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Abstract

This document is the defining manual for the programming language ProSet. The name is an
acronym for Prototyping with Sets. This language has been defined and is currently being
implemented at the University of Essen; it is a descendant of the set-oriented prototyping language
SETL.
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1 Introduction 1

1 Introduction

This document is the defining manual for the programming language ProSet. The name is an
acronym for Prototyping with Sets. This language has been defined and is currently being
implemented at the University of Essen; it is a descendant of the set-oriented prototyping language
SETL.

This introductory chapter is intended to provide some thoughts regarding the definition of this lan-
guage. In particular we will have a brief look at prototyping and how it might influence language
design. We will discuss the relationship of ProSet to SETL, and we will discuss several salient
features of our language proposal.

1.1 Prototyping

It is well-known that the classical software life cycle has some drawbacks which suggest that it should
be complemented by some auxiliary activities. This is true in particular for the early phases. One of
the main drawbacks is the lack of support to experimental or exploratory programming. Somewhat
related to this problem is the observation that the user’s involvement in designing a program is kept
to a minimum. Basically the user is only involved during the very early phases when it comes to more
or less informally stating the requirements, and at a rather late phase when it comes to acknowledge
the functionality of the program. This observation is particularly striking when modeling user inter-
faces, but it is not restricted to that area. Prototyping tries to find a way out of these problems by
assigning the user a more active rôle during requirements elicitation, and by making experimental and
exploratory programming part of the activities related to program design. This approach to program
construction may complement the life cycle approach by incorporating a prototype subphase between
planning and requirements definition during the analytic phase. Boehm’s spiral model also takes
prototyping into account by proposing prototyping phases to be carried out after risk analysis and
assessment.

Having a look at the literature it is difficult to find a concise definition of software prototyping since this
is really some sort of umbrella term, covering a multitude of activities more or less related to each other.
We stick to the description given by Christiane Floyd: “Prototyping . . . refers to a well-defined phase
in the production process where a model is produced in advance, exhibiting all the essential features
of the final product for use as test specimen and guide for further production.” This description
emphasizes that prototyping really means modeling of software, it implies that the model itself should
be an executable program. Moreover, it is seen from this description that prototyping should be an
activity aiming at the rapid production of a piece of software, since otherwise the effects of modeling
would be lost. This in turn implies that a language for the support of software prototyping should
provide powerful features, in particular versatile data structuring facilities together with convenient
control structures operating on these complex data structures.

Consequently we need powerful mechanisms based on a somewhat natural formal calculus. We em-
phasize a natural approach here since it should be possible to express one’s thoughts for constructing a
program in a programming language rather close to the way one does express things mathematically.
Finite set theory provides such a way of cleanly expressing one’s thoughts, and our proposal for a
prototyping language is based on set theory augmented by bits and pieces from λ-calculus.

1.2 SETL

Using set theory for the purpose of formally describing program designs is by no means new, and
the most prominent programming language making finite sets over finite domains available has been
SETL. This venerable language was designed during the seventies at New York University’s Courant
Institute of Mathematical Sciences by J.T. Schwartz and his group. The late seventies, and the early
eighties saw implementations of this language on a variety of machines ranging from mainframes to
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work stations. Subsequently, the language has been used, and has proven the modeling capacities of
the language in a convincing way. Highlights are

• the development of the first Ada compiler (certified in April 1983),

• the SETL optimizer (which really was an encompassing prototype of optimization techniques
for procedural languages),

• the Rutgers Abstract Program Transformation System RAPTS,

• WAA, a tool for analyzing Pascal program fragments with respect to their potential for reuse.

The day-to-day use of SETL, however, indicated that the language is not free of problems. First of all,
there is not a really satisfying programming environment, and the language itself displayed some very
baroque features which sometimes more hindered using the language than supported it. This applies
particularly to programming in the large, the organization of separately compiled components was felt
to be rather awkward. In addition, the arsenal of data structures was considered incomplete since
functions as citizens with first class rights are missing, the possibilities of making values persistent are
felt as a lack and parallel programming is not possible at all. The programming environment was the
subject of the ESPRIT project SED during 1986 to 1989. Some progress has been made here, too (for
example establishing a component translating SETL programs to a production language like Ada),
but regrettably the chance of integrating all the results into a coherent and uniform programming
environment was missed, mainly due to problems in the project management.

When we had a look at SETL we decided that we wanted to reimplement it, clean up some of
the features and incorporate constructs we felt would be helpful. Reimplementation occurred to
be necessary since SETL was originally implemented in a systems implementation language called
LITTLE. This language in turn was developed at Courant Institute for the implementation of SETL,
it is probably known outside of New York University to some twenty people1.

When working on the new language design and observing the design of SETL2 proposed by Kirk
Snyder of Courant Institute we decided to incorporate some features into this new language. It will
become apparent from the rest of this manual that the following is new

• Data abstraction is supported by the new data types function, module, and instance.

• Control abstraction is supported by a variety of constructs for exception handling.

• Data modeling is supported by persistence; each and every value having first class rights in the
language may be made persistent.

• Parallel programming is supported by features for generative communication; the control prim-
itives provided by the LINDA model for concurrent programming serve as a basis for some
primitive operations in our language.

To avoid confusion between SETL and its variants, and to add a stone to the Tower of Babel we
decided to give the language a new name.

1.3 A Brief Overview

This section provides a brief discussion of some of ProSet’s features which might be of interest.
We will discuss issues pertaining to the type system, to making values persistent, and to generative
communication.

1including four of them in Europe: Eugenio, Yo, Philippe and Ernst
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1.3.1 Data Types

ProSet makes — as its predecessor SETL — the data types from finite set theory available. Before
discussing this let us have a brief look at the primitive data types provided by the language: the
primitive types integer, real, boolean, string, and atom are of course available. The first two
data types do not offer any surprising properties with the probable exception of prohibiting implicit
conversions from integers to reals. Characters are special case of strings, and atoms are uniquely
created values permitting the explicit internal representation of external objects in the same way as
these things are handled in languages like Lisp. Atoms are not only unique with respect to a particular
run of a program, but we have made an attempt to preserve uniqueness across program executions and
even machines. This implies that atoms may be exported from and imported to programs. Compound
data types include finite sets and finite tuples; these objects have their usual mathematical semantics,
in particular we point out that we deal here with value semantics rather than with pointer semantics.
Consequently, copying a compound value and modifying the copy will not affect the original. Sets
may be described as familiar in mathematics, viz., by enumerating the elements and by describing
their elements through properties. The same applies to tuples. Having these types available it is easy
to construct mathematical maps and relations by simply forming subsets of a Cartesian product. All
these data types are accompanied by the usual operations (intersection, union, concatenation etc.).
Thus the convenience of using finite set theory for describing solutions to problems is fully available.

1.3.2 Control Structures

The control structures are rather canonic: we provide the usual arsenal of control structures deriving
from e.g. ALGOL and define some operations which take the available compound data types into
account. It is for example possible to iterate over a set and perform an operation for each element of
this set, or to test whether or not some property is true for each element of a tuple.

1.3.3 Procedures

Procedures are polymorphic and return a value. This is parametric polymorphism in contrast to
predefined operators, which are just overloaded. Parameters may be passed by value, by result, and
by value/result. This is very similar to SETL, in addition it is possible to define anonymous functions
(λs). Procedures and λs may be converted into values of type function using a closure operator.
The closure of a procedure freezes the value of all non-local objects. Visibility of names is restricted
by default to the range in which the name occurs, since procedures and modules may be nested, the
declaration of a name as visible propagates visibility into local scopes; shielding a name from being
visible may be done using a hidden declaration. This is somewhat different from the usual model
of inheriting visibility from outermost scopes as observed e.g. in Pascal. The usage in SETL has
convinced us, however, that it does in fact make sense to handle things in the way described here.
Functions (i.e. the respective results of applying the closure operator) obtain an identity in a rather
straightforward way, consequently these values may be handled as any other value with an identity,
in particular these values may be elements of sets, arguments to procedures and functions, and they
may be returned by them. This is quite similar to but subtly different from the way things are done
in SETL2 programming language.

1.3.4 Exception Handling

In many high level programming languages the occurrence of errors leads to sometimes unintended
program termination. Through an exception handling mechanism we integrate a device for dealing
gracefully with errors in the program. For dealing flexible with a large class of situations we extend the
notion of error handling to exception handling. An exception is a non-normal situation occurring in
the course of executing a program unit which has to be handled by the invoking unit. Thus exception
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handling is also a device for structuring and modeling, i.e. a device for concisely formulating the
algorithm and for separating exceptional conditions and their handling from the algorithm.

An important improvement to early approaches to exception handling is the distinction of exceptions
and their handling units. For the sake of flexibility ProSet provides a construct for dynamic associ-
ation of handlers with exceptions. In handling exceptions ProSet supports both a termination and
a resumption model, i.e. the execution of the exception raising unit may be terminated or resumed.
This is determined dynamically.

1.3.5 Modules and Instances

We have described so far the facilities and devices for programming in the small. Modules and instances
are used for the support of programming in the large. Modules are templates describing the operation
of functions around a common data structure. The objects imported to, and those exported from a
module are described in the interface to a module by giving its name and the way the module treats
the corresponding object. Modules have to be instantiated yielding instantiations before the services
they provide may be used. Note that in accordance with the philosophy of the language we do not
specify the type of the imported or the exported values, so the polymorphism of procedures is carried
a step further. Modules are somewhat similar to generic packages in Ada. This kind of package has to
be instantiated in order to be usable. In a similar way we have to instantiate a module by indicating
what the imported values are. The result of such an instantiation is a value of type instance. Only
after having instantiated a module the values being exported from a module may be used.

Modules provide a data type of their own. The same is true for instances. This has as a consequence
that modules may serve as parameters to procedures and may be returned from them as values. Since
values of each type may be made persistent it is possible to deal with separate compilation as well
as loading and binding of program units in a very flexible way. So a module is separately compiled
by making it persistent, and an instance of a separate compiled and instantiated module is used by
fetching the instance from the persistent store.

1.3.6 Persistence

Modeling does not only apply to programs, but also to data: in the process of developing an application
not only the algorithms have to be explored, but the data and data structures on which the algorithms
are to work may emerge from this explorative activity as well. Semantic data models working with
objects, attributes and ISA-relationships investigate ways of modeling data according to their semantic
content. They are used for designing record-oriented schemata with an approach somewhat similar to
the one used in software prototyping, but rather than modeling programs high-level representations
of data are modeled. This model is mapped into a lower-level structure. Data modeling should
accommodate the user by making the representation and manipulation as close as possible to the
user’s perception of the problem. It is well accepted in the data base research community that data
modeling should accommodate the user by making the representation and manipulation as close as
possible to the user’s perception of the problem. Consequently, it is desirable to

• model data according to the user’s needs,

• refine data representations iteratively (which requires access to previously formulated data mod-
els),

• re-use patterns or templates of previously formulated data models,

• share data between different users or different prototyping sessions.

We see that there are in fact striking similarities between prototyping programs and modeling data.
Both construct a model to be experimented with, and eventually to be transformed into a production
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version. Thus software prototyping will be most effective and have maximal impact when it caters for
program as well as for data modeling, hence when it is supported by a programming language which is
able to serve the software engineer (who wants to model programs) as well as the data engineer (who
wants to construct a semantic model of his or her data). These considerations suggest introducing
a facility for handling persistent data in ProSet. In principle this would be possible through the
use of (binary) files, but this sort of repository for data is not powerful enough for sophisticated
applications. So we decided to design a special abstract data type called P-file, faintly resembling
archives under UNIX, which would help preserving structures and which would be more convenient
to use. Persistence comes as a property orthogonal to types, so each and every value having a legal
type in ProSet may be made persistent.

The guiding metaphor for introducing and handling persistent values is that of an architect having
to design a house. She will usually not design the plan from scratch but will rather try to master
that task by developing only some feasible solutions from the very beginning on the drawing board
and by customizing parts of previously developed designs from formally drawn blueprints. This also
includes making mental notes that some pieces of the present design may be of use in other situations.
Hence the history of the design will resemble a quilt, new pieces coexisting with modified old ones.
Blueprints are stored in archives, each archive being identified somehow, and usually accessible to a
whole community of architects. Each blueprint in turn may be fetched from an archive, it is identified
by a name and endowed with particular attributes like a date, proprietary notes, material to be used
etc. So we see our architect working on the drawing board, accessing and customizing pieces of designs,
and progressing towards a complete plan for the house.

1.3.7 Programming Parallel Applications

Since applications which are inherently parallel should be programmed in a parallel way, it is most
natural to incorporate parallelism into the process of model building. Opportunities for automatic
detection of parallelism in existing programs are limited and furthermore, in many cases the formu-
lation of a parallel program is more natural and appropriate than a sequential one. Most systems in
real life are of a parallel nature, thus the intent for integrating parallelism into a prototyping language
is not only that of increasing performance. It is intended to provide a tool for prototyping parallel
algorithms and modeling parallel systems. However, parallel programming is conceptually harder to
undertake and to understand than sequential programming, because a programmer often has to focus
on more than one process at a time. Programming in LINDA provides a spatially and temporally
unordered bag of processes. Each task in the computation can be programmed (more-or-less) inde-
pendently of any other task. This enables the programmer to focus on one process at a time thus
making parallel programming conceptually the same order of problem-solving complexity as conven-
tional, sequential programming. Process communication and synchronization in LINDA is reduced to
concurrent, associative access to a large data pool, thus relieving the programmer from the burden of
having to consider all process inter-relations explicitly. Programming parallel applications in ProSet

is presented in section 10. The concept for process creation via Multilisp’s futures is adapted to
set-oriented programming and combined with the concept for synchronization and communication via
LINDA’s tuple space.

1.4 Acknowledgements

The comments on the preliminary definition by Fritz Henglein as well as the comments on a draft of
this paper by H.-G. Sobottka are gratefully acknowledged.

2 Notational conventions

The definition for syntactic constructs in this document is sometimes given by the familiar syntax
charts, which are integrated into the regular flow of reading. In these syntax charts, nonterminals
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are put into a rectangular box whereas ovals are put around terminals. The nonterminal on the
left hand side of a grammar production is not being put in any box. Essentially, the syntax charts
describe productions of the underlying context free grammar but since they can describe repetition
and optional parts, they can combine more rules which conceptually belong together.

Disclaimer Since the main goal of providing syntax charts is to improve readability, we do not
claim that the list of all syntax charts is complete and could serve to define the whole language. It
should be mentioned, too, that multiple definitions for the same nonterminal are to be read as possible
alternatives, not as redefinitions.

In Appendix C the complete grammar is listed in Backus-Naur-form (BNF) decorated with some
comments.

3 Lexical conventions

Tokens

The tokens recognized by the language fall into the exactly one of the categories keywords, identifiers,
operator identifiers, literals (integer, real, string), and special characters.

Some of the special characters may be combined with others to form single tokens, e.g. := denotes
the assignment symbol and is interpreted as a single token.

It might be useful to state informally here what ’token’ is supposed to mean: it is a lexical unit to be
accepted by the lexical analyser of the language. It cannot be constructed by means of the language
— this is important to realize when the macro processor is discussed.

3.1 Comments

Comments allow to drop textual information into a program. Since comments are interpreted by the
lexical analyser as white space, see sect. 3.2, they will separate tokens.

In ProSet comments come in two forms. The first one is Ada-like; it begins with a double dash --

and ends with the end of the line. In the second, Modula-2-like form comments are enclosed in (*

and *). Everything after reading the two characters (* will be ignored until the first occurrence of
the characters *). The compound symbols --, (* and *) do not permit intermediate blanks.
Double-dash comments inside (* ... *) comments will do no harm as they are ignored — real
double-dash comments, however, may hide a (* sequence as a beginning of a multi line comment and
almost certainly force an error.

3.2 White Space

White space can be used to separate tokens. Comments behave like white space, as mentioned above.
Other forms of white space are: blanks, tabs, newlines, returns, vertical tabs and formfeed according
to ANSI-C standard.

3.3 Keywords

Keywords are reserved words in ProSet, they are non-empty sequences of lowercase alphabetic char-
acters and should neither be redefined nor used as identifiers. Some keywords contain an underscore
character. A complete list of ProSets keywords is given in table 1.
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abort

and

arb

argv

at

atom

begin

blockiffull

boolean

case

closure

constant

continue

deposit

do

domain

drop

else

elseif

end

endm

eput

eputf

escape

exists

false

fetch

fget

fgetf

for

forall

fput

fputf

from

fromb

frome

function

get

getf

handler

hidden

if

in

include

instance

instantiate

integer

into

is map

is smap

lambda

less

lessf

local

loop

macro

max

meet

min

mod

modtype

module

newat

not

notify

notin

om

or

others

pass

persistent

pow

procedure

profile

program

put

putf

quit

random

range

rd

real

repeat

resume

return

rw

self

set

signal

stop

string

subset

then

true

tuple

type

until

use

visible

when

while

whilefound

with

wr

Table 1: Reserved words

3.4 Identifiers

Identifiers are sequences of alpha-numeric characters or the underline character _ beginning with an
alpha character. Case is significant. The length of identifiers may be restricted by the implementation.

3.5 Literals

Literals come as numerical and string literals. Numerical literals (numbers) are always given base 10.
There are two types of numbers: integer and floating point numbers — size and accuracy depend on
the implementation, but we make sure that at least double precision (with respect to C) for floating
point arithmetic is used. The syntax charts provided for describing literals differ from the syntax
charts used elsewhere in this document in that they do not allow intermediate spaces — literals are
lexical units.

3.5.1 Integer Literals

Integer literals are represented by nonempty sequences of digits. We make sure that integers have at
least the size of an int in C. Any implementaion may check arithmetic overflow.

3.5.2 Floating Point Numbers

Floating point numbers (also called real numbers) are written as a nonempty sequence of digits,
followed by a period, followed by a nonempty sequence of digits, optionally followed by an e (upper-
or lowercase), and then an optional sign (+ or –), and then an integer.
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RealNumber

<

✲ 0-9 ✲ .

<

✲ 0-9

<

✲ e

✲ E

✲ -

✲ +

<

✲ 0-9 >

Valid floating point numbers are

100.0 0.1 1.5E-3 0.05e+3

but not

100 1E10 .1 1.E3 1.0e (The first number is an integer literal)

Note that digits both before and after the period are required and that all numbers (including integers)
are unsigned—unary minus may be used to define negative numbers.

Over- or underflow in a representation of real numbers may result in an error, either at compile time
or at run time. Loss of least significant digits is not supposed to be reported.

3.5.3 String Literals

String literals are (possibly empty) sequences of characters. All characters of the character set of
the underlying machine are allowed, non-printable characters and some special characters must be
represented by escape sequences, which are introduced by the character \.

We assume that at least all alphabetic characters, all digits and most of the special characters are
contained in the character set.

String literals are enclosed by double quotes ". They may not be split across lines. The next line
shows, as an example, a string containing the escape-sequence \n representing a newline character:

"This is a string,\n which contains a newline-character"

All characters can be represented by escape-sequences similar to the ANSI-C-Standard. The unpopular
representation trough trigraphs, which allow to write e.g. ??( for [ is not supported.

Table 2 lists all the escape-sequences defined in ProSet. The last line of the table shows a rule
allowing for insertion of double quotes into strings: "\"" is a string literal (of length 1) containing
only the double quote character. Since the backslash \ introduces escape-sequences, it has to be
preceded by another backslash to give one in the string: "\\" is a string containing one backslash.

Characters do not form a data type on their own—they are represented as strings of size 1 whenever
needed.
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\a alert signal (bell)
\b backspace: move active position back one character
\f form feed
\n newline
\r return
\t tab (horizontal)
\v vertical tab
\nnn character, which has the octal representation nnn (1–3 octal digits)
\xn+ character represention by arbitrary number of hexadecimal digits,

upper or lower case
\c c for all other characters

Table 2: Escape sequences

4 Program Structure

In this section we will discuss the overall structure of ProSet programs. This includes an introduction
of those syntactic constructs allowing to divide a program into conceptual units. Next we provide a
comprehensive look at the communication of ProSet programs with the environment. This will help
the reader to understand the examples in the remainder of the document. We then deal with the basic
notions relating to visibility control, the declaration of constants and variables, and the various kinds
of procedures.

4.1 Overall Program Structure

The overall structure of a ProSet program is as follows:

ProgDefn ✲ ProgHeader ✲ Body ✲ ProgTrailer >

A program begins with a header:

ProgHeader ✲ program ✲ Id ✲ ; >

The body of a program has the form:

Body

Decls ✛

✲ begin ✲ Stmts

HandDecl ✛

ProcDecl ✛

ModDecl ✛

>
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The body of a procedure (section 4.5), of an exception handler (section 8.5), and of a module (sec-
tion 11) is constructed according to the same syntax. A body starts with an optional declaration
section containing constant and variable declarations. See section 4.4 for more details.

The keyword begin separates the declaration section from the list of statements constituting in case
of a program body the main procedure of the program:

Stmts

<

✲ Statement

✲ Assocs

✲ ; >

Note, that the semicolon is used as terminator, not as separator as in Pascal. Statements and associ-
ations of exception handlers will be explained in section 7 and 8.4, respectively.

A body continues with a sequence of declarations for exception handlers, procedures and modules
in any order. In case of a program body the names of those declarations will be visible at the top
level of the program and in all enclosed program units (procedures, modules, and exception handlers)
not containing a declaration of the same identifier. The definitions of exception handlers, procedures,
and modules appear at the end of a body, not at the beginning. This allows to read a program in a
top-down manner.

A trailer marks the end of a program. The identifier in the trailer has to be identical to the program
name in the header.

