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Abstract

A translator for a subset of SETL/E into SETL2 built with the compiler construction system

Eli will be presented. The main objective of this work was to obtain the basic specifications
for a compiler that transforms SETL/E into ANSI-C. The latter transformation is in progress

in parallel to our work. Additional benefits are the ability to execute and to experiment with
a subset of SETL/E and to obtain a comparison with some features of SETL2. This report is
assumed to be the doctmentation for a development step.
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Introduction

The set theoretic language SETL/E is a süccessor of SETL [SDDS86, DF89]. For a fu1l

account on set theoretic languages and programming we refer to these books. SETL/E is at
present under development at the University of Essen. The kernel of the language was at
first presented in [DGH9Ob] and the system in [DGH90a]. Considerations on persistence and
conculrency are under way but not treated in this work.

Several changes to the language deflnition were made since its first presentation. In
this work we refer to the version given in IDFGH9O]. Originally it was intended to build
a pretty printer for SETL/E. Performing this would require approdmately the same effort
as a translation into SETL2, Because of the additional benefits we decided to perform the
translation into SETL2. The 5ETL2 programming language was evolved from SETL too, and
developed at the New York University [Sny90a].

The compiler construction system Eli is the centra,l tool for implementing SETL/E. EIi
integrates of-the-shelf tools and libraries with specialized language processors to provide a
system for generating complete compilers quickly and reliably [GHK+90].

In the next section the compiler specifications are presented. The differences with SETL2
are occasionally given in section 2.3 where appropriate. There's no extra section for a com-
parison, because this was not a primary goal of this work and there were not too much
differences discovered. Section 3 gives a short guide to use the produced translator.

The presented compiler is cailed a translator because the language level is not changed.

We will use the word 'compiler' synonymous to 'transformer' or 'translator' because Eli is a
'compiler construction system'. You could also use 'language processor'.

The Specifications

Eli contains a collection of Tools for performing the respective compiler construction tasks as

producing a scanner, parser or attribute evaluator. For a full account on compiler construction
we refer to [ASU86].

Figure 1 shows the contents of the specifications file needed for our translation. This file
is used as Eli's input. It contains the names of all the files that are necessary to derive an
executable compiler.

The several specifications are discussed in the following sections. In section 2.1 the lex-
ical structure is presented. Section 2.2 presents the concrete grammar specification and its
relationship to the abstrart grammar.

The LIDO specifications that a.re used to derive the attribute evaluator are presented

in section 2.3. The attribute eva.luator drives the semantic analysis phase of the compiler
frontend and the code production.

The remaining specifications contain ANSI-C code. Some people would not call them as

specifications. However, this part of the compiler is presented in section 2.4.

The specifications sec.gla, sec. con, s€c.sJr[, Bec. rel, s6c. abs, rules.lido, Check, c,
cond.lido, PutFile.c and Fehler.c will be reused for the transformation into ANSI-C.

Section 2.5 will explain the way to derive an executable compiler or the source for this
compiler with Eli.



/* Ths Bpecificationa: */
sec . gla
agc. con
asc . a]m
asc . rel
aec . ab8

rules .lido
Cond. lido
Code.lido
Indent .lido
Linits.lido

ees2 . head
ses2 . init
see2,finl

2 THE SPDCIFICATIONS

/r, Lerical atructure */
/* CoDcret€ grannar */
/* Synbol- equivalences */
/* Concrete/abstract !€lationship */
/* Abstract grannar */

/* All rules sithout attribution */
/* Static conditions */
/* code production */
/* Indentation nanagenent */
/* Linits for ths traaslation */

/* Spscification headers */
/* Initiat stat€n€nts */
/* Final atat€neDts */

Fehler. c
Cbsck. c
PutFils . c

/* Error baadLing */
/* Chsck conditions */
/* ADT for code production r/

Figure 1: The specifications file.

2.1 Lexical analysis

GLA is in Eli a tool that generates lexical analyzers [Gra89], Usually a lexicai analyzer will
need to deal with input consisting of some combination of literal symbols, nonliteral symbols
(such as identifiers or integers) and comments. Users of Eli need not deal with literal symbols
(such as 'begin' or '*') because they are automatically extracted from the user's grammars. A
complete GLA specification consists of three parts: The nonliteral description part, options
and the encoding part. Dli users only give the nonlitera.l description part; the other parts
a,re automatically produced from the parsing grammar.

The specification for the behavior of the lexical analyzer for SETL/E is given in Figure 2.

This is the content of sec . gla. With the exception of floating point constants we refer-
enced canned descriptions. For floating point constants it was necessary to provide a regular
expression and a processor that saves the corresponding string. For details see [Gra89].

2.2 Syntax analysis

2,2.1 Concrete grammar

The concrete gramma.r describes the context free syntax of the language to be compiled. The
parser for the compiler is generated from the concrete grammar.

The termina.ls referenced in the concrete grammar are defined in the sec . gla specification.
See Figure 2 in section 2.1.

The purpose of a concrete syntax is to describe the structure of the input program as the
programmer writes it down. This is the structure that is recognized by the parser and built
into the tree described by the attribute grammar.



2.2 Syntax analysis

{ Lexical structur€: }

id: C-IDEI{TIFIER
int: PASCAL-IIITEGER

froat : $ ( t0-91 +\. [0-9] + | [0-9] +\. [o-9] +(e lE) (\+ | \-) ? [0-9] +) [n]etrl
str: C-STRII{G-LIT

ADA-COü}IEI{T

PASCAL_C0ttüEl{T

Figure 2: The lexica.l structure specification.

The problem with this is that the structurc of the program written by the programmer
is governed by rules of operator precedence that are not involved in the process of gathering
and distributing information over the tree. Operator precedence and bracketing rules play
an important part in building the tree, but no role whatsoever once the tree is available.
Therefore if operator precedence and bracketing rules are to be provided then they should be

described by a concrete syntax that is distinct frorn the attribute grammar.
Eli uses parser generators that accept LALR(l) grammars. An introduction to this class of

lookahea&Lk context free grammars is given in [ASU86, section 4.7]. The LALR(I) grammar

for SETL/E is given in appendix A.
All the names of the nonterminals begin with the character 'x'. This is not necessary,

but seems to be useful for the attribution rules (section 2.3). The nontermina.Is that occur
only in the concrete grarnmar and not in the abstract gramma.r (thus not in the attribution)
begin with 'rc'.

Exceptions and operator declarations axe at present not handled. See also section 2.3.3.

2.2,2 Concrete/abstract grammar tool

The productions in the concrete grammar are mapped into the attribute grammar using

the concrete/abstract grammar tool (CAGT) [Gro89a]. CAGT is a tool that is used to
specify the relationship between a concrete grammar and an abstract grammar. The user

provides a concrete grammar to CAGT, and interactively transforms it into the desired
abstract grarnmar. It produces the files ssc.rel, asc.abs, and sec.syn, which describe

the mapping of the concrete grammar into the attribute grammar.

CAGT records the relationship between the original concrete grammar and the trans-
formed abstract grammar in the file sec.rel. The abstract grammar itself is put in sec.abs
and the symbol equivalences in sec . syn.

