Combining OMT with a Prototyping Approach?

Wilhelm Hasselbring

Department of Computer Science, University of Dortmund4R221 Dortmund, Germany

Andreas Krober
Informatik Centrum Dortmund, D-44227 Dortmund, Germany

Using the OMT software engineering methodology, a designer starts by identifying objects
from the informal requirements specification. By identifying the relations between these ob-
jects, a global object model can be produced. Then, in an iterative process, this initial model
is refined into an actual program. In this paper, we argue that the OMT methodology does
not really help to analyze the requirements of a new proposed parallel system, and suggest
combining OMT with the ProSet-Linda prototyping approach to requirements analysis of
parallel systems to overcome some of the problems. The experience with this combination
for the analysis of the requirements on a specific parallel system — a configurable hospital
communication server — is discussed.

1 INTRODUCTION

Prototyping is used in the early phases of software devedoprior requirements analysis, risk re-
duction, specification validation, and increased user@tecee of software systems (Budde et al.,
1992). Some experience with developisgguentialsoftware systems using prototyping has been
made (Gordon and Bieman, 1995). In particular when compipiototyping with an evolutionary
software development process, not only the quality of tleglpet, but also the development process
itself can be improved (Lichter et al., 1994). However, waite prototyping is not only concerned
with the rapid development of user interfaces, but also ignfunctionality of planned systems (i.e.
with developing algorithms). To be useful, prototypes masbuilt rapidly, and designed in such a
way that they can benodifiedrapidly. Therefore, prototypes should be built in very highel lan-
guages to make them rapidly available. ProSet-Linda is suadry high-level language which has
been designed for prototypimmarallel systems (Hasselbring, 1998).

The Object Modeling Technique (OMT) by Rumbaugh et al. is pypar object-oriented analysis
and designh methodology (Rumbaugh et al., 1991). The OMTtiootaombines an extended entity-
relationship diagram (thebject modélwith state-transition diagrams for each object (tdy@mamic
mode) and some data-flow diagrams of processes that can be ditstiregl within the application’s
functionality (thefunctional modégl On account of the natural concurrency of objects in thisc
oriented technique, at first glance it seems to be a good igedrior analyzing the requirements
on parallel and distributed systems as they are requirecbépital communication, which is the
application domain of the presented project.

However, OMT still has some weaknesses:

e The OMT notation does not provide much support for requirgisielicitation. It is rather a
design notation.

!Preprint of a paper to appearThe Journal of Systems and Software

¢ OMT's strong points are the data modeling features usingmded entity-relationship model,
which is calledobject modelUnfortunately, OMT does not support hierarchical strucig of
object models. Therefore, we extended the object model m@frarchical class definitions to
support the specification of complex models.

e OMT performs badly when specifying real time and commuidzaproblems. The resulting
problems are discussed below.

Prototyping is good for requirements elicitation and obj@gented modeling is good when the prob-
lem is well understood. To combine the advantages of botroapgpes, we distinguish betwefrst
and extendedequirements analysis in the presented project. The firglyars provides an initial
OMT model. For the hospital communication server, only basiuctures could be identified, be-
cause a sensible functionality was not known at this stadbeotievelopment process. To evaluate
and extend this initial model, ProSet-Linda has been uggatéwotyping. This extended requirements
analysis through prototyping serves to refine the OMT madgkimentally in several iterations. Be-
low, one such iteration is presented. Essentially, OMT heenlused to specify the insights gained
through prototype evaluation in this project.

2 REQUIREMENTS ANALYSIS FOR A HOSPITAL COMMUNICA-
TION SERVER

This section reports on the experience made with the cortibmaf OMT with the ProSet-Linda
prototyping approach for analyzing the requirements omrdigarable hospital communication server
(Hasselbring and Krober, 1996).

2.1 The Background

The Group for Software Technology at the University of Dawtrd is currently developing several
components for hospital information systems in close coatp with local hospitals. This includes
the management of electronic patient records, clinicaldwmntation, therapy control, and computer
support for coordinating work within a hospital among otli@ngs. One central problem is the
inevitable need to integrate legacy systems with modeworindtion systems. As a first step towards
this direction, the requirements on a configurable hospdaimunication server, which is based on
the HL7 protocol, have been analyzed.