ProgTrailer ✲ end ✲ Id ✲ ; >

4.2 Communication with the Environment

ProSet provides several capabilities for communicating with the operating environment. They in-
clude facilities for operating on the persistent store, for input/output, for passing parameters to
ProSet programs, and for executing a command by the host environment.

4.2.1 Persistent Store

A persistent value is one whose lifetime extends beyond the termination of the program defining and
using it. Persistent values will be stored in containers called P – Files. By a persistent declaration a
program gets access to a persistent value. The program in figure 1 reads a function object identified
by the identifier demo from the P – File MyProject and invokes it.

The mechanisms for handling persistent values will be discussed in section 9.

4.2.2 Input/Output

The input/output operations include the facilities for reading from standard input, for writing to
standard output and standard error, resp., and for handling files. The latter ones are not part of the
language, but are provided by a predefined library of persistent objects, the standard library, which
can be accessed via the P – File StdLib. For more details see section 12 and section 13. The ProSet
hello world program in figure 2 writes the string "hello world" to the output using the operation
put.
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program simple;

persistent constant demo : "MyProject";

begin

demo();

end simple;

Figure 1: Use of a persistent function object.

program HelloWorld;

begin

put("hello world");

end HelloWorld;

Figure 2: A simple hello world program.

4.2.3 Program Parameters

String parameters to be transmitted to a ProSet program may be provided on the command line
of the operating system which initiates the execution of a ProSet program. We do not cater for
parameters other than strings. The precise external form in which the parameters should be given
depends on the command processor being used. The parameters are collected in the built-in constant
argv of type tuple. The first component of argv contains always the name of the executable file.
This mechanism is known from C.

4.2.4 The System Function

The system function provided by the standard library takes one argument and returns an implemen-
tation-defined value. The argument must be a string or om; otherwise the exception type mismatch is
raised. If the argument is equal to om, the call is interpreted as a request to see whether a command
processor exists. The function returns false, if there is no command processor, or true to indicate
that a command processor exists. If the argument is a string, it is passed to the command processor
of the operating system to be executed. The string should be a valid command for the command
processor. Note that no error checking is done by ProSet’s runtime system on the command string.
The program execution will be suspended until the command is completely executed. The call returns
the return code of the executed command.

The function should be used carefully: for example the operating system might access open files or
even terminate the executing program.

4.2.5 Program Termination

The last statement of the main procedure is an implicit stop statement (cf. 7.3.2). Some command
processors interpret the return value or status of a program. In ProSet the return value of the
program may be influenced by the optional argument to the stop statement.

4.2.6 Include Directive

Sometimes it is convenient to make code being externally specified available through a single directive.
Comparable to the #include-directive in C or some Pascal implementations, ProSet supports the
inclusion of text files:
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InclDir ✲ @ ✲ include ✲ FileName >

After a leading @ (instead of #, because the latter is used as a predefined operator) and the keyword
include follows an implementation dependent specification of the file to be included. The directive
can be used anywhere in the program, but the @ must be the first non-whitespace character on a line.
During compilation the include line is replaced by the text in the specified file.

4.3 Visibility

This section introduces the basic notions relating to visibility control.

A declaration associates an identifier with with a declared entity. This can be either a constant, a
variable, a label, an exception, an exception handler, a procedure, a module, or a parameter of an
exception handler, of a procedure, or of a module. The occurrence of an identifier in its declaration
is called a defining occurrence of that identifier. In addition to explicit declarations, ProSet allows
implicit declarations (cf. section 4.4.1), i.e. an identifier not declared so far is supposed to be declared
upon occurring for the first time. If an identifier is used with its associated meaning its occurrence is
called applied. Every applied occurrence refers to at most one defining occurrence. The portion of the
program text within which we can use an identifier with the associated meaning is called the scope of
that defining occurrence. In ProSet we can determine the scope of a defining occurrence statically
by the syntactic construct in which it is directly contained. By a range we mean a syntactic construct
that may contain declarations. For more details see appendix A (local declarations in macros are
directives to the macro processor and no longer visible after the macro processor is done). Inner ranges
are not part of outer ranges2. In ProSet any range may contain at most one defining occurrence of
an identifier. The only exception to this rule are labels (section 7.4) and exceptions (section 8).

The scope of an identifier may be restricted to the range within which it is defined, but without the
enclosed ranges corresponding to exception handlers, procedures, or modules. We call this a local
respectively a hidden declaration.

Otherwise, if the scope of a defining occurrence includes its range and all enclosed ranges not containing
a defining occurrence of the same identifier, we speak of a visible declaration.

To control the visibility of identifiers explicitly, ProSet provides the keywords visible and hidden.
The scope rules apply to the visibility of constants, variables, exception handlers, procedures, modules,
and formal parameters. The example in figure 3 illustrates the scope rules.

The program produces the output:

output: 5

The variable x declared at the top level of the program is visible in the body of the procedure q. The
scope of the hidden declaration of x is restricted to the range associated with p.

4.4 Constant and Variable Declarations

In the sequel we discuss the variable declarations and constant declarations in ProSet.

4.4.1 Variable Declarations

The syntax of an explicit variable declaration is as follows:

2This is part of ProSet’s Setl heritage.
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program Visibility;

visible x := 5;

begin

p();

procedure p();

hidden x := 0;

begin

q();

procedure q();

begin

putf("output: %d\n", x);

end q;

end p;

end Visibility;

Figure 3: Example of the visibility of declarations.

Decls

✲ visible

✲ hidden

✲ Id

✲ := ✲ Expr

, ✛

✲ Assocs

✲ ; >

An explicit variable declaration must be prefixed by one of the keywords visible or hidden, which
control the visibility of those declarations.

There are two kinds of explicit variable declarations in ProSet. The first one consists of a list of iden-
tifiers, which will be defined as variables in the current range (i.e. the main procedure, the procedure,
the exception handler, or the module). These variables may be initialized when the corresponding
range, in which they are declared, is elaborated. For explaining the meaning of elaboration we refer to
the definition found in the Ada reference manual3: ”Elaboration is the process by which a declaration
achieves its effect. For example it can associate a name with a program entity or initialize a newly
declared variable”.

The elaboration of a range generally consists of the following steps:

(a) First, the identifiers of all explicit declared entities (i.e. variables, constants, exception handlers,
procedures, modules, or parameters) are introduced. This may hide other identifiers declared in
surrounding ranges.

(b) The second step is the creation of the declared entities, i.e. the identifiers of exception handlers,
of procedures, and of modules can be used as name of the corresponding entities; constants and
variables have the undefined value om.

(c) In the next step, implicit associations between handler and exceptions (section 8.4) will be
performed, if any.

(d) Finally, constants and variables may be initialized optionally combined with explicit associations
between handlers and exceptions (see 8.4). The initializations are performed in the order in which
they are written. The initial values may result from the evaluation of the expressions on the

3Reference Manual for the Ada Programming Language, United States Department of Defense, Washington D.C.,
November 1980 (Appendix D)
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program ImplDecl;

begin

y := 42;

end ImplDecl;

Figure 4: Implicit variable declaration.

right-hand side of the assignment symbol, or they may be loaded from the persistent store (see
section 9).

The following example

visible x := 5, y := x;

is equivalent to

visible x := 5;

visible y := x;

The second form of an explicit variable declaration is associated with the initialization by values from
the persistent store (section 9).

The declaration of variables is not mandatory in ProSet. Variables may be declared implicitly.
Their scopes are restricted to the ranges within which they are introduced. The program ImplDecl

in figure 4 demonstrates the use of an implicitly declared variables. The variable y is treated as if it
would be declared as hidden.

4.4.2 Constant Declarations

A constant declaration has the form:

Decls

✲ visible

✲ hidden

✲ constant ✲ Id ✲ := ✲ Expr

, ✛

<

✲ Assocs

✲ ; >

Constants are declared using the keyword constant. Their visibility is controlled by the optional
keywords visible or hidden. By default a constant declaration is hidden, i.e.:

constant pi := 3.14159;

is equivalent to

hidden constant pi := 3.14159;

In contrast to variable declarations, constants must be initialized. The value of a constant is computed
from the expression on the right-hand side. A constant declaration may be optionally combined with
explicit associations between handlers and exceptions (see 8.4).
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4.4.3 Constants are Dynamic

The constants in ProSet are dynamic constants (not manifest constants whose value can be deter-
mined at compile time). For this reason, constants can be treated by the compiler similiar to variables.
The constants are initialized during their declaration, but subsequent assignments are not allowed.

Note, that constants are elaborated dynamically. Dynamic means that the elaboration takes place
when the control flow reaches the corresponding range.

The right-hand side of a constant declaration may be an arbitrary expression.

4.5 Procedures

A procedure is a named program unit containing local data and statements which may be executed
by calling the procedure.

Syntactically, the definition of a procedure is as follows:

ProcDefn ✲ ProcHeader ✲ Body ✲ ProcTrailer >

A procedure is enclosed by a header and a trailer. The name of the procedure in the header and in
the trailer has to be identical.

ProcHeader ✲ procedure ✲ Id ✲ ( ✲ ParamList ✲ ) ✲ ; >

ProcTrailer ✲ end ✲ Id ✲ ; >

The header contains a list of formal parameters:

ParamList ✲ ParamMode ✲ Id

, ✛

>

ParamMode

✲ rd

✲ rw

✲ wr >
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procedure transfer(a, rd b, wr c, rw d);

begin

c := a + b;

d := d + c;

a := 17;

end transfer;

Figure 5: Parameter transmission.

The list of the formal parameters is a sequence of names being enclosed in parentheses. Each name
may be associated with a mode describing the parameter transmission:

rd read-only parameters
rw read-write parameters
wr write-only parameters

A missing mode indicates rd. The example in figure 5 shows the different modes:

The parameters a and b are read-only parameters. A caller of transfermust provide values for a and
b. The parameter transmission is call by value, i.e. on entry, the formal parameter will be initialized
by a copy of the actual parameter. Within the procedure the parameter is treated just as a visible
variable.

In our example, c is declared as write-only parameter. Here, the argument must be a valid left-hand
side (section 6.10). The parameter transmission is call by result. Hence the formal parameter identifies
a new visible variable with om as an initial value. On exit from the procedure, the value of the variable
will be copied into the actual argument.

The last parameter, d, is declared as read-write parameter. In this case, the argument must be a
valid right-hand side as well as a valid left-hand side (section 6). The parameter is transmitted call
by value/result. On entry to the procedure the visible variable identified by the formal parameter is
initialized with the argument value. When the procedure terminates, the l -value of the argument is
determined and the value of the variable is assigned to it.

ProSet has copy semantics. All parameters are transfered by copying, not by reference.

The number of the actual and the formal parameters must agree. We do not allow procedures with a
variable number of parameters. Parameterless procedures are defined without a parameter list (but
with parentheses). When calling a parameterless procedure the parentheses must be provided.

The following example calls the procedure in figure 5:

transfer(1, 2, t(3), z);

As stated above the third argument must be a r -value and a l -value, i.e. t must be a tuple, map, or
string. The last argument z has to be a l -value.

The statement

Statement ✲ return ✲ Expr >
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may only appear within a procedure, in an anonymous procedure (section 4.5.1), or in an exception
handler (section 8.5). It terminates the execution of a procedure or exception handler. In case of
named and anonymous procedures it defines the value that the procedure will return.

Omitting the return value
return;

is an abbreviation for writing
return om;

If no return statement appears in the body of a procedure, the default value om will be returned. The
procedure transfer demonstrates this behavior, i.e. it returns the default value om which is usually
without significance. To avoid the introduction of unnecessary variables a procedure may be invoked
in the form of a statement instead of writing:

junk := transfer(1, 2, t(3), z);

Return values will be discarded when procedures are used as statements.

ProSet procedures may be nested to any depth, as known from Pascal or Ada. This is unlike Setl
or C. The name of a procedure and its formal parameters are treated as if they would be declared as
visible, i.e. they are visible in all its enclosed ranges.

4.5.1 Anonymous Procedures

In addition to named procedures, ProSet provides anonymous procedures, which can be seen as a
restricted form of λ-expressions in Lisp. The definition of an anonymous procedure looks like a normal
procedure definition, except that the name is omitted and that the semicolon in the header is replaced
by a colon:

Expr ✲ LambdaHeader ✲ : ✲ Body ✲ LambdaTrailer >

LambdaHeader ✲ lambda ✲ ( ✲ ParamList ✲ ) >

The keywords end and lambda followed by a semicolon closes the definition of an anonymous procedure.

LambdaTrailer ✲ end ✲ lambda >

A definition of an anonymous procedures may be placed in any context, in which a valid expression
is expected. The example expression in figure 6 computes for n ≥ 0

(x, y, n) 7→ Fn−1x+ Fny

where Fn is the nth Fibonacci-number.

An anonymous procedure can reference itself by the keyword self, which is treated like the name
of the procedure. The keyword self is only allowed within anonymous procedures and refers to
the innermost definition of nested anonymous procedures. It is not visible outside an anonymous
procedure.

Anonymous procedures may be defined and executed on the fly, as shown in the following example:
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lambda (x, y, n):

begin

return if n > 0

then self (y, x + y, n - 1)

else x

end if;

end lambda;

Figure 6: Recursive call of an anonymous procedure.

procedure plus (a, b);

begin

return a + b;

end plus;

Figure 7: A user-defined operator-procedure.

lambda(x): begin return x + 1; end lambda(4);

yields the value 5.

4.5.2 User-Defined Operators

Procedures with one or two read-only arguments used in expressions are sometimes more convenient
to use in infix and prefix notation, respectively. This can be done by placing the symbol ! in front of
the procedure name. For example the procedure defined in figure 7 may be used as follows:

z := x !plus y !plus z;

which is apparently more convenient than

z := plus(plus(x, y), z);

Note that binary operators are left-associative. The precedences of user-defined operator-procedures
is discussed in section 6.

Binary operators may be placed in front of the assignment symbol. This applies also to user-defined
procedures used as binary operators. Assuming X is the name of a procedure suitable for a binary
operator, then the following assignment

SomePeoplePreferSelfExplainingVariableNames :=

SomePeoplePreferSelfExplainingVariableNames !X 1;

can be written as

SomePeoplePreferSelfExplainingVariableNames !X := 1;
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5 Data Types

We describe in this section ProSet’s data types.

A data type in a programming language may be seen as set of values (the domain of that type) and
an associated set of operations defined on this domain (constructors, selectors, predicates, etc.). The
values in ProSet can be classified into the following main categories, which are discussed together
with the corresponding operations in the following subsections:

• the undefined value om. This value is used in ProSet to indicate particular situations like the
use of non initialized variables, value extraction from an empty set, access to an undefined tuple
component, etc.

• primitive data types
integer (exactly represented whole numbers),
real (floating point numbers),
boolean (the Boolean values true and false),
string (arbitrary length character strings),
atom (dynamically generated unique values).

• compound data types which are heterogeneous collections of values
tuple (arbitrary length sequences)
set (finite mathematical sets).

• higher order data types
function (first class procedures),
modtype (first class module templates),
instance (module instances).

Since ProSet is a weakly typed language, i.e. a variable name may be used without declaration and
may be bound to values of different types during one program execution, it provides some operations
which allow dynamic type checking and comparing objects of arbitrary types:

type x this unary operator returns a predefined constant of the type atom corresponding
to the type of x. For detail see section 5.1.5.
Note: The type of om is undefined, so that the following equation holds:
type om = om.

x = y equality test: returns true, if the types and the values of x and y are equal.
x /= y the negation of the equality.

Apart from these operations, the predefined polymorphic functions and operators in ProSet are
defined only for a restricted collection of types. Whenever an argument does not meet the allowed
types or the operation is not defined for that particular value of a correct type, an exception will be
raised. For an overview of all exceptions which may be raised by predefined operators and functions
see Appendix B.

5.1 Primitive Data Types

5.1.1 integer

In ProSet exactly representable whole numbers are provided by the data type integer. The range
of integer values may be restricted and depends on the implementation. Table 3 gives an overview of
all integer operations and predefined functions. The unary (binary) operations are used in the usual
prefix (infix) notation.

Some operations and functions are discussed in greater detail now:
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unary +, -, random, type

binary +, -, *, **, /, mod, max, min

predicates =, /=, >, <, >=, <=

functions provided by the standard library abs, even, odd, float, sign, str

Table 3: Predefined operators and functions: integer

i ** j computes i to the jth power. An exception will be raised, if (j<0) or (i=j=0).

i / j computes the integer part of the quotient of i by j. An exception will be raised,
if j=0.

i mod j computes the remainder of the integer division. An exception will be raised, if
j=0.
Thus for j /= 0 and the settings (q := i / j) and (r := i mod j) following
equation holds: (i = q * j + r) with (0 <= r < abs(j)).

random i returns a uniformly distributed random number in the range from zero up (down)
to i including both end points.

5.1.2 real

ProSet provides floating point numbers through the data type real. As usual in programming
languages the representation of real numbers is only an approximation to the exact value. It is
guaranteed by the implementation, however, that the representation corresponds to C’s data type
double on the same machine.

An overview of the operations on the data type real is given in Table 4:

unary +, -, random, type

binary +, -, *, /, **, max, min

predicates =, /=, >, <, >=, <=

binary functions provided by the standard library atan2

unary functions provided by the standard library abs, fix, floor, ceil, exp, log, cos,

sin, tan, acos, asin, atan, tanh,

sqrt, sign, str

Table 4: Predefined operators and functions: real

Some operations and functions are discussed in greater detail now:

x ** i computes the exponentiation of x by the integer i. An exception will be raised,
if x and i are both zero.

x / y computes x divided by y. An exception will be raised, if y is zero.

random x returns a randomly selected floating point number in the range from zero up
(down) to x including zero but excluding x.

5.1.3 boolean

The Boolean values true and false are provided by the data type boolean. Table 5 gives an overview
of the operations on this type.

The operation and and or will be evaluated as short circuit - operations, i.e. they will only partially
evaluated until the result is determined. Thus the following equalities hold:

a and b = if a then b else false end if

a or b = if a then true else b end if
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unary not, type

binary and, or

predicates =, /=

constants true, false

predefined functions provided by the standard library str

Table 5: Predefined operators: boolean

5.1.4 string

The data type string represents an arbitrary length sequence of characters.

For strings the usual operations like length of the string (#), concatenation (+), lexicographic compar-
ison, and extraction of a character or of a slice resp. are defined. Table 6 gives an overview of string
operators and functions.

unary #, type

binary +

predicate =, /=, >, <, >=, <=

constant "", the empty string
extraction and slicing s(i), s(i..j), s(i..)

unary functions provided by the standard library abs, str, char

string scanning primitives span, any, break, len, match, notany,

lpad, rspan, rany, rbreak, rlen,

rmatch, rnotany, rpad

Table 6: Predefined operators and functions: string

Some operations and functions are discussed in greater detail now:

s(i) the extraction s(i) takes an integer i and returns a one-character string equal
to the i-th character of s. If i<1 an exception will be raised. If (i > #s) the
value om is returned.

s(i..j) the slice s(i..j) returns the substring of s which extends from its i-th to its
j-th character, inclusive.
The exact definition reads as follows:

s(i..j)=

{

exception , if (i<1) or (j<i-1) or (j>#s)

"" + s(i) + s(i+1) +. . . + s(j) , otherwise

s(i..) slice equal to s(i..#s).

The extraction and slice operations may also be used in a left-hand side context:

s(i) := x; if x is a one-character string, the assignment is equivalent to
s := s(1..i-1) + x + s(i+1..#s);

otherwise an exception will be raised.

s(i..j) := x; if x is a string, the assignment is equivalent to
s := s(1..i-1) + x + s(j+1..#s);

otherwise an exception will be raised.

s(i..) := x; if x is a string, the assignment is equivalent to
s := s(1..i-1) + x;

otherwise an exception will be raised.

For the definition of the string scanning primitives and the operations of the standard libraries see
section 13.4.



22 5 Data Types

5.1.5 atom

Values of type atom in ProSet are generated by a call to the nullary standard function newat. There
is no other way of obtaining a new atom. The objects thus generated are unique in the sense that the
implementation must guarantee that whenever newat is called, a new value different from all other
calls to newat is returned. This is independent of whether they are called

• in one or different program executions,

• on one or different machines,

• at the same or different times.

Apart from the generation of new atoms the only operations on this data type are testing for equality
respectively inequality (=, /=) and the type-testing operation (type).

nullary function newat

unary type

binary =, /=

type constants atom, boolean, integer, real, string,

tuple, set, function, modtype, instance

mode constants rd, rw, wr

predefined functions provided str

by the standard library

Table 7: Predefined operators and functions: atom

The predefined type constants enumerated in Table 7 are returned by an application of the type-
operator such that type testings like (type s = set) are possible. The mode constants (rd, rw,

wr) are used to describe the profile of functions and modules (see section 5.3.1 resp. section 11).

Note that atoms can be transformed into a string by the str-function. The result depends on the
implementation and should only be used for testing and debugging.

5.2 Compound Data Types

In ProSet an arbitrary but finite collection of objects can be structured either in form of a linear
tuple or an unordered set. Both data types are not necessary homogeneous and can be nested to
arbitrary depth. With the exception of the undefined value om, values of each data type (including
function, modtype and instance) may appear as a member of a tuple or set; om is prohibited in sets,
but allowed as a component of a tuple.

5.2.1 tuple

Tuples have their mathematical semantics as ordered sequences of objects; a value may appear multiply
in a tuple, the order of components appearing in the tuple is relevant. Conceptually a tuple is an
infinite vector with almost all components equal to the value om.

The indexing of tuple components starts with the index 1, the length returned by the #-operator is
the largest index of a component different from om, thus #[] = 0 holds.

For tuples the usual operations like concatenation (+), non-deterministic selection (random), insertion
(with), slicing, testing of tuples for equality or membership (in, notin) are defined.