2.2.3 Abstract grammar

An abstract grammar describes all of the possible forms taken by each of the syntactic classes

of a language, and therefore determines the structure of the tree used to represent programs

internally. It does not, however, define the set of character strings that are well-formed
program texts or specify their phrase structures.

For example, the abstract grammar for SETL/E contains a rule describing

< Erprcssi,on> lOpemtor> < Expression>
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a,s one form of an expression, but it would not determine whether a + b * c is a well-formed
expression or, if it is, whether b is an operand of + or of *. Such questions would be answered
by the concrete gralnmar.

In specifying a language processor, the abstract grammar describes the possible shapes
of the trees which will be used to represent programs internally. Each rule of the abstract
grammar corresponds to one particular kind of tree node, The concrete grammar, on the other
hand, describes the possible character strings that make up well-formed programs. These
character strings are recognized by the parser, which is controlled by the concrete grammar
and invokes tree-building actions to construct the program's internal representation.

How does the parser know when to invoke a tree-building action, and which action to
invoke? Since each rule of the abstract grammax corresponds to a pa.rticular kind of tree
node, the action to create that node can be attached to the abstract grammar rule as a
decoration. Unfortunately, that action must be attached to some concrete grammar rule
in order to be available to control the parser. But CAGT understands and records the
relationship between the abstract gramma.r and the concrete grammar.

Distinct symbols of the concrete grammar are represented by a single symbol in the
abstract grammar. Thus certain rules of the concrete grammar have no identical rules in
the abstract grarnmar. These symbol equivalences are recorded in sec.eyn and given in
appendix B.

The content of sec . abs (the abstract grammar) is not given here to save space. You have
only to replace in the concrete grammar all occulrences of nonterminals starting with'xc'on
the right sides in eac, spn with their respective left hand sides, and to remove the identica.l
productions. In addition the literals in the productions of figure 3 were removed.

rParanlist ::= '(' xcParans ')'
rcca8elist ::= 'shen' rErprlist '=>'
rcPrinary ::= '(' xExpr ')'

Figure 3: Concrete grammar productions where the literals were removed.

Thus these productions are not present in the abstract grammar. Especially, parentheses
in expressions are of no interest in an abstract graJnmar. In principle it would be possible to
remove more literals from the abstract grammax. But the resulting grammar would not be
very readable.

2.3 Attribute evaluation

An attribute Brammar (AG) specifies context dependent computations of attribute values
associated to nodes of a tree. If applied to the semantic analysis phase of a compiler the
tree is the structure tree of the program, which usually is determined by the parser as an
abstraction of the derivation tree. Hence the AG augments a context-free grarnmar (CFG)
specifying the structure of that tree. Attributes are associated to symbols of the abstract
grammar. An attribute value of a tree node for a symbol describes a context dependent
property of that symbol instance in its tree context (like the type of an expression). Since
the computation of attribute values is determined by the context of the symbol, attribution
rules are associated to the productions of the CFG. Here this CFG is the above-mentioned
abstract grammaJ.



2.3 Attribute evaluation

AGs are well suited for forma,l and declarative descriptions of any kind of systematrc
information flow through recursive tree structures. They have been proven to be a suitable
means for specification of the semantic analysis phase of compilers. Such compiler modules

are systematically implemented by attribute evaluators which compute language properties
as attributes associated to nodes of the structure tree for the program. Furthermore the AG
specifies context dependent conditions which must hold ifthe program is correct according to
the static semantics (e.g, type and scope rules). They are specified by functions over attribute
values associated to productions, too.

LIGA is a language independent generator for attribute eva.luators in Eli [Kas90b]. An
attribute evaluator is specified by an AG written in LIGA's input language LIDO [Kas90a].
The specification comprises a context-free grammar augmented by typed attributes and spec-

ifications of context dependent attribute computations. Exchangeable backends a.llow to im-
plement the eva,luator in diferent implementation languages and to vary the implementation
techniques. Its basic concepts include specific notations and structures which support com-

mon attribution schemes, refinement of the attribute grammar, and the systematic use of
abstract data types in the attribution.

The AG class accepted by LIGA is that of ordered attribute grammars [Kas80]. It belongs

to the classes which on the one hand frees the AG designer from planning the eva,luation
order as far as possible, and on the other hand allows to comPute the control structure of the
attribute evaluator in polynomial time. Furthermore methods for attribute storage reduction
a.re applied at generation time.

LIDO has a functional interface to any language suitable for the specification of attribute
computation. It restricts the attribution to the functional dependencies only. The functions
themselves are supplied separately, written in the implementation language of the generated

attribute evaluator. In the present version of LIGA this language is C. The natural and only
means to influence evaluation order are attribute dependencies. Shorthand denotations are

available for description of common attribution structures. LIDO is completely declarative
and the attributes are typed. Their context dependent computation is specified by expressions

constructed as nested function calls. The implementations of both the types and functions
used in the AG is opaque to the LIGA system. They are supplied separately to be integrated
into the generated attribute evaluator (see also section 2.4.1).

In our application the attribute evaf,uator drives the static semantic analysis phase of the
compiler frontend and the code production.

LIDO permits splitting the specification ofattribute computation for the productions over
several fles. To obtain a reusable basis we put all the rules without attributionin rules.lido.
This represents the abstract grarnmar discussed in section 2.2.3 in LIDO syntax. However,
ssc . abg is necessary because the integers contained in the relationship fi1e sec . rel refer to
the respective positions in sec.abe. The content of rules.lido is not given here to save

space. The remaining LIDO specifications are presented in the following sections. They
only apply to subsets of the abstract grammar. You could remove these specifications from
ses2. apecs (figure 1) to obtain a pure syntax checker for SETL/E. But at least rules .lido
is necessary.

2.3.1 Static semantics

In languages as Pasca.l the static semantics analysis could result in error messages like the
following:

"Error: Variable not declared!"
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In SETL/E such messages would not be appropriate, because it is not necessary to declare
objects. We use the term 'object'not as e.g. Smalltalk does. We don't want to give the n-th
definition of object-oriented or object-based, but a definitionl for our terminology:

Deflnition: Each variable or constant of type integer, real, string, boolean,
aton, tup1e, set, or proctyps is meant to be an object in SETL/E. These

objects have first-class rights. First-class means to be expressible without giving
a name. It implies having the right to be anonymous, being storable in variables
and in data strüctures, being returnable from or passable to a procedure.

This has the consequence that exceptions and user-defined operators have no first
class rights, which is justifiable because of their restricted way of use. E.g. binary
operators are used syntactically where other objects cannot be used and vice
versa.

However, warnings like the following would be useful:

"Warning: Object used before being in.itialized!"

This kind ofstatic semantics is not considered in this work. It would be necessary to construct
e.g. a program dependence graph to do this analysis.

The following static semantics are checked:

o Equivalence of header and trailer names in programs, procedures and labeled control
statements is checked.

o It is assured that constants are initia,lized.

o Return statements are only allowed inside procedures or lambdas.

o Recursive lambda ca,lls with self are only allowed inside lambdas.

o Quit and continue statements are only allowed inside loops.

For details on the specifi.cation of these constraints see appendix C, which is the content
of Cond. Iido.

