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of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona, Barcelona, Spain, 5 Department of Earth Sciences, Vrije Universiteit Amsterdam,

Amsterdam, The Netherlands, 6 Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands, 7 Geology Department, Royal Netherlands Institute for Sea

Research (NIOZ), Den Hoorn (Texel), The Netherlands

Abstract

Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such
as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth
and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in
growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2

sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification.
Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for
calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable
oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed
changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing
past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains
unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on
calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.
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Introduction

The oceans have taken up about one third of all CO2 emitted by

anthropogenic activities since the onset of the industrial revolution

[1–3]. This directly impacts seawater carbonate chemistry by

increasing concentrations of CO2 and bicarbonate (HCO3
2),

decreasing concentrations of carbonate (CO3
22) and a lowering of

pH [4]. The acidification of ocean waters might impact marine

life, notably calcifying organisms that use inorganic carbon to

produce a calcium carbonate (CaCO3) shell. Calcifying organisms

play an important ecological and biogeochemical role in marine

ecosystems, evident from extensive coral reefs and vast calcite

deposits found in geological records. Ocean acidification has been

shown to reduce calcification of various key calcifying organisms

such as corals [5], foraminifera [6], and coccolithophores [7,8].

Little is yet known about the general responses of calcareous

dinoflagellates [9], and no study so far investigated the impact of

ocean acidification on their calcification.

Dinoflagellates feature a complex life-cycle that often includes

formation of cysts. In some species, these cysts are made of calcite

and can contribute substantially to the ocean carbonate flux in

certain regions [10–12]. Thoracosphaera heimii, the most common

calcareous dinoflagellate species in present-day ocean, is autotro-

phic and occurs typically in subtropical and tropical waters [13–

15]. The main life-cycle stage of T. heimii comprises coccoid

vegetative cells with a calcium carbonate shell, so-called vegetative

cysts [16,17]. Although the term cyst is most often used for long-

term resting stages that are typically produced after sexual

reproduction, in T. heimii this term is used for its coccoid vegetative

stage. Cysts of T. heimii can be commonly found in the fossil record

in sediments dating back to the Cretaceous [18]. Therefore, T.

heimii cysts may serve as potential proxy for reconstructing the past

climate. For instance, Sr/Ca ratios have been shown to correlate

well with sea surface temperatures [19], but also the oxygen and

carbon isotopes trapped in the cysts could provide useful proxies.

The oxygen isotopic composition (d18O) of calcite was found to

be strongly controlled by the temperature and the d18O of the

seawater in which the organism calcifies [20–22]. In abiotic

precipitation experiments, the d18O of calcite is mainly a function

of the d18O and speciation of dissolved inorganic carbon (DIC),

where dissolved CO2 is heavier with respect to 18O than HCO3
2

and CO3
22 [23,24]. Similarly, the carbon isotopic composition

(d13C) of calcite is predominantly controlled by the d13C and

speciation of DIC, yet dissolved CO2 is depleted with respect to
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13C relative to HCO3
2 and CO3

22 [21,25]. In unicellular

calcifiers like coccolithophores and T. heimii, calcification occurs

intracellularly in specialized vesicles [16,26,27]. Therefore, the

inorganic carbon used for calcification by these organisms must be

derived from the intracellular inorganic carbon (Ci) pool.

Consequently, changes in d18O and d13C of calcite should

resemble changes in the intracellular Ci pool and may provide

insights in the physiological processes underlying calcification and

organic carbon production.

Comparable to coccolithophores, ocean acidification likely

reduces calcification in T. heimii as well. Furthermore, increasing

concentrations of CO2 are expected to alter the stable carbon and

oxygen isotopic composition of T. heimii cysts. To test these

hypotheses, we grew T. heimii at a range of CO2 levels and

followed its responses in growth and calcification. Besides the

assessment of d18O and d13C in T. heimii as a proxy, we use its

isotopic composition as a tool to understand processes involved in

organic carbon production and calcification. Transcriptomic

analyses were applied to reveal mechanisms underlying the

observed responses.

Materials and Methods

Experimental Set-up
Cells of Thoracosphaera heimii RCC1512 (formerly AC214;

Roscoff Culture Collection) were grown as dilute batch cultures

in 2.4 L air-tight borosilicate bottles. Population densities were

kept low at all times (,1,300 cells mL21) in order to keep changes

in carbonate chemistry minimal (i.e. ,3.5% with respect to DIC;

Table S1). Filtered natural seawater (0.2 mm) was enriched with

metals and vitamins according to the recipe for f/2-medium,

except for FeCl3 (1.9 mmol L21), H2SeO3 (10 nmol L21), and

NiCl2 (6.3 nmol L21). The added concentrations of NO3
2 and

PO4
32 were 100 mmol L21 and 6.25 mmol L21, respectively.