Table 8 describes all tuple operations, for the semantics of frome and fromb see chapter 7.1.
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unary #, random, type

binary +, with

predicates =, /=, in, notin

extraction and slicing t(i), t(i..j), t(i..)

assignments frome, fromb

tuple former expressions see below
constants [], the empty tuple;

argv, program-parameter
functions in the standard library str

Table 8: Predefined operators : tuple

There are several kinds of tuple former expressions:1

enumeration: The tuple with the objects x1, . . . ,xn can be constructed by the tuple
former expression [x1, . . . ,xn]

simple interval: A tuple containing all numbers of the interval i . . . k; i,k ∈ Z2 can be
generated by the expression [i..k]

interval with step m: A tuple containing all numbers of the

increasing

decreasing
interval {i+ t ∗ m : t ≥ 0, m>

<
0, i+ t ∗ m≤

≥
k}, i, k, m ∈ Z

can be constructed by [i, i+m .. k].
Note: For (i < k, m ≤ 0) or (i > k, m ≥ 0) this expression results in an
endless loop.

descriptive: The tuple former
[e: x1 in s1, x2 in s2, . . ., xn in sn | C ]

generates the tuple of all values to which the expression e evaluates, when
iteration with x1 over the compound object s1, with x2 over s2, . . ., xn over
sn, such that the condition C holds. Syntactically the part

| C

can be dropped. In this case the condition true is assumed.
For a general discussion of iterators, allowed in tuple former expressions,
see section 6.7.

The extraction t(i) takes an integer i and returns the i-th component of the tuple t. If i<1 an
exception will be raised. For (i > #t) the value om is returned.

The tuple slices t(i..j) and t(i..) are defined as :

t(i..j) =

{

exception , if (i<1) or (j<i-1)

[ t(x) : x in [i..j] ] , otherwise

t(i..) = t(i..#t).

For the randomly selected tuple component returned by the operator random, the implementation has
to guarantee uniform distribution. So the effect of the expression random t has to be equivalent to

{

om , if #t = 0

t(random(#t− 1) + 1) , otherwise

The extraction and slice operations may also be used in a left-hand side context:

t(i) := x; is equivalent to: t := t(1..i-1) + [x] + t(i+1..#t);

t(i..j) := x; if x is a tuple the assignment is equivalent to:
t := t(1..i-1) + x + t(j+1..#t);

otherwise an exception will be raised.

1Note: In the following descriptions the triple dot . . . is a meta language construct which is used as an abbreviation
for and so on, while the two dots .. are one token of ProSet’s syntax

2Z denotes the set of all integers
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t(i..) := x; if x is a tuple the assignment is equivalent to:
t := t(1..i-1) + x;

otherwise an exception will be raised.

5.2.2 set

Sets have their mathematical meaning as unordered collections of objects, for which a value is either a
member of the set or not. An element cannot appear more than once in a set, the order of appearing
is not relevant. The undefined value om must not be inserted into a set, otherwise an exception will
be raised.

For sets the usual operations like union (+), intersection (*), set difference (-), cardinality (#), insertion
(with), deletion (less), test for membership (in, notin), test for inclusion (subset), and the power
set operation (pow) are defined.

If a set is not empty, the operations arb and random return a non-deterministically selected element
— otherwise om is returned. It depends on the implementation whether each call to the selector arb
returns the same, a different, or a randomly selected element of a set. In contrast, the implementation
has to guarantee uniform distribution for elements randomly selected by the operator random.

The predicates is map and is smap test whether the set has the map characteristics (see section 5.2.3).

Table 9 gives an overview of all set operations, for a description of from see section 7.1.

unary #, pow, arb, random, type

binary +, -, *, mod, with, less

predicates =, /=, in, notin, subset, is map, is smap

assignment from

set former expressions see below
constant { }, the empty set
functions in the standard library npow, str

Table 9: Predefined operators and functions : set

There are several kinds of set former expressions:

enumeration: The set with the objects x1, . . . ,xn can be constructed by the set former
expression {x1, . . . ,xn}

simple interval: A set containing all numbers of the interval i . . . k; i,k ∈ Z can be gen-
erated by the expression {i..k}

interval with step m: A set containing all numbers of the

increasing
decreasing

interval {i+ t ∗ m : t ≥ 0, m>
<
0, i+ t ∗ m≤

≥
k}, i, k, m ∈ Z

can be constructed by {i, i+m .. k}.
Note: For (i < k, m ≤ 0) or (i > k, m ≥ 0) this expression results in an
endless loop.

descriptive: The set former
{e: x1 in s1, x2 in s2, . . ., xn in sn | C }

generates the set of all values to which the expression e evaluates, when
iteration with x1 over the compound object s1, with x2 over s2, . . ., xn over
sn, such that the condition C holds. Syntactically the part

| C

can be dropped. In this case the condition true is assumed.
For a general discussion of iterators, allowed in set former expressions, see
section 6.7.
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5.2.3 Maps

Although maps do not correspond to a separately defined data type in ProSet, there are some
operations which support the handling of finite maps and binary relations.

Conceptually a map is defined as a set of pairs, i.e. a set of tuples

(*) [x, y] with x 6= om, y 6= om.

The domain of a map f is defined by {e(1) : e ∈ f}, and its range by {e(2) : e ∈ f}.

Since a map is a special kind of set all set operations are valid for maps. The predicate is map f tests
whether f is a binary relation, i.e. whether the condition (*) holds for all members of f. is smap f

tests additionally whether f is a single valued map, i.e. whether for each x in the domain of f there
exists exactly one y in the range. Note: Both is map and is smap are set operations — an exception
will be raised if the argument’s type is different from set.

For maps the operations enumerated in Table 10 are provided in addition to the operations for sets.

unary domain, range

binary lessf

extraction f(i), f{i}, f(i1, . . . ,in), f{i1, . . . ,in}

Table 10: Additionally defined operators and functions: Maps

The unary operator domain f returns the domain of the map f, the operator range f the range of
the map, and the binary operator f lessf x returns a copy of f in which all pairs [x,y] with [x,y]

in f are deleted.

The definition of the extraction operators:

f{x} returns the image-set of f at the point x, i.e. the set of all second components of
pairs in f whose first component is x:

f{x} = { y(2) : y in f | y(1) = x }

f(x) returns the single image of f at the point x, i.e. the only element in f{x} provided
that (#f{x} = 1) holds. If (#f{x} = 1) fails, om is returned.

Similar to strings and tuples the extraction operation may be used in a left-hand side context:

f(x) := y; is equivalent to the sequence:
f := f lessf x;

if y /= om then f := f with [x, y]; end if;

f{x} := y; provided that y is a set, this assignment is equivalent to the sequence:
f := f lessf x;

f := f + { [x, z] : z in y};
otherwise an exception will be raised.

The multiparameter extractions are just abbreviations. Thus the following identities hold:

f(i1, . . . ,in) = f([i1, . . . ,in])

f{i1, . . . ,in} = f{[i1, . . . ,in]}.

5.3 Higher Order Data Types

Objects of the data type function, modtype or instance in ProSet have the rights of first-class
citizens. As all other data types introduced so far they have their own identity, and it is allowed

• to assign them to variables,

• insert them into compound objects,
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• use them as actual parameters in the call of subroutines,

• return them by the call of a function,

• use them in expressions.

5.3.1 function

ProSet provides the possibility to generate a first class data object of the type function from a
named or anonymous procedure. This is done by applying the closure operator to a procedure name
or a lambda expression. Thus the statement

f := closure p;

assigns f a function corresponding to the procedure p. Similar to the application of the generator
newat for the data type atom, each application of the operator closure will result in a new and unique
object. Thus assuming in the following code that g is a visible procedure name

f1 := closure g;

f2 := closure g;

f3 := f1;

f1 is equal to f3, but f1 is not equal to f2, because they result from different applications of the
closure operator. Thus equality resolves to identity.

For a procedure or a lambda expression the static environment in which the procedure is defined
resolves the question to which value a name is bound when it is used in the procedure’s body. Thus
it is possible to allow the procedure to have side effects on non-local objects, i.e. objects declared
in an outer range. When a function is created through an application to closure, the question
of binding arises again, because this function may be called outside the defining environment of the
corresponding procedure. ProSet solves this question by freezing the bindings to non local objects:
At the time when the closure operator is applied to a procedure name or lambda expression, the
binding of a name n used inside the procedure to a non local object with the actual value v is stored.
This binding associates n with v. At the beginning of each invocation of the resulting function f this
binding is restored in such a way that n behaves like an initialized local variable. Thus no side effect
of a function application to its dynamic environment is possible.

The example in Figure 8 displays this effect. Since x is bound to the value 0 at the generation time
of function f, each application of f writes 0 to the standard output. Thus the program produces the
output:

0

1

Note that replacing the lambda expression by the procedure name p will not change the output of the
example. Note also that the expression

(closure p)()

causes the function corresponding to the procedure p to be executed on the fly. The parentheses
around closure p are necessary because of the operator precedences (see Table 12). Without those
parentheses the compiler will produce an error.

Table 11 gives an overview of all operations on the data type function.

The expression profile f returns a tuple, whose components are chosen from the set {rd, wr, rw}
and which corresponds to the declaration modes of the formal parameter list of that procedure, f
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program prog;

visible x := 0;

begin

f := closure lambda():

begin

put(x);

end lambda;

x := 1;

f();

p();

procedure p();

begin

put(x);

end p;

end prog;

Figure 8: Binding in functions versus binding in procedures.

unary profile, type

predicates =, /=

Table 11: Predefined operators: function

was derived from. Thus the expression (# profile f) returns the number of parameters f has to be
applied to and (profile f)(1) = rd tests whether the first parameter was declared to be a read-only
parameter.

The example in Fig. 9 illustrates the use of a function object returned by a procedure call.

5.3.2 modtype and instance

Modules and instances form data types of their own. Since they are rather complex, and since they
are intended to support programming in the large, they are discussed separately (see section 11).
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program main;

visible t := 0;

begin

x := f(t);

x(); -- output> g: t = 2

x(); -- output> g: t = 2

putf("main: t = %d\n", t); -- output> main: t = 1

procedure f(rw t);

begin

t := t + 1;

return closure g;

procedure g();

begin

t := t + 1;

putf("g: t = %d\n", t);

end g;

end f;

end main;

Figure 9: Function returned by a procedure call
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6 Expressions

Expression is a syntactical term and it is used for describing the construction of values. This has to
be seen in contrast to control structures, for example statements or loops, which may use or contain
expressions. E.g. if-statements use expressions of type Boolean to determine the flow of control.

This section gives a reference for expressions. The following syntax chart may serve as a guide:

Expr

✲ QualId

<

✲ Selector

✲ arithmetic

✲ set-former

✲ tuple-former

✲ if-expr

✲ case-expr

✲ functions

✲ instances

✲ quantifier

>

QualId ✲ Id

. ✛

>

Most of the ‘nonterminals’ mentioned in the above syntax chart serve as hints for further discussion
and are in fact dead ends. Only the upper alternative reflects a syntactic rule.

Selector

✲ ( ✲ )

✲ l-Selector

>
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l-Selector ✲ ( ✲ Expr-list ✲ )

✲ ( ✲ Expr ✲ .. ✲ )

✲ ( ✲ Expr ✲ .. ✲ Expr ✲ )

✲ ( ✲ Expr ✲ , ✲ Expr ✲ .. ✲ Expr ✲ )

✲ { ✲ Expr-list ✲ }

>

The first alternative in the rule for Expr above declares identifiers standing for variables, constants,
procedures and modules as expressions. They may be qualified, i.e. denote components of modules. In
this case, it is constructed by a module identifier followed by a dot and another identifier. Applying a
selector to these basic objects may yield another expression: the result of a procedure call, the image
under a map, an element or a part of a tuple or string, depending on the type of the basic object.
Section 4.5 discusses procedure calls, strings are discussed in section 5.1.4, and for tuples and maps
the details are given in subsections of 5.2.

The first subsection below reflects the operations on primitive and compound data types as discussed in
section 5. This is what the somewhat informal term ’arithmetic’ is supposed to describe — addition of
numerical values, union of sets, length of a tuple — binary and unary operations on first class objects.

Although tuple- and set-formers have already been discussed along with these data types, the next
subsection gives a comprehensive description on a syntactical level and refers to the descriptions
provided in section 5.2.1 and section 5.2.2, respectively.

The section continues in discussing conditional expressions and nondeterministic choice, i.e. if- and
case-expressions. They are very similar to control statements of the same name discussed in section 7.
The subsequent three subsections deal with compound operations, type tests and higher order objects.
The latter denotes first class functions and related objects.

Prior to discussing quantifiers we introduce iterators, which are not expressions by themselves, but
their concept is needed on several occasions in ProSet, and the introduction of quantifiers is one of
them.

All the language constructs mentioned above (except from iterators) serve to construct values which
may be assigned to variables. They are called r-values (for right-hand side values) because they may
stand on the right-hand side of an assignment. A summary of expressions used as r -values is given
in the penultimate subsection — the last subsection deals with l-values. They are the counterpart of
r -values and may stand on the left-hand side of an assignment. In ProSet, l -values are not restricted
to variable names, they can be much more complex so that they are discussed separately.

Syntax diagrams are used to describe those kinds of r-values which are discussed in this section.
For l -values, syntax charts are not as appropriate as they should be since they are not specific in
characterizing differences with respect to r-values. However, the rules are few and short and listing
them will do no harm.

6.1 Arithmetic Operations

The term ‘arithmetic’ is generally used to describe the four basic operation on numbers — in this
section we will use this term in a wider sense. Any operation, unary or binary, on any admissible type
of value is regarded as an arithmetic operation. This does neither include the explicit construction of
compound values nor other operations including an explicit iteration nor assignments.
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Precedence Operator
8 selectors and handler associations
7 all unary operators (including quantifiers)
6 **

5 *, mod, div
4 +, -, max, min
3 all binary operators not listed above or below

(including user defined binary operators)
2 =, /=, <=, >=, in, notin, subset
1 and

0 or

Table 12: Operators and precedences

Table 12 shows operators and their precedences. Binary operators are left associative without excep-
tion, i.e. a⊕ b⊕ c is to be read as (a⊕ b)⊕ c for any binary operator ⊕. Making use of precedences
may improve readability in obvious cases or with proper grouping and indentation — on the other
hand, inserting a (redundant) pair of parentheses may also help reading.

Evaluation Order in Expressions and Expression Lists

The order of evaluation of subexpressions in binary expressions is not defined. This not in conflict
with associativity — the essence is that the order in which side effects may occur is not predictable by
the programmer. This is also true for expression lists which occur e.g. in function calls or constructors
for compound values.

Evaluation order is defined, however, in declaration lists (for variables or constants) as stated in
section 4.4.

6.2 Set- and Tuple-Formers

Tuples or sets may be constructed iteratively by adding elements to a variable initialized as the empty
tuple or set.

On the other hand, both kinds of compound objects can be constructed by a single language construct
without making use of a variable being used in intermediate steps.

There are four distinct way of doing this:

• enumeration

• simple interval (of integers)

• interval with step

• descriptive

The following charts describe the syntax:

tuple-former ✲ [ ✲ former ✲ ] >
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set-former ✲ { ✲ former ✲ } >

former ✲ Expr

, ✛

✲ Expr ✲ .. ✲ Expr

✲ Expr ✲ , ✲ Expr ✲ .. ✲ Expr

✲ Expr ✲ : ✲ Iterator

✲ | ✲ Expr

>

The brackets indicate construction of a tuple whereas curly brackets are used to build sets.

The former reflects the list from above:

• Enumeration allows arbitrary values to be inserted.

• An interval restricts the expressions being involved to evaluate to type integer, otherwise an
exception will be raised.

• The last alternative makes use of an iterator. It will be described later in this section, at this
point a small example may serve as an explanation:

{[y,x]: [x,y] in f | x /= y}

The set constructed here is the inverted map of f where all the pairs [x,x] of f are not included.

The discussion in sections 5.2 will give further information on the construction of sets and tuples, and
section 6.7 will discuss iterators in greater detail.

6.3 if Expressions

If expressions (conditional expressions) are syntactically close to if statements (cf. section 7.5), with
the difference that single expressions replace the statement lists. Since only statements are terminated
with semicolons, they should not be used inside conditional expressions.

Expr ✲ if ✲ Expr ✲ then ✲ Expr

<

✲ ElseIf-Expr ✲ else ✲ Expr ✲ end ✲ if >
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ElseIf-Expr

<

✲ elseif ✲ Expr ✲ then ✲ Expr >

The following example describes using a map for counting:

count(x) := if count(x) = om then 0 else count(x) end if + 1;

The if-expression defines the count of any value x not yet seen to be zero.

If the else part of the conditional expression is missing, else om will implicitly be assumed.

6.4 case Expressions

Case expressions are derived from case statements (cf. section 7.6) in a similar way as if expressions
are from if statements.

Expr ✲ case ✲ Expr

<

✲ Case-Exprs ✲ else ✲ Expr ✲ end ✲ case >

Case-Exprs

<

✲ when ✲ Expr ✲ => ✲ Expr >

The assumption that a missing else part means else om is valid here, too.

The following example classifies a day, i.e. depending on the value of the variable day (assumed to
be of type string because of the string concatenation used in each case) one branch is chosen — the
result is a string:

Answer := case day

when "Monday", "Tuesday", "Wednesday", "Thursday", "Friday"

=> day + " is a work day"

when "Saturday", "Sunday"

=> day + " is weekend"

else day + " is not recognized as a day"

end case;

6.5 Compound Operations

Compound operations allow application of binary operators to compound values. The following de-
scription is valid for tuples t = [t1,t2,. . .,tn] and may serve as an example:

⊕ % t = t1 ⊕ t2 ⊕ · · · ⊕ tn where ⊕ is any binary operator.
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For ⊕ being the addition operator + and a tuple t = [2,3,4,5] this would be + % t, i.e. 2 + 3 + 4

+ 5 which results in 14.

If #t = 1, ⊕% t returns t(1).
If t = [ ], ⊕% t raises an exception.

For sets s, the following equality can be used as a definition:

⊕ % s ≡ ⊕ % [y: y in s]

Obviously, since the order of iteration over sets is nondeterministic, compound operations on sets
should only be used with commutative operators.

Compound operators ⊕ % can be used both as binary (x ⊕ % s) and as unary operators (op % s).
The former allows to define the behavior for empty compound objects s. The latter will result in an
exception, if s is empty. For a tuple s, the expression x ⊕ % s is equivalent to ⊕ % ([x]+s). For a
set s, a similar rule applies:

x ⊕ % s ≡ ⊕ % ([x]+[y: y in s])

When used as binary operators,⊕ % will have the same precedence as⊕. User defined binary operators
!id (see section 4.5.2) can be used for compound operations, too.

6.6 Higher Order Objects

Procedures, lambda-expressions and names introduced by a module definition (i.e. the identifier m in
module m(. . .) . . . ) are not first class objects — the closure-operator must be applied to them to
cut off side effects and make them portable (see section 5.3.1). The result of applying the closure
operator is a functional object or a value of type modtype that may freely be returned as a value or
be inserted in any compound object or invoked later on (if it is a function) or instantiated (if it is a
module). Instances of modules created by means of instantiate (cf. section 11.5) are also regarded
as higher order objects.

6.7 Iterators

Iterators are used at several occasions in ProSet. They occur in some kinds of set or tuple construc-
tors, in many loop constructs and in quantified expressions which are described below. Iterators do
not form expressions on their own. In fact, they introduce bindings : new (local) variable names are
bound to values. These bindings are used in the context of expressions and we think that it is a good
place to describe them here.

Iterators are defined syntactically by the following diagram:

Iterator ✲ SimpleIt

, ✛

>

SimpleIt ✲ LValue ✲ in ✲ Expr >
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The iterator variables are subsequently bound to values of a set or tuple to be iterated over. In the
simplest case

x in s

there is only one simple iterator containing an identifier x as the iterator variable. The expression s

after the keyword in is the compound value to be iterated over. In a loop, x is bound to an element of
this set or tuple s subsequently. With this binding, the enclosing language construct performs some
action, and after that, x is bound to the next element of s.
The iteration ends, after all elements of s have been looked at, or if either

• the enclosing construct is a loop and executes a quit-statement to terminate the excecution of
the loop

• the enclosing construct is a quantifier and the result is determined (see section 6.8).

The l -value in a simple iterator may be a compound l -value instead of a simple variable. In this
case, a decomposition is performed as described in section 6.10, but this makes no difference with
respect to the iteration process. However, the local environment may use the variables contained
in the compound l -value. It should be mentioned, too, that the l -values used here are restricted to
identifiers or to a list of l -values of this kind, enclosed in brackets. This restriction is required since
iterators introduce new local names. Hence an iterator x(1) in s for a new variable x is illegal. A
multiple l -value will also allow for insertion of dashs as dummy symbol. The following syntax chart
describes these l -values:

ItLValue

✲ Id

✲ [

✲ ItLValue

✲ -

, ✛

✲ ]

>

Another extension is the repetition of simple iterators.

x1 in s1, x2 in s2, . . . , xn in sn

Here, a nested iteration is performed: x1 is bound to an object of s1, then x2 is bound to an object
of s2, and so on, until xn is bound to an object of sn. Now, an action is to be performed in a similar
way as described with a single iterator.

But there a more differences when compared to a single iterator: Since the order in which the bindings
are performed is clearly defined, the expression determining the compound value s2 may depend on
the current value of x1 and so on, i.e. si, (1 < i ≤ n) may depend on xj , (1 ≤ j < i). The innermost
iteration is performed most frequently, i.e. for each value xn−1 of sn−1, xn is bound to all values of
sn. After the iteration over si is exhausted, xi−1 is bound to the next value of si−1, provided i > 1.
Otherwise, the iteration ends.