2.3.2 Code production

The set of shorthand notations in LIDO for abbreviation of systematic attr.ibute value prop-
agation is extended by a notation for chaining propagation. Chain constructs are used to
propagate attribute values left to right depth first through the structure tree.

Our chain path of chain attribute Code begins in the root production in the file code.lido
(figure 4). It is necessary to have such a production to initialize the chain, For details see

[Kas90a]. We use the initialization to open the output file. The functions 0ponFile, Putstr
etc. a,re discussed in section 2.4.1.

A chain leads through all subtrees reaching any access of that chain and goes up again to
the chain start context. Any nonterminal on the chain path has a pair of implicit attributes
for that chain (one inherited, and one synthesized). If these attributes of some nonterminals
are not defined in the attribution rules, default settings are generated by the system.

'This definition is only valid for the presented work. It is not parl oI the language definition.



2.3 Attfibute evaJuation

CHAIil Code: voID;

RI,LE rlnitchain: rfnitCbain ::= xProgDefn
STATIC

CHAIISTART Code:
rProgDefn.Code := OpenFile O;

ETD ;

Figure 4: The chain start for the code production.

Attributes of the predefined type V0ID are used only to state attribute dependencies.
Their value is not relevant. They do not occur in the attribute evaluator.

These assumptions ale well suited for our code production. For reasons of space, and
because we will not reuse this attribution we don't give the whole content of code .lido here.

As an example see the code production for binary operations in figure 5. This attribution
enforces that all binary operations are set in parentheses in the produced SETL2 program to
assure the right precedences and associatives.

ll0l{TERtl xBinop: opsyn: STBII{G SYI{T;

RI,LE rExprBinop:
STATIC

rErpr [2] . Code

rErpr [3] . Code

rErpr [1] . Code

END ;

rErpr ::= rExp! rBin0p rExpr

:= Putstr (SL, '(');
:= DEP(Putstr (SL, rBin0p.opsyn), xExpr[2].Code) ;
:= Putstr (SL, ')');

RIrLE rBinopl: xBin0p ::= 'or'
STATIC

rBinOp.opsyn := '0R' ;

EI{D ;

Figure 5: Code production for binary expressions.

DEP determines the eva.luation order. It makes the first parameter dependent on the
second. The attribute type STRING was previously defined in rules .lido,

The diferences between SETL/E and SETL2 concerning the code production are of syn-
tactica.l nature and not worth a great discussion. As an example see the code production for
the until statement in figure 6. It is necessary to exchange the ordering ofthe expression and
the statements and to change the keywords. As an example for a SETL/E-untiI statement
see figure 7 on page 8. In figure 8 the produced SETL2-until statement is given. This simple
program is not very sophisticated.

The Indentation is controlled with the Indent attribute on the nonterminals xProgBody
and xstmta. This attribute is passed to the function Putstr (see section 2.4). The manage-
ment is done in Indent.lido. As a part see figure 9 on page 9. 0FFSET is a defined integer
constant that controls the additional indentation for inner blocks.
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RITLE runtilstnt: rloops ::= 'do' rstnt8 'until' xExpr
STATIC

xErpr.Cod€ : = Putstr (IilCLItDItlG xstt0ts. Indent,'UNTIL' ) ;

xstnts. Code := DEP (Putstr (IICLUDIXC xstnt8.Indent, 'L00P'),
xExpr . Cods) ;

EI{D;

Figure 6: Code production for the until statement.

progran exarnple;
x := 0;
do

r +:-- 1;
untilr>10orr>11

end do;
end erample;

Figure 7: A simple SETL/E program.

PBoGRll{ oranple ;
x := 0 ;

UIITIL ( (x>10) 0R(x> 11 ))
LOOP

x + := 1 i
ETD LOOP ;

END exanple ;

Figure 8: The produced 5ETL2 program,



2.3 Attribute evaluation

l{0 TErul xProgBody, xstnts: Ind€nt: INT INH; 7. A priori Ind€ntation

RULE rProgDefn:
xProgDefn ;;= 'program' id ';'

xProgBody

'end' id ,.'
STATIC

rProgBody.Indent := oFFSET;
END ;

RUIE rProcD€f!:
rProcDofn ;;= 'procedure' id rParanlist ';'

xProgBody

'end' id,.'
STATIC

xProgBody.Indent := ADD (INCLUDING xProgBody.Indent , oFFSET);
END ;

Figure 9: A part of the indentation management.

2.3.3 Limits for the translation

In principle it would be possible to translate atl SETL/E constructs into SETL2 because of
their ability to simulate the universal Turing-Machine. But some features would demand a
not justifiable effort for our purposes. These features are:

o Exceptions are not handled because 5ETL2 has no exceptions.

o Operators are not handled because 5ETL2 has no user-defined operators. An extension
sr.r.pports operator overloading [Snyg0b], but this is not the same.

o 5ETL2 does not support recursive tanbda ca.lls. In SETL/E this is done with self.

o Control statements with labels are handled with an appropriate warning message, but
quit and continue statements on such labels are refused.

o The scope of objects is by default local to the program body where these objects are

used. In SETL/E it is possible to make objects visible in inner blocks via visibla-
declarations. This is done in S ETL2 with var. It is possible to hide vis ible-declarations
from outer blocks in inner blocks with new visi.ble-declarations. This works in both
languages.

Additionally it is possible in SETL/E to hide such objects only for the corresponding
program body with a hidden-decla.ration. Because this is new with respect to [DGH90b]
see the example in figure 10.

Such declarations a,le not available in SETL2.

o In 5ETL2 the only exception to the rule that bound variables are loca.l to iterators is

in the exiets expression [Sny90a, page 7]. In SETL/E this exception was not made.



10 2 THE SPECIFICATIONS

ProSram ProS;
visible r := 5;
Po;

Procsduro P;
hiddotr x := 1;
qo;

Procodure q;
--DOY:r=5

end q;
end p;

end prog;

Figure 10: An example for the hidden declaration. If x would be de-
cla.red vigible in p, then the va,lue of r in q would be 1.

However, the orists and not€xists expressions are translated with a warning message
that the visibility rules are not preserved.

o In SETL2 the existe expression sets its bound variables on exit, to the value found if
successful or om if unsuccessful. This is sometimes useful in constructs as

snhils €xists r in { .., } | coadition(r) do ..."

A found set-element is directly available via x, but this bound variable is not local to
the loop, what is the case in for loops.

For these reasons we introduced the shilafound loop. Because this is new with respect
to [DGH9Ob] see the example in figure 11. The loop body is executed, if an exists
expression with the same iterator would yield true. The bound variables are loca.l to
the chilefound loop as they are in for loops. The iterator is reevaluated for every
iteration unlike in for loops.

Progran Prog;
x := 5;
S := {1, 2, 3};
lrhil€found x in S lx ( 4 do

sat (x); -- noc: I = 1 or x = 2 or x = 3
Sless:=x;

end shilefound;
--nos:x=5andS=t)

€nd prog;

Figure 11: An example for the vhilefound loop.