2.2 The HL7 Protocol

Health Level Seven (HL7) is an evolving standard for the teteic data exchange in hospitals. It
is based on layer seven of the ISO/OSI-protocol hierarchgniriond, 1993). HL7 covers various
aspects of data exchange in hospital information systemgsadmission, discharge and transfer of
patients, as well as the exchange of analysis and treatraéat HL7 is a de-facto standard for data
exchange between commercial systems for hospitals (Hamahyi®93).

An HL7 message is a string, which contains mandatory andpoatisegments. These segments
consist of several fields. The syntax of version 2.2 of HL7sagss is defined informally in (HL7 Group,
1994). To gain an insight into the classification of the HL7ssage types, we first analyzed the in-
formal description of HL7 from (HL7 Group, 1994) and consted a classification hierarchy with
OMT’s notation for the object model. An extract of this cldisstion hierarchy is displayed in Fig-
ure 1.

HL7 message MSH segment

A

QRY ACK ADT EVN ORM ORR sccce
lQrD | | msa |
Admit Transfer Discharge Register Pre-Admit Transfer
a a a a a anoutpat. eeeee
patient patient patient patient patient to inpat.

Figure 1. An extract of the HL7 message classification hierarchy.t&egies are the OMT symbols
for classes, triangles identify inheritance relations] diamonds indicate part-of relations.

Unfortunately, the HL7 protocol does not cover all requiegtts of hospital applications. Many
issues are not addressed, e.g. the exchange of imagesiohddlit, HL7 does not provide the option
to send a message to a group of receivers (multicastinglogds the HL7 group does not remove
these limitations, a communication server might be usedtopensate some of them.

The HL7 protocol has been designed to standardize the datsfér within hospitals. The goal
of the presented project is to develop a configurable hdsmitamunication server which allows the
transfer of data between the distributed components of pitabsnformation system. This server
needs the capability to integrate modern systems that conwatie according to the HL7 protocol,
as well as legacy systems that communicate through sometaadard protocol. It should be easy
to tailor the server to fit in different hospital configurat& In addition, solutions to some of the
still existing shortcomings in the HL7 protocol, e.g. thekaf support formulticastingof messages
to a group of receivers, should be found. The essential godli® project is to allow us to create
integrated hospital information systems from heterogaesemmponents including legacy systems
and modern information systems. Such a complex applicagquires a systematic development
process.

For the initial requirements analysis and design, OMT igluges we were not able to analyze the
requirements exhaustively with OMT, prototypes have begslémented and evaluated with various
scenarios for data exchange in a hospital information aysteextend and modify the initial model.

2.3 Initial Requirements Analysis with OMT

One important concern in the specification of a hospital comigation server is the configurability.
The operation of the server in different configurations reggihigh flexibility of its interfaces. The
server needs the capability to handle the different HL7 quok versions (versions 2.1 and 2.2) and
their regional adaptations, as well as vendor-specificomals. Figure 2 displays a possible config-
uration of a hospital communication server. In this scenaailaboratory, a radiology, a ward, an
administration, and a pharmacy application are connectetéserver. The server consists of a cen-

Iaboratory\ administration

1A 1A

central
radiology IA | server

component

1A 1A

/ \

ward pharmacy

Figure 2. A possible configuration for the integration of a distriédthospital information system
through a communication server. Thisiest OMT notation.

tral server component (CSC) and one interface agent (IAgémh application. The IAs transform

messages from the individual applications into HL7 messaifj¢hese applications do not commu-
nicate with the HL7 protocol. Internally, the CSC only haeglHL7 messages to allow the easy
replacement of applications. The IAs are components of timenecunication server. To replace an
application, only the corresponding IA has to be adapte@rédfore, the |As are considered to be part
of the server’s configuration.

With OMT, at first an object model is constructed to identHg tclasses in the problem domain to
describe the static structure of the proposed system. &igutisplays an extract of the first object
model, which shows the integration of applications with &@ital communication server. Every
application communicates with one interface agent (IA)e TA appends an internal prefix to the
message to let the server forward the message in an appewag. This internal prefix can be used,
for instance, to specify priorities for specific messagd® Jerver handles the messages according to
his configuration. Several tables are used to configure theateserver component (routing tables,
protocol tables, multicasting tables, etc).