In the case of a for-loop using a multiple iterator, a continue-statement will continue the iteration
with x1 bound the next value of s1, that is the outermost simple iterator. This is for the program-
mer’s convenience: the behavior described is often required and could otherwise only be achieved by
formulation of two explicitly nested loops. On the other hand, continuing with the next value xn of
sn can be achieved by skipping the rest of the loop’s body by a conditional statement.
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Map Iterators

Map iterators are an abbreviation which may be used to iterate over a single- or multi-valued map:

SimpleIt ✲ LValue ✲ = ✲ Expr

✲ ( ✲ LValue ✲ )

✲ { ✲ LValue ✲ }

>

The upper form with the parentheses is equivalent to an iteration over the set resulting from Expr
(i.e. a single valued map) and decomposition of the elements which are assumed to be tuples:
y=f(x) is equivalent to x in domain f and assigning y := f(x) for another new variable y. This
form of iterator is also allowed for tuples f. Then, x is iterated over the tuple of indices [1..#f] and
y is bound to f(x).

For a multi-valued map, the behavior is similar: as above, x iterates over the domain of f and y is
bound to f{x}.

Since these rules are purely syntactical, everything stated above for simple iterators is valid for map
iterators, too. Certainly, both kinds of simple iterators may be blended in a multiple iteration as may
be deduced from the syntax diagrams.

Order of Iteration

The two types of compound values, namely sets and tuples, show different behavior when being
iterated over: since tuples are ordered, the iteration over a tuple preserves this ordering. Embedded
om-values in tuples will be regarded in iterations, i.e. an iteration over a tuple t may be regarded as
the iteration over a tuple [1..#t] of indices and then selecting the corresponding tuple element of t
via the index. Sets are unordered and so the elements of a set are used in an order which cannot be
predicted by the programmer.

6.8 Quantified Expressions

Quantified expressions allow to formulate predicates on a high level. Two forms are provided in
ProSet, which are introduced by the keywords exists and forall:

Expr

✲ exists

✲ forall

✲ Iterator ✲ | ✲ Expr >

The existential quantifier yields true, if during the iteration the expression after the bar | (the
predicate) evaluates to true at least once; it yields false otherwise.

Forall yields true, if each iteration step makes the predicate evaluate to true, and false otherwise.

The first set of bindings produced by the iteration which makes the predicate evaluate to true or
false for exists or forall, respectively, will terminate the iteration.

Quantifiers share the highest precedence with unary operators. The example
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exists x in s | p(x) and g

should be read as

(exists x in s | p(x)) and g

Hence it is not to be read as a quantification with predicate p(x) and g.

6.9 Summary of Expressions

The following list gives a comprehensive overview over expressions in ProSet returning values. Ex-
pressions are

• literals (of type integer, real, string), predefined values as for example argv, atom, om, true
(see section 5.1)

• unary and binary operations (cf. table 12 in section 6.1) including compound operations. Binary
operators are left-associative without any exception

• calls to functions or procedures

• tuple and set formers (see section 5.2 or section 6.2)

• if- and case-expressions

• functions (see section 5.3.1)

• modules and instances. instantiate may be used to create an instance of a module, i.e. a new
set of variables local to the module is created and the initialization code is executed. For further
discussion, see section 5.3.2.

• quantified expressions exists, forall

Exceptions

All expressions may be decorated with associations of exceptions to handlers. The following chart
describes the syntax for this association.

Expr ✲ Expr

<

✲ [ ✲ ExplHandAss ✲ ]

>

The concept of exceptions and the association of exceptions with handlers is discussed in depth in
section 8.
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6.10 L-Values

In the introduction to this section we mentioned expressions not returning any values and defined
them to be l-values (for left-hand side values). This is not the full story about l -values since some
expressions returning values may also serve as l -values, for example as rw-parameters to procedures
and in abbreviated assignments (see 7.1.1).

The list below definitely says what l -values are:

• variables are l -values

• for an l -value l, the following expressions are valid l -values, too:

– if type l = tuple, then l(expr1), l(expr1 . .), and l(expr1 . . expr2) are valid l -values,
if expr1 ≥ 1 and expr2 ≥ expr1 − 1 (the expressions should evaluate to an integer).

– if type l = string, the rules for tuples apply, but there are further restrictions in that
0 ≤ expr2 ≤ #l; l(expr) ≡ l(expr..expr).

– if l is a single valued map, then l(expr1, . . . , exprn) is a valid l -value.

– if l is a multi valued map, then l{expr1, . . . , exprn} is a valid l -value.

• a tuple [l1, . . . , ln] is an l -value (also called multiple l-value), if l1, . . . , ln are either l -values or
the dummy symbol denoted by the dash - .

There is no other way to construct l -values.

Whenever the dummy symbol - is contained in a multiple l -value, the resulting expression does not
have an r -value. In all other cases, an expression being a valid l -value is also a valid r -value.
Multiple l -values and the dash are discussed in section 7.1 in the context of assignments. They are
used to decompose tuple-valued r -values.

Here is a syntax chart describing l -values (it has to be taken with care, see p. 30):

LValue

✲ QualId

<

✲ l-Selector

✲ [

✲ LValue

✲ -

, ✛

✲ ]

>

The nonterminal l-Selector used above is defined in the beginning of this section. It permits selection
of components of compound objects (and strings) but forbids procedure- or function-invocations with
an empty parameter list.

Whenever l -values are constructed by means of selectors, the assignments performed on them may be
decomposed from left to right and this decomposition defines the semantics:

t(1){2}(3) := 17;
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may be described by

tmp1 := t(1);

tmp2 := tmp1{2};

tmp2(3) := 17;

tmp1{2} := tmp2;

t(1) := tmp1;

where tmp1 and tmp2 are fresh variables.

7 Statements

Statements specify the flow of control and data in programs. Program blocks consist of non-empty
statement lists, which are explained in section 4.1. The statements in a list are executed sequentially.
Some small control structures are only allowed within certain kinds of program blocks. As opposed
to expressions, statements provide no values.

7.1 Assignments

In an assignment an l -value is assigned the value of an expression that appears on the right-hand side
of the assignment symbol:

Statement ✲ LValue

✲ BinOp

✲ := ✲ Expr >

For a discussion on expressions which are allowed as l -values see section 6.10. The right-hand-side
expression has to provide a tuple for multiple l -values. The assignment

[x1, x2, -, x4] := [1, 2, 3];

is equivalent to the series of assignments with Temp Tuple as a fresh name:

Temp Tuple := [1, 2, 3];

x1 := Temp Tuple(1);

x2 := Temp Tuple(2);

x4 := Temp Tuple(4); -- yields om

The assignments are done in the specified order only for specified l -values. For the dummy symbol -
(dash) no assignment is performed (cf. section 6.10).

7.1.1 Abbreviated Assignments

Binary operators may be combined with the assignment symbol to abbreviate assignments. Hence,
the assignment

x := x * (1 + y);

may be abbreviated by

x *:= 1 + y;

This is allowed for user-defined operators, too (cp. section 4.5.2).
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7.1.2 The from Statements

Additionally ProSet provides three statement forms related to assignments:

Statement ✲ LValue

✲ from

✲ fromb

✲ frome

✲ LValue >

On the left-hand side any valid l -value is allowed, whereas on the right-hand side multiple l -values
are not allowed. We discuss these statements in greater detail now:

The from Assignment The simple l -value should be a set for the from assignment. The assignment

x from s;

is equivalent to the series of assignments:

x := arb s; -- select any element of s

s less:= x; -- remove it from s

See section 5.2 for the selection operator arb. Multiple l -values on the left-hand side are handled as
before. The assignment

[x1, -, x3] from s;

is equivalent to the series of assignments:

Temp Tuple := arb s;

s less:= Temp Tuple;

x1 := Temp Tuple(1);

x3 := Temp Tuple(3);

The fromb and frome assignments The simple l -value should be a tuple for the fromb and frome

assignments. The assignment

x fromb t;

is equivalent to the series of assignments:

x := t(1);

t := t(2..);

and the assignment

x frome t;

is equivalent to the series of assignments:

x := t(#t);

t := t(1..(#t-1));

Remember that no assignment and in general no statement provides a value in ProSet.
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7.2 Control Structures in General

Control structures are static structures that control the flow of control in a program at runtime. The
remaining subsections of this section will discuss the static control structures in ProSet. Quantified
expressions and some set resp. tuple forming expressions contain implicit loops. They are discussed
in section 6.

The syntax of the complex control structures shows that the language has Algol as one of its
ancestors:

Statement ✲ Loop ✲ end ✲ loop

✲ While ✲ end ✲ while

✲ Repeat ✲ end ✲ repeat

✲ For ✲ end ✲ for

✲ Whilefound ✲ end ✲ whilefound

✲ IfStmt ✲ end ✲ if

✲ CaseStmt ✲ end ✲ case

>

7.3 Small Control Structures

This subsection treats some control structures that do not enclose statements. There exist some addi-
tional small control structures, which are discussed elsewhere: return statements and procedure calls
in section 4.5, some exception handling statements in section 8, quit and continue in section 7.4.6.

7.3.1 pass

The pass statement passes the control to the next statement. It has no additional effect.

Statement ✲ pass >

This statement may be used to program empty then cases for if statements (section 7.5) or empty
program blocks.
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7.3.2 stop

The stop statement terminates the execution of a process or of an application program:

Statement ✲ stop ✲ Expr >

When executed in a spawned process (section 10.2.2), then this process will be terminated in the same
way, as if a return statement with the same expression had been executed in the main procedure of
this process. If no Expression is specified, then om will be returned as usual.

When executed in a main program, which has been started form the operating system, then the
value of the optional Expression is passed to the operating system. Its meaning depends on the
operating system. If no Expression is specified, then om is passed to the operating system by default
as success code. All spawned processes of this application will be terminated. There exists implicitly
a “stop om;” statement at the end of each main program.

The runtime system has to perform some work before returning the control to the operating system.
This includes closing opened files, and releasing locks on persistent objects (section 9). The values of
all still existing persistent variables are written to the persistent store provided that a success code is
returned. Persistent values are left unchanged, if an error code is returned.

7.4 Loops

Loops specify repeated execution of enclosed statements. They may optionally be labeled:

Statement ✲ Label ✲ : ✲ Loop

✲ While

✲ Repeat

✲ For

✲ Whilefound

✲ end ✲ Label >

Lexically, the label is an identifier. Label name in header and trailer have to match. The label name
is only accessible to quit and continue statements (section 7.4.6). It is not allowed to use any visible
names to label loops. However, multiple loops on the same level may be labeled with the same name.
The following labeling is not allowed:

label: loop ... end label;

label := 1;

whereas the following is legal:

label: loop quit label; end label;

label: loop continue label; end label;
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7.4.1 loop

The infinite loop repeats the enclosed statements unconditionally:

Loop ✲ loop ✲ Stmts >

The first statement following the end of the loop statement may only be reached via quit statements
(section 7.4.6). It is also possible to leave it dynamically e.g. via return statements (section 4.5).

7.4.2 while

A while loop is written as follows:

While ✲ while ✲ Expr ✲ do ✲ Stmts >

Execution of such a loop proceeds as usual: the expression is evaluated and has to provide a Boolean
value. If this value is true, then the enclosed statements are executed. After each execution of these
statements, the expression is evaluated anew, and as long as it yields true, the statements continue
to be executed. As soon as the expression yields false, looping ends, and execution proceeds with
the first statement that follows the loop. Hence the statements within a while loop will be executed
zero or more times:

while E do S end while;

satisfies the fixed-point equation

if E then S; while E do S end while; end if;

7.4.3 repeat

An repeat loop is written as follows:

Repeat ✲ repeat ✲ Stmts ✲ until ✲ Expr >

Execution of such a loop proceeds as usual: the enclosed statements are always executed at least once.
Afterwards the expression is evaluated and has to provide a Boolean value. If this value is false,
then the enclosed statements are executed again. As soon as the expression yields true, looping ends,
and execution proceeds with the first statement that follows the loop. It follows that the statements
within an repeat loop will be executed one or more times:

repeat S until E end repeat;

satisfies the fix-point equation

S; if not E then repeat S until E end repeat; end if;
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program prog;

begin

x := 5;

S := {1, 2, 3};

for x in S | x < 3 do

S with:= 10 + x; -- no effect on the iteration

end for;

-- now: x = 5 and S = {1, 2, 3, 11, 12}

end prog;

Figure 10: An example for the for loop.

7.4.4 for

A for loop is written as follows:

For ✲ for ✲ Iterator

✲ | ✲ Expr

✲ do ✲ Stmts >

The Iterator is identical to set and tuple forming iterations and to quantified expressions (section 6.7).
Forming iterations and quantified expressions imply implicit loops. The following is an explicit loop
over all elements of the set S that satisfy p(x):

for x in S | p(x) do eat(x); end for;

The variable x in this example is called the bound variable of the iterator. The variable x is local
to the loop construct. This is similar to bound variables which are local to set and tuple formers
resp. quantified expressions (sections 5.2 and 6.8). Each time the enclosed statements are executed,
the bound variable is assigned the value of another element of S, provided p(x) yields true. The
statements are executed exactly as many times as there are elements x in S for which p(x) yields
true. When all elements of S have been dealt with, the program executes the statements following
the end of the loop.

Iterations over tuples and strings can be described in exactly the same manner as iteration over sets.
One significant difference between set and tuple resp. string iterators is that for the latter two we
know the order in which components will be examined by the iteration: they are produced in order
of increasing index.

It is not allowed to change the values of bound variables. They may be regarded as constants for
each iteration.

Iterations proceed over copies, thus side effects on S by eat(x) in the above example would not
influence the iteration over the copy of S. Consider the example in Fig. 10: the bound variable x is
local to the for loop. Assignments to x are not allowed within the loop. The assignment to S has no
effect on the iteration.

Multiple simple iterators in a for loop such as in

for x in S, y in T | p(x,y) do eat(x,y); end for;

are equivalent to nested for loops:

for x in S do
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program prog;

begin

x := 5;

S := {1, 2, 3};

whilefound x in S | x < 4 do

eat (x); -- now: x = 1 or x = 2 or x = 3

S less := x ;

end whilefound;

-- now: x = 5 and S = { }

end prog;

Figure 11: An example for the whilefound loop.

for y in T | p(x,y) do

eat(x,y);

end for;

end for;

However, quit and continue statements in a loop controlled by multiple iterators refer to the outer-
most iterator.

7.4.5 whilefound

In Setl the exists expression sets its bound variables on exit to the value found or om if no value
was found. This is sometimes useful in constructs such as

(while exists x in { ... } | condition(x) ) ...

In Setl, a found set-element is directly available via x, but this bound variable is not local to the
loop. In ProSet, bound variables are local to for loops (section 7.4.4).

For these reasons we provide the whilefound loop:

Whilefound ✲ whilefound ✲ Iterator

✲ | ✲ Expr

✲ do ✲ Stmts >

Consider the example in Fig. 11: the body of the loop is executed provided an exists expression with
the same iterator would yield true (section 6.8). The bound variables are local to the whilefound

loop as they are in for loops. It is not allowed to change the values of bound variables. The iterator
is reevaluated for each iteration unlike in for loops.

7.4.6 quit and continue

The quit and continue statements increase the syntactic flexibility of ProSet’s loop constructs:
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Statement

✲ continue

✲ quit

✲ Label >

After executing the quit statement, looping ends, and execution proceeds with the first statement
that follows the innermost loop provided no label is specified. If a label is specified, then the first
statement that follows the respective loop is executed.

The continue statement lets the innermost loop proceed with the next iteration provided no label is
specified. If a label is specified, then the corresponding loop proceeds with the next iteration. Only
loop loops pass the control directly to the first enclosed statement. In while, repeat, and whilefound

loops the condition is evaluated again. Control is passed only to the first statement enclosed, if the
condition evaluates to true. In for loops the next iteration is performed provided that there is at
least one iteration step left.

The label has to be a valid loop name. These statement are only allowed within loops.

7.5 if Statements

The if statement is used to direct program control along one of several alternative paths, chosen
according to some stated condition:

IfStmt ✲ if ✲ Expr ✲ then ✲ Stmts

<

✲ ElseIf ✲ else ✲ Stmts >

Execution of the if statement proceeds as usual: the expression after the keyword if is evaluated
and has to provide a Boolean value. If this value is true, then the statements following the keyword
then are executed. If this value is false and there is no elseif and no else specified, then the first
statement that follows the if statement is executed. If it yields false and there is no elseif but
else specified, then the statements behind the keyword else are executed. The elseif cases are
abbreviations for nested if statements where the respective end if trailers are removed:

ElseIf ✲ elseif ✲ Expr ✲ then ✲ Stmts >

Conditional expressions are discussed in section 6.3.

7.6 case Statements

The case statement is a generalization of the if statement. Whereas the if statement controls the
flow of execution of a program by choosing sequentially between two alternatives, the case statement
allows us to choose among any number of alternative paths of execution:
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program prog;

begin

x := 1;

loop

case x

when 1 => pass;

when 1 => x := 2;

when 2 => quit;

end case;

end loop;

end prog;

Figure 12: An example for the case statement.

CaseStmt ✲ case ✲ Expr ✲ Case ✲ else ✲ Stmts >

For each branch a list of guarding expressions is specified:

Case ✲ when ✲ Expr

, ✛

✲ => ✲ Stmts >

Execution of the case statement proceeds as usual: the expression behind the keyword case is
evaluated and may provide any type. If this value is equal to the value of exactly one of the guarding
expressions, then the respective statements are executed. If this value is not equal to any guarding
expression, then the statements behind the keyword else are executed. If this value is equal to no
guarding expression, and there is no else specified, then the first statement that follows the case

statement is executed.

If this value is equal to several guarding expressions, then one of them will be selected nondeterminis-
tically, and the respective statements are executed. There are no guarantees given for a fair selection
of guarding expressions: it is not guaranteed that the program in Fig. 12 terminates. However, the
program may terminate.

The case expression is discussed in section 6.4.

8 Exception Handling

In this section we discuss ProSet‘s exception handling mechanism. Having introduced the basic
notions in 8.1, we illustrate them in the following subsection 8.2. The next three subsections 8.3 - 8.5
analyse the mechanism in detail. Exception handling and its influence on the treatment of persistent
values is the subject of 8.6. Subsection 8.7 presents the most frequently used system-defined exceptions.
We conclude this section with a comparison to other concepts.
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8.1 Introduction in Exception Handling

Exception handling in ProSet supports the implementation of structured and reliable programs. A
program should highlight the idea of the underlying algorithm. Thus, the main part of a program unit
should implement the algorithm. Exceptional conditions (or in short exceptions) and their handling
complete the program unit. Consequently, our concept of exception handling is based on the following
definition.

An exception is a situation, which, once detected, interrupts the execution of the operation by which
it is raised and which subsequently has to be communicated to the caller of that operation.

The caller has knowledge of the context in which the operation has been invoked. A flexible response
to the activation of an exception is possible. In our approach the idea of exception must be understood
as an arbitrary non-normal but not necessary an erroneous situation.

The course of actions when handling an exception is as follows (note that we also introduce some
notations in boldface):

1. If the exception is detected in an operation, an exception is raised, i.e. this event is signalled
to the caller of the operation.

2. The caller reacts by invoking a program unit that previously has been associated with the
exception. These units are called exception handlers.

3. The associated handler is executed. The purpose of such handlers is:

• diagnosing the situation,

• handling the situation,

• determining the subsequent flow of control.

A main decision in designing an exception handling model is whether a signaller (i.e. the exception
raising unit) has to be terminated (i.e. the execution of the caller continues) or can be resumed
(i.e. the execution of the signaller continues) having handled the exception. ProSet supports both
models in a flexible manner.

8.2 Introductory Examples

First we describe a situation in which an operation is unable to satisfy its output assertions. An
example is the input routine my fget which is similar to the standard routine fget. If an end-of-file
is encountered instead of an argument to be read in the input stream, it raises an exception classified
as escape exception. Hence the operation will be terminated and control returns. Resuming the
operation is not possible.

We will invoke my fget as declared in Fig. 13 in a procedure that initializes data (Fig. 14). If it
is found that an end-of-file mark read from input is inappropriate, my fget raises the exception
UnexpectedEOF, which is classified as escape.

In the procedure Init data a handler (called Input) is associated with the exception UnexpectedEOF.
The association is done using the construct when UnexpectedEOF use Input. This association is only
valid for the call of my fget. Thus, if the exception UnexpectedEOF is raised the handler is executed.

The handler‘s behaviour is twofold. Depending on a condition which is determined through a para-
meter to the handler it decides whether

• it is possible to use the subsequent statements of Init data to finish initializing (executing the
return-ended branch) or

• it is necessary to finish initializing in an alternative way (executing the abort-finished branch).
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procedure my_fget(rd file, wr arg_1, ... ,wr arg_n);

assigned_args := 0;

begin

-- ...

if feof(file) then

escape UnexpectedEOF(assigned_args); -- raising the exception UnexpectedEOF

end if;

-- ...

end fget;

Figure 13: An example for handling range faults – signaller

procedure Init_data;

begin

-- ...

my_fget("a_file",in_1, ...,in_n)

when UnexpectedEOF use Input; -- associating the exception with a handler

-- ...

handler Input(rd assigned_number);

begin

if Small(assigned_number) then -- diagnosing the parameter

return; -- executing the next statement after the call of my_fget

-- all parameters are set to om

else

Init_substitute_data(); -- satisfying the output assertions of Init_data

-- in an alternative way

abort; -- regular termination of Init_data

end if;

end Input;

end Init_data;

Figure 14: An example for handling range faults – caller
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-- ...

if P-file_not_available then

signal P_file_incorrect(p_name); -- raising the exception P_file_incorrect

Retry_with_new_name(p_name); -- the operation may be resumed with a new name

end if;

-- ...