The yhilefound loop is translated into an appropriate (shile oxists . . . " loop with
a warning message that the visibility rules are not preserved.
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o In SETL/E there are the selection operators arb for deterministic selection and select
for non-deterrninistic selection. In 5ETL2 there is only the deterministic selection.

o There is no multiva.lued map iterator in SETL2. For a description of this iterator see

e.g. [SDDS86, page 129].

o The predefined unary operator type provides in SETL/E the type of its operand as a
predefined atomic constant. Whereas in SETL2 the built-in procedure tyPs returns a

character string representation of the type of its argument. However, these constructs
are translated with appropriate wa.rning messages.

But take into account that e.g. "type(type(r))" will not produce what would be
expected! This problem is ignored for the moment.

In SETL2, there are additionally is-type(v) built-in procedures for all types and for
maps. In SETL/E, there are the unary set operators is-nap (provides true for sets that
are multi- or single-valued maps) and is-srnap (provides true only for for sets that are

single-valued maps). Thus is-:nap is translated with an appropriate warning message

and ia-snap is refused.

Messages for these restrictions are generated by directly calling the error handling function
fehler (see section 2.4.2) in the attribution rules in Linits .1ido.

However, we cannot give the guaranty that aJI the programs that our compiler translätes
are accepted by the 5ETL2 compiler.

2,4 Abstract data types and ANSI-C code

2.4.L The abstract data type PutFile

h LIDO attribute domains a.re considered as abstract data types (ADTs). The AG specifica-
tion and the generation of evaluators is independent ofthe implementation ofthe ADTs used

in the AG. Implementation considerations are completely opaqüe to the ÄG specification.
ADTs may define some state transition model. In that case the values of the ADT

represent states. Its operations are state transition functions and access functions which
yield results depending on the ADT state, A simple example with only state transition
functions is an output ADT.

Any restrictions on the state transition protocol of the ADT can be specified by attribute
dependencies. These restrictions wiII be obeyed automatically by the generation of the at-
tribute evaluator.

In our application the output ADT is a data sink. No information is accessed via the
attributes representing its states. They serve only one purpose, to guarantee the specified
sequence of operations. Such pure state attributes can be eliminated completely from the
eraluator. In LIDO such attributes are specified to have the predefined type VOID (see figure 4
on page 7). It indicates that no storage has to be allocated. The function DEP yields its first
argument as result and discards the second. Hence, it establishes only a dependency on the
second argument. Such attribution rules are translated simply to the function calls at the
appropriate place in the attribute eva,luator.

The abstract data type PutFile implements the following functions for producing an
output file:

ext€rn void OpenFile O; Opens the output fiIe.

ll
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extern void CloseFile O; Closes the output file.

extern void Putstr (const int, const chat *); Outputs the string that is given as

the second parameter. The first parameter controls the indentation. If it is the defined
integer constant SL, the string is put on the actua.l line. Otherwise it is put on the next
line with the given indentation (SL is defined as a negative integer and means sdm€
line\.

€xtsrn voj.d Putld (congt int, const int); Outputs the string that represents the i-
dentifier given as the second parameter. GLA stores these strings in a global array and
the attribute evaluator only handles the indices to this array.

The first parameter controls the indentation as above.

€xtern void Putlnt (const int) ; Outputs the string that represents the integer constant
given as the second pa.rameter. The string is put on the actual line.

extern void PutFloat (const int) ; Outputs the string that represents the float constant
given as the second paxameter. This string is stored in the same array as identifiers.
The string is put on the actual line,

sxtern void Putstrval (const int); Outputs the string that represents the string con-
stant given as the second parameter. This string is also stored in the same array a,s

identifiers. The string is put on the actual line.

This specification is given in PutFile.h and the implementation in PutFile.c.
Eli also provides an ADT for text output. But this output module seemed not to be

appropriate for our purposes.

2.4,2 Error handling

The error handling function fehler emits the messages to the user on stderr. It distinguishes
six message types:

IfARN Warning.

AB0RT Unrepairable error.

RECOVER Repairable error.

C0ItPILER Compiler error.

DATEI FiIe errot as " Inconect extension of input fle".
SYSTEI{ File error as " Permi,ssion deni.ed" .

The type definition for this type and the function prototype are given in figure 12. The
function definition is given in Fehl€r. c.

The functions Asa€rt and Equal. cdl the error handling function if appropriate with error
type RECOVER. They check conditions in the attribution and are defined in Check. c:

void AEs6rt (const int cond, const char *report) ca,lls fehler with the report, if
the condition is not satisfied.

void Equal (const int a, const int b, const char *report) ca.lls fehler with the
lsport, if the first two parameters are not equal.

T2



2.5 Defivation

/* Type for error ba:rdling: */
typedsf enun {UAR[=l, ABoRT, RECoVER, ColilPILER, DATEI, SYSTE ] ERRoRTYPE;

ert€rn void febler(
const cbar functionname O , /* ane of calling function */
const ERRORTYPE typs , /* Error l"ype */
const char nessage [] /* Error nessage */

Figure 12: The error handling (Fehler.h).

2.4.3 Miscellaneous

The header files for the above-mentioned C functions are given in figure 13. They supply the
derived compiler with the necessary constant and type definitions and the function prototypes.

Sinclude "Fehler. h"
linclude rrChsck.hrl

linclude rrPutFile.hrl

Figure 13: The header fiIes in ses2.head.

In ses2.init there are C-statements that are to be executed before the scanner starts
lexical analysis. At present this is used to print out the actual compiler version.

In ses2.fin1 there are C-statements that are to be executed after attribute eva,luatiol.
At present this is used to print out the error counts.

2.5 Derivation

Dli is a pa.rticular instantiation of a system for managing software tools called Odin [CO90].
It operates within a universe of objects, each of which is a UNIX2 file or directory. A user
manipulates the objects in Eli's universe by making requests to Eli during a session or in
batch mode.

To derive an executable compiler the following request would be appropriate:

ses2.specs +fol,d: sxe > ses2

For details see [Gro89b]. The parameter fold3 causes Eli to manufacture a compiler without
case distinctions, what is necessary in SETL/E for identifiers and keywords, but not in string
constants.

To put the source for this compiler e.g. in the directory C0MPILER the following request
would be appropriate:

s€s2.sD€cs +fold: source > CoUPILER

2UNIX is a trademark of AT&T.
3Ät preeent this parameter is ignored by Eli, but we hope that this problen will be eliminated by the

Compiler Tools Group in the near hrture. Possibly this will require changes in the GLA specification.

13



t4 4 CONCLUSIONS

3 lJser's guide

The SETL/E input file must have the extension '. ee'. To translate e.g. input . se enter

ses2 input. se

To execute the produced SETL2 program in input.stl see [Sny90a, section 3].

4 Conclusions

The Eli specifications for a compiler that translates a subset of SETL/E into SETL2 were
presented. Essential parts ofthese specification will be reused for a transformation of SETL/E
into ANSI-C.

Except for the limits for the translation the diferences found between SETL/E and SETL2
are merely of syntactical nature and not worth a great discussion. But take into account that
we only considered subsets of both languages in this work.