Cultures were grown at a light:dark cycle of 16:8 h and an incident

light intensity of 250625 mmol photons m22 s21 provided by

daylight lamps (Lumilux HO 54W/965, Osram, München,

Germany). Bottles were kept at 15uC and placed on a roller table

to avoid sedimentation. Prior to inoculation, the culture medium

was equilibrated with air containing 150 matm CO2 (,Last

Glacial Maximum), 380 matm CO2 (,present-day), 750 and

1400 matm CO2 (future scenarios assuming unabated emissions).

Each treatment was performed in triplicate.

Sampling and Analyses
Prior to the experiments, cells were acclimated to the respective

CO2 concentrations for at least 21 days, which corresponds to

.7 cell divisions. Experiments were run for 8 days and included

.3 cell divisions. Cell growth was monitored by means of

triplicate cell counts daily or every other day with an inverted

light microscope (Axiovert 40C, Zeiss, Germany), using 0.5–2 ml

culture suspension fixed with Lugol’s solution (2% final concen-

tration in mQ). Cell counts included determination of vegetative

cysts, i.e. shells containing cell material, and empty shells. Because

empty shells also contain inorganic carbon, the total number of

cysts was used for estimating inorganic carbon quota, while only

vegetative cysts were included in the growth rate estimations.

From each biological replicate, growth rates were estimated by

means of an exponential function fitted through the number of

vegetative cysts over time, according to:

Nt~N0emt ð1Þ

where Nt refers to the population density at time t (in days), N0 to

the population density at the start of the experiment, and m to the

growth rate (Fig. S1).

For total alkalinity (TA) analyses, 25 mL of culture suspension

was filtered over glass-fibre filters (GF/F, ,0.6 mm pore size,

Whatman, Maidstone, UK) and stored in gas-tight borosilicate

bottles at 3uC. Duplicate samples were analysed by means of

potentiometric titrations using an automated TitroLine burette

system (SI Analytics, Mainz, Germany). pH was measured

immediately after sampling with a pH electrode (Schott Instru-

ments, Mainz, Germany), applying a two-point calibration on the

NBS scale prior to each measurement. For DIC analyses, 4 mL

culture suspension was filtered over 0.2 mm cellulose-acetate filters,

and stored in headspace free gas-tight borosilicate bottles at 3uC.

Duplicate samples of DIC were analysed colorimetrically with a

QuAAtro autoanalyser (Seal Analytical, Mequon, USA). Carbon-

ate chemistry (Table S1) was assessed by total alkalinity (TA) in

combination with pHNBS, temperature and salinity, using the

program CO2sys [28]. For the calculations, an average phosphate

concentration of 6.4 mmol L21 was assumed, the dissociation

constant of carbonic acid was based on Mehrbach et al. [29], refit

by Dickson and Millero [30]. The dissociation constant of sulfuric

acid was based on Dickson [31].

To determine the isotopic composition of DIC (d13CDIC) and

the water (d18Owater), 4 mL of culture suspension was sterile-

filtered over 0.2 mm cellulose-acetate filters and stored at 3uC.

Prior to analyses, 0.7 mL of sample was transferred to 8 mL vials.

For determination of d13CDIC, the headspace was filled with

helium and the sample was acidified with three drops of a 102%

H3PO4 solution. For determination of d18Owater, the headspace

was flushed with helium containing 2% CO2. CO2 and O2

isotopic composition in the headspace were measured after

equilibration using a GasBench-II coupled to a Thermo Delta-V

advantage isotope ratio mass spectrometer with a precision of

,0.1% [32].

At the end of each experiment, cultures were harvested for

analyses of particulate organic carbon (POC) and related isotopic

composition (d13CPOC), total particulate carbon (TPC), isotopic

composition of the calcite (d13Ccalcite and d18Ocalcite), and for the

Scanning Electron Microscope (SEM). For POC and TPC

analyses, 250–500 mL cell suspension was filtered over precom-

busted GF/F filters (12 h, 500uC) and stored at 225uC in

precombusted Petri dishes. Prior to POC measurements, 200 mL

of 0.2 N analytical grade HCl was added to the filters to remove

all particulate inorganic carbon (PIC), and filters were dried

overnight. POC, d13CPOC, and TPC were analysed in duplicate

on an Automated Nitrogen Carbon Analyser mass spectrometer

(ANCA-SL 20–20, SerCon Ltd., Crewe, UK). PIC was calculated

as the difference in carbon content between TPC and POC.

d13Ccalcite and d18Ocalcite were measured with a Thermo Scientific

MAT253 coupled to a Kiel IV carbonate preparation device.