Figure 15: An example for handling domain faults – signaller

procedure Modify_persistent_data;

visible persistent x : "otto"

when P_file_incorrect use Substitute_p_file; -- associating the exception with

-- a handler

begin

-- ...

handler Substitute_p_file(rw p_file_name);

begin

Evaluate_situation(p_file_name,can_be_substituted); -- diagnosing the

if can_be_substituted then -- situation

p_file_name := "karl";

resume; -- resuming with a new name

else

escape Persistent_error; -- A situation arises which cannot be resolved in

-- this context.

-- An exception is raised, which is signalled to

-- the caller of Modify_persistent_data

end if;

end Substitute_p_file;

end Modify_persistent_data;

Figure 16: An example for handling domain faults – caller

The handler must terminate the signaller, this is due to the fact that we are dealing with an escape-
exception.

In this first example we see how to handle range faults, which are in general unresolvable. However,
domain faults may be corrected by the user. An example for such a situation is the persistent
declaration.

Some lines from a routine similar to our mechanism treating persistent declarations (see section 9.1)
are shown in Fig. 15. A part is shown in which an inappropriate P − File name in detected. A
persistent declaration is encountered in the procedure in Fig. 16. Here, a signal-exception is used (i.e.
either termination or resumption is possible, depending on the caller). The signaller is prepared here
to resume the execution, i.e. to retry the declaration with a new name. This is indicated by resume

in the handler‘s body. But the signaller cannot decide whether or not the caller is able to provide a
substitute name.

Using the same construct as in the first example for associating, a handler called Substitute p file

is associated to the exception P file incorrect. The handler tries to provide a new name. If this
fails due to the context, another exception (Persistent error) is raised. This is another form of
terminating the signaller.

An example using exception handling in expressions is presented in Fig. 17. Here the exception
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-- ...

if (x/y)[illegal_operand use substitute]/abs(z) < 0 then

put("zero_divide with y or negative expression");

end if;

-- ...

handler substitute();

return -1;

end substitute;

Figure 17: An example for handling exceptions in expressions

illegal operand is raised by system when a zero divide occurs. To prevent the program from ter-
minating if y equals zero a handler is associated which substitutes x/y by -1. This association is
only valid for the inner division, nevertheless the program terminates if z equals 0, assuming no other
handler is specified.

A last example concerns situations described by monitoring. Here, the signalled exception does not
indicate failures, but rather a situation the caller wants to supervise. In general, there are two
applications for monitoring:

• The caller wants to keep track of the operation‘s progress.

• Under certain, rare situations the operation needs additional informations which are costly to
produce or extensive in nature.

Our example deals with the first application. The example is based on a module providing routines to
work on a relation Employee in a relational database represented by tuples in a B-tree (Fig. 18). The
procedure Iterate signals the exception Value and passes each item found in an instance of BTree
as a parameter to the handler.

The user of Iterate monitors those items by looking for a special item, all or part of which can be
collected. On every item it decides whether to stop evaluating items or to resume and evaluate more
items.

In Fig. 19 Empl is an instance of BTree (see 11.3 for instantiation). Three applications of exception
handling are presented. For each item, we gave a corresponding SQL-query. They are indicated in
comments by enclosing them in brackets.

With the first call of Iterate all items are put out to the standard output (by executing the associated
handler SelectAll).

With the second call the fact is used that the parameter to the exception (called btree(index) in
Iterate and tup in the handler) is a rw-parameter, hence it will be written by the handler. Thus, a
new value is passed back to the signaller.

The third use of monitoring starts calling Append which iterates on Empl. If a given value tup is in
Empl appending is aborted. If tup is not in Empl, i.e. if all items in Empl are signalled to Append and
are compared with the value to be inserted (tup), then the procedure Iterate terminates without
raising an exception and the subsequent Insert is executed.

In the last example for resuming exceptions classified as signal are raised. Another variant is using
notify-exceptions. They are expecting the caller to resume.

Another application is using exceptions to classify results (i.e. to provide additional informations
using exception parameters) of an operation. Instead of a normal return an exception is raised to
pass parameters classifying the evaluated result to the caller. This classification can be examined in
a handler. To simulate the regular flow of control the handler executes a return-statement.
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module BTree(wr Iterate, wr Insert);

...

procedure Iterate();

begin

for index in [1..TreeSize] loop

signal Value(btree(index)); -- every tuple in btree is signalled to the caller

end for;

end Iterate;

procedure Insert();

begin

-- ...

end Insert;

end BTree;

Figure 18: An example for monitoring – exporting module

8.3 Raising Exceptions

With the notion of raising an exception it is merely described that the occurrence of an exception is
communicated to the caller and that control is handed over. Hence raise is a rather technical notion
and may hide a rather complex flow of control.

We extend this notion by classifying exceptions into three classes.

notify: The caller obtains a progress report of the evaluation or is requested to carry out some
evaluations not implemented by the signaller. This mechanism is akin to co-routines.

signal: The signaller is not able to determine either the handling nor the subsequent flow of control.
Further handling depends on the context of the caller. The exceptional condition occurred here
cannot be analyzed by the signaller.

escape: In contrast to signal-exceptions the signaller is able to realize that further treatment is not
possible in the local context. This has to be done by the signaller.

For the sake of unambiguous modeling, each exception should be attached to only one of those classes.

Following that classification the restrictions concerning the subsequent flow of control leaving the
handler are obvious, viz. :

notify: The signaller must be resumed.

escape: The signaller must be terminated.

signal: The signaller may either be resumed or terminated.

Syntactically, we use a raise-statement to raise an exception:
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visible row := 1;

begin

-- first use: output of all elements (select * from Empl)

Empl.Iterate()

when Value use SelectAll;

-- second use: updating an relation (update Empl set Sal = Sal + 100 where Sal > 1000)

Empl.Iterate()

when Value use UpdateSal;

-- third use: appending a tuple (insert into Empl values (tup) )

Append(tup);

handler SelectAll(rw tup);

begin

putf("Tuple %d: %x\n",row,tup);

row +:= 1;

resume; -- resuming to get the next tuple

end SelectAll;

handler UpdateSal(rw tup);

begin

if tup(Sal) > 1000 then

tup(Sal) +:= 100;

end if;

resume; -- resuming to update the salaries

end UpdateSal;

procedure Append(rd tup);

begin

Empl.Iterate()

when Value use IsIn;

Empl.Insert(tup);

handler IsIn(rw new);

begin

if tup = new then

abort; -- tup is just in Empl, appending is terminated

else

resume; -- resuming to get the next tuple

end if;

end IsIn;

end Append;

Figure 19: An example for monitoring – three applications
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Statement

✲ notify

✲ signal

✲ escape

✲ Id ✲ ( ✲ ParamList ✲ ) >

8.4 Associating Exceptions and Handlers

Exception handling takes place at the signaller‘s activation point. The association need not be defined
there, it only takes effect at that point. As a consequence we require the handler name to be visible.
The association can be bound syntactically to statements, to expressions or to declarations.

There are two forms of association: explicit associations for associating at a certain place in the
executable part of the program and implicit associations for defining a default handler for some
exceptions.

Explicit association: Particular exceptions and handler are associated using

ListOfId ✲ Id

, ✛

>

ExplHandAss ✲ ListOfId ✲ use ✲ Id >

Assocs

✲ when ✲ ExplHandAss

, ✛

>

• the notation with square brackets for binding the association to expressions (see section 6.9),

• the when .. use .. construct for binding the association to statements (see 4.1) and
declarations (see 4.4).

Implicit association: Implicit associations (handler h (...) for e 1,. . .,e n ) are indicated by
listing exceptions in the header of those handlers that should be used to handle the exceptions
listed in the scope of their visibility.
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ImplAssoc ✲ for

✲ ListOfId

✲ others

>

Explicit associations overwrite implicit associations as well as conflicting explicit associations in enclos-
ing ranges. Associating exceptions to handlers binds syntactically with the same priority as selecting
(see section 6.1).

We realize the following properties in our model:

• more than one exception can be associated to one handler,

• an exception raised by a particular operation can be treated differently at different calls of that
operation,

• a particular exception that is raised by different operations can be treated differently,

• the association between handler and exception need not be explicit.

Note that binding of exceptions to handlers is done at runtime. Thus there are no static checks.

8.5 Handler

Handlers are similar to procedures, except that

• they are only invoked by raising exceptions,

• they determine the flow of control in a different way,

• they do not have first class rights and it is not possible to generate a first class form from them.

Consequently, handlers are themselves program units in which a complete exception handling can
happen. Similar to procedures, handler may have parameters. The list of formal parameters is given
when a handler is declared. Actual parameters are supplied when the exception bound to the handler is
raised. rd is the default parameter mode. wr- and rw-parameter make sense using the resuming model
which allows communication between signaller and caller (the latter is represented by the handler). If
the handler has a return value, it is used instead of the return value of the signaller.

The syntax for defining a handler is that of defining procedures extended by a construct for implicit
associations:

HandlerDefn ✲ HandlerHeader ✲ Body ✲ HandlerTrailer >

HandlerHeader ✲ handler ✲ Id ✲ ( ✲ ParamList ✲ )

<

✲ ImplAssoc ✲ ; >
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HandlerTrailer ✲ end ✲ Id ✲ ; >

Instead of listing particular exceptions a notation others may be used. With others we define a
default handler:

• in explicit associations: when others use ... ;

• in implicit associations: handler h(..) for others;

Definitions using others are valid for all exceptions not associated to any other handler. The compiler
inserts the default handler at the outermost level, i.e. at the program level. This handler works as
follows:

• it prints the name and the signaller of the exception,

• it terminates the program (stop) with the error code not successful.

By specifying own handlers the user can overwrite this handler.

As mentioned above, the handler determines the flow of control. The return-statement of procedures
is replaced by

resume: to resume the execution of the signaller.

Statement ✲ resume >

return: to continue the execution of the caller with the next statement following the call of the
signaller. Write-parameters of the signaller are given the value om. The return value of the
handler is passed to the caller (see section 4.5).

abort: to terminate the signaller and the caller. The caller is terminated without raising an exception
from the caller level, i.e. the caller terminates normally, and without giving the value om to
write-parameters of the caller, but the actual values.

Statement ✲ abort ✲ Expr >

return and abort are forms of termination. If the signaller is terminated all locks held by the
signaller are released. Note that persistent values are not updated. This is a temporary restriction to
our exception handling model, for details see section 8.6.

There must be a correspondence between the raise-form (notify, signal, escape) and the handler
response. Otherwise, the program will be terminated returning to the environment with the error
code not successful, see section 4.2.5.

For termination of the entire program, the stop-command can be used (section 7.3.2).
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8.6 Exception Handling and Transactions on Persistent Objects

Future versions of ProSet may integrate a more elaborate transaction mechanism. A commit for
a transactions on persistent objects is right now realized implicitly by the return-statement. But
a transaction abort is missing. So far the termination of the signaller having handled any excep-
tion substitutes that functionality, although this is a severe restriction to the intuition concerning
exceptions. We have to prevent updating modified persistent values in erroneous situations. Erro-
neous situations may occur using escape (errors detected by the signaller) or using signal (errors
detected by the caller). Thus, updating should be prevented on every termination of the signaller. As
a consequence, the following situations cannot be delt with appropriately:

• monitoring, where the caller decides whether to continue evaluating or to terminate. Here, all
evaluated persistent results are destroyed,

• letting the handler carry out some evaluations yet satisfying the output assertions. Results may
be destroyed.

8.7 Frequently Used Exceptions

Here we describe commonly used exceptions. These exceptions are raised always in the same manner
and with the same parameterization.

memory full escaped exception, raised whenever there are any problems allocating memory. There
are no parameters passed.

type mismatch escaped exception, raised whenever there is a mismatch between the expected type
and the actual type of a value.

A macro Predef Exceptions yielding all predefined exceptions is available.

8.8 General Remarks

In this last subsection we make some more general remarks on exception handling in ProSet. Readers
interested in exception handling beyond these remarks are referred to Goodenough4 or to Philbrow
and Atkinson5.

The mechanism described in the previous subsections is called single level mechanism, i.e. every
exception is signalled only to the immediate caller. For every exception, there exists an associated
handler. This may be the system-defined default handler, provided the user choose not to directly
associate a handler to the exception. Every handler is executed on the caller level. Thus, there is no
propagation of exceptions to outer levels. The usefulness of this approach using a default handler is
illustrated by the following considerations.

A module exports some routines. These may use local functions. Assume one of these internal
functions raises an exception that is not handled in an exported routine which invokes the function
that raises the exception. Then the exception must be handled by the user outside the module.
Exporting those exceptions

• may violate information hiding,

• may cause propagating uninterpretable exceptions due the increasing level of abstraction on
outer levels in the hierarchy of procedure calls,

4J. B. Goodenough: Exception Handling: Issues and a Proposed Notation, Communication of the ACM 18(12), 683
- 696, 1975

5P. C. Philbrow and M. P. Atkinson: Events and Exception Handling in PS-algol, Computer Journal 33(2), 108 -
125, 1990
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• violates ProSet‘s type system.

So, propagating exceptions in our model must be realized by raising exceptions adapted to the new
context in a handler that handles an exception on a lower level of abstraction.

Our approach is in contrast to the so called multi level mechanism, which is the basis for exception
handling e.g. in Ada or Clu. There exceptions that have been raised are propagated to outer levels
until there is an explicitly associated handler. Handling takes place on that level. This is a simpler
approach for realizing the handling of exceptions on an appropriate level (i.e. in a context which allows
the successful handling). But the disadvantages follow from the discussion above. Information hiding
may be violated and propagated exceptions are not adapted to the higher level of abstraction.

Another design decision we made is the distinction of exceptions and handlers. This has been done
for the sake of flexibility. We want to provide a means to model and adequately handle exceptional
conditions. It should be possible to handle an exception in different contexts in different ways.

An outstanding feature of exception handling in ProSet is the support of a termination and resump-
tion model. In some languages resumption is considered not necessary, because many applications of
resumption may be simulated by implementing an explicit retry of the failed operation. But a clear
modeling of monitoring or co-routines is difficult without such a feature.

Concluding this section we want to point out that we interprete the notion of exception in a rather
wide sense. This promotes exception handling from a device for failure handling to a mechanism
dealing with a wider range of situations.

9 Persistence

We describe in this section persistent values and their containers which are represented by an abstract
data type called P − file.

Prototyping aspects Persistence is interesting when considered in the context of software proto-
typing. Since prototyping combined with support for a semantic data model allows formulating data
on a very high-level for modeling purposes, it is simply a matter of economy to make data persistent:
once data are modeled it is not necessary to compute them each time they are used. Hence re-using
data in a program does not necessarily mean recomputing them. A related concern for re-using data
comes from the observation that more than one program may want to access them. Thus one pro-
gram may generate data and another may want to access these data. Consequently one may have to
face a situation where programs communicate through persistent data. We address the problem of
concurrent access to these data only briefly here.

9.1 Persistent values

Persistence of data is characterized by the fact that these data outlive the program that generated
them; this is in contrast to volatile data which vanish once the program ceases running. Persistence is
an orthogonal property of values. Each value enjoying first class civil rights may be made persistent
using the name with which it has been defined as a handle. Making use of a persistent value requires
indicating this fact in the scope where this is to happen, and indicating the container from which
this value is to be taken as well. Manipulating a persistent value requires an explicit indication of
that respective intention. This discussion will make it clear that out mechanism for persistence allows
creating and manipulating persistent data, but the the destruction of these data is outside the realm of
the user’s possibilities; destroying persistent data in the sense of removing a name to which a persistent
value is bound (and the value as well) from a repository of persistent data will be a privilege of a tool
in the environment.



9.1.1 The Persistence Declaration 59

Persistent values are kept in data structures called P −files which in turn are identified in a program
through a string literal. We will discuss P − files in 9.2 in greater detail. Let for now "PFile" be a
string literal denoting a P − file.

We declare a value accessed through the identifier x as persistent together with an indication that it
is to be taken from the P − file denoted by "PFile" using the following device in the declaration
section of a range

persistent x: "PFile";

The keyword persistent may be used in conjunction with other declarative keywords like constant
or visible, so that a name is declared as a visible constant taken from the P − file "PFile" is
declared by the mini-novel

persistent visible constant x: "PFile";

Notice that omitting the keyword visible here implies that x will be hidden, which is the default.

9.1.1 The Persistence Declaration

We discuss now the effect of declaring an object as persistent in a range. This looks syntactically as
follows:

Decls

✲ visible

✲ hidden

✲ persistent

✲ constant

<

✲ Identifier

, ✛

✲ : ✲ Expr ✲ ; >

Hence identifiers are associated with a P −file; the identifiers may optionally be flagged as constants,
indicating that they must not be changed.

Before continuing, we want to remind the reader of a lock6: locks are being held by transactions, i.e.
by operations on a P −file for the purpose of manipulating persistent values, and they are associated
with these values (which will be called items to avoid the all-pervasive term object). Transactions
themselves are administered by a transaction manager, i.e. a program component in the run time
system of the ProSet program under consideration. Some of the manager’s responsibilities will be
outlined below. Returning to locks, we note that for the time being locks come in two flavors, they
may be read locks, and write locks, respectively:

read lock a read lock on an item prevents the item to be written by any transaction other than the
one holding the lock. Consequently holding a read lock on item x means for transaction τ that
it may read the item, and that no other transaction may change the value of x while τ holds
the lock. More than one transaction may hold a read lock on the same item,

6For a detailed discussion, we refer the reader to J. D. Ullman: Principles of Database and Knowledge-Base System,
vol. I. Computer Science Press, Rockville, MD, 1988, Chapter 9
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write lock a write lock on an item permits the transactions holding that lock to read and to write
the item. Given an item x, then at most one transaction may hold a write lock on x at any
given time, and no other transaction may hold a read lock on x at the same time.

Variable declaration When encountering the declaration

persistent x: "PFile";

upon entering a range, the steps outlined below are taken.

First the program’s environment is searched for the P − file "PFile". It this is not successful, or
if the user does not have the proper rights for reading and for writing "PFile", the program aborts.
Let us denote by x."PFile" the incarnation of x we are discussing (other P − files may contain
x’s, too, given the popularity of that identifier). If the transaction manager finds a lock being set
on x."PFile" by another program, the execution of the program under consideration is suspended
until the value is accessible to it for writing. Now suppose "PFile" exists, the user has appropriate
rights, and no lock is set on x."PFile". The transaction manager providentially grants a write lock
on x."PFile" to this transaction, independently of whether or not x."PFile" exists, and then checks
the existence of x."PFile". If it exists, the value is loaded, and everything is fine: when the range is
left, the new value for x."PFile" is written to "PFile", and the write lock is revoked. If, however,
x."PFile" does not exist, we are in trouble. A notify exception p missing name is raised, and the
default handler (cp. 8.5) aborts the program. If p missing name is handled by the user, then x is
inserted into "PFile" as having the value om, provided the handler terminates with resume. The write
lock remains as it is, and execution of the unit containing the range continues. If the handler does
not terminate with resume, however, x is not generated, the write lock is revoked, and the program
aborts according to the notify restrictions.

Constant declaration When encountering the declaration

persistent constant x: "PFile";

upon entering a range, mutatis mutandis the following steps are taken: The program’s environment
is searched for the P − file "PFile". It this is not successful, or if the user does not have the proper
rights for reading "PFile", the program aborts. Let us denote again by x."PFile" the incarnation of
x we are discussing. If the transaction manager finds a write lock being set on x."PFile" by another
program, the execution of the program under consideration is suspended until the value is accessible
to it for reading. Now suppose "PFile" exists, the user has appropriate rights, and no write lock
is set on x."PFile". The transaction manager providentially grants a read lock on x."PFile" to
this transaction, and then checks the existence of x."PFile". If it exists, the value is loaded as a
constant, and when the range is left, the read lock is revoked. If, however, x."PFile" does not exist
the program is aborted.

The example in Fig. 20 demonstrates the use of a simple persistent procedure. The exception
p missing name is handled so that it resumes after having generated the missing persistent value.

When leaving the procedure demo we observe as a side effect that the t demo is now a persistent value
in the P−file otto. Note that we cannot directly make the procedure declared above persistent, since
procedures do not have first class rights. Applying the closure operator (elevating the procedure to
a function) enables us to do this. The procedure user makes use of t demo, as indicated in Fig. 21.
Hence each time invoking user we will find t = 13 in the output.
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procedure demo;

visible t := 13;

persistent t_demo: "otto" when p\_missing\_name use DoResume;

begin

t_demo1();

t_demo := closure t_demo1;

procedure t_demo1();

begin

if t < 17 then

put("t = ", t);

t + := 1;

end if;

end t_demo1;

handler DoResume();

begin

resume;

end DoResume;

end demo;

Figure 20: Persistent Procedure

procedure user();

persistent constant t_demo: "otto";

begin

t_demo();

end user;

Figure 21: Making use of a persistent procedure
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9.2 The ADT P − file

Persistent values will usually be stored outside the program defining or using them. The specific kind
of location is implementation dependent, e.g. it may happen that cache memory is large enough to
hold the contents of a small collection of persistent values at run time, but it may also be the case
that primary memory is at premium and that all persistent values have to be swapped to secondary
memory. Hence we specify only the operations on the containers for persistent values (called P−files),
and we leave the realization of these operations together with these specific management of internal
or external storage to an implementation.

As a first approximation, P − files may be compared to the well known archives under UNIX. An
archive consists of a table of contents and of the files (mostly binaries) which are stored in it. Archives
may be accessed in a number of ways: one can read the table of contents, one may insert or delete an
element from an archive and one may extract named elements from it. In addition, the archive is a
UNIX-file, thus it may be identified through an identifier which is admissible under a particular shell.