Acknowledgements
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A The concrete grammar

/+*l.t*t,t:|*t litt* t:|t++++ | t:t ++:|:t t + +:| t + ttll+ t:|:|:t *:|t:; +:t + + + lt++ | | + t
CoDcrst€ graroar tor SETL/E
tlllttlttttl:lt***:la'it***'t:tll:t****:tt'tl*+'tt't't:t:t**t*t***l+*r+** /
rhitchain ::= rProgD€tr

Progra! a.!d procedur€ delirition :

:ttt l:tt++tt:t ++tt:t +l+t+** * +tt* * at** **t ** *t * +*/
rProgDel! ::= 'progra!' id ';' rProtBody 'end' id ';'
rProtBody ::= rD€cls rstlta rProcD€trB
rProcDelns ::= rProcD€trs rProcD€t!
rProcD€tDa ::=
rProcDsttr ::= ,procsdur€, id rPara.nlist ,;, rProgBody ,end, id ,''
rPararlist ::c
rpalaDlist ::= '(, rcparalls ,),
rP ara.Dllod€ ::=
rParaDllod€ ::= 'rd'
rPara.nllodg ::= trr' .

rPara.Ellods ::= 'tr' .

rcPara.ua ::= rcPara.na ',' rPara.nllods id
rcPara[s ::= rParadlodo id
rProcDotr ::= '€rception' % to be conpleted
rProcD€tn ::= 'operator' T, to be conpletsd

DsclaratioDs:

rDecls ::= rDoc1s rD€cl .

rDocl8 ::=
rD€cI ::= rDsclxey rcvars ';' .

rcvars ::= rcvars ',, rsiDglevar
:cvars ::= tsiaglsvar
rsinglevar ::= id ':=' rErpr
rsi[glevar::= id
tDeclKey ::= 'visibl€'
rDeclK€y ::= 'hiddeD'
rD€cIK€Y ::= 'visibl6 " constalt ' .-.'- :D€cIK€y ::= 'hidden' 'cotrstart'
rDec).Key ::= 'conatart' ,

Stat6[6ntB:
:ltll*11*t:l:t'ttl'lt**+'l:tltt+++++:|:i:|t+l:l:|:tlt:llll
rstDta ::= rstnts rstnt ';'
rstnts ::= rstDt ';' .

% Sinple Stat6!6nta:
rstlt ::- ,Paaa, .

rst[t ::= '8top'
rst[t ::= 'r€tunt rErpr
rstDt ::= 'r€turn' .

% AssigD!€rtE:
rst[t ::= rLVaIus ':=' rErpr .

rstut ::= rlvaluo rBitrop ':=' rErpr
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xst[t ::= rl.valu€ rFron rcSi[DIoLV
rFron ::= 'lron'
xFron ::= 'trono' .

xFrou ::= 'tronb'
,I

% Function calls:
xstnt ::= id '(' rErprl.i3t ')'
rstDt ::= id '(' ')'t
7 Recursive laDbda calls:
rstnt ::= 's€11' '(' rExprl.ist ')'
rstnt ::= 'e€lt' '(' ')'

% Conditioral ataten€nta :

rstlt ::. 'il' rErpr 'tbe!' rstnts rBlltstnts 'e!d' 'if'
rst[t ::= 'it' rErpr 'then' rstnts rElltstnts '€1se' rstuts 'end' 'it'
rElItStDt :!= '€l86il' rErpr 'then' rstnts .

rElllstrt8 ::= rElllstntE rEIIfStDt
rElltstrts ::=

% Cas€ atat€nerta:
xst[t ::= 'caa€' rErpr xcasestnts '€1s6' rstntE 'end' 'cas€'
rstnt ::- 'caa€' xExpr rcassstnts '€nd' 'caa€'
rcaaestnta ::= rcas6stmtg tccasestnt .

rcasostnta ::= rcca8€Stnt
xccaaestut ::= rccas€Li3t rstDts .

rccas€List ::= 'YhsD' rErDrlist '=>t .

% Loop atat€D€Bta:
rstnt ::= rcloopstDt 's1d' '1oop' .

rstut ::= rcForstnt '€nd' 'for' .

rstnt : : = rctlhil€St[t '€ad' 'ahile '
xstnt ::= rcfhil€lound 'end' 'rhilefound'
xstnt : : = rcuntilstnt '€nd' 'do'.
xstnt : : = id ':' rloops '€nd' id
rloops ::= rcloopstnt .

rloopa ::= rcForstnt .

rloopa ::= rcfbiL€Stnt
rloopa ::= rcLhil€tourd .

rLoopa ;:= rcuntilst[t
rcloopstnt ::= 'loop' rstnts
rcFgrstlt ::= 'lor' xlterator 'do' rstnts ,

xcllhilostnt ::= 'yhiL€' rExpr 'do' rstnts ,

rclhitefourd ::= 'rhiletound' xsinplelts 'l' xExpr 'do' rstnts
rcuntilstnt ;:= 'do' xstnts 'until' xErDr
rstut : := 'quit,
rst[t ::= ,quit, id
rstnt ::= 'coDtiru6' .

rstlt ::= 'coltitruo' id .

/r+tttt*,r**,r***it:tt+:|t:t++++:|t+t*tt*ttt+:ttt+:t
It€ratora:
:t * +tl+ +:|+ ++:ttt | +|tll* | lt+ | ** üli.t *** + + {.{.* + +** '}/
xltorator ::= xsiuplelts 'I' rExpr
xltorator ::= rsinDlelts .

16
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rsirpLeltE : : = rsinplelts ' , ' rSi[pI€It
rsinplelts ::= xsinplelt
tsinplolt : : = rl.value 'ir' xErpr .

rsinplolt ::= rl.valu6 '=' id rüaps61
/:t+ t:|+ +:|:|t+ +i:|t+
Xap S€lectors tor Binpl€ it€ratorE:
*'t**r|..1**arl'**+at***tt't:*:t :***rtrt**rt****.t**t+*tt+/
rl{aps€I ::= '(, rclvallist ')'
rl{aps6l ::= '{, rcl.va1l.ist '}'
rclva1liat : : = rcl.vall.i.st ' . ' rlvaLuo
rcl.valliat ::= rlvalu€
/++ttt*itt++f t++t+:t+++t+++i+++*+++**'t't't*'rt:a+
Lolt hand Bid6 vafues:

rl.vahro ::. rcsinpl€Lv
rcSiDPl€LV ::= id
rcsiepl€Lv ::= id rselector
rl,valuo ::='[' rcconps,],
rcconpa : : = rcconps ',' xcconp .

rcconpa ::= xcconp
rcconp ::= rlvalu€ .

rcconp : : =
/**'a* **** **1.1t
S€l6ctor8:
*:tt++:tt*trt****rttt{.1'tt :tt*'t:}:a:t*:r:a***:ra*+:}t+ttl
rs€loctor : := '(, rErprlist , ),
rs€lector ::= '{' rErprlist '}'
rs€16ctor ::='(' rErpr'..'')'
rs€lector::= '(' rErpr '..' rErpr ')'
/,atl*,a***atlli*t++:r:rt***ltl**:ttttl+++*+t*+'t*
ForDer:
+t++ at,t * * t.t rt * * art *,t * + *,* r*,*:* * *,*:| + * ** *t + tt++ t+t /
lForn€r ::= rErpr .

orn6r ::= xErpr ',' rErprlist
orDsr ::= rErpr '..' rExpr .

olrer ;:= xErpr ,,, rErpr,..'rExpr.
orn6r ::= :ErDr ':' rlterator

tF
rF
rF
rF

Erpreseiona:
a* r:l.a* *+|,{tl:*tt+tttt+ t:|A:|t*tttt +tr+*i ++ *+,1*,1 /
tErprlist :;= rErprlist ',' rErpr
rE:prliEt ::= rErpr .