Analytical stability and calibration was checked routinely by

analyzing NBS19 and IAEA-CO1 carbonate standards. Repro-

ducibility (Kiel IV and MAT253) was ,0.05% and ,0.03% for

d18O and d13C, respectively.

For SEM analyses, 50 mL culture suspension was filtered over a

0.8 mm polycarbonate filter and dried overnight at 60uC. Filters

were fixed on aluminium stubs, sputter-coated with gold-palladi-

um using an Emscope SC500 Sputter Coater (Quorum Technol-

ogies, Ashford, UK), and viewed under a FEI Quanta FEG 200

scanning electron microscope (FEI, Eindhoven, the Netherlands).

From each replicate, a total of .200 cysts were counted and

assessed as complete or incomplete.

CO2 Effects on a Calcareous Dinoflagellate
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Isotopic Fractionation
Isotopic fractionation during organic carbon production and

calcification was calculated based on the carbon isotopic

composition of the cellular organic carbon, cellular inorganic

carbon and DIC, and the oxygen isotopic composition of the

calcite and seawater, respectively. The carbon isotopic composi-

tion is reported relative to the PeeDee belemnite standard (PDB):

d13Csample~
(13C=12C)sample

(13C=12C)PDB

{1

 !
|103 ð2Þ

The isotopic composition of CO2 (d13CCO2) was calculated from

d13CDIC using a mass balance relation according to Zeebe and

Wolf-Gladrow [24], applying fractionation factors between CO2

and HCO3
2 from Mook et al. [33] and between HCO3

2 and

CO3
22 from Zhang et al. [34]. The isotopic fractionation during

POC formation (ep) was calculated relative to d13CCO2 according

to Freeman and Hayes [35]:

ep~
d13CCO2

{d13CPOC

1zd13CPOC|10{3
ð3Þ

The carbon isotopic fractionation during calcite formation (ek)

was calculated relative to d13CDIC:

ek~
d13CDIC{d13CPIC

1zd13CPIC|10{3
ð4Þ

The oxygen isotopic composition in the calcite is also reported

relative to the PDB standard:

d18Ocalcite~
(18O=16O)calcite

(18O=16O)PDB

{1

� �
|103 ð5Þ

The oxygen isotopic composition in DIC (d18ODIC) was

determined using the oxygen fractionation factor between DIC,

calculated after Zeebe and Wolf-Gladrow [24], and water (a(DIC-

H2O)), calculated after Zeebe [36], with temperature corrected

fractionation factors from Beck et al. [37]. The isotopic compo-

sition of DIC (d18ODIC) was calculated according to:

d18ODIC~
(d18OH2Oz103)

a(DIC{H2O)

 !
{103 ð6Þ

Transcriptomic Analyses
For RNA extraction, 500 mL of culture suspension was

concentrated to 50 mL with a 10 mm mesh-sized sieve, and

subsequently centrifuged at 15uC for 15 min at 4000 g. Cell pellets

were immediately mixed with 1 mL 60uC TriReagent (Sigma-

Aldrich, Steinheim, Germany), frozen with liquid nitrogen and

stored at 280uC. Subsequently, cell suspensions were transferred

to a 2 mL cryovial containing acid washed glass beads. Cells were

lysed using a BIO101 FastPrep instrument (Thermo Savant,

Illkirch, France) at maximum speed (6.5 m s21) for 2630 s, with

an additional incubation of 5 min at 60uC in between. For RNA

isolation, 200 mL chloroform was added to each vial, vortexed for

20 s and incubated for 10 min at room temperature. The samples

were subsequently centrifuged for 15 min at 4uC with 12,000 g.

The upper aqueous phase was transferred to a new vial and 2 mL

5 M linear acrylamide, 10% volume fraction of 3 M sodium

acetate, and an equal volume of 100% isopropanol were added.

Mixtures were vortexed and subsequently incubated overnight at

220uC in order to precipitate the RNA. The RNA pellet was

collected by 20 min centrifugation at 4uC and 12,000 g. The pellet

was washed twice, first with 70% ethanol and afterwards with 96%

ethanol, air-dried and dissolved with 100 ml RNase free water

(Qiagen, Hilden, Germany). The RNA sample was further cleaned

with the RNeasy Kit (Qiagen) according to manufacturer’s

protocol for RNA clean-up including on-column DNA digestion.

RNA quality check was performed using a NanoDrop ND-100

spectrometer (PeqLab, Erlangen, Germany) for purity, and the

RNA Nano Chip Assay with a 2100 Bioanalyzer (Agilent

Technologies, Böblingen, Germany) was performed in order to

examine the integrity of the extracted RNA. Only high quality

RNAs (OD260/OD280.2 and OD260/OD230.1.8) as well as

RNA with intact ribosomal peaks (obtained from the Bioanalyzer

readings) were used for microarrays.