This initial modeling of the global data model was ratheryed3uring the refinement of the dy-
namic and functional models, we quickly came to the assassimat the complete analytical model-
ing of this complex system with the OMT methodology is alniogtossible, because the knowledge
about a useful functionality was not sufficient: the evaluabf executable prototypes has been ini-
tiated to experimentally explore the requirements on theadyic behavior. In principle, the OMT
notationis sufficient to model such a complex system, but we see thessitg to extend the OMT
methodologyvith prototyping for requirements analysis.

2.4 Requirements Analysis through Prototype Evaluation

With OMT, we had problems to analyzdl the requirements. For instance, the analytical modeling
of the precise requirements on the concurrent processingutifcasted messages and acknowledge-
ments is hardly possible. To fill this gap, we combine objménted analysis with the ProSet-Linda
prototyping approach for requirements analysis.

The configuration from Figure 2, which shows the integratidwlifferent hospital systems by a
communication server, has been implemented with ProSedeliln Figure 4, the parallel processes
and their tuple spaces, which are used for inter-procesgraorication, are displayed. This figure

4

sender/receiver sender/receiver interface 1A

application — X .
- agent configuration
sender/receiver data store

message extended

message
HL7 Non-HL7
application application

HL7 Non-HL7 message type

(N

system
administration

internal
prefix

sender/receiver

message message priority central csc

server configuration
component data store

DBMS

Figure 3. The first OMT model for the integration of applications wéahhospital communication
server. In OMT notation, link attributes are displayed agssks, which are connected loppsto

its associations. The class ‘message’ is such a link ataibRole names are written next to the
association line near the class that plays the role. A complescription of OMT’s notation can be
found in (Rumbaugh et al., 1991).

illustrates the coarse architecture of the prototype. Baclulated application communicates with its
interface agent through one tuple space for each direciiba.lAs communicate through a common
server tuple space with the central server component (CBJjigure 4, only one application is
shown. Additional applications can be connected to the @®Baligh the common server tuple space.

The functional model in OMT consists of diagrams speciftimg flow of data between processes
within the application. In these models, a process is dehbyean ellipsis, while the data flow is
represented by an arrow with a label indicating the sort ¢& daatflows Also, there are so-called
data stores which merely serve to store data and interneedésults. They are denoted by two
horizontal lines with the data store’s name in between them.

The communication server is configurable through tablesmalisexample for the multicasting
list in the set-oriented ProSet-Linda notation is:

mul ticast_list:={ ["Goupl", {"Appl","App2"}],
["@oup2”, {"App2","App3'}] };

Each tuple irrout _rul ti cast _I i st consists of a group identifier and a set of destination ad-
dresses. If an application sends a messagé&xmupl”, this message is multicasted to the applica-
tions" Appl" and" App2". The entries in this table are deposited by an administigtiocess by
means of ProSet-Lindatdeposi t operation at the tuple space for the CSC tables:

for entry in multicast_list do
deposit entry at CSC_tables end deposit;
end for;

The CSC reads the information from this tuple space whenehgsneeds it. This way the server
may be re-configured online. The administration proces®isdisplayed in Figure 4. The evalu-
ation of the prototype is discussed below. Refer to (Hassgp1998) for an introduction to the
prototyping language ProSet-Linda.

interface agent
tables

interface agent for outgoing messageé

application n :
: process extended :
: : ‘ "to" message message
deposit \ :
6‘3@2’ ’”ess3ge
&

: central server component
connect message
_with
timestamp

application : EETT—
: tuple space common server
server

from the server ©!
waiting queue
to application tuple space : 94
% : ° tuple space
%, LS
% 0e:
s %
R ;
%
%
deposit

a

essage

m

tuple space from
application n
to the server

extended

message

forward
\from" message

interface agent for incoming messages

-

CSC tables

Figure 4. The inter-process communication within the prototypelangentation. OMT’s data-flow

diagrams are used. The dashed frames are not original OMiont They are included to increase
the readability. The IAs get their configuration, e.g. thetpcol type, from the data store ‘interface
agent tables.’ In the data store 'CSC tables,’ the globafigaration tables, such as routing list and

multicasting list, are stored.