The abstract data type P − file is represented by a string as an identifier. The string may bear some
internal structure e.g. for indicating a hierarchy of P − files. This will be exploited by a suitable
tool. The identifier representing a P − file is used to access the P − file in the same way a file is
accessed using its name.

The following operations are provided by the tool for P − files:

• creating an initially empty named P − file; the name is a valid identifier,

• removing a named P − file. The persistent values stored in it are no longer accessible,

• listing the table of contents of a named P − file. This indicates which values are stored there
by enumerating the names in some order,

• removing a named element from a named P − file,

• compressing a named P − file akin to garbage collecting primary memory.

These operations are carried out by tools outside ProSet programs.

10 Multiprocessing

Tuple space communication in ProSet as presented in this section is designed for multiprocessing
(single application running on multiple processors) as opposed to multiprogramming (separate appli-
cations). Multiprogramming is done via handling persistent data objects (section 9).

The following subsections will discuss Linda, process creation, and tuple-space communication in
ProSet.7

10.1 Linda

Linda is a coordination language concept for explicitly parallel programming in an architecture in-
dependent way, which has been developed by David Gelernter at Yale University.8 Communication
in Linda is based on the concept of tuple space, i.e. a virtual common data space accessed by an
associative addressing scheme.

7A more detailed discussion and some examples may be found in W. Hasselbring: “On Integrating Generative
Communication into the Prototyping Language ProSet”, Informatik-Bericht 05-91, University of Essen, 1991.

8For a full account to parallel programming in Linda see N. Carriero and D. Gelernter: “How to write parallel
programs”, MIT Press, 1990.
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Reading access to tuples in tuple space is associative and not based on physical addresses — in fact,
the internal structure of tuple space is hidden from the user. Reading access to tuples is based on their
expected content described in so-called templates. This method is similar to the selection of entries
from a data base. Each component of a tuple or template is either an actual, i.e. holding a value of a
given type, or a formal, i.e. a placeholder for such a value. A formal is prefixed with a question mark.
Tuples in tuple space are selected by a matching procedure, where a tuple and a template are defined
to match iff they have the same structure (corresponding number and type of components) and the
values of their actuals are equal to the values of the corresponding tuple fields.

Linda defines six operators, which may be added to a sequential computation language. These
operators enable sequential processes, specified in the underlying computation language, to access the
tuple space. The out operation evaluates and adds a tuple to the tuple space. The eval operation
adds an unevaluated (active) tuple to the tuple space. The fields of an eval tuple are evaluated
concurrently yielding one thread of execution for every field. The in operation attempts to withdraw
a specified tuple from tuple space. Tuple space is searched for a matching tuple against the template
supplied as the operation’s argument. When and if a tuple is found, it is withdrawn from tuple space,
and the values of its actual fields are bound to any corresponding formals in the template. Tuples are
withdrawn atomically: a tuple can be grabbed by only one process, and once grabbed it is withdrawn
entirely. If no matching tuple exists in tuple space, the process executing the in suspends until a
matching tuple becomes available. If many tuples satisfy the match criteria, one is chosen arbitrarily.
The rd operation is the same as in, with actuals assigned to formals as before, except that the matched
tuple remains in tuple space. The predicate operations inp and rdp attempt to locate a matching
tuple and return 0 if they fail; otherwise, they return 1 and perform actual-to-formal assignment as
described above. The only difference with in/rd is that the predicates will not block if no matching
tuple is found.

10.2 Process Creation

In this section we will present an adaptation of the approach for process creation known from Mul-

tilisp to set-oriented programming, where new processes may be spawned inside and outside of tuple
space.

10.2.1 Multilisp’s Futures

Multilisp9 augments Scheme with the notion of futures where the programmer needs no knowledge
about the underlying process model, inter-process communication or synchronization to express par-
allelism. He only indicates that he does not need the result of a computation immediately (but only
in the “future”) and the rest is done by the runtime system. Instead of returning the result of the
computation, a placeholder is returned as result of process spawning. The value for this placeholder is
undefined until the computation has finished. Afterwards the value is set to the result of the parallel
computation: the future resolves to the value. Any process that needs to know a future’s value will
be suspended until the future resolves thus allowing concurrency between the computation of a value
and the use of that value. The programmer is responsible for ensuring that potentially concurrently
executing processes do not affect each other via side effects. An example:

(let ((x (future expr1))
(y expr2))

( body ))

The value for x, which will be the result value of expr1, is evaluated concurrently to expr2 and body.
The value for y, which will be the result value of expr2, is evaluated before the evaluation of body will

9A full account to Multilisp may be found in R.H. Halstead: “Multilisp: A language for concurrent symbolic
computation”, TOPLAS, 7(4), 501–538, 1985
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be started. When body needs the value of x, and x is not yet resolved, it touches the future of x and is
suspended until the future resolves. Most operations, e.g. arithmetic, comparison, type checking, etc.,
touch their operands. This is opposed to simple transmission of a value from one place to another,
e.g. by assignment, passing as a parameter to a procedure, returning as a result from a procedure,
building the value into a data structure, which does not touch the value. Transmission can be done
without waiting for the value.

10.2.2 Process Creation in ProSet

Futures in Multilisp provide a method for process creation but no means for synchronization and
communication between processes, except for waiting for each other’s termination. In our approach
the concept for process creation via futures is adapted to set-oriented programming and combined
with the concept for synchronization and communication using tuple spaces.

Multilisp is based on Scheme, which is a dialect of Lisp with lexical scoping. Lisp and Scheme

manipulate pointers. This implies touching in a value-requiring context and transmission in a value-
ignoring context. This is in contrast to ProSet that uses value semantics, i.e. a value is never
transmitted by reference. However, there are a few cases where we can ignore the value of an expres-
sion: if the value of an expression is assigned to a variable, we do not need this value immediately,
but possibly in the future.

Process creation in ProSet is provided through the unary operator ||, which may be applied to an
expression (preferably a function call). A new process will be spawned to compute the value of this
expression concurrently with the spawning process analogously to futures in Multilisp.

If this process creator || is applied to an expression that is immediately assigned to a variable,
the spawning process continues execution without waiting for the termination of the newly spawned
process. At any time the value of this variable is needed, the requesting process will be suspended
until the future resolves (the corresponding process terminates) thus allowing concurrency between
the computation and the use of a value. Consider the following statement sequence to see an example:

x := || p(); -- statement 1
... -- Some computations without access to x

y := x; -- statement 2

After statement 1 is executed the process p() runs in parallel with the spawning process. Statement 2
will be suspended until p() terminates, because a copy is needed (value semantics). This is in contrast
to Lisp where an assignment would copy the address and ignore the value. If p() resolves before
statement 2 has started execution, then the resulting value will be assigned immediately.

Also, if a compound data structure is constructed via a set or tuple forming enumeration, and this
data structure is assigned immediately to a variable, we do not need the values of the enumerated
components immediately, thus the following statement allows concurrency as above:

x := { || p(), 123, || q() };

If you replace statement 1 in the previously discussed statement sequence by this statement, then
concurrency would be achieved as before. Such parallel set or tuple forming expressions may be
compared with constructing lists via the function cons in Multilisp, where the list components are
also not touched.

Conversely, in iterative formers such as { || p() .. || q()} the initial and final values for the
iteration are required, and thus the termination of p() and q() has be awaited.

Compound data structures in ProSet are always touched as a whole. Access to tuple or set compo-
nents as in
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x := [ || p(), || q() ];

y := x(1);

touches the whole tuple or set, thus both, p() and q(), have to terminate before x(1) is accessible.
We decide to touch compound data structures always as a whole to retain consistency for tuples and
sets.

The actual parameters for the procedure doit in

x := doit ( || p(), || q() );

are evaluated concurrently to each other. The procedure doit is invoked when both processes have
terminated their execution. The programmer of doit does not have to know that the actual param-
eters are evaluated concurrently. The runtime system takes care of that. Returning an expression
that is prefixed by || achieves concurrency according to the context of the corresponding procedure
invocation.

In summary: concurrency is achieved only at creation time of a process and maintained on immediately
assigning to a variable, storing in a data structure, passing as a parameter to a procedure, returning
as a result from a procedure, and depositing in tuple space (this is discussed in section 10.3.1). Every
time one tries to obtain a copy one has to wait for the termination of the corresponding process and
obtains only then the returned value. The unique moment at which a value is not touched is on
creation of the respective process, because this is the unique moment at which no copy is needed.

Analogously to statements, concurrency is achieved in declarations like

constant c := || p();

visible x := [ || p() ];

If, after one of such a declaration or similar statement, x is assigned a new value, then the corresponding
spawned process will be abandoned10 provided it is still running. Hence, the automatic garbage
collection provides a means for explicit process termination outside tuple space. The automatic
garbage collection also should take place when the existence of an object terminates. This is the
case e.g. on return from a procedure or on program termination. Automatic garbage collection does
not apply to processes within tuple space. Process termination within tuple space is discussed in
section 10.4.

Process-spawning statements Also the following statement, which spawns a new process, is
allowed:

|| p();

The return value of such a process will not be available and it is not possible to abandon it explicitly.
The general form of such a process-spawning statement is

Statement ✲ || ✲ Expr ✲ ; >

If the process creator || is applied in an expression that is an operand to any operator, then this
operator will wait for the return value of the created process. Operators always touch the values of
their operands, and thus have to wait for the termination of processes that compute their operands.
For instance, in the following expressions the return values are needed:

10Killing processes has to be done with care, especially when such processes are still doing tuple-space operations.
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1 + || p()

["x"] + [|| p()]

- || p()

type || p()

As any other operator, the process creating operator || touches the value of its operand. Hence,
an expression such as “|| || p()” does not make much sense: the leftmost || has to wait for
the termination of p(). However, it is syntactically correct. The following expression spawns three
processes:

|| { || p(), 123, || q() }

The set-forming process has to wait for the termination of p() and q().

Side effects and write parameters are not allowed for processes. Communication and synchronization
is done only via tuple-space operations. However, processes may access common, persistent data
objects.

10.3 Tuple-Space Operations

ProSet provides three tuple-space operations:

Statement

✲ Deposit ✲ end ✲ deposit

✲ Fetch ✲ end ✲ fetch

✲ Meet ✲ end ✲ meet

>

The deposit operation deposits new tuples into tuple space, the fetch operation fetches and removes
a tuple from tuple space, and the meet operation meets and leaves a tuple in tuple space. It is possible
to change the tuple’s value while meeting it.

There is no difference between ProSet-tuples and Linda-tuples. Linda and ProSet both provide
tuples thus it is quite natural to combine them on the basis of this common feature. However, a tuple
space is a multiset of tuples, whereas the type system of ProSet does not directly provide the notion
of multisets or bags. One could model multisets e.g. via maps from tuples to counts, but this would
not reflect the matching provided by tuple spaces.

Tuple-space operations are statements that yield no values. They should not be confused with oper-
ators in expressions that always yield values.

10.3.1 Depositing Tuples

The deposit operation deposits tuples into a specified tuple space:

Deposit ✲ deposit ✲ Expr

, ✛

✲ at ✲ TS ID ✲ IfFull >
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It is possible to deposit several tuples in an expression list into one tuple space and several such
expression lists into multiple tuple spaces by one statement, but there are no guarantees made for
the chronological order of availability of these tuples for other operations that wait for them (see
below). The tuples are handed over to the tuple-space manager, which adds them to the tuple space
in an arbitrary order. There is no guarantee given for the time of availability of deposited tuples for
matching templates.

All expressions are evaluated in arbitrary order, before any tuple is put into tuple space. The ex-
pressions must yield tuples to be deposited in tuple space; if not, an exception will be raised. The
identifier TS ID will be discussed in sections 10.4 and 13.8.

We distinguish between passive and active tuples in tuple space. If there are no executing processes
in a tuple, then this tuple is added as a passive one (cp. out of C-Linda). If there are executing
processes in a tuple, then this tuple is added as an active one to tuple space. Depositing a tuple into
tuple space does not touch the value. When all processes in an active tuple have terminated their
execution, then this tuple converts into a passive one with the return values of these processes in the
corresponding tuple fields. Active tuples are invisible to the other tuple-space operations until they
convert into passive tuples. The other two tuple-space operations apply only to passive tuples.

Depositing in tuple space does not touch the values of tuples to be deposited thus the following
statement deposits an active tuple into tuple space:

deposit [ || p() ] at TS end deposit;

whereas the following statement sequence deposits a passive tuple:

x := [ || p() ];

deposit x at TS end deposit;

The deposit operation copies the value of x, and thus has to wait for the termination of p() (see also
section 10.2.2).

Limited Tuple Spaces

Because every existing computing system has only finite memory, the memory for tuple spaces will
also be limited. Pure tuple-space communication does not deal with full tuple spaces: there is always
enough room available. Thus most runtime systems for Linda hide the fact of limited memory from
the programmer. In ProSet-Linda the predefined exception ts is full will be raised by default
when no memory is available for a deposit operation. If there are multiple tuples specified in one
deposit operation, then none of them has been deposited when ts is full is raised. Conversely,
this exception will be raised, if at least one tuple cannot be deposited in any tuple space.

In ProSet it is possible to specify a handler for an exception by annotating a statement with a new
binding between exception name and handler name (section 8):

deposit [ x ], [ || f(x) ]

at TS

end deposit when ts_is_full use MyHandler;

If not explicitly specified with the stop statement, the user-defined handler will not abort the program.
If the handler executes a return statement, then the statement following the deposit will be executed
and none of the tuples of the respective deposit will be deposited. If the handler executes a resume

statement, then the deposit operation tries again to deposit the tuples. The programmer has to take
care not to produce an infinite alternation between raising and resuming. If no user-defined handler
is given, then the runtime system will abort the program with an error code.
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Optionally, the programmer may specify that a deposit operation will be suspended until space is
available again:

IfFull

✲ blockiffull

>

You may specify blockiffull as well as a new binding between the predefined exception ts is full

and a handler name, but then ts is full will never be raised. The compiler will print a warning
message in this case.

10.3.2 Fetching Tuples

A fetch operation fetches and removes one tuple from a tuple space:

Fetch ✲ fetch ✲ Template

✲ => ✲ Stmts

or ✛

✲ at ✲ TS ID

or ✛

✲ Else >

It is possible to specify several templates for multiple tuple spaces in one statement, but only one
template may be selected nondeterministically (section 10.3.5). If there are no else statements
specified (see below) then the statement suspends until a match occurs. The selected tuple is removed
from tuple space. If statements are specified for the selected template, these statements are executed
(only for this template).

A template consists of a list of ordinary expressions and so-called formals :

Template ✲ (

✲ Expr

✲ Formal

, ✛

✲ ) >

The expressions are called actuals. They are at first evaluated in arbitrary order. The list is enclosed
in parentheses and not in brackets in order to set the templates apart from tuples. Note that a
template may be empty to match the empty tuple [ ]. The fields that are preceded by a question
mark are the formals of the template:
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Formal ✲ ?

✲ LValue ✲ | ✲ Expr

>

As usual | means such that. The Boolean expression behind | may be used to customize matching.
A tuple and a template match, iff all the following conditions hold:

• the tuple is passive (matching touches the value)

• the numbers of fields are equal

• types and values of actuals in templates are equal to the corresponding tuple fields

• the Boolean expressions behind | in the formals evaluate to true. If no such expression is
specified in a formal, then this field matches unconditionally

The l -values specified in the formals are assigned the values of the corresponding tuple fields provided
matching succeeds. If such l -values occur in the expressions of formals, then these expressions are
evaluated with the corresponding old values of these l -values. The symbol $ may be used like an
expression as a placeholder for the value of the corresponding tuple field:

fetch ( "x", ? x |(type $ = integer) ) at TS end fetch;

This formal only matches integer values in the corresponding tuple field. Conversely, the formal
“? x |(type x = integer)” would test the value of x before the assignment of the corresponding
tuple value takes place. It is only allowed to use the symbol $ this way in expressions that are parts
of formals. It is not possible to access the values of multiple tuple fields within expressions of formals.

If an l-value is specified more than once, it is not determined which of the possible values is assigned.
If no l-value is specified, then the corresponding value will not be available. You may regard a formal
without an l-value as a “don’t care” or “only take care of the condition” field.

Non-Blocking Matching

It is possible to specify else statements to be executed, if none of the templates matches:

Else

✲ else ✲ Stmts

>

We will use the notion non-blocking matching if else statements are specified as opposed to blocking
matching if no else statements are specified.

An example for the fetch operation:

fetch ( "name", ? x |(type $ = integer) ) => put("Integer fetched");

or ( "name", ? x |(type $ = set) ) => put("Set fetched");

at TS

else put("Nothing fetched");

end fetch;
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10.3.3 Meeting Tuples

The meet operation meets and leaves one tuple in tuple space. It is possible to change the tuple
while meeting it. Exchanging the keyword fetch with meet and the nonterminal Template with
MeetTemplate in the first syntax diagram of section 10.3.2, one obtains the syntax for the meet

operation:

MeetTemplate ✲ (

✲ Expr

✲ Formal
✲ into ✲ Expr

, ✛

✲ ) >

The expressions are evaluated as usual, the formals are used to create templates, which are used for
matching as with the fetch operation (section 10.3.5). If no else case is specified, then the statement
suspends until a match occurs. The values of the tuple fields that were fetched for the corresponding
formals of the template are assigned to the corresponding l -values. If statements are specified for the
selected template, these statements are executed (only for this template).

An example for the meet operation:

meet ( "name", ? x |(type $ = integer) ) => put("Integer met");

or ( "name", ? x |(type $ = set) ) => put("Set met");

at TS

else put("Nothing met");

end meet;

If there are no into’s specified as in this example, then the selected tuple is not removed from tuple
space. This case may be compared with the rd/rdp operations of C-Linda. Except for the fact that
the meet operation without into’s leaves the tuple it found in tuple space, it works like the fetch

operation.

Changing Tuples We allow to change tuples while meeting them in tuple space. This is done by
specifying expressions into which specific tuple fields will be changed. Tuples, which are met in tuple
space, may be regarded as shared data since they remain in tuple space; irrespective of changing them
or not.

If there are into’s specified then the tuple is at first fetched from the tuple space as it would be done
with the fetch operation. Afterwards a tuple will be deposited into the same tuple space, where all
the tuple fields without into’s are unchanged and all the tuple fields with into’s are updated with
the values of the respective expressions. Consider

meet ( "x", ? |(type $ = integer) into $+1 ) at TS end meet;

which is equivalent to the series of statements with temp as a fresh name:

fetch ( "x", ? temp |(type $ = integer) ) at TS end fetch;

deposit [ "x", temp+1 ] at TS end deposit;
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Indivisibility is guaranteed, because fetching the passive tuple at starting and depositing the new
passive or active one at the end of the user-defined operation on shared data are atomic operations.
Note that another process, which does simultaneously a non-blocking meet operation with the same
template, may execute its else statements.

The symbol $ may be used like an expression as before. It is not necessary to specify l -values for
changing tuple fields. However, they may be used:

meet ( "string", ? x |(type $ = integer) into $+1 ) at TS end meet;

Here x is assigned the value of the corresponding tuple field before the change takes place. Remember
that it is only allowed to use the symbol $ this way in expressions that are parts of formals.

The meet operation will not raise ts is full when a tuple space is full while depositing a changed
tuple, when the number of allowed tuples in this tuple space is exceeded (see also section 10.4). The
place for the tuple met will be reserved for the whole operation. However, if the changed tuple exceeds
a physical memory limit, this will raise ts is full.

10.3.4 Comparison with the C-Linda Operations

The deposit operation comprises the out and eval operations of C-Linda. You might compare
depositing of active tuples with eval, but it is not exactly the same, however, because all fields of
an eval tuple are executed concurrently. This is a noteworthy difference: according to the semantics
of eval each field of a tuple is evaluated concurrently. But probably no system will create a new
process to compute e.g. a plain integer constant. The system has to decide, which fields to compute
concurrently and which sequentially. Similar problems arise in automatic parallelization of functional
languages: here you have to reduce the existing parallelism to a reasonable granularity. In our approach
the programmer has to communicate his knowledge about the granularity of his application to the
system.

The fetch operation merges select of Ada and in resp. inp of C-Linda. The meet operation merges
select of Ada, rd and rdp of C-Linda, and allows for changing tuples in tuple space.

10.3.5 Nondeterminism and Fairness while Matching

There are two sources for nondeterminism while matching:

1. Several matching tuples exist for the templates: one tuple will be selected nondeterministically.

2. The selected tuple matches several templates: one template will be selected nondeterministically.

If in any case there is only one candidate available, this one will be selected. There are several ways
for handling fairness while selecting tuples or templates that match if there are multiple candidates
available. We assume a fair scheduler to guarantee process fairness, which means that no single
process is excluded of CPU time forever. We will now discuss fairness of choice which is important
for handling the nondeterminism derived from matching. There exist some fairness notions in the
literature:

Unconditional Fairness Every process will be selected infinitely often.

Weak Fairness If a process is enabled continuously from some point onwards then it
eventually will be selected. Weak Fairness is also called justice.

Strong Fairness If a process is enabled infinitely often then it will be selected infinitely
often.
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In ProSet the following fairness guarantees are given for the two sources for nondeterminism as
mentioned above:

1. Tuples will be selected without any consideration of fairness.

2. Templates will be selected in a weakly fair way.

Since deposited tuples are no longer connected with processes, it is reasonable to select them without
any consideration of fairness. Linda’s semantics do not guarantee tuple ordering — this aspect
remains the responsibility of the programmer. If a specific order in selection is necessary, it has to be
enforced via appropriate tuple contents.

