
Combining OMT with a Prototyping Approach1

Wilhelm Hasselbring
Department of Computer Science, University of Dortmund, D-44221 Dortmund, Germany

Andreas Kröber
Informatik Centrum Dortmund, D-44227 Dortmund, Germany

Using the OMT software engineering methodology, a designer starts by identifying objects
from the informal requirements specification. By identifying the relations between these ob-
jects, a global object model can be produced. Then, in an iterative process, this initial model
is refined into an actual program. In this paper, we argue that the OMT methodology does
not really help to analyze the requirements of a new proposed parallel system, and suggest
combining OMT with the ProSet-Linda prototyping approach to requirements analysis of
parallel systems to overcome some of the problems. The experience with this combination
for the analysis of the requirements on a specific parallel system — a configurable hospital
communication server — is discussed.

1 INTRODUCTION

Prototyping is used in the early phases of software development for requirements analysis, risk re-
duction, specification validation, and increased user acceptance of software systems (Budde et al.,
1992). Some experience with developingsequentialsoftware systems using prototyping has been
made (Gordon and Bieman, 1995). In particular when combining prototyping with an evolutionary
software development process, not only the quality of the product, but also the development process
itself can be improved (Lichter et al., 1994). However, software prototyping is not only concerned
with the rapid development of user interfaces, but also withthe functionality of planned systems (i.e.
with developing algorithms). To be useful, prototypes mustbebuilt rapidly, and designed in such a
way that they can bemodifiedrapidly. Therefore, prototypes should be built in very high-level lan-
guages to make them rapidly available. ProSet-Linda is sucha very high-level language which has
been designed for prototypingparallel systems (Hasselbring, 1998).

The Object Modeling Technique (OMT) by Rumbaugh et al. is a popular object-oriented analysis
and design methodology (Rumbaugh et al., 1991). The OMT notation combines an extended entity-
relationship diagram (theobject model) with state-transition diagrams for each object (thedynamic
model) and some data-flow diagrams of processes that can be distinguished within the application’s
functionality (thefunctional model). On account of the natural concurrency of objects in this object-
oriented technique, at first glance it seems to be a good technique for analyzing the requirements
on parallel and distributed systems as they are required in hospital communication, which is the
application domain of the presented project.

However, OMT still has some weaknesses:� The OMT notation does not provide much support for requirements elicitation. It is rather a
design notation.

1Preprint of a paper to appear inThe Journal of Systems and Software.

1

� OMT’s strong points are the data modeling features using an extended entity-relationshipmodel,
which is calledobject model. Unfortunately, OMT does not support hierarchical structuring of
object models. Therefore, we extended the object model withhierarchical class definitions to
support the specification of complex models.� OMT performs badly when specifying real time and communication problems. The resulting
problems are discussed below.

Prototyping is good for requirements elicitation and object-oriented modeling is good when the prob-
lem is well understood. To combine the advantages of both approaches, we distinguish betweenfirst
andextendedrequirements analysis in the presented project. The first analysis provides an initial
OMT model. For the hospital communication server, only basic structures could be identified, be-
cause a sensible functionality was not known at this stage ofthe development process. To evaluate
and extend this initial model, ProSet-Linda has been used for prototyping. This extended requirements
analysis through prototyping serves to refine the OMT model incrementally in several iterations. Be-
low, one such iteration is presented. Essentially, OMT has been used to specify the insights gained
through prototype evaluation in this project.

2 REQUIREMENTS ANALYSIS FOR A HOSPITAL COMMUNICA-
TION SERVER

This section reports on the experience made with the combination of OMT with the ProSet-Linda
prototypingapproach for analyzing the requirements on a configurable hospital communication server
(Hasselbring and Kröber, 1996).

2.1 The Background

The Group for Software Technology at the University of Dortmund is currently developing several
components for hospital information systems in close cooperation with local hospitals. This includes
the management of electronic patient records, clinical documentation, therapy control, and computer
support for coordinating work within a hospital among otherthings. One central problem is the
inevitable need to integrate legacy systems with modern information systems. As a first step towards
this direction, the requirements on a configurable hospitalcommunication server, which is based on
the HL7 protocol, have been analyzed.