454-libraries were constructed by Vertis Biotechnologie AG

(http://www.vertis-biotech.com/). From the total RNA samples

poly(A)+ RNA was isolated, which was used for cDNA synthesis.

First strand cDNA synthesis was primed with an N6 randomized

primer. Then 454 adapters were ligated to the 59 and 39 ends of

the cDNA, and the cDNA was amplified with 19 PCR cycles using

a proof reading polymerase. cDNA with a size range of 500–

800 bp was cut out and eluted from an agarose gel. The generated

libraries were quantified with an RL-Standard using the Quanti-

Fluor (Promega, Mannheim, Germany). The library qualities were

assessed using the High Sensitivity DNA chip on the Agilent 2100

Bioanalyzer (Agilent, Waldbronn, Germany). For all sequencing

runs 206107 molecules were used for the emulsion PCR that were

carried out on a MasterCycler PCR cycler (Eppendorf, Hamburg,

Germany). The following enrichment was performed according to

the manufacturer’s instructions. Sequencing was performed with

the GS Junior Titanium Sequencing Kit under standard

conditions. The 454 Sequencing System Software version 2.7

was used with default parameters, i.e., Signal Intensity filter

calculation, Primer filter, Valley filter, and Base-call Quality Score

filter were all enabled.

Statistical Analysis
Normality was confirmed using the Shapiro-Wilk. Variables

were log-transformed if this improved the homogeneity of

variances, as tested by Levene’s test. Significance of relationships

between variables and concentration of CO2 and CO3
22 were

tested by means of linear regression. Significance treatments was

tested using one-way ANOVA, followed by post hoc comparison

of the means using Tukey’s HSD (a= 0.05) [38].

Results

Increasing concentrations of CO2 cause a strong decline in

growth (Fig. 1A), which decreases by up to 53% over the

investigated CO2 range (Table S2). Although the total carbon

quota (TPC) is not affected by CO2 (Table S2), the organic carbon

quota (POC) gradually increases while the inorganic carbon quota

(PIC) shows a substantial decrease (Fig. 1B). Consequently, the

PIC:POC ratio strongly decreases with increasing concentrations

CO2 Effects on a Calcareous Dinoflagellate
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of CO2 (Fig. 1C), showing a decrease of ,54% from the lowest to

the highest CO2 treatment (Table S2).

The reduced degree of calcification is also evident from the cyst

morphology. In the lowest CO2 treatment, the majority of cysts

shows a fully closed and completed calcite structure (Fig. 2A–C).

At the highest CO2 concentration, however, calcification of most

cysts is incomplete (Fig. 2D–H). Some cysts show initial stages of

calcification, indicated by typical square pores (Fig. 2E,F) [16]. In

other cysts, the numerous crystallization sites remain unconnected

showing clear cavities in the calcite structure (Fig. 2G,H). These

cavities likely cause the collapse of many cysts upon filtration

(Fig. 2D, white arrows). With increasing concentrations of CO2,

the number of completed cysts dramatically decreases from ,98%

at the lowest CO2 treatment towards ,18% at the highest CO2

treatment (Fig. 1D).

Carbon isotope fractionation responds strongly to the applied

CO2 treatments, showing an increase in ep and a decrease in ek

with increasing pCO2 (Fig. 3A). In other words, the organic carbon

fraction of the cells becomes depleted in 13C while the inorganic

carbon fraction (i.e. the calcite) increases its 13C content.

Furthermore, the calcite also becomes 18O-enriched, indicated

by the increase in d18Ocalcite with increasing pCO2 (Fig. 3B). As

dissolved CO2 is heavier than HCO3
2 and CO3

22 [24],

increasing CO2 levels cause d18ODIC to increase (Fig. 3B). Yet,

changes are relatively small and the d18ODIC remains close to that

of HCO3
2, which is the dominant inorganic carbon species. To

permit comparison with previous findings, d18Ocalcite values were

corrected for the d18O of water (20.5260.07 %) and plotted as a

function of CO3
22 concentration (Fig. 3C). Calcite d18O decreases

strongly with increasing concentrations of CO3
22, and the slope is

similar to the one reported for another T. heimii strain (RCC1511)

[9].