To specify weakly fair selection of templates by means of temporal logic we introduce the following
abbreviations for predicates on a process P and a template T :

E = “Process P executes a blocking fetch or meet operation with template T ”

M = “There is a matching tuple for template T in tuple space”

B = “Process P is blocked with template T ”

S = “Template T is selected for a matching tuple provided there exists one”

A = “Process P is activated (template T was selected)”

Now the above-given fairness guarantee may be formulated as follows:11

E ∧M ∧ S ⇒ A (1)

E ∧ ¬(M ∧ S) ⇒ B (2)

B ∧ ✷✸M ⇒ ✸(S ∧A) (3)

Predicates 1 and 2 describe the behavior on executing blocking fetch or meet operations. Predicate 3
describes the selection of a template that belongs to a suspended process. “✷✸M” means that there
is infinitely often a matching tuple available for the template. S (selection) is implied by “✷✸M”.

Weakly fair selection of templates applies only to blocking matching: if a template that is used for
non-blocking matching does match immediately then this one is excluded of further matching and the
corresponding process is informed of this fact. This applies accordingly to non-blocking matching with
multiple templates, too. Templates (resp. processes), which are suspended because no tuple matches
them are weakly fair matched with tuples later deposited. You have to be aware that busy waiting
with polling methods, which use non-blocking matching operations e.g. in loops, are not handled in
a fair way.

10.4 Multiple Tuple Spaces

Atoms are used to identify tuple spaces ProSet provides several library functions to handle multiple
tuple spaces, which are discussed in section 13.8.

Every ProSet program has its own tuple-space manager. Tuple spaces are not persistent. They
exist only until all processes of an application have terminated their execution. A concurrent program
terminates when all its sequential processes have terminated. Termination of the main program
terminates the entire application and thus all spawned processes (see also section 7.3.2).

11In temporal logic “✸p” and “✷p” mean that predicate p holds eventually resp. always. See also E.A. Emerson: “Tem-
poral and modal logic”, in J. van Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 16,
pages 995–1072. Elsevier, 1990.
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11 Modules

11.1 General Considerations

The introduction of persistent structures allows introducing modules, thus making separate compila-
tion of larger program units and hence programming in the large feasible. Capitalizing on the simplicity
of persistent structures for making modules available avoids introducing a separate mechanism for de-
scribing modules and separate compilation. That was done e.g. in Ada, where a package is told
explicitly which other packages to use, and in SETL, where interactions between modules have to
be described separately in a directory. Similarly, using packages in Ada usually requires a particular
library format and a separate mechanism for binding, all outside the language itself, hence dynamic
loading of packages is not possible. In addition, packages suffer from other drawbacks that are implied
by this approach, e.g. they must not be circular with respect to their import/export behavior. SETL

on the other hand allows circularity, since modules are linked early enough to the programs using
them, but there are some other drawbacks, e.g. changing the externally visible behavior of a module
requires changes in the directory (where this behavior ist posted) and thus the recompilation of the
entire program.

The seemingly straightforward way of using persistent procedures as modules does not work in ProSet

since the intent of a module is not fully in accordance with this approach. A module is usually thought
of as a collection of routines having access to common data structures. This requires static variables,
i.e. variables maintaining their value between different invocations to a routine in the module from
the outside.

ProSet makes modules as templates available, using a module requires instantiating the correspond-
ing template. Instantiation requires providing values for the imported parameters. It has the effect
of

• executing the template’s initialization code,

• making the exported items available,

• returning an instantiation of the template.

Modules and instantiations enjoy first class civil rights, in particular they may be made persistent.
Thus we see the following correspondences between our modules and instances, and packages in Ada:

• making a module persistent corresponds to separately compiling a generic package,

• retrieving a module from a P-file corresponds to loading a generic package from a library,

• instantiating a module corresponds to instantiating a generic package and loading the corre-
sponding unit.

Note that all this can be described in the language itself. The interconnection of modules should,
however, be supported by a suitable tool which prevents interconnecting modules that do not fit. The
construction of such a tool is under consideration and may influence the language constructs presented
in this section.

11.2 A Simple Example

Consider the simple module gensym for generating symbols given in Fig. 22. The module imports a
value called symb and exports a value called generator. Imports and exports are indicated by rd and
wr, resp., just as formal parameters in procedure declarations; similarly, a parameter imported and
exported as well is specified by rw. The module has a variable which is visible in all local procedures
and which will be initialized to 0 as specified in the initialization part. This part contains code to be
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module gensym(

rd symb,

wr generator

);

visible i;

begin

i := 0;

procedure generator();

persistent constant str : "StdLib";

begin

i := i + 1;

return str(symb) + str(i);

end generator;

end gensym;

Figure 22: A simple Module

MyGensym := instantiate closure gensym

rd symb := "g.";

wr generator;

end instantiate;

Figure 23: Instantiating a Module

executed exactly once at the time the module is instantiated. The procedure generator increments
i and returns a string which is obtained upon concatenating symb with i, both converted to strings.
The module is instantiated as shown in Fig. 23 which executes the initialization code, makes the
procedure MyGensym.generator available and sets the string "g." as the base to the symbols to be
generated. So after the instantiation above the assignment

x := MyGensym.generator();

y := MyGensym.generator();

results in

x = "g.1"

y = "g.2"

After defining the module, we have

type (closure gensym) = modtype

and after instantiating it, we find

type MyGensym = instance

and furthermore profile closure MyGensym.generator = [ ] holds.
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Hence gensym is bound to the code of a module, and its closure is of type modtype. MyGensym is
of type instance; profile is an operator that works on modules and functions. It yields a tuple
with components taken from {rd, wr, rw} indicating the way parameters are passed. In the example
MyGensym.h is a procedure without parameters. The operators profile and closure are discussed
in greater detail in 5.3.1.

11.3 More on Modules and Instances

Modules and instances are values with first class civil rights. Consequently they enjoy an identity,
their names may occur on the left or the right hand side of an assignment, and they may be

• made persistent,

• transmitted as parameters to and returned as values from procedures, other modules and ex-
ception handlers,

• inserted into compound structures like sets, maps and tuples.

Identity The identity of modules is defined in exactly the same way as for procedures, see 5.3.1. Two
instances are identical iff their names are identical. Thus the following conditions hold for identical
instances:

• their underlying modules, i.e. the modules from which the respective instances are obtained by
instantiation are identical,

• the imported values are identical,

• the same objects are exported,

• the respective inner states, i.e. the values to the items visible throughout the underlying module,
are identical.

11.4 Modules

As with other types provided by ProSet, the use of modules does not have to be declared explicitly,
and checks at run time make sure that a module is used in a proper way (i.e. that parameters are
passed and exported values are used according to their specification). Modules may be defined similar
to procedures by prefixing an identifier with the keyword module followed by a parameter list, the
body and a trailer:

ModDecl ✲ module ✲ Id ✲ ParamList ✲ ; ✲ body ✲ end ✲ Id ✲ ; >

Modules form scopes of their own, and their visibility follows the scope rules of the language. This is
similar to procedures; in particular the following properties are observed:

• values to which all local procedures, modules and exception handlers have access should be
declared as visible,

• names declared as visible in an enclosing scope are visible to the module, hence to all local
procedures, modules and exception handlers, all other names in an enclosing scope are not
accessible to the module,
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• names local to the module and visible in the module’s body retain their respective bindings
across invocations of procedures exported from a module.

The latter property represents the characterizing difference between modules and collections of nested
procedures.

The closure operator (cp. 5.3.1) works with modules, too. It has the effect of freezing the values
of non-local names visible to the module and making them visible to the module, and it results in a
value of type modtype. Note that freezing is in effect a hidden import operation, and that a frozen
name behaves exactly like an initialized visible name, i.e. that in particular frozen variables behave
in a statical way. Although freezing is very similar to the way procedures are delt with, there are
differences due to the different nature of visible variables in procedures, and modules, resp.

Note that defining

module m(...); ...

end m;

does not bind the identifier m to a value that has a type in ProSet’s type system. Only after closing
it, i.e., after applying the closure operator to it will yield an item of type modtype which may be
used as any other ProSet value.

A module provides provisions for executing initialization code. Syntactically, these statements follow
the keyword begin; as in procedures, this may be the empty sequence of statements indicated by the
keyword pass, but begin must not be missing. Execution is carried out exactly once each time a
module is instantiated.

Visible Persistent Values in Modules Modules form scopes of their own, and dealing with them
follows the scope rules of the language. We explicitly do forbid using persistent variables that are
visible throughout the module. The reason for this is that persistence and the concept of static
variables do not work well together. Suppose that we have the declaration

module MM(wr whatever);

visible persistent x:"otto";

begin

...

end MM;

and that we instantiate the closure of MM:

M := instantiate closure MM end instantiate;

Now everything appears to be just fine: x will be fetched from the P-file "otto" upon execution of the
initialization part, and a write lock will be granted to x. But now copy M to D, and suppose M becomes
no longer accessible. By analogy to procedures one would expect that the write lock on x will be
revoked, but that does not cater for x in D. So this is a mess, and it is not clear that we were allowed
to copy M to D at all, given the write lock for x. Consequently, invoking a procedure or function is
different from instantiating a module, static variables are different from dynamic ones, and declaring
persistent variables in modules that are visible throughout the module is not allowed. Note, however,
that

• variables may be declared as visible persistent in procedures and functions contained in a
module, since here the usual mechanism applies,

• variables must not be declared as persistent on the outermost level of a module (i.e. for the
declaration section),

• declaring a value as visible persistent constant is also not critical, since only a read lock
is granted.
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11.5 Instances

A module is instantiated by giving values to all parameters which are imported by the module, i.e.
which are of mode rd or rw. The instantiation receives values for the exported parameters, i.e. for
those parameters of mode rw, and for those parameters of mode wr that are specified.

Formally, the instantiation of a module is an expression that takes an argument which must evaluate
to a value of type modtype. It has an instance as value.

Expr ✲ instantiate ✲ Expr

RdClause ✛

RwClause ✛

WrClause ✛

✲ end ✲ instantiate >

Instantiation proper consists of a sequence of the following clauses in any order:

• an rd clause indicating the values which are being imported without being exported. Imported
values may be computed in this clause.

RdClause ✲ rd ✲ Id ✲ := ✲ Expr

, ✛

✲ ; >

• an rw clause giving the names (lvalues) which are imported and exported as well. Similarly,
imported values may be computed, and the may be omitted altogether.

RwClause ✲ rw ✲ Id ✲ := ✲ Expr

, ✛

✲ ; >

• an wr clause indicating the names (lvalues) which are being exported without being imported.

WrClause ✲ wr ✲ Id

, ✛

✲ ; >
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The initialization part may be executed as soon as the last rd or rw clause has been seen. Note that
each identifier qualified with an rd or rw in the header of the module definition should receive a value
in the corresponding clause.

At instantiation time the value of profile µ.π (µ being a substitute for the name of the instance) is
determined. It is a tuple with values taken from the set {rd, rw, wr} for all π which are imported or
exported from the module having function or modtype as their type. The ith member of this tuple
indicates how the ith parameter to π is passed.

11.6 Of Course: Stacks

This subsection deals with the abstract data type stack.

We assume the exception p missing name (cp. 9.1.1) being handled in such a way that it resumes
(after having generated the missing persistent value). We omit this in the example. The module
stack manipulating this data structure is displayed in Fig. 24.

The instantiation is given in Fig. 25. This example is a bit contrived, but never mind. The following
equations then hold:

profile InstantiateStack.push = [rd]

profile InstantiateStack.pop = [wr]

Note that profile InstantiateStack.top and profile InstantiateStack.is empty are not de-
fined, since they are not exported, albeit the module may export them. Export may, but import must
not be selective.

This construction shows that in general not too much can be said about the values imported by or
exported from a module at compile time. This is in accordance with the language’s philosophy that
type checking is done at run time. The interconnection of modules should, however, be supported
by a suitable tool which prevents interconnecting modules that do not fit. The construction of such
a tool is under consideration. These values are accessible to the module each time it is loaded. The
same applies mutatis mutandis to functions.

Remark The mechanism for making modules available proposed here has some advantages over the
one provided by Ada or Modula-2:

• defining a module, translating and putting it into a library may be done using the mechanisms
of the language, once persistent structures are available,

• no separate library format with idiosyncratic access mechanisms is required; maintenance of a
library of binaries follows the same rules as maintenance of other persistent structures,

• binding and linking are no longer separate phases in producing an executable program — they
are integrated into the general mechanism of maintaining persistent structures.

In particular we need not leave the language level and resort to operating system commands during the
entire process from the definition of a module to its use. We pay for this convenience with an added
burden on the run time system, possibly slowing down the execution of large ProSet programs. This
poses, however, the challenge of developing methods for statically checking as much as possible in the
compiler, extending methods of type inference to modules.
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module stack (

rd q,

rd bottom,

wr push,

wr pop,

wr top,

wr is_empty

);

visible LocalStack;

begin

q();

LocalStack := [bottom];

procedure push(x);

begin

LocalStack := LocalStack with x;

end push;

procedure pop(wr t);

begin

if LocalStack = [ ] then

escape ThisIsAnEmptyStack();

else

t frome LocalStack;

end if;

end pop;

procedure top();

begin

return LocalStack(1);

end top;

procedure is_empty();

begin

return LocalStack = [ ];

end is_empty;

end stack;

Figure 24: Module Maintaining Stacks

This_q := closure (lambda():begin put("hello world (what else?)");

end lambda);

InstantiateStack := instantiate (closure stack)

rd q := This_q, bottom := 42; -- initialization

-- is performed

-- exactly here

wr push, pop;

end instantiate;

Figure 25: Instantiating the Module stack
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12 Input/Output

This section describes the I/O-facilities in ProSet. Besides standard routines for handling files and
simple input and output routine we have integrated a comfortable format description sublanguage for
specifying input and output formats which will be illustrated below.

12.1 Files

Files are denoted in programs by their name, adopting the conventions from the underlying operating
system. These names are strings, probably including a path. A file will be opened using fopen. This
procedure requires two parameters: the file name and the mode in which the file should be opened.
These modes are:

• "r": the file will be opened for reading, the file pointer is set to the beginning of file,

• "w": the file will be opened for writing, the previous content is lost,

• "a": the file will be opened for writing, it will be appended at the end, the previous content is
preserved.

fclose is used for closing files. An unopened file can not be closed. A file must be closed or not yet
opened when it is opened. There is no access to an unopened file. The number of simultaneously
opened files is finite and system dependent. If any of these conditions are violated, appropriate
exceptions are raised (see section 12.4).

For testing on end-of-file two standard functions eof and feof are provided. feof takes a file name as
an argument, eof implicitly assumes the standard input. They both return a boolean value indicating
whether or not the end of the given file is reached.

The stop-instruction automatically closes all still opened files (for further informations about stop
see section 7.3.2).

12.2 Formatted Output

The goal of formatted output is the type dependent conversion of values from the internal to an
external representation. With a single call to an output routine an arbitrary number of values can
be delt with. If the user wants to deviate from standards, he should place a string (called format
specification below) in front of the argument list in the output routine call describing his own format
in preceding argument list in the output routine call. The user can choose between:

• formatted output based on defaults or on user specified formats.

• output on the standard output or into a specified file.

Furthermore, the predefined standard error output can be used based on both default and user specified
formats, respectively.

There exists a function for each combination:

function output to format specification
put(arg 1,...,arg n) standard output default format
eput(arg 1,...,arg n) standard error default format
fput(file,arg 1,...,arg n) specified file default format
putf(format,arg 1,...,arg n) standard output user format
eputf(format,arg 1,...,arg n) standard error user format
fputf(file,format,arg 1,...,arg n) specified file user format
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The functions have the following parameter:

• file: a string containing the name of a file opened with mode "w" or "a",

• format: a string containing the format specification,

• arg 1,...,arg n: a list of an arbitrary number of arguments (may be empty).

Some simple examples are as follows. All examples presented in the remainder of this section assume
files opened in an appropriate mode.

put("Hello world"); puts "Hello world" on the standard output (in general the terminal).
fput("my file","Hello world"); uses the file my file instead of the standard output.

-- Initialization

var_atom := newat();

var_bool := true;

var_integer := 42;

var_real := 0.045;

var_set := {123,[4,5]};

var_string := "An example";

var_tuple := ["abc",{1,2}];

-- Output to standard output

put(var_atom,var_bool,var_integer,var_real,var_set,

var_string,var_tuple);

yields

...12 ,#true,42,4.5E-2,{123,[4,5]},"An example",["abc",{1,2}]

Here, the defaults are used to put out a value of each supported type (maps are treated as sets).

In the next example, we choose some of those values above and show the result according to a special
format specification.

our_format := "Integer:%-5d, Set:%{content:$$!5‘*‘d}, String:%s";

putf(our_format,var_integer,var_set,var_string);

yields

Integer: 42, Set:{content:*123*,[**4**,**5**]}, String:An example

Format Specifications The actual format specification in an output routine call describes the
constant part, the values of the various arguments describe the variable part of the generated output.

There are formatters for each type, i.e. devices for referencing an argument of a particular type.
Defaults are defined by the system. They can be used or modified by the user. Modifications in a
declarative form or modifications used for a specific reference of a value, i.e. an argument, are possible.
Declarations modify the defaults in a scope. They are initiated by a $. Declarations can be used to
modify:

• type-specific formats,

• special settings for compound values,

• width of lines and tabulators.

12The output generated for atoms depends on the implementation.
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By using compound values a block structured output specification is generated. The content of a
tuple- or set-formatter forms a new block. Declarations are bound to these blocks. Declarations may
have:

• visibility in the actual block only or

• visibility in all subordinate blocks.

The arguments are referred to by using formatters in the format specifications. They are initiated by
a %. The external representation of a value is constructed according to the specification given to the
formatter and the additional actually valid declarations. The arguments are printed in the order of
the references in the format specification, i.e. the n-th item in the format specification refers to the
n-th argument in the argument list (but the user may alter this order).

All informations which have to be interpreted must be initiated by one of the symbols %, $, \ . All
other characters will be printed directly. Brackets for tuples or sets which have to be printed, must be
given in an escape form (e.g. \{ or \]). The same form is to be used to put out the control characters
", $, %, \ (e.g. \$ or \\). The control instructions backspace, tab, new line, form feed, carriage
return are denoted by \b, \t, \n, \f and \r, respectively. \e is used for the empty word ǫ.

User formatted output does not insert blanks and does not execute carriage returns automatically.

Only symbols in the format specification are interpreted, further arguments of type string are printed
directly.

Default- and User-specifications

Calls to put,eput and fput start their output in new lines (i.e. they carry out a carriage return).
Single independent arguments are separated by default through blanks. Elements in tuples or sets are
separated by commas to emphasize their belonging to one compound value.

put("abc",3,[1,2]); yields "abc" 3 [1,2]

put uses the default formats, thus the arguments "abc", 3 and [1,2] are separated through blanks;
the elements of the tuple are separated by a comma.

Implicitly put uses (in a general form)

putf("%x %x . . . %x\n",arg 1,. . .,arg n);

%x is the standard formatter for a value. Applied to compound valued arguments %x yields

• [elem 1, . . . ,elem n] for tuples and

• {elem 1, . . . ,elem n} for sets.

If the non-declarative information, i.e. a constant character or a formatter appears in a compound
value formatter, it is interpreted by system as a request to use user formatted output for the content.
Here, commas will be suppressed in compound values.

Formatter

A formatter describes the external form to which the corresponding argument should be transformed.
The transformation is based on the argument type. The following types are available:
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atom only printable by using the standard formatter %x
boolean supported by the type descriptor b
function not supported
instance not supported
integer supported by the type descriptor d
modtype not supported
real supported by the type descriptors e,f; e is the default; e and f identify the

fixed-point representation and the floating-point representation, respectively.
set supported by the type descriptor {}
string supported by the type descriptor s
tuple supported by the type descriptor [ ]

Not supported argument types are causing the exception type mismatch to be raised.

The structure of a formatter for a value (angles are enclosing optional informations, the bar separates
alternatives):

% 〈 i( 〉 〈 - | ! 〉 〈 m 〈‘c‘〉 〈.p 〉 〉 format type | positioner 〈 ) 〉

i Iterator, indicates how often a value of the specified type should be printed.

- Left-aligned output, default is right-aligned.

! Centered: if the number of characters is even, the output will be centered around the
immediately right position from the original center.

m Minimal width for format type = b, d, e, f, s, x, [ ], { }; number of positions for the
format types < and >. m includes signs, decimal points, and the character e that
starts the power. Default is 0.

p Maximal width righ-hand side of the point for format type = e,f; default is machine-
precision, zeroes at the end are cutted.

c Arbitrary character used for filling up to the width m.

putf("%5‘*‘d",3); yields ****3

format type Descriptor for the type of the formatter. In generell, the conversion from in-
ternal to external representation of an argument value is described.

positioner An implicit pointer can be positioned in the argument list.

Description of Some Format Convertions
Some of those format types converting an internal representation to an external representation are
discussed now.

Real Numbers
For printing real numbers ProSet provides two alternatives format types. e identifies the fixed-
point representation (−)n.ppppE ± eee , the power has a fixed maximal length of 3, f identifies the
floating-point representation (−)nnnn.pppp . Some examples are presented now:

putf("%5.4f",1.23456); yields 1.2345

putf("%10.2e",1.23456); yields 1.23E+0

putf("%10.10e",12345.6); yields 1.23456E+4

If there is a mismatch between m and p, the precision p has higher priority than the field width m.
Strings
%x applied for strings prints them in quotes, %s omits the quotes.