2.2 The HL7 Protocol

Health Level Seven (HL7) is an evolving standard for the electronic data exchange in hospitals. It
is based on layer seven of the ISO/OSI-protocol hierarchy (Hammond, 1993). HL7 covers various
aspects of data exchange in hospital information systems, e.g. admission, discharge and transfer of
patients, as well as the exchange of analysis and treatment data. HL7 is a de-facto standard for data
exchange between commercial systems for hospitals (Hammond, 1993).

An HL7 message is a string, which contains mandatory and optional segments. These segments
consist of several fields. The syntax of version 2.2 of HL7 messages is defined informally in (HL7 Group,
1994). To gain an insight into the classification of the HL7 message types, we first analyzed the in-
formal description of HL7 from (HL7 Group, 1994) and constructed a classification hierarchy with
OMT’s notation for the object model. An extract of this classification hierarchy is displayed in Fig-
ure 1.

2

QRY ACK ADT

QRD MSA

EVN

Admit

a

patient

Transfer

a

patient

Discharge

a

patient

Register

a

patient

ORM ORR

Pre-Admit

a

patient

Transfer

an outpat.

to inpat.

.....

.....

MSH segmentHL7 message

Figure 1. An extract of the HL7 message classification hierarchy. Rectangles are the OMT symbols
for classes, triangles identify inheritance relations, and diamonds indicate part-of relations.

Unfortunately, the HL7 protocol does not cover all requirements of hospital applications. Many
issues are not addressed, e.g. the exchange of images. Additionally, HL7 does not provide the option
to send a message to a group of receivers (multicasting). As long as the HL7 group does not remove
these limitations, a communication server might be used to compensate some of them.

The HL7 protocol has been designed to standardize the data transfer within hospitals. The goal
of the presented project is to develop a configurable hospital communication server which allows the
transfer of data between the distributed components of a hospital information system. This server
needs the capability to integrate modern systems that communicate according to the HL7 protocol,
as well as legacy systems that communicate through some non-standard protocol. It should be easy
to tailor the server to fit in different hospital configurations. In addition, solutions to some of the
still existing shortcomings in the HL7 protocol, e.g. the lack of support formulticastingof messages
to a group of receivers, should be found. The essential goal of this project is to allow us to create
integrated hospital information systems from heterogeneous components including legacy systems
and modern information systems. Such a complex applicationrequires a systematic development
process.

For the initial requirements analysis and design, OMT is used. As we were not able to analyze the
requirements exhaustively with OMT, prototypes have been implemented and evaluated with various
scenarios for data exchange in a hospital information system to extend and modify the initial model.

2.3 Initial Requirements Analysis with OMT

One important concern in the specification of a hospital communication server is the configurability.
The operation of the server in different configurations requires high flexibility of its interfaces. The
server needs the capability to handle the different HL7 protocol versions (versions 2.1 and 2.2) and
their regional adaptations, as well as vendor-specific protocols. Figure 2 displays a possible config-
uration of a hospital communication server. In this scenario, a laboratory, a radiology, a ward, an
administration, and a pharmacy application are connected by the server. The server consists of a cen-

3

administration

IA

IA

IAIA

IA

laboratory

radiology

pharmacy

component

server

central

ward

Figure 2. A possible configuration for the integration of a distributed hospital information system
through a communication server. This isnotOMT notation.

tral server component (CSC) and one interface agent (IA) foreach application. The IAs transform
messages from the individual applications into HL7 messages, if these applications do not commu-
nicate with the HL7 protocol. Internally, the CSC only handles HL7 messages to allow the easy
replacement of applications. The IAs are components of the communication server. To replace an
application, only the corresponding IA has to be adapted. Therefore, the IAs are considered to be part
of the server’s configuration.

With OMT, at first an object model is constructed to identify the classes in the problem domain to
describe the static structure of the proposed system. Figure 3 displays an extract of the first object
model, which shows the integration of applications with a hospital communication server. Every
application communicates with one interface agent (IA). The IA appends an internal prefix to the
message to let the server forward the message in an appropriate way. This internal prefix can be used,
for instance, to specify priorities for specific messages. The server handles the messages according to
his configuration. Several tables are used to configure the central server component (routing tables,
protocol tables, multicasting tables, etc).