2.5 Extended Requirements Analysis and Design under Consideration of the Pro-
totype Evaluation

The prototype implementation and evaluation offered dedansights into the requirements to refine
the initial model. Problems with the initial model, whichiesbeen discovered during the prototype’s
evaluation can now be avoided in the refined OMT model. Dugrgotype evaluation, several
doubtful design decisions were observed in the initial OMdded. For instance, the IAs only con-
sisted of one process in the initial model (Krober, 1996)the prototype and the refined model, we
split the 1As into two separate processes to avoid synchadiain problems. With the initial model,
each IA had to wait for all messages from both directionsugtoactive polling. The evaluation of
the prototype showed, that this construction is error-prand inefficient. Additionally, the analy-
sis of the concurrent processing within the prototype imq@atation has shown that multicasting is
not manageable with synchronous communication. Theremig multicasting with asynchronous
communication is considered in the refined model (see (Erd996) for details).

This is the goal of experimental prototyping: Experimegtimith ideas for different algorithmic
variations and evaluating these ideas to make the righsiubes as early as possible. In general,
purely analytical evaluations are hardly feasible.

To construct large systems, it is advantageous to hie@atthistructure systems. The OMT no-
tation does not explicitly support modularization. Theref we extended the OMT notation for the
object model by submodels. Each OMT class may be refined ghrsuch a submodel. Refined
classes are displayed with a bold frame in Figure 3. The #tsmts between external classes and
the submodel must be displayedmstsin the submodel. The ports are connected to the submodel’'s
internal classes. In principle, this form of hierarchy abblke compared with macro mechanisms in
programming languages. Each submodel could be expandedsagermodel.

Figure 5 displays a refinement of the CSC from the global dbjeadel in Figure 3. The CSC
consists of a waiting, a sending and two processing compsn&he simplified dynamic model for
the message processing component is displayed in Figurel ghansimplified dynamic model for
the sending component is displayed in Figure 7. For eacls ateihie object model, such a dynamic
model is specified as a state-transition diagram. The gldalof events is displayed in Figure 8 in
an event-flow diagram (Rumbaugh et al., 1991). The actiohgwirigger events in other classes,
are annotated at the links between these classes.

If the message processing component deposits an entnhiateend list, the sending component
sends the message. This communication is implicitly mateldé-igures 6 and 7. The event-flow di-
agram in Figure 8 makes this communication explicit. Obslgithe way communication is modeled
with OMT’s notation is rather informal. The needed synclization cannot be modeled with OMT.
Additional informal specifications are necessary. A detaillescription of the prototype evaluation
and the extended model is beyond the scope of the presentgrapmay be found in (Krober, 1996).

3 RELATED WORK

Several other approaches which intend to overcome someahtbrtcoming of the OMT methodol-
ogy are discussed in the literature. In (Knowles and Caolliogd, 1994), for instance, OMT has been
combined with the PARSE methodology (Gorton et al., 19983anise the object model did not com-
pletely provide the necessary refinement required in oiexpress the final software design. OMT
has been extended to include the additional consideratibparallelism by mapping the resulting
object model to PARSE. The PARSE process graph notatiowslo describe a parallel system in
terms of a hierarchy of interacting components. These compis are either passive function or data
servers, or active control processes. Processes intgramebsage passing on designated communi-

interface
DBMS

agent

sub model
central server

component

receiver

query
- producer i
waiting component processing
consumer producer
component

producer

Datenkonsument

consumer
sender

consumer

message)
producer consumer sending

rocessin
P! 9 component

component

Csc
configuration

data store

Figure5. The submodel 'CSC. The ports are displayed with a grey gemknd.

acknowledgement is
ready for processing

do: test and
update
ack list

deposit entry
/entry in
send list

message is
ready for
processing

do: build up
send list and

modify ack lis

do: build up
send list

Figure 6. The simplified dynamic model for the message processingooent from Figure 5. With
OMT'’s state-transition diagrams, the start state is ingidavith a black circle. An event name is
written on a transition arrow. An action is indicated on agiéion following the event name by a “/”
character followed by the action’s name (Rumbaugh et aB119The action may trigger an event
with the same name. Here, the action ‘entry in send listbeig the corresponding event in Figure 7.

entry in send list

send message/message sent to 1A

Figure 7. The simplified dynamic model for the sending component ffégure 5.

