”statistical

construct” that possibly has nothing in common with reality. Nevertheless, eliminating the

chaotic behaviour of every ensemble member by averaging yields a MOC that follows an idealized

climatic trajectory. Not a trajectory that is realisitic, but one that represents an estimate for

the state of the MOC only due to its heat flux forcing. So bearing this difference in mind, the

present study is reasonable as we provide an estimate for the future state of North Atlantic SST,

which is idealized in its relationship to the previous state of the NAO.
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6. Concluding discussion

Figure 6.1: The unknown state of the Atlantic Meridional Overturning Circulation during the last decades.
MOC [Sv] at 26°N as represented by ocean reanalyses: ORAS3 (green), NEMOVAR (blue); and the same
ocean models without assimilated obeservations: HOPE-NOOBS (pink) and NEMOVAR-NOOBS (violet).
All models are forced with observed surface fluxes from ERA reanalyses. From Balmaseda et al. [2010].
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Appendix

.1 Statistical nomenclature

Variance

The variance is a way to measure the deviation of a random variable X from its expected value

µ.

Var(X) = E
(
(X − µ)2

)
(1)

Similarly, we define the variance of a vector ~X as the sum over all variances of the elements Xi

Var( ~X) =
∑
i

E
(
(Xi − µi)2

)
(2)

Covariance

The covariance σ of two univariate random variables X,Y is a measurement to quantify whether

X,Y vary jointly

σ = Cov(X,Y ) = E ((X − µX)(Y − µY )) . (3)

Covariance matrix

Regarding two random vectors ~X, ~Y the covariance matrix Σ ~X,~Y is defined as

Σ ~X,~Y = Cov( ~X, ~Y ) = E
(

( ~X − ~µX)(~Y − ~µY )T
)
. (4)

where the superscript T denotes that that the assigned vector has been transposed. Hence, the

covariance

σi,j = E
(
(Xi − µXi)(Yj − µYj )

)
(5)
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is the (i,j )th element of Σ ~X,~Y . The sample covariance matrix Σ̂ is estimated from samples

{~x1, ..., ~xn}, {~y1, ..., ~yn} of realizations of ~X, ~Y as follows

Σ̂i,j =
1

n

n∑
k=1

(xi,k − x̄i)(yj,k − ȳj) (6)

where i, j refers to the (i, j)th element of Σ̂. x̄, ȳ is the respective mean.

.2 Supplementary figures and tables
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Figure 2: The tripolar ORCA2 grid that was used for OPA9, the ocean component of the Kiel Climate
Model. One of the poles is located in North Canada, the other one in Siberia, wich leads to no singularity
at the North Pole. The equatorial refinement allows a better representation of equatorial processes. The
green line crossing iceland is the zonal grid cell index 130, which was used to reassign the MOC stream
function with latitudes.
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Appendix

MOCLEADS MOCLAGS

CCA mode ERSST MOC ERSST MOC

1 25.7 13.0 17.4 13.3

2 11.3 15.4 10.5 16.0

3 11.8 14.7 13.9 11.3

4 9.4 14.4 13.6 14.9

5 8.8 11.3 13.4 13.3

Σ 67.0 68.8 68.8 68.9

Table 1: Explained variance of CCA modes given in %. The accumulated explained variance is indicated
by Σ, exact equality to the accumulated explained variance of EOF is not given due to computational
errors. MOCLAGS (MOCLEADS ) refer to SST leads MOC by 11 years (MOC leads SST by 21 years).
Calculated from equation 2.24.
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