This initial modeling of the global data model was rather easy. During the refinement of the dy-
namic and functional models, we quickly came to the assessment that the complete analytical model-
ing of this complex system with the OMT methodology is almostimpossible, because the knowledge
about a useful functionality was not sufficient: the evaluation of executable prototypes has been ini-
tiated to experimentally explore the requirements on the dynamic behavior. In principle, the OMT
notationis sufficient to model such a complex system, but we see the necessity to extend the OMT
methodologywith prototyping for requirements analysis.

2.4 Requirements Analysis through Prototype Evaluation

With OMT, we had problems to analyzeall the requirements. For instance, the analytical modeling
of the precise requirements on the concurrent processing ofmulticasted messages and acknowledge-
ments is hardly possible. To fill this gap, we combine object-oriented analysis with the ProSet-Linda
prototyping approach for requirements analysis.

The configuration from Figure 2, which shows the integrationof different hospital systems by a
communication server, has been implemented with ProSet-Linda. In Figure 4, the parallel processes
and their tuple spaces, which are used for inter-process communication, are displayed. This figure

4

1+

DBMS

IA
application

HL7

application application

message extended

Non-HL7

HL7
message

Non-HL7

message

message

internal
prefix

message type
priority central

server

component

sender/receiver sender/receiver

sender/receiver

se
nd

er
/r

ec
ei

ve
r

interface
agent

CSC

configuration
data store

system

administration

configuration
data store

Figure 3. The first OMT model for the integration of applications witha hospital communication
server. In OMT notation, link attributes are displayed as classes, which are connected byloopsto
its associations. The class ‘message’ is such a link attribute. Role names are written next to the
association line near the class that plays the role. A complete description of OMT’s notation can be
found in (Rumbaugh et al., 1991).

illustrates the coarse architecture of the prototype. Eachsimulated application communicates with its
interface agent through one tuple space for each direction.The IAs communicate through a common
server tuple space with the central server component (CSC).In Figure 4, only one application is
shown. Additional applications can be connected to the CSC through the common server tuple space.

The functional model in OMT consists of diagrams specifyingthe flow of data between processes
within the application. In these models, a process is denoted by an ellipsis, while the data flow is
represented by an arrow with a label indicating the sort of data thatflows. Also, there are so-called
data stores which merely serve to store data and intermediate results. They are denoted by two
horizontal lines with the data store’s name in between them.

The communication server is configurable through tables. A small example for the multicasting
list in the set-oriented ProSet-Linda notation is:

multicast_list:={ ["Group1", {"App1","App2"}],
["Group2", {"App2","App3"}] };

Each tuple inrout_multicast_list consists of a group identifier and a set of destination ad-
dresses. If an application sends a message to"Group1", this message is multicasted to the applica-
tions"App1" and"App2". The entries in this table are deposited by an administration process by
means of ProSet-Linda’sdeposit operation at the tuple space for the CSC tables:

for entry in multicast_list do
deposit entry at CSC_tables end deposit;

end for;

The CSC reads the information from this tuple space when the server needs it. This way the server
may be re-configured online. The administration process is not displayed in Figure 4. The evalu-
ation of the prototype is discussed below. Refer to (Hasselbring, 1998) for an introduction to the
prototyping language ProSet-Linda.

5

tuple space

to application
from the server

application n

application

mess
age

m
essage message

message
deposit

forward

process

forward

forward
extended

message

ex
te

nd
ed

m
es

sa
ge

deposit

m
essage

m
es

sa
ge

message

server

connect message
with

timestamp

"to" message

"from" message

interface agent for incoming messages

CSC tables

waiting queue

tuple space

central server component

interface agent for outgoing messages

process

message

extended

messageextended

m
es

sa
ge

ex
te

nd
ed

m
es

sa
ge

m
essage

tables

interface agent

to the server

tuple space from
application n

n tuple space
server

common

Figure 4. The inter-process communication within the prototype implementation. OMT’s data-flow
diagrams are used. The dashed frames are not original OMT notation. They are included to increase
the readability. The IAs get their configuration, e.g. the protocol type, from the data store ’interface
agent tables.’ In the data store ’CSC tables,’ the global configuration tables, such as routing list and
multicasting list, are stored.