/a*ll:|a**lttlltrtll+*:itt:lttttt*l:l::t*:tt+*+***l
PriDary Erpr€ssiors:
ttttt:|:ttt:|t++:t:t:tt++:t+++*++t*++++**:r.l*'r:|i+:i:t/
xcPriuary ::= id
rcPriDary ::= int
rcPrinary::= float
xcPrinary ::= atr .

rcPrinary ::= 'true' .

rcPrinary ::= 'ta18o, .

rcPrinary ::= 'on' .

rcPrinary ::= 'aton'
rcPrinary ::= 'boolean' .
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rcPrinary ::= ' i!t€8€r'
rcPriuatY ::- 'r€aI'
rcPrinary ::= 'striDt' .

rcPrilary ::= 'tupl6'
xcPriDary::= 'sot' .

lcPrilary ::- 'proctype' .

rcPri.Daty ::= 'argv'
rcPriuary ::= '{' rFon€r '}'
rcPrirary ::='[' rFornor']'
rcPriüary ::= runop rcPriDary
rcPri8ary ::= rBinop '/' rcPrinary
t
% Quantiti6rs:
xcPriuary ::= :quantifi€r
rQua:rtifj.or ::= rQualj.lier rsiDpl€It8 'I' rcPrinary
rQualiti€! ::='€ri,at8' .

rQualiti€r ::='not€rista'
rQualiti€r ::='forall'
,I

% colrditional Erpreaaioas:
xcPrinary ::= 'it' rErpr 'th€!' rErpr rElltErprs 'end' 'iJ'
rcPrinary ::= 'it' rErpr 'th6n' rErpr tElllErpr8 '€ls6' rErpr 'snd' 'it'
xElltErprs ::= rE1ltErprs rElltErpr
rBlllErpr8 : : =
rElliErpr ::= 'elseit' rErpr 'tb€D' rErpr .

t
% Case Erplossiona:
rcPriuary ::= tcass, rErpr rcas€Erprs ,snd, ,cas€' .

rcPriuary ::= 'cas6' rErpr rcas€Erpls 'e1s6' lErpr '€nd' 'cas€'
rcaaoErprs ::= rcaasErprs rccas€Erpr .

rcaasErpla ::= rccaseErpr .

rccaseErpr ::= tccas6list rEtpr
t
% Lanbda Erpr€aaioDa:
rcPrinary ::= rl,arbda
rl.a&bda ::= 'la.nbda' rPara.nlist ':' rProg8ody 'srd' '1a.nbda'
,I

'l Resurgive larbda call8:
rcPrinary ::- 'selt"(' rErprlist ') '
xcPrinary ::= 'Eelt' '(' ')'
rcPrinary ::= 'self'

rcPrinary
rcPriDary

::= id rs€l€ctor
::= id '(' ')'
::= '(' rE:pr ')'xcPriuary

18

Birary opsrations:
I t * * *:t 

'a 'l t l:.:a l:al|:a/
rErpr ::= rExpr rcorop rcorTerD / rcorT€rB .

tcOrOP ::- 'or' .

rcorTsrD ::= xcorT€rn rcAndoD rclndT€ru / rclndTeru
rcADdop ::= 'and'
rcArdT€rD ::= rcArdT€rn rcBool.oD rcBool,TerD / rcBoolT€rn .
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rcBoolop ::=
rcBooloP ::= '/='
rcBoolop ::= '<' .

rcBooloP ::= '<= '
rcBool"oP ::- '>' .

rcBoolop ::= '>='
rcBoolop ::- 'in'
rcBoolop ::= 'notin' .

rcBool,op :;='auba€t' .

rcBool,op::- 'incs' .

rcBoolT€rD ::= rcBoolTen rcsotop rcsetTer[ / rcs€tTorD
rcs€top ::= 'citb'
rcs€top ::= 'lsss'.
rcs€top ::= '1s8st'.
rcsstTsrD ::= tcS6tT€rD rcAddOD tcAddTern / rclddTsrn ,

rclddoP ::= '+' .

xcAddop ::=
rcAddop ::= 'Dar'
rcAddoP ::= '!in'
rclddTerr ::= rcAddT€rn rslluloD rql{ulTorn / rcllulT€re
rcllulop::= ',t' .

rcllul.oP ::= 'div'
rcllulop ::= '!od' .

rcxulT€rD ::= tcllulT€rn rcPorOD rcPorTern / rcPoFT€rD
rcPonoP ::- '1.:r' .

rcPorTsrn ::= rcPriDary .

rBinop ::= rcorop
rBiDop ::= rcAndop
xBinop ::= rcBoolop
rBiDop ::= rcs6top
rBilrop ::= rcAddop
rBirop ::= rcl{ulop
rBilop ::= rsPorop
/****aa*1a,at*,al:tt++t++:|l:|:t+t:|:t+ll:}ttlll+ltt+
Unary op€rators:
Ittt + ltl lttl | | +.| ** * **'r+r tt*t + lt++ +++++ t:l +++/
ruDop ::= '+'
rulrop ::=
ruDop ::= '*'
runop ::= 'aot' .

runop ::= 'poe' .

runop ::= 'arb' ,

runop ::= 'E€l€ct' .

ruDop ::= 'do!ain'
runop ::= 'ra.Dgg' .

rulop ::= 'type'
runop ::= 'i8_Dap' .

runop ::= 'is-sEap' .



B THE SYMBOL EQUIVALENCES

B The symbol equivalences

rExprlist ::=
rcCas€Li8t.

rExpr ::=
xcPriuary rcllulTern xcPorTer[ rcorTen rcAddT€rn xcAndTeru xcBoolTerm
rcS6tT€rn.

xBinop ::-
rcorop xcllulop xcPorop xcAddop rcAndop rcBoolop xcsetop.

rsingLevar ::=
rcvala .

xParanl.ist ::=
rcParars .

rcaseExpls : : =
rccaa€Erpr.

rcasestnts ::=
xccasestDt.

rloops ::=
rcloopstDt rcForstnt rcghilestnt rcghil€tould rcuDtilstnt.

rlvalü€ ::=
rcco[p3 rccoDp rcl.vall.ist rcSiBpl€LV.