Compound Values
For compound values the corresponding brackets ([ ] and { } for tuples and sets, respectively) are
used to describe the format type. The internal structure may be specified inside the brackets.
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/abc/[ . . . ] or /abc/{ . . . } for tuples or sets (respectively)

/abc/ is optional, used to substitute the respective opening bracket, the symbol used to separate
elements of compound values and the closing bracket. It may appear immediately in front of the
open bracket. Instead of a, b and c replacement characters for open bracket, separation symbol and
close bracket can be declared (a,b,c can be empty, ǫ must be used in this case).

putf("%/ 〈 | 〉 /[] %/ 〈 | 〉 /{}", [1,2,3],{4,5,6}) yields 〈1|2|3〉 〈4|5|6〉

In the latter example for tuples and sets the same open bracket, separation symbol and close bracket
is used.

Square brackets are used for tuples, braces for sets. These brackets are obligatory. This necessity is
illustrated by the following example:

putf("%[%[$-2d]%{$3d}]", [ [1,2], {3,4}, [5,6] ]);

yields
[[1 ,2 ]{ 3, 4}[5 ,6 ]]

In the example above, integer in tuples are printed in two character width, left-aligned (using %[$-2d]).
In sets they are printed in three character width and right-aligned (using %{$3d}). Those two format-
ters (%[$-2d] and %{$3d}) are valid for every tuple and set, resp., in the argument tuple [ [1,2],

{3,4}, [5,6] ].

Thus the types tuple and set are treated differently.

Sets
A format can be specified for every possibly appearing element type only using declarations. Direct
references (i.e. formatters) cannot be treated because there is no possibility for unambiguous relations
between a formatter and a set element. Strings in the format specification are printed at the beginning
of the set. This is valid for all characters that are not control characters and that are inside the
brackets.

putf("%40‘*‘{$-5s$3d$[$-2d]set:}",{{1,2,3},42, "abc",[1,2]});

yields
******{set:{1,2,3} 42 abc [1 ,2 ]}

The output has a width of 40 filled with asterisks at the left-hand side (%40‘*‘{...}). Only one set
is put out. In this set

• strings are printed with a width of 5 and left-aligned ($-5s),

• integers are printed with a width of 3 and right-aligned ($3d), here the declaration is only valid
for outermost level in the set13,

• integers in tuples are printed with a width of 2 and left-aligned ($[$-2d]).

Tuples
The treatment of sets can be applied here. Alternatively, a complete format specification can be done.
The content of a tuple formatter is treated as a local argument list.

putf("%[first element:%3d, second element:%x]",[1,2]);

yields
[first element: 1, second element:2]

13Later we see how to obtain visible declarations
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Positioning in Argument Lists

Using the positioner %m> in forward direction the next m arguments are skipped, in the other direction
an implicit argument pointer is set backwards m arguments.

putf("%!4‘*‘d,%<%-4‘-‘d,%<%4‘+‘d",7);

yields
**7* 7--- +++7

There is only one argument (the integer value 7) which is used three times by setting backwards two
times (using %<).

if one then

one_or_two = "%x%>";

else

one_or_two = "%>%x";

end;

putf(one_or_two,"abc","def");

yields

if (one = true) : abc

and otherwise : def

This example shows the use of this construct for the selection of an appropriate format depending on
some condition to obtain a value-dependent output.

Using these positioners an implicit pointer to the argument list can be manipulated. This pointer can
be set on every arbitrary position, even outside the list. Only if such a referenced but not existing
argument is to be put out, an exception is raised (see section 12.4).

Declarations

Declarations address the output of compound values and the general style of output, e.g. the width
of lines, tabulators). They are initiated by $, brackets are enclosing optional informations. They can
appear at every position in a format specification. We discuss the different possibilities now in turn.

$[ ‘s‘ ]n D: Depth to which levels of compound values are printed (a ‘&‘ marks more levels, string s
may replace ‘&‘). Default: no restriction.

putf("$‘?‘2D %x",{1,{2,{3,4},5},6,7}); yields {1,{2,?,5},6,7}

$[ ‘s‘ ]n N: Number of elements of a compound value that should be printed at one level. Further
existing elements are indicated by "..." (string s can replace the dots). Default: no restriction.

putf("$2N $2D %x",{1,{2,{3,4},5},6,7}); yields {1,{2,&,...},...}

$n,m T: Setting of tabulators at the positions n + k ∗ m, k ∈ IN0,m, n ∈ IN. n indicates the first
column which should be used in the actual line, m decribes the width of an tabulator column.
After printing an element the output pointer is set to the next free column n + k ∗ m (with
minimal k, k ∈ IN). Previously, at least one blank is inserted. No carriage returns are executed.

The next tabulator position is reached using \t. An end of line is defined independently. Default:
n = 1,m = 1.

header := "$5,10T \t| col_1 \t| col_2 \t| col_3 \t| \n";

content := "$6,10T %-s |\t %8x\t %8x\t %8x\n";

line := "%40(s)\n";
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putf(header);

putf(line,"-");

putf(content,"1:",t_1_1,t_1_2,t_1_3);

putf(content,"2:",t_2_1,t_2_2,t_2_3);

putf(content,"3:",t_3_1,t_3_2,t_3_3);

yields

| col_1 | col_2 | col_3 |

---------------------------------------

1: | t_1_1 t_1_2 t_1_3

2: | t_2_1 t_2_2 t_2_3

3: | t_3_1 t_3_2 t_3_3

The t i j (i,j = 1,..,3) are arbitrary values printed with a minimal width of 8. The width of each
tabulator column is 10. The $n,mT declaration provides at least one blank inserted between two
arguments and each t i j is prefixed by a blank. Therefore, the maximal width of one argument
should be 8.

Multiple tabulator declarations in one scope make sense for designing tables with irregular width
of columns.

$n W: Width of line. The maximal number of characters per line is given. If necessary, a carriage
return is executed. Compound values and strings may be broken, simple values not.

putf("$10W abcdefghijklmnopqrstuv$3Wwxyz");

yields

abcdefghij

klmnopqrst

uvw

xyz

The line width is set to 10. Thus, after putting out 10 characters a carriage return is executed,
even if an argument is not completely put out. The line width can be changed within a line.

$[$]<Formatter>: Formatters initiated by $ overwrite the default specification. Initiated by two $,
the declaration is valid for all subordinate level (e.g. $$-3d). If there is only one initial $, the
declaration is valid only at the actual level, i.e. not in compound arguments of the actual level.
In those compound value formatters, the defaults are valid.

form_spec := "$$-3‘-‘d%[$3‘+‘d]%d";

putf(form_spec,[1,2,[3,4]],5);

yields
++1 ++2 3-- 4-- 5--

Modifying the positioners ‘<‘ and ‘>‘ does not make sense. Iterators are not allowed. Multiple
formatter declarations of one argument in a scope are ambiguous and therefore result in raising
an exception.

$‘s‘ OM: Defines a string ‘s‘ to replace the standard output for the undefined value om. Default is
#?.

putf("%x%[$‘ThisOm‘OM]", om,[om]); yields #? [ThisOm]

$‘s‘ TRUE: Defines a string ‘s‘ to replace the standard output for the boolean value true. Default
is #true.

$‘s‘ FALSE: Defines a string ‘s‘ to replace the standard output for the boolean value false. Default
is #false.
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D, N, T, W, OM, TRUE and FALSE are declarations, which are by default valid in all subor-
dinate levels, but also modifiable at every point in those levels (with the corresponding visibility).
Declarations are local to the actual level.

Upper and lower case letters are distinguished, for otherwise there would be conflicts (see D (Depth)
and d (decimal)).

12.3 Formatted Input

Input deals with the conversion of values from an external to an internal representation. The user can
choose between:

• formatted input based on defaults or on user specified formats.

• input from the standard input or from a specified file.

There exists a function for every possible combination:

function input from format specification
get(arg 1,...,arg n) standard input default format
fget(file,arg 1,...,arg n) specified file default format
getf(format,arg 1,...,arg n) standard input user format
fgetf(file,format,arg 1,...,arg n) specified file user format

The functions have the following parameter:

• file: a string containing the name of a file opened with mode "r" .

• format: a string containing the format specification

• arg 1,...,arg n: a list of an arbitrary number of arguments (may be empty).

Some introducing examples are as follows.

get(s); assigns on input "Hello world" from the standard input the value "Hello world" of type
string to s.
On input Hello world (without quotes) only "Hello" is assigned to s.
fget("my file",s); reads a string from the file my file and assigns it to s.

get(var bool,var integer,var real,var set,var string,var tuple); assigns on input
#true 42 4.5E-2 {123,[4,5]} "An example" ["abc",{1,2}] as follows:

var_bool := true;

var_integer := 42;

var_real := 0.045;

var_set := {123,[4,5]};

var_string := "An example";

var_tuple := ["abc",{1,2}];

The means for specifying formats are similar to those of output. Thus, there are declarative specifiers
and argument referencing ones.

We have default formats for every type. The defaults can be used or modified by the user. The
arguments are referred to by formatters in the format specification. The arguments are usually given
according to the expected order of input, but the user may alter this order.
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All informations which are to be interpreted should be prefixed by one the symbols %,$, \. All other
characters should be read from input without assigning them to any argument.

getf("Hello world"); reads "Hello world" but does not assign anything. If the strings does not
match the exception io illegal input will be raised.

The values to be read must be separated through white space (see section 3.2), in compound values
commas are also valid. By default, i.e. using the standard formatter %x, only those values are recog-
nized as belonging to a particular type that are producable by the standard output formatter. Strings
without quotes are only valid, if they are valid ProSet identifiers.

Formatter

A formatter describes the internal form in which a specific argument should be transformed. The
transformation is based on the argument type. The following types are available:

atom not supported
boolean supported by the type descriptor b
function not supported
instance not supported
integer supported by the type descriptor d
modtype not supported
real supported by the type descriptor e,f
set supported by the type descriptor {}
string supported by the type descriptor s
tuple supported by the type descriptor [ ]

If an argument has a not supported type the exception type mismatch is raised.

The structure of a formatter for a value (angles are enclosing optional informations, the bar separates
alternatives):

% 〈 i( 〉 〈 m 〉 format type | positioner 〈 ) 〉

i Iterator, indicates how often a value of the specified type should be read.
getf("%[%5(d)]",tup); assigns on input 1 2 3 4 5 6 7 to the variable tup the
value [1,2,3,4,5]. So, exactly 5 integer values are assigned to tup.

m maximal width for format type = b, d, e, f, [ ], { }; exact width for format type = s;
number of positions for the format types < and >.

format type descriptor for the type of the formatter. In generell, the conversion from ex-
ternal to internal representation of an argument value is described. Furthermore, a
whole line can be assigned and characters in input can be skipped.

positioner An implicit pointer to the argument list can be positioned.

Description of Some Format Convertions

Strings
%s reads strings. Strings to be read must be enclosed by quotes, with the exception that valid ProSet

identifiers can be recognized even without quotes. If a string width m is given in the formatter (e.g.
%10s, the width is 10), exactly m characters are read (even blanks). If an end-of-file mark is reached
while expecting some more arguments, an exception is raised.

Lines
%l reads a line (from the actual position to the end of line).

fgetf("my file","\n%l%s",line,string); assigns from the file my file with content

abcdefghij

klmnopqrst

uvwxyz
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to line the value "klmnopqrs" and to string the value "uvwxyz" .

Real
Both external representations of real numbers (format types e and f) have the same internal repre-
sentation (see section 12.2), so they are used synonymously.

Compound Values
For compound values the corresponding brackets are used to describe the format type. The internal
structure may be specified inside the brackets. Square brackets are used for tuples, braces for sets.
They are obligatory. In contrast to output, formatters in sets make sense here. Using %{%n*x} it is
possible to read n elements of arbitrary type into a set.

Thus getf("%{%3*x %[%4*x] %2*x}",input); assigns on input 1 2 abc 3 4 5 6 [1,2] 7 to
input the value {1,2,"abc",[3,4,5,6],[1,2],7}

The next two examples illustrate the use of declarations for limiting the types which can be read.
Only those declared inside the brackets are valid.

getf("%[$d$b$s]",input); assigns on input 1 abc #true <EOF>14 to the variable input the
value [1,"abc",true]

getf("%[$d$b]",input); and raises an exception on input 1 abc #true ("abc" corresponds to none
of the given types d and b).

Miscellaneous
%? The input pointer skips the next character (white space is not skipped, see section 3.2).

%* The input pointer skips forward to the next white space (excluding it, i.e. the input pointer is set
to the white space).

getf("a%?c 1%* %s",string); assigns on every input of the form a.c 1.. s to the variable
s a string (where . represents an arbitrary non-white space character and .. represents an arbitrary
number of non-white space characters and s is a valid string).
Examples: abc 123 abc or a!c 1abc "xyz".

Positioning in Argument Lists

In forward direction (%m>) the nextm arguments are skipped (no assignment is executed), in backward
direction an implicit argument pointer is set backm arguments (it may be assigned a number of times).

getf("%d %< %d %< %d",x); assigns on input 1 2 3 to x sequentially the values 1, 2 and 3. So,
after executing the statement x has value 3.

getf(" %d %> %d ",a,b,c); assigns on input 1 2 to a, c the values 1 and 2, respectively.

Using these positioners an implicit pointer to the argument list can be manipulated. This pointer can
be set to an arbitrary position, even outside the list. Note, however, that an exception will be raised
if an argument is to be read but the input pointer points to a position outside the argument list.

Declarations
Declarations address the output of compound values and the general style of output (e.g. width of
lines, tabulators). They can appear at every position in a format specification, brackets are enclosing
optional informations.

$n,m T: Setting of tabulators at the positions n + k ∗ m, k ∈ IN0,m, n ∈ IN. A right-hand side
boarder can be obtained by declaring the line width. In opposition to output, here is no need
for separating arguments by blanks. The next tabulator position is reached using \t. Default:
n = 1,m = 1.

form spec := "$5,4T %[\t%1d\t%2d\n\t%3d\t%4d]";
fgetf("my file",form spec,tuple); assigns from the input file my file with content

14The end-of-file is operating system dependent.
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12345678901234567890

12345678901234567890

to tuple the value [5,90,567,9012].

Using multiple tabulator declarations even irregular input structures can be read.

$n W: The maximal number of characters per line which should be read.

$[$]<Formatter>: Formatters initiated by $ overwrite the default specification. Initiated by two $,
the declaration is valid for all subordinate levels (e.g. $$-3d). If there is only one initial $, the
declaration is valid only at the actual level, i.e. not in compound arguments of the actual level.
In those compound value formatters, the defaults are valid.

Modifying the positioners does not make sense. Iterators are not allowed. Multiple formatter
declarations of one argument in one level are ambiguous and therefore result in raising an
exception.

$‘s‘P: A prompt which is used for input from the terminal. If declared on the outermost level, the
string ‘s‘ is used as main prompt. The prompt appears in front of every element on the level on
which it is declared.

getf("%{$‘next element:‘P$d}",my set); works as follows (on the terminal, > is the stan-
dard prompt):

> 1

next element: 2

next element: 3

next element: 4

next element: <EOF>

assigns to my set the value {1,2,3,4}.

$‘s‘E: End identificaton for compound objects. Default is the closing bracket.

A problem may arise when the default specification for reading set or tuples is used, viz., when
the number of elements which have to be read is unknown. We give the possibility of declaring a
pattern which indicates the end of input, e.g. getf("$‘end‘E %{}%{}",set1,set2); assigns on
input 1 2 3 end 4 5 6 end to set1 and set2 the values {1,2,3} and {4,5,6}, respectively.
If end is read in input the actual compound value (if there is one) is completely read.

$‘s‘ OM: Defines a string that indicates the undefined value om. Default is #?.

$‘s‘ TRUE: Defines a string that indicates the boolean value true. Default is #true.

$‘s‘ FALSE: Defines a string that indicates the boolean value false. Default is #false.

T, W, P, E, OM, TRUE and FALSE are declarations, which are by default valid in all subordinated
levels, but also modifiable at every point in those levels (with the corresponding visibility).

12.4 Exceptions

In this section we enumerate all exceptions that can be raised by I/O-routines. Exceptions are de-
scribed in section 8.

Using the I/O-routines exceptions are raised in the following situations:

io file error is escaped if the file does not exist or there is no access to it. io syntax error

is signalled if a syntactic error in the format string occurs. Resuming retries with the default
specification. io type mismatch is signalled if there is a type mismatch between the formatter and
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an argument. Resuming retries with the default specification. io arguments missing is escaped if
there is no existing argument to a formatter reference. io illegal input is escaped, if there is a
mismatch between a string to be read and the input.

All exceptions described above are predefined.

An example illustrates the handling of exceptions raised by an I/O-routine.

-- ..

form_spec:= "Centered integer $$!3d *%d*%d*%d*\n";

putf(form_spec,1,[2,3],4) when io_type_mismatch use output_handler;

-- ..

handler output_handler();

begin

resume;

end output_handler;

yields

1,[2,3],4

The exception io type mismatch is raised, because the expected type of the second argument is
integer whereas a tuple occurs. Associated with the handler output handler the execution of putf
continues (i.e. putf is resumed). But instead of %!3d the defaults are used, i.e. integers are printed
right-aligned with their width 1, whereas something like * 1 * 2 * 3 * 4 * was probably intended
by the programmer.

13 Standard Library

We have put some operations considered standard in other languages into a Standard Library. These
operations manipulate standard ProSet objects. Consequently, the extent of the ProSet kernel
decreases and the user is also allowed to redefine predefined operations.

We discuss in this section the contents of the standard library indicating for each operation the
intended functionality.

13.1 Preliminaries

The standard library is accessible through ProSet‘s persistent mechanism (see sections 9.1 and 4.2.1).
Each function described below is made accessible by declaring it as

visible persistent constant <function name>:"StdLib" .

ProSet facilitates this by making predefined macros available.

macro ImportStdLib;

ImportIntOps; ImportRealOps; ImportStringOps; ImportSetOps; ImportsFurtherOps;

endm ImportStdLib;

ImportIntOps, ImportRealOps, ImportStringOps, ImportSetOps and ImportsFurtherOps are
macros too.
They all consist of declarations persistent visible constant <function name>:"StdLib";. The
function names are those described in the following subsections according to their type specific clas-
sification.

All functions described below raise the exception type mismatch (see section 8.7 for details) if an
argument has an inappropriate type.
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13.2 Functions on Integers

Functions on integer values:

abs(i) absolute value of an integer argument i
even(i) predicate: yields true, if an integer argument is even, false otherwise
odd(i) predicate: yields true, if an integer argument is odd, false otherwise
float(i) converts an integer to the corresponding real value
sign(i) yields -1, 0, +1 depending on whether the argument is negative, zero

and positive, resp.

13.3 Functions on Reals

Functions on real values:

acos(x) arc cosine
asin(x) arc sine
atan(x) arc tangent
atan2(x,y) arc tangent: atan2(x, y) = atan(x/y), y 6= 0
abs(x) absolute value of a real argument
ceil(x) returns the smallest integer which is at least as large as x,

ceiling: x 7→ ⌈x⌉
cos(x) cosine
exp(x) ex

fix(x) converts x into the corresponding integer number by dropping the fractional
part, x 7→ if x ≥ 0 then floor(x) else ceil(x) end if

floor(x) returns the largest integer which is not larger than x,
floor: x 7→ ⌊x⌋

log(x) natural logarithm
sign(x) yields -1, 0, +1 depending on whether the argument is negative, zero

and positive, resp.
sin(x) sine
sqrt(x) square root
tan(x) tangent
tanh(x) hyperbolic tangent

13.4 String Scanning Primitives

We discuss here the string scanning primitives, that we took from Setl (and therefore from Snobol15).

Let s and ss be strings.

any: any(rw s,ss) yields s(1), if s(1) is in ss, and then modifies s to s(2 ..). If otherwise s(1)

is not in ss, s remains unchanged and om will be returned.

break: break(rw s,ss) breaks from s the longest initial part that does not include characters from
ss. This part will be returned, s will be modified. Otherwise, if s(1) is contained in ss, om will
be returned, s remains unchanged.

len: len(rw s,n), n ∈ Z yields s(1 .. n) and modifies s to s(n+1 ..). If n ≤ 0 or #s ≤ n then s

remains unchanged and om will be returned.

lpad: lpad(rw s,n), n ∈ Z, returns the string s filled with additional blanks at the left-hand side so
that a string with length n is constructed. If n ≤ #s, then s will be returned unchanged.

15R. E. Griswold, J. F. Poage and I. P. Polonsky: The SNOBOL4 Programming Language (second edition), Prentice-
Hall, Englewood Cliffs, NJ, 1971
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match: match(rw s,ss) returns ss, if #ss ≤ #s and ss = s(1 .. #ss). In this case, s will be
changed to s(#ss+1 ..). Otherwise, s remains unchanged, om will be returned.

notany: notany(rw s,ss) yields s(1) and modifies s to s(2 ..) if s(1) does not occur in ss. If
s(1) does occur in ss, s remains unchanged, om will be returned.

span: span(rw s,ss) yields the longest initial part of s whose characters all occur in ss. This part
will be broken off s. If such an initial part is not found, i.e. s(1) is not in ss, s remains
unchanged, and om will be returned.

These functions operate on their argument s from left to right, e.g. any looks at at leftmost character
in s, match tries to match ss and the left-hand side of s. For each of them exists a right-to-left
variant, e.g. rpad adds blanks at the right-hand side, rspan starts its search for characters from ss

at the right-hand side of s.

rany right-to-left variant of any
rbreak right-to-left variant of break
rlen right-to-left variant of len
rpad right-to-left variant of pad
rmatch right-to-left variant of match
rnotany right-to-left variant of notany
rspan right-to-left variant of span

Let us display some examples illustrating the above descriptions.
For this let ss be "abcdefghijklmnopqrstuvwxyz".

• If s is "an example" then any(s,ss) yields "a" and modifies s to "n example".

• If s is "123a456" then break(s,ss) yields "123" and modifies s to "a456".

• len(ss,15) yields "abcdefghijklmno" and modifies ss to "pqrstuvwxyz".

• If s is "abc" then lpad(s