6

2.5 Extended Requirements Analysis and Design under Consideration of the Pro-
totype Evaluation

The prototype implementation and evaluation offered detailed insights into the requirements to refine
the initial model. Problems with the initial model, which have been discovered during the prototype’s
evaluation can now be avoided in the refined OMT model. Duringprototype evaluation, several
doubtful design decisions were observed in the initial OMT model. For instance, the IAs only con-
sisted of one process in the initial model (Kröber, 1996). In the prototype and the refined model, we
split the IAs into two separate processes to avoid synchronization problems. With the initial model,
each IA had to wait for all messages from both directions through active polling. The evaluation of
the prototype showed, that this construction is error-prone and inefficient. Additionally, the analy-
sis of the concurrent processing within the prototype implementation has shown that multicasting is
not manageable with synchronous communication. Therefore, only multicasting with asynchronous
communication is considered in the refined model (see (Kröber, 1996) for details).

This is the goal of experimental prototyping: Experimenting with ideas for different algorithmic
variations and evaluating these ideas to make the right decisions as early as possible. In general,
purely analytical evaluations are hardly feasible.

To construct large systems, it is advantageous to hierarchically structure systems. The OMT no-
tation does not explicitly support modularization. Therefore, we extended the OMT notation for the
object model by submodels. Each OMT class may be refined through such a submodel. Refined
classes are displayed with a bold frame in Figure 3. The associations between external classes and
the submodel must be displayed asportsin the submodel. The ports are connected to the submodel’s
internal classes. In principle, this form of hierarchy could be compared with macro mechanisms in
programming languages. Each submodel could be expanded in its supermodel.

Figure 5 displays a refinement of the CSC from the global object model in Figure 3. The CSC
consists of a waiting, a sending and two processing components. The simplified dynamic model for
the message processing component is displayed in Figure 6 and the simplified dynamic model for
the sending component is displayed in Figure 7. For each class in the object model, such a dynamic
model is specified as a state-transition diagram. The globalflow of events is displayed in Figure 8 in
an event-flow diagram (Rumbaugh et al., 1991). The actions, which trigger events in other classes,
are annotated at the links between these classes.

If the message processing component deposits an entry into the send list, the sending component
sends the message. This communication is implicitly modeled in Figures 6 and 7. The event-flow di-
agram in Figure 8 makes this communication explicit. Obviously, the way communication is modeled
with OMT’s notation is rather informal. The needed synchronization cannot be modeled with OMT.
Additional informal specifications are necessary. A detailed description of the prototype evaluation
and the extended model is beyond the scope of the present paper and may be found in (Kröber, 1996).

3 RELATED WORK

Several other approaches which intend to overcome some of the shortcoming of the OMT methodol-
ogy are discussed in the literature. In (Knowles and Collingwood, 1994), for instance, OMT has been
combined with the PARSE methodology (Gorton et al., 1995), because the object model did not com-
pletely provide the necessary refinement required in order to express the final software design. OMT
has been extended to include the additional considerationsof parallelism by mapping the resulting
object model to PARSE. The PARSE process graph notation allows to describe a parallel system in
terms of a hierarchy of interacting components. These components are either passive function or data
servers, or active control processes. Processes interact by message passing on designated communi-

7

D
at

en
ko

ns
um

en
t

central server

component

interface

agent

receiver

se
nd

er

producer

co
ns

um
er

producer

producer

consumer

consumer producer

consumer

query

processing

message

processing
sending

CSC

configuration

data store

DBMS

sub model

component

component

component

waiting component

Figure 5. The submodel ’CSC.’ The ports are displayed with a grey background.

do: test and
update

send list

ack list

do: build updo: build up
send list and

modify ack list

idle

acknowledgement is

ready for processing

message is

ready for

processing

 send list

deposit entry

/entry in

Figure 6. The simplified dynamic model for the message processing component from Figure 5. With
OMT’s state-transition diagrams, the start state is indicated with a black circle. An event name is
written on a transition arrow. An action is indicated on a transition following the event name by a “/”
character followed by the action’s name (Rumbaugh et al., 1991). The action may trigger an event
with the same name. Here, the action ‘entry in send list’ triggers the corresponding event in Figure 7.