message sent to CSC interface agent

waiting query
component query is ready for processing processing
query answer is ready for processing | component
message is ready entry in send list
acknowledgement is ready
message di
. sendin
processing try i d list) ssages sent to 1A
component entry in send lis component messag

Figure 8. A small extract from the event-flow diagram for the hospi@ainmunication server.

cation paths. Essentially, OMT’s dynamic model has beestitubed by the PARSE process graph
notation in this approach. Within the PARSE project, thegnation of behavioral analysis techniques
involving Petri-Nets for design validation has been exptbthrough (manual) translation of process
graphs into Petri-Nets to offer a path to formal verificat{@orton et al., 1995). With this approach,

a form for prototyping could be based on Petri-Net simulatio

As we could see in the preceding section, OMT performs badiigrmspecifying communication
and synchronization problems, With OMT, the dynamic bebiaig specified on an object-class basis
by state-transition diagrams. The diagraming techniqakides symbols for states (rounded boxes)
and transitions (arrows between boxes). Usually, tramsitfrom one state to another are triggered by
internal or external events, which appear in labels at thenas. An external eventis an event triggered
by an action of one object class, and affecting another tbjass. However, serious problems arise
with the semantics of communication when using the OMT matafl here are no means other than
textual circumscription in state-transition diagrams ésctibe, for instance, whether communication
is synchronous or asynchronous. The event-flow diagramoticerlly solve this problem, because
the relations to the individual state-transition diagraresnot formally specified. One point to make
is that OMT's suitability for developingarallel anddistributedsoftware is limited: while excelling
in data modeling, its support to model communication isfiisient. As an aside, we mention that the
Booch method (Booch, 1994) does incorporate some expbaitnsunication notations in its object
diagrams (e.g. synchronous vs. asynchronous commumgaiibe Booch Method’s object diagrams
can be compared to some extend with OMT’s event-flow diagréunson an object-instance level,
not on the class level at it is the case with OMT. However, #reantics of these are still not formally
defined. The forthcoming Unified Modeling Language (Rati@@ftware Corporation, 1997) allows
a more detailed specification of realtime and concurrencems, but still in a semi-formal way.

A formal approach to specify distributed systems with stedasition diagrams is the Require-
ments State Machine Language (RSML) (Leveson et al., 1983t allow an adequate modeling of
distributed systems, RSML extends state-transition diagrby explicit interfaces and directed com-
munication channels between individual state machines.

Other object-oriented methods have been used to analyabgbalystems (Knowles et al., 1995).
However, to our knowledge, there exists no published wost #xplicitly combines an object-
oriented analysis method with a prototyping approach fqumements analysis gfarallel systems.
Therefore, we combined the OMT methodology with the PrdSetia prototyping approach to gain
some experience with this combination.

4 CONCLUSIONS

This paper presents some problems and solutions for théresgents analysis of a specific parallel
system. A hospital communication server, which can be cardig)by means of various tables, was
discussed to connect heterogeneous components of hdsfatahation systems and to overcome
some of the shortcomings of the HL7 protocol. Within the scopthe present paper, only some
aspects of this application could be presented. We wouddtblcomment on our experience with the
employed analysis techniques.

A point to stress is the employed development process: Tbication of OMT with a prototyp-
ing approach for requirements analysis of parallel andibisted systems. The observation to make
is that OMT appears to be a good technique for the analysigstéms withalready knowrproperties,
but for newsystems, like a hospital communication server with manynomk requirements, experi-
mental prototyping is a promising extension. The requinetmanalysis process can be depicted with
this approach as illustrated in Figure 9.

10

Requirements

Prototypin
specification yping

The requirements seem to be
insufficiently analyzed

The requirements seem to e
sufficiently analyzed

Figure 9. The process for requirements analysis with the combinaifdOMT with a prototyping
approach.

When the requirements seem to be sufficiently analyzed,gkephases in the development pro-
cess can be started. The decision, whether the requirerasntufficiently analyzed and whether
prototyping should be carried out depends on existing kadge in the application domain. For a
re-implementation of an old system with the goal to improee-functional properties such as per-
formance and reliability, prototyping will not be very hélipfor the requirements analysis. For the
implementation of a new system which is supposed to solvetasls, it will be helpful to carry
out several prototype evaluations. This was necessanhfoptesented requirements analysis on a
hospital communication server.