The transcriptome indicates substantial gene regulation in

response to changes in carbonate chemistry, with a total of 9701

genes being expressed (Fig. S2). The expression of the majority of

genes was treatment specific, amounting to 3183, 2704, and 2176

genes in the low, present-day and high CO2 treatments,

respectively (Fig. S2). Interestingly, the number of expressed genes

to which a function could be assigned by comparison with public

databases was highest in the low and present-day CO2 treatment

(,22%), and lowest in the high CO2 treatment (,13%). The

expressed genes from each treatment are differentially distributed

over different ‘eukaryotic orthologous groups’ (KOGs; Fig. S3 and

Table S3). Although the total number of expressed genes is largely

comparable between treatments, different sets of genes within the

KOGs are expressed. About 55% of the number of expressed and

annotated genes in each treatment are associated to the KOGs

‘Translation, ribosomal structure and biogenesis’, ‘Signal trans-

duction mechanisms’, ‘Posttranslational modification, protein

turnover and chaperons’, and ‘Energy production and conversion’

(Fig. S3). Expression of genes associated to the latter two categories

increased in response to increasing pCO2. In contrast, expression

of genes involved in ‘Inorganic ion transport and metabolism’

decreased in the high CO2 treatment (Fig. S3).

We therefore investigated the genes involved in ion transport

and inorganic carbon acquisition in more detail (Fig. 4; Table S4).

We observed a substantial regulation of genes associated to

vacuolar Ca2+ and H+ transport, including P-type Ca2+ ATPases,

Ca2+/Na+ exchangers (NCX1), Ca2+/H+ antiporters (VCX), and

vacuolar H+ ATPases (V-ATPase). In particular, the relative

expression of genes associated to NCX and V-ATPase decreases

Figure 1. Effect of increasing CO2 concentrations on growth and calcification. (A) Specific growth rate, (B) PIC and POC, (C) PIC:POC ratio,
and (D) fraction of completed cysts. Solid lines indicate linear regressions (n = 12) with (A) R2 = 0.94, P,0.001, (B) POC: R2 = 0.35, P = 0.042, and PIC:
R2 = 0.66, P = 0.001, (C) R2 = 0.70, P,0.001, and (D) R2 = 0.98, P,0.001.
doi:10.1371/journal.pone.0065987.g001
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from the low to the high CO2 treatment (Fig. 4). Similarly, the

relative expression of genes associated to carbonic anhydrases (CA)

and aquaporins decreases with increasing pCO2. In the present-

day CO2 treatment, we observed expression of a gene associated

to an SLC4 family anion exchanger (AE), most likely responsible

for the transport of HCO3
2 into the cell (Fig. 4) [39]. This gene

was expressed in neither the low nor the high CO2 treatment. An

SLC26 family SO4
32/HCO3

2/C2O4
22 anion exchanger (SAT-1)

was yet another exclusive expression of a gene only found in the

low CO2 treatment. The potential role of this anion exchanger in

Ci acquisition by phytoplankton remains to be elucidated.

Discussion

Growth and Carbon Production
Our results show considerable impacts of elevated pCO2 on T.

heimii, with strong decreases in its growth rate and degree of

calcification (Fig. 1, 2). Despite the increase in organic carbon

quota (POC), the overall biomass production decreases substan-

tially with increasing pCO2 (Table S2). Higher availability of CO2

has been shown to promote phytoplankton growth and carbon

production [40,41]. Such CO2 responses are typically associated to

the poor catalytic properties of RubisCO, which is characterized

by low affinities for its substrate CO2. Increasing concentrations of

CO2 are however accompanied by a reduction in pH, which may

have consequences for calcification. For the most common

coccolithophore Emiliania huxleyi, lowered pH in fact hampers

calcification while elevated pCO2 stimulates biomass production,

causing a reallocation of carbon and energy between these key

processes [42,43]. This flexibility may explain why growth in E.

huxleyi is typically not affected by ocean acidification [44]. In T.

heimii, however, we observed a strong decrease in calcification, in

biomass production as well as in growth. Apparently, T. heimii

lacks the ability to efficiently reallocate cellular carbon between

pathways and maintain growth relatively unaffected. Our data

furthermore suggests that calcification plays a fundamental role in

its growth, life cycle and hence survival. Recent findings have

shown that growth and calcification by E. huxleyi may, at least

partly, recover from ocean acidification as result of evolutionary

adaptation [45]. Whether or not T. heimii exhibits such capabilities

of adaptive evolution can only be answered from long-term

incubations over hundreds of generations [46].

Transcriptomic analyses reveal a substantial regulation of genes

in response to elevated pCO2. Even though no major shift in the

relative distribution of expressed genes to the functional categories

(KOGs) is induced by the treatments, T. heimii uses different sets of

genes within these categories. There is a slight increase in the

expression of genes associated to signal transduction and

posttranslational modifications upon elevated pCO2, and a

decrease in the expression of genes involved in inorganic ion

transport (Fig. S3), suggesting that T. heimii readjusts its

transcriptome on several levels when grown under different

pCO2. Many phytoplankton species have the ability to deal with

changes in CO2 availability by regulating their so-called carbon

concentrating mechanism (CCMs) [47–49]. T. heimii also appears

to regulate its proteome towards changes by down-regulating

genes involved in CA and aquaporins under elevated pCO2, and

by up-regulating these genes under lowered pCO2 (Fig. 4). CA

accelerates the equilibrium between CO2 and HCO3
2, and can be

located both intra- and extracellularly. From our results it remains

unclear whether T. heimii expresses intra- or extracellular CA. Yet,

in both cases CA plays a key role in the CCM, as it replenishes the

CO2 around RubisCO (intracellular) or the carbon source being

depleted in the boundary layer due to active uptake (extracellular)