8

idle
entry in send list

 send

send message/message sent to IA

Figure 7. The simplified dynamic model for the sending component fromFigure 5.

query is ready for processing

query answer is ready for processing

message

processing

query

processing

interface agent

waiting

component

component

sending

component

component

message sent to CSC

entry in send list

entry in send list

acknowledgement is ready

message is ready

messages sent to IA

Figure 8. A small extract from the event-flow diagram for the hospitalcommunication server.

9

cation paths. Essentially, OMT’s dynamic model has been substituted by the PARSE process graph
notation in this approach. Within the PARSE project, the integration of behavioral analysis techniques
involving Petri-Nets for design validation has been explored through (manual) translation of process
graphs into Petri-Nets to offer a path to formal verification(Gorton et al., 1995). With this approach,
a form for prototyping could be based on Petri-Net simulation.

As we could see in the preceding section, OMT performs badly when specifying communication
and synchronization problems, With OMT, the dynamic behavior is specified on an object-class basis
by state-transition diagrams. The diagraming technique includes symbols for states (rounded boxes)
and transitions (arrows between boxes). Usually, transitions from one state to another are triggered by
internal or external events, which appear in labels at the arrows. An external event is an event triggered
by an action of one object class, and affecting another object class. However, serious problems arise
with the semantics of communication when using the OMT notation. There are no means other than
textual circumscription in state-transition diagrams to describe, for instance, whether communication
is synchronous or asynchronous. The event-flow diagrams do not really solve this problem, because
the relations to the individual state-transition diagramsare not formally specified. One point to make
is that OMT’s suitability for developingparallel anddistributedsoftware is limited: while excelling
in data modeling, its support to model communication is insufficient. As an aside, we mention that the
Booch method (Booch, 1994) does incorporate some explicit communication notations in its object
diagrams (e.g. synchronous vs. asynchronous communication). The Booch Method’s object diagrams
can be compared to some extend with OMT’s event-flow diagrams, but on an object-instance level,
not on the class level at it is the case with OMT. However, the semantics of these are still not formally
defined. The forthcoming Unified Modeling Language (Rational Software Corporation, 1997) allows
a more detailed specification of realtime and concurrency concerns, but still in a semi-formal way.

A formal approach to specify distributed systems with state-transition diagrams is the Require-
ments State Machine Language (RSML) (Leveson et al., 1994).To allow an adequate modeling of
distributed systems, RSML extends state-transition diagrams by explicit interfaces and directed com-
munication channels between individual state machines.

Other object-oriented methods have been used to analyze parallel systems (Knowles et al., 1995).
However, to our knowledge, there exists no published work that explicitly combines an object-
oriented analysis method with a prototyping approach for requirements analysis ofparallel systems.
Therefore, we combined the OMT methodology with the ProSet-Linda prototyping approach to gain
some experience with this combination.

4 CONCLUSIONS

This paper presents some problems and solutions for the requirements analysis of a specific parallel
system. A hospital communication server, which can be configured by means of various tables, was
discussed to connect heterogeneous components of hospitalinformation systems and to overcome
some of the shortcomings of the HL7 protocol. Within the scope of the present paper, only some
aspects of this application could be presented. We would like to comment on our experience with the
employed analysis techniques.

A point to stress is the employed development process: The combination of OMT with a prototyp-
ing approach for requirements analysis of parallel and distributed systems. The observation to make
is that OMT appears to be a good technique for the analysis of systems withalready knownproperties,
but fornewsystems, like a hospital communication server with many unknown requirements, experi-
mental prototyping is a promising extension. The requirements analysis process can be depicted with
this approach as illustrated in Figure 9.

10

PrototypingRequirements
specification

The requirements seem to be
sufficiently analyzed

The requirements seem to be
insufficiently analyzed

Figure 9. The process for requirements analysis with the combination of OMT with a prototyping
approach.

When the requirements seem to be sufficiently analyzed, the next phases in the development pro-
cess can be started. The decision, whether the requirementsare sufficiently analyzed and whether
prototyping should be carried out depends on existing knowledge in the application domain. For a
re-implementation of an old system with the goal to improve non-functional properties such as per-
formance and reliability, prototyping will not be very helpful for the requirements analysis. For the
implementation of a new system which is supposed to solve newtasks, it will be helpful to carry
out several prototype evaluations. This was necessary for the presented requirements analysis on a
hospital communication server.