20
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C The static conditions

tf,%f,tv,w,tt%%W,t%%v,w,v,%v,w,%%v,tf,%t:/:tf,%w,f,w,ul:/.txr,v,xl,l,l:H,l,l:/:/,1:/:/:/:/,v,v,1,

% static conditions:

'/,xT,u,wJ,t:H,w,t:/,tuf,ttv.:H%tv.:Htf.v.%tT,v,v,v:tfl,tJ.w.T,:rf:tv,u'H:H,:/,w:/,l,Ll,v:fl:/,

f,xw.v,%t%tf,W.T,v,vJt:M%tT,:r'H,twl:tT,v,:/,w:tur,T.r,l,l:/,l,l,l,v,l,l:/,:H,l:/,f:/,Ll:H:r%'tt/:r
7. Eeader ard trailor nat!€8:
v,fJ,tv,%t%%vJ.tv,v,t:/.T,:rv,tT.T:rT,t:fl,:/,1,:/,xul,l,l,Lv.:/,l,Ll,v:H,1,:/,T,L'H:r%'/:H:rv:ti'H:H,l,T,w

RI'LE rProgDetn:
rProgD€la ;;= 'progran' id ';'

rProgBody
'€nd' id '''

STATIC
CoIDITIof Equal (idh] . syn, id[21.syu,

'Progra.r Dane iD heador and traiL€r bave to b€ id€ntical');
EID;

RIrLE rProcDol!:
xProcDefn ;;= 'procedure' id rPara.llist ';'

rProtBodt
,€rd, id '.1

STATIC
coxDITIof, Equar (id[1J.eyn, id [2] . syn,

'Procedurs Da.B€ it E€ader a.td Trailor hav€ to be id€ntical');
EÜD;

w,w;/,T,v;/,t:H,v,%'/:/,11,1,1:/,i1,%l:/,xl,v,v,%l,v:/,xxl,l,l,l:/,1,1,1,v,:H.v,v:H,v,f:l,l:/,f,l,wf:/,1:r

% Cotrtrol statenent3 rith 1abels:
tJT,t%f,T.v,tJ.w,%%T:ruf,l,Lv.:rvJ.l,fJ%T,%v,%1,7,%'l,l,LLl,l,:t:v.L'/:/,v:/:/:/,%'liT:/,r,r,r,v:fl,

RI,LE rStDtLS: rstnt ::= id ':' rLooPE '€Dd' id
STATIC
col{DITIox Equal (id[lJ.syn, id[2] . eym,

'Lab€l naDo in [ead€r ard Trailer hav€ to be identical');
ExD:

%Tr%t'/.1,1:/;/,l,l,v,v:/.T:/,%%'H:/;rl,f,l,l;/.f,1,%v,%v,T,%v.%l,v.l,wl:/,f.:/.1,1,v.1,%l:H:r%'M%'/.l,l,l,xxx

7. Constants i.Bitializ6d?
't%%'tM;l,l,l,l,wl,T,%%lil,v:/JL'/,l,l,l,l:H,%1,1,:rf,%1,T,:r%T.f,ul,l,:/,1,1,v,:H,:rv:/:t/:fl'r'/:/:u,r,x'/.x

f,otrTEBX rDocl, rDeclK€y: Isconst: B00L SYXT;

RULE rDecl: rD6cl ::= xDeclxoy xsingl.ovar ';'
STATIC

rD6c1. I8coDst := rD€clKsy, Iscoast;
Ef,D;

RI,LE rDoclK€yv: rDeclK6y ::. 'vi.sibl€'
STATIC

rD€clx6y.Iscol8t := FALSE;
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EID;
RULE rD€clKoyE: xDecIK€y ::= 'hidde!'
STATIC

rD€clxay.IsCoDst := FALSE;
EtrD;
RULE rDsclxsyvc: d)oclK€y ::= 'visibl€' 'conatant'
STITIC

xD6cl.Koy . I EColrEt := TRUE;

END;

RULE rDoclKeyEc: rDocLK€y ::= 'tridden' 'conata.nt'
STATIC

rD€cIKey.Isconst := TRUE;

Ef,D;
RULE rD6c1l(eyc: rD6clKey ::= 'conata.Dt'
STATIC

xDoclKey.Isconst := TRUE;

END;

RULE rsißgl€vat2: rsinglovar ;;= id
STATIC

CorDITIoI AEserr (f,oT (I|CLUDIIG rDecl. Isconst),
'It i8 necossary to itritialize a constalt!');

EtrD;

xr.f,tv,%%'H,%%T:rf:tf,TJ.xf,f,l,Ll,%v,%%T,f,l,l,T,f.r,xr,x'Ht:/:H,l:/:/.1:t/,%'H,l:fl:/,v:tiLl,
'I coaditions tor retutn:
tv,tv.T,T,%%T,%l,uLLf,l,lJ,f,v:H,l,l,v,:&l,Ll,l:/,l,v.l,l,L'H,1,:t:v,%%'/:/:/:/,v,v,r:H.r,r,r:H.r,r,

RULE rStDtRETl: rstlt ::= 'return' tErpr
STATIC

COXDITIOI AEE€rt (If,CLUDIf,C rProgBody. InProceduts,

'R6turn atat€n€nts ar€ only atlorsd inEido of Procedures');
EID;
RULE rStDtRET2: rstnt ::= 'retuln'
STATIC

Cof,DITIof Ass€rt (If,cLIrDItrG rProgBody. InProcedu!€,
'Return state[eDtE ar6 only allor€d insid€ ot Procedures');

EID;

'/,v,t'H,v:tM;/,:/,l,l,l;/,f,L'/:M'fl:H,%f,f,l,l,l,lJ,l,%%L'H,%%v,:ill,f.lJLLl,lL%l:/,:tt/:ti'tr
% CoDdition! lor self:
t'rv,t'/,v,%Ttr'/:/.l,Lv,f,l:/:H,%'/:H,l,f,f,f,l,L:l,f,l,l,%%1,T,%v,1,:Mv,l:/.:/,l,l,l,l,l"H:rl:/:il'/:r

RULE rstnts€1t1: rstnt ::= '8olt' '(' rExprList ')'
STÄTIC

CorDITIoI tss€rt (IXCLT DIXC rProgBody. IDlanbda,

'Rscuraivo lanbda calls ar6 otrly alloced inside oi larbdas');
EID;
RULE rstntseu2: rstnt ::= '8€11' '(' ')'
STATIC

CoIDITIoI Ass€rt (ItrCLlrDIl{G rProgBody. Inl.anbda,

'R€cursiv€ lanbda ca113 are only alloYed insido of laDbdas');
Ef,D:

C THE STATIC CONDITIONS
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RULE rErprsetfl: rErpr ::= 'selt' '(' rEtprlist ')'
STATIC

CoXDITIoX Aes€rt (IXCLI DIxc rProgBody. In'.alnbda,

'R€curaiv€ laDbda calfs ar6 only atloEod inside of lanbdas');
EXD;

RULE rErprseu2: rE:(pr ::= 's61f ' '(' ')'
STATIC

C0IDITIoI As8€rt (IlcLuDIxG rProgBody. Inlarbda,
'R6cursiv€ La.nbda catlE are only allos€d insid€ ol laDbdas');

EtrD;
RULE rErprselt3: rErpr ::= '8€ll'
STATIC

CoIDITIof, As8ert (ItrCLUDIf,G rProgBqdy. Inf'arbda,
'RocurEive la.ubda calls are only allowed inEide of lambdas');

Ef,D;

f;/,T.tv,f,:r%%%'rv.T:r'/,xvJ,w,l,l;/,Ll,l,:/,Lv,%%T:rv,v,v:L'H,%v,v,:il,v:/.%l,f,l:l,l,T,f,f:Ll,Lf:/,l,l,Lv:H,v,
7. Procodüro ard laDbda envirouslt:
v:/,w:H,:/,tv,f,tJ,w,%v,tJ,T.v,%'tv,T.T,w,:/,l,l,r:t:fl,1,1,L:/,Ll:/,1,:il1,v,1v:l:%'/.%'t/,v.%'t/:M%%x'l:t'/.x

fof,TERü rProgBody: InProcsdure, Inla.Dbda: B00L IxE;