[49,50]. Aquaporins have been suggested to play a role in CO2

transport [47,51], which is supported by the observed CO2-

Figure 2. Effect of elevated pCO2 on cyst morphology. Cells grown under (A–C) 150 matm CO2 and (D–H) 1400 matm CO2. Black arrows
indicate cysts that are shown in detailed images, white arrows show collapsed cysts.
doi:10.1371/journal.pone.0065987.g002

CO2 Effects on a Calcareous Dinoflagellate
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dependency in our expression patterns. Besides CO2 also HCO3
2

is often transported into the cell, which will facilitate the high

intra-cellular CO2 requirements imposed by RubisCO. Indeed, T.

heimii expresses genes associated to putative HCO3
2 transporters

at both low and present-day pCO2, but not at high pCO2 (Fig. 4).

Our results thus suggest a down-scaling of the CCM in T. heimii

under elevated pCO2, which possibly makes energy available for

other processes as it has been observed in other species [43,52].

Yet it seems that neither the down-scaling of the CCM nor an

extensive regulation of the transcriptome can compensate for the

adverse effects of elevated pCO2 on growth and calcification in T.

heimii.

Calcification and Isotope Fractionation
Calcification in T. heimii was strongly affected by elevated pCO2.

Along with a reduction in the degree of calcification (Fig. 1B,C),

also the morphology of T. heimii cysts was influenced (Fig. 2). With

elevated pCO2 the number of completed cysts dramatically

decreased and the number of collapsed cysts increased. The

completed calcite structures predominant at low and present-day

pCO2 resemble those of mature T. heimii cells, whereas the

incomplete calcite structures, prevailing under high pCO2,

resemble those of young cells [16,26]. The incomplete cysts in

our experiments, however, often contain an opening through

which the cell has left for division, being indicative for mature

cells. Thus, cells remained either in the cyst too short for

completing the calcite structure, the calcite cyst was directly

affected by the low pH of the water, and/or cells reduced their

calcification rates. Since growth rates were strongly reduced upon

elevated pCO2, it seems unlikely that cells remained in the cyst

stage too short for completion of the cyst, as could be expected

under enhanced growth rates. Although pH in our highest CO2

Figure 3. Effect of increasing CO2 concentrations on the stable
isotope composition. (A) 13C fractionation of organic carbon (ep) and
calcite (ek), (B) 18O composition of calcite (d18Ocalcite) and DIC (d18ODIC),
and (C) relationship between the oxygen isotopic composition of calcite
(d18Ocalcite-water) in Thoracosphaera from this study (open diamonds) and
from Ziveri et al. [9] (grey diamonds). Horizontal lines in (B) indicate
d18O values for HCO3

2 and CO3
22, and dashed line indicates trend of

curve. Solid lines indicate linear regressions (n = 12) with (A) ep:
R2 = 0.75, P,0.001, and ek: R2 = 0.90, P,0.001, (B) d18ODIC: R2 = 0.76,
P,0.001, and (C) This study: R2 = 0.99, P,0.001, and Ziveri et al. (2012),
(n = 7): R2 = 0.95, P,0.001.
doi:10.1371/journal.pone.0065987.g003

Figure 4. Effect of elevated pCO2 on gene regulation. Number of
readings found for genes associated to ion transport and Ci acquisition
in the 150 matm and 1400 matm CO2 treatments relative to the present-
day (380 matm) CO2 treatment.
doi:10.1371/journal.pone.0065987.g004
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treatment was close to 7.6, the water still remained supersaturated

with respect to calcite (i.e. an Vcalcite .1.2; Table S2), and calcite

dissolution seem unlikely to have caused the incompletion and

cavities in the calcite structure (Fig. 2). Thus, the large number of

affected T. heimii cysts at elevated pCO2 seems mainly to be a result

of reduced calcification rates by the cells.