The principal question arises whether the OMT methodology alone is at all usable for the require-
ments analysis ofnewsystems. At least the notation only supports the design. Themethod to identify
objects from the informal requirements specification is described informally in (Rumbaugh et al.,
1991). There exists no explicit support for requirements analysis in OMT. With OMT, it is not easy
to distinguish between analysis and design. Embley et al., for instance, argue that the existing object-
oriented analysis and design techniques (including OMT) donot appropriately support analysis, be-
cause the distinction between analysis and design is not explicit with these techniques (Embley et al.,
1995). In (Embley et al., 1995), a new analysis method, Object-Oriented Systems Analysis (OSA),
is proposed which is exclusively designed for analysis. OSAspecifications are executable (they have
formally defined syntax and semantics). This way, prototyping is directly supported by this analysis
method. In our requirements analysis, we still had to use twodifferent methods for object-oriented
analysis/design and for prototyping. Essentially, OMT hasbeen used to specify the knowledge gained
through prototype evaluation in our project. The high levelof ProSet-Linda’s constructs for parallel
programming enabled us to rapidly develop prototypes of parallel programs and to experiment with
parallel algorithms.

REFERENCES

Booch, G.,Object-Oriented Analysis and Design with Applications, 2. edition. Benjamin/Cummings,
Redwood City, California, 1994.

Budde, R., Kautz, K., Kuhlenkamp, K., and Züllighoven, H.,Prototyping — An Approach to Evolu-
tionary System Development. Springer-Verlag, Berlin, 1992.

Embley, D., Jackson, R., and Woodfield, S., OO Systems Analysis: Is It or Isn’t It? IEEE Software
12, 19–33 (1995).

11

Gordon, V., and Bieman, L., Rapid prototyping: Lessons learned. IEEE Software12, 85–95 (1995).

Gorton, I., Gray, J., and Jelly, I., Object based modelling of parallel programs.IEEE Parallel and
Distributed Technology Journal3, 52–63 (1995).

Hammond, W., Health Level 7: A protocol for the interchange of healthcare data, inProgress in
Standardization in Health Care Informatics(G. D. Moor, C. McDonald, and J. van Goor, eds.)
IOS Press, Amsterdam, 1993, pp. 144–148.

Hasselbring, W., The PROSET-Linda approach to prototyping parallel systems.The Journal of
Systems and Software, to appear (1998).

Hasselbring, W., and Kröber, A., Requirements Analysis through the Combination of OMT
with a Prototyping Approach (in German), inProc. GI-Fachtagung Softwaretechnik 96,
Softwaretechnik-Trends 16/3, 1996, Koblenz, Germany, pp.105–112.

HL7 Group., Health level seven: an application protocol forelectronic data exchange in healthcare
environments, version 2.2. Technical report, Health LevelSeven, Inc., Ann Arbor, USA, 1994.

Knowles, C., and Collingwood, P., Parallel software development using an object-oriented modeling
technique.Information and Software Technology36, 397–404 (1994).

Knowles, C., Collingwood, P., and Jelly, I., Evaluation of software engineering analysis techniques
for parallel software, inProc. 21th Euromicro Conference. IEEE Computer Society Press, Pis-
cataway, N.J., 1995.

Kröber, A., Modeling a configurable HL7-based hospital communication server (in German), Mas-
ter’s thesis, Department of Computer Science, University of Dortmund, 1996.

Leveson, N., Hildreth, H., Heimdahl, M., and Reese, J., Requirements specification for process-
control systems.IEEE Transactions on Software Engineering20, 684–707 (1994).

Lichter, H., Schneider-Hufschmidt, M., and Züllighoven,H., Prototyping in industrial software
projects — bridging the gap between theory and practice.IEEE Transactions on Software Engi-
neering20, 825–832 (1994).

Rational Software Corporation., The Unified Modeling Language. Documentation Set Version 1.0,
Santa Clara, California, 1997.

Rumbaugh, J., Michael, B., William, P., Frederick, E., and William, L., Object-Oriented Modelling
and Design. Prentice Hall, Englewood Cliffs, N.J., 1991.

12