The principal question arises whether the OMT methodoldgyeais at all usable for the require-
ments analysis afewsystems. At least the notation only supports the designnigtbod to identify
objects from the informal requirements specification iscdégd informally in (Rumbaugh et al.,
1991). There exists no explicit support for requirementalygsis in OMT. With OMT, it is not easy
to distinguish between analysis and design. Embley etalingtance, argue that the existing object-
oriented analysis and design techniques (including OMThatcappropriately support analysis, be-
cause the distinction between analysis and design is nticexpth these techniques (Embley et al.,
1995). In (Embley et al., 1995), a new analysis method, Qifjgiznted Systems Analysis (OSA),
is proposed which is exclusively designed for analysis. @Bécifications are executable (they have
formally defined syntax and semantics). This way, protatgp$ directly supported by this analysis
method. In our requirements analysis, we still had to usedifferent methods for object-oriented
analysis/design and for prototyping. Essentially, OMT b@sn used to specify the knowledge gained
through prototype evaluation in our project. The high leveProSet-Linda’s constructs for parallel
programming enabled us to rapidly develop prototypes adlperprograms and to experiment with
parallel algorithms.

REFERENCES

Booch, G.,0Object-Oriented Analysis and Design with Applicatighsedition. Benjamin/Cummings,
Redwood City, California, 1994.

Budde, R., Kautz, K., Kuhlenkamp, K., and Zullighoven, Rrptotyping — An Approach to Evolu-
tionary System Developmer8pringer-Verlag, Berlin, 1992.

Embley, D., Jackson, R., and Woodfield, S., OO Systems Aizalissit or Isn't It? IEEE Software
12, 19-33(1995).

11

Gordon, V., and Bieman, L., Rapid prototyping: LessonsriedrIEEE Softwarel 2, 85—95 (1995).

Gorton, I., Gray, J., and Jelly, I., Object based modellihgarallel programs.IEEE Parallel and
Distributed Technology Journ8l, 52—63 (1995).

Hammond, W., Health Level 7: A protocol for the interchandédealthcare data, iRrogress in
Standardization in Health Care Informati¢S. D. Moor, C. McDonald, and J. van Goor, eds.)
IOS Press, Amsterdam, 1993, pp. 144-148.

Hasselbring, W., The ®ROSET-Linda approach to prototyping parallel system$he Journal of
Systems and Softwate appear (1998).

Hasselbring, W., and Krober, A., Requirements Analysi®ugh the Combination of OMT
with a Prototyping Approach (in German), iRroc. Gl-Fachtagung Softwaretechnik ,96
Softwaretechnik-Trends 16/3, 1996, Koblenz, Germany1pp-—112.

HL7 Group., Health level seven: an application protocoldtactronic data exchange in healthcare
environments, version 2.2. Technical report, Health L&aalen, Inc., Ann Arbor, USA, 1994,

Knowles, C., and Collingwood, P., Parallel software depaient using an object-oriented modeling
techniquelnformation and Software Technolo8§, 397—404 (1994).

Knowles, C., Collingwood, P., and Jelly, I., Evaluation oftarare engineering analysis techniques
for parallel software, iProc. 21th Euromicro ConferenciEEE Computer Society Press, Pis-
cataway, N.J., 1995.

Krober, A., Modeling a configurable HL7-based hospital cwmication server (in German), Mas-
ter's thesis, Department of Computer Science, Univerdiatmund, 1996.

Leveson, N., Hildreth, H., Heimdahl, M., and Reese, J., Rements specification for process-
control systemslEEE Transactions on Software Engineer@ 684—707 (1994).

Lichter, H., Schneider-Hufschmidt, M., and Zullighover,, Prototyping in industrial software
projects — bridging the gap between theory and practieEE Transactions on Software Engi-
neering20, 825-832 (1994).

Rational Software Corporation., The Unified Modeling Laaga. Documentation Set Version 1.0,
Santa Clara, California, 1997.

Rumbaugh, J., Michael, B., William, P., Frederick, E., antli#/n, L., Object-Oriented Modelling
and Design Prentice Hall, Englewood Cliffs, N.J., 1991.

12