Calcification in T. heimii likely takes place intracellularly in

vesicles [16,26], comparable to coccolithophores [9,27]. Hence,

the inorganic carbon needed for calcification is obtained from the

intracellular inorganic carbon pool (Ci), which may deviate

strongly from external conditions in terms of speciation as well

as isotopic composition. We observed an increase of carbon

isotope fractionation for organic carbon production (ep), whereas it

decreased for calcite formation (ek) in response to elevated pCO2

(Fig. 3A). With a higher availability of CO2, more of the

intracellular Ci pool may be replenished by CO2, which is

depleted in 13C compared to HCO3
2. Consequently, RubisCO

can fractionate against an isotopically lighter Ci pool and thus

better express its preference for lighter 12C, which could explain

the increasing ep. As a consequence, the intracellular Ci pool

becomes enriched with 13C by so-called Rayleigh distillation,

which a priori could explain the decrease in ek. However, increased

CO2 availability in combination with a reduced organic carbon

production should lead to a lowered Rayleigh distillation, and in

fact decrease the enrichment of 13C within the cell. Also, Rayleigh

distillation should always feedback on CO2 fixation as well as

CaCO3 precipitation, and thus cannot explain the opposing trends

of fractionation in those processes.

The opposing CO2 effects on ep and ek can thus only be

explained if both processes use Ci pools that are isotopically

different. CO2 fixation uses the Ci pool within the chloroplast,

which is affected by the relative CO2 and HCO3
2 fluxes, the CO2

leakage as well as the intrinsic fractionation by RubisCO [53,54].

The Ci pool for calcification will mainly be controlled by the

condition in the cytosol, which in turn is largely affected by the

processes in the chloroplast. Discrimination of 13C during fixation

will lead to 13CO2 efflux from the chloroplast, causing the cytosolic

Ci pool to be enriched with 13CO2. If this 13CO2 is prevented from

fast conversion to HCO3
2 due to a lack of cytosolic CA activity, it

could enter the calcifying vesicle by diffusion and be ‘trapped’ by

the high pH resulting from proton pumping (Fig. 5). In fact, we do

observe a higher ep (i.e. more 13CO2 can accumulate) and lower

overall CA activities under elevated pCO2 (i.e. 13CO2 is not

rapidly converted to HCO3
2), which could have attributed to the

opposing trends of 13C fractionation during organic and inorganic

carbon production. To fully understand the intriguing interplay

between these processes and their 13C fractionation, detailed

measurements on the modes of Ci acquisition in T. heimii are

needed.

The oxygen isotopic composition (d18O) of calcite was also

strongly affected in T. heimii, and increased by almost 6 % over the

investigated CO2 range (Fig. 3B). Even though biologically

mediated, precipitation of calcite is an abiogenic process, which

does not directly involve enzymatic reactions and thus mainly

depends on the carbonate chemistry at the calcification site.

Assuming negligible fractionation during the transport into the

calcification vesicle, d18Ocalcite should therefore predominantly

reflect the d18O of the Ci species used for calcification. Ci species

differ strongly in their d18O values, ranging from lower values for

CO3
22 (24.7 %) and HCO3

2 (2.1 %) to much higher values for

CO2 (11.2 %) [24]. A previous study proposed a conceptual model

to explain the d18O dependence of T. heimii calcite and other

unicellular planktonic calcifiers on seawater CO3
22 concentration

(Fig. 3C) [9]. The authors attribute the negative slope between

d18O and [CO3
22] to an increased contribution of HCO3

2 to the

calcification vesicle. Also in our data, d18Ocalcite increases with

increasing pCO2, starting from values close to the d18O of CO3
22

towards those of HCO3
2 (Fig. 3B). As argued above, however, the

Ci pool in the calcifying vesicle may also be increasingly influenced

by CO2, which is in line with the observed trends in d18Ocalcite.

Such a shift in Ci speciation may be an indication for a lowered

intracellular pH, which in fact could be the reason for the

hampered calcification under elevated pCO2 [55,56].

Multiple genes associated to calcification have been described

for E. huxleyi and include genes associated to the regulation of

inorganic ions [39,55–59]. Here we show that the expression of

genes in T. heimii being involved in inorganic ion transport, in

particular Ca2+ transport, decreased upon elevated pCO2 (Fig. 4;

Fig. S3). This decrease in ion transport is in line with the observed

decrease in calcification, which is comparable to observations in E.

huxleyi [39,59]. We also observed a strong CO2 dependent

regulation of the vacuolar H+-ATPases (V-ATPase). These pumps

play a key role in generating H+ gradients and membrane voltage,

which drive multiple transport processes [57,60]. As indicated

from our data, H+-ATPases seem to play an important role in

calcification in T. heimii, which is in agreement to observations for

E. huxleyi and Pleurochrysis carterae [39,59,61]. Here we propose a

conceptual model of calcification in T. heimii, which comprises

some of the main processes described in this study (Fig. 5).

Although many processes remain to be elucidated, this is a first

step towards understanding the process of calcification in

dinoflagellates.