RULE rProgD€fn:
rProgD€lD ::= 'progran' id ';'

rProgBody

'€!d' id ':'
STATIC

rProtBody.IaProc€dur€ := FALSE;

rProgBody.Inlarbda := FALSE;

EXD;

RULE rProcDeJl:
rProcDot! ::= 'proc€durs, id rParanliEt ,;,

rProgBody

'e!rd' id '''
STATIC

rProgBody.InProc€duro := TRUE;

rProgBody.InlaDbda := FALSE;

ETD;

RULE rla.nbda:
rlanbda ::= 'la.nbda' rParallist ':'

rProgBodY

'ond' 'laDbda'
STITIC

xProgBody.InProcsdur€ := TRUE;

rProS8ody.InlaDbda := TRUE;

EXD:

w,f,w,v,%tT,v:t'ttu,f,t'/,w,f,f,v.l,l,%v.%T,%v:L:/,l,f,v:L'l,f.l,l,f.:/:/,L'/,:H,%%%%'t/,v.l,l:rf:/,1,

% Conditione for quit aJrd continuo:
'/,w,f,w,v,%w.%%%tv,v,%f,w,l,f,%f,l,LvJLT:r%v,l,T,f,l,:/,7,f,l,l,l,l,l,l,Tr%'H:r'/.T,l,v:H,Ll,l,

RULE rQuitstut: t5tatr ;;= 'quit'
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STATIC
coxDITIor Assert (ItrCLUDII{G rstnts. Inr.oop,

'quit stato!6rts are otrly alloEed irsido ot loopE');
EllD i

RULE rQuitlstnt: rstnt ::= 'quit' id
STATIC

Cof,DITIof Assert (IXCLUDIXG rstnts. Inl,oop,
'Quit statsnents ars only a11os6d itt3ide oJ loope');

EXD;

RULE rcontinuestnt: rstnt ::= 'continue'
STATIC

CotDITIof, Assert (IüCLUDItrG rstnts. ItrLooP,

'colrtinu€ atateu€nts are only alloyed irsid€ of looPs');
EXD;

RULE rcontinu€LstDt: rstnt ::= 'continu€' id
STATIC

CoXDITIoX A8ssrt (ItrCLUDIf,G xstnts.InLooP,
'ContiDuo ataten6nts ar€ only allosod inside ot looPE');

Ef,D ;

.l.t.t.t.l.trlrl.l.l.l.l.lq.l.l.l.t.l.l.l.t.lv.lq.lrl./rl.l.l.lv.l.lqq.l.l.l.l.l.l.l.l.lv.lrlrl.l

% Loop environnent:
'/,1:/,1,f,1,v,%'1,%v,%%1,T,%v,%%l,v,f,f,f,:/,uL%v,1,:r%%T,f,:r%%T:/.%l:t/,n'/.1,1:/,:H:r'/,:H:/:t/:M'/,7:/:tr

lloXTERll rstEts: Inloop: B00L IxE;

RULE rProgBody: rProgBody ::= xDecls xstuts rProcDe{trs
STATIC

xstDts.Inloop := FALSE;
EID;

RULE rstntsl: rstnts ::- rstDts rstet ':'
STATIC

TRAI{SFER Inloop;
EID;

T,tf,L%v,f,LL'/:/,1,1,v,%'rT:rl:l,f,lJ,l,Ll,%v:H.%l:H,%l,v,T,f,l:1,:rf,l,l:/.%l,Ll,v,v:H,v.v:/:M%1,

% ColditioDal stat€n6nts:
t'H:/$H,v:rT,r,tJl,v.%f.l:/:H:/:/:rT,TJ,f,f:l,uf,:/,1,v.:H,l,T.f,l,l,v.v,ulJT,l:tJxr.xxl:/.1,v,

RULE rlfstnt: rstDt ::= 'if' rExpr 'theD' xstnts
rEIIlStnts

'end, rif ,

STATIC
rstnts.Inloop := If,CLUDIXG rstDts.InLooP;

EID;

nULE rIJElStnt: rstmt ::= 'it' rExpr 'then' xstnts
rEIIlStuts

'elE€'lstnts
' end, 'it'
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STATIC
rstnts [1] .Inloop := IXCLUDIXC rstnts.Inloop;
xstnts [2] .Inloop := If,CLUDIf,G rstnts.Inloop;

EID;

RULE rEllfstnt: rElltstut ::= '€186i1' rErpr 'the!' rstnts
STATIC

xstnts. Inloop := If,CLUDIXG rstnts.Inloop;
EID;

t%'rT:/:/,tT,%'rf:fl,1,f,f,1:/.xf.fJ,v.T,T:/:/,v,x'il,:H.T,f:l,TJ,f,l,T,ul,Lv,%l:/,1:t/:tu%'/:tM'L
7. Case stat6n6nts:
v,tf:H.%%w.v,v.%tv:/,f:t'rT,l,f,f,v.l,l,l,v.%1,f,%%1,1,%'/,l,v,v,v,l,L:H,l:/.:/,l,xl,l,l,l,l:Hv:ti'/.%'tl

RULE rscitchEsttlt: rstnt ::= 'case' tEtpr rcasastnts
'else'rstnts
' end " case '

STATIC
rstrts.Inl.oop := IlcLlrDIf,G rstuts.Inloop;

EIID:

RULE rcasestmt: xcasestnts ::= xExprlist xstnts
STATIC

rstDts.Inloop:= If,CLt DIXG rstBts. hl,ooP;
EXD;

'tM:fl,%nw,w,t'Mv;/,x'H:/:/:/,Ll,l,l,l,l,Lv,f,f:rv,%f,%1,%'H:/:H,uf,f,f,f,f,f,l,v,v,v,l,f:/,v.v.l,l:/,f,%
% Loopa:
TI%'/:tT,v:t:IT,r,l,f.l,l,l,f:/.Ll,l,f,:l,xxxr:txxxf:/.:/,T,%%v.l,f,v,xxl,xv.T,r.r:H:rr:t:%'/:/:/,L'Lv,v,r,r:t'/:r

nULE rloopstnt: rloops ::= 'looP' rstnts
STATIC

rstnts, hl.oop :- TRUE;

EXD;

RULE rForst[t: rloops ::= 'tor' rlt€rator 'do'
rStDts

STITIC
rstnts.IrlooP := TRUE;

EID;

RULE rghil€Stnt: xloops ::= 'rhile' rExpr 'do'
rStnt8

STATIC
rstnts.Inloop := TRUE;

Ef,D;

RULE rYhil€fourd: rl.oops ::= 'tthilefourd' rSiDPl€Its 'l' rExPr 'do'
rStnte

STATIC
rstnts.InLoop := TRUE;

EXD;

RIrLE rurtilstnt: rloops ::= 'do' rstnts 'u.utiL' xErPr
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STATIC
xstnts.fnloop:= TRUE;

EXD;

C THE STATIC CONDITIONS
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