Paleo Proxies
The d18O isotopic composition of T. heimii cysts has been used

for the reconstruction of past temperatures [22,62]. Indeed, d18O

changed linearly from about 21 to 24 % with an increase in

temperature from about 12 to 30uC. At the same time, however,

pH decreased from about 8.4 to 7.9 in this study [22]. Hence, the

observed changes in d18O were most probably a result of both

changes in temperature and seawater carbonate chemistry [see

also 62]. Here we show remarkable changes in d18O from about 0

to 25 % with an increase in [CO3
22] from 50 to 260 mmol L21,

which is largely in agreement to an earlier study including a

different T. heimii strain (Fig. 3C) [9]. Interestingly, the observed

slopes of d18O/[CO3
22] in both T. heimii strains are up to 10-fold

steeper compared the coccolithophore Calcidiscus leptoporus and

different foraminifera species [9,25,63]. Thus, the apparent 18O

fractionation during calcification in T. heimii is much more

sensitive to changes in [CO3
22] as compared to other key

planktonic marine calcifiers. The steep slope and negative

correlation between d18O and [CO3
22] observed in both T. heimii

strains suggests that the d18O in T. heimii cysts may be a good

candidate to serve as a proxy for past CO3
22 concentrations in

ocean waters. This relationship may provide an ideal asset,

especially when combined with different d18O/[CO3
22] slopes

observed in for instance coccolithophores, which will exclude

confounding effects of additional environmental parameters such

as temperature. Ultimately, this proxy could be further developed

for reconstructing past atmospheric pCO2.

Conclusion
We observed a strong reduction in growth rate and calcification

of T. heimii under elevated pCO2. Although the function of

calcification in T. heimii remains unresolved, it likely plays an

important role in its ecological and evolutionary success. Acting on

calcification as well as growth, ocean acidification may impose a

great threat for T. heimii. Furthermore, the strong correlations
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between the stable isotope composition and carbonate chemistry

suggest a great potential of T. heimii cysts to be used as paleo proxy

for reconstructing seawater carbonate chemistry and ultimately

past atmospheric pCO2.

Supporting Information

Figure S1 Population growth dynamics. Population densi-

ties in each replicate over time in the (A) 150 matm, (B) 380 matm,

(C) 750 matm, and (D) 1400 matm CO2 treatments. Lines indicate

an exponential function fitted through the population densities

(n = 8) of replicate 1 (black), 2 (grey) and 3 (white), with (A) 1:

R2 = 0.98, p,0.0001, 2: R2 = 0.97, p,0.0001, and 3: R2 = 0.97,

p,0.0001, (B) 1: R2 = 0.97, p,0.0001, 2: R2 = 0.97, p,0.0001,

and 3: R2 = 0.92, p,0.0001, (C) 1: R2 = 0.92, p = 0.0007, 2:

R2 = 0.96, p,0.0001, and 3: R2 = 0.97, p,0.0001, and (D) 1:

R2 = 0.96, p,0.0001, 2: R2 = 0.95, p,0.0001, and 3: R2 = 0.91,

p = 0.0002.

(EPS)

Figure S2 Number of expressed genes. Venn diagram of

the number of expressed genes in the 150 matm, 380 matm, and

1400 matm CO2 treatments.

(EPS)

Figure S3 Distribution of expressed genes grouped
according to KOG. Values represent the number of genes

expressed per KOG, relative to the total number of genes

expressed in the respective treatment.

(EPS)

Table S1 Carbonate chemistry at the start and end of
the experiment. Overview of pCO2, pHNBS, dissolved inorganic

carbon (DIC), CO2 concentration in the water, total alkalinity

(TA), and the seawater calcite saturation state Vcalcite. Values

indicate mean 6 SD (n = 3).

(DOCX)

Table S2 Growth, elemental composition and calcifica-
tion at the end of the experiment. Overview of growth rate,

POC production, carbon quota (TPC, POC, and PIC), PIC:POC

ratio, and the number of completed cysts. Values indicate mean 6

SD (n = 3).

(DOCX)

Table S3 Overview of all expressed genes grouped
according to KOG.
(XLSX)

Table S4 Overview of the number of readings for genes
associated to ion transport and Ci acquisition.
(XLSX)

Figure 5. Conceptual model of regulated proteins in a T. heimii cell. The regulated proteins involved in ion transport and Ci acquisition are
shown on their putative locations [39,49,57]. Proteins involved in vacuolar Ca2+ and H+ transport include P-type Ca2+ ATPases (P-ATPase), Ca2+/Na+

exchangers (NCX), Ca2+/H+ antiporters (VCX), and vacuolar H+ ATPases (V-ATPase). Active uptake of HCO3
2 may occur via a SLC4 family anion

exchanger (AE) or an SLC26 family SO4
32/HCO3

2/C2O4
22 anion exchanger (SAT-1). Carbonic anhydrases (CA) are located intracellularly or

extracellularly and enhance the interconversion between CO2 and HCO3
2.

doi:10.1371/journal.pone.0065987.g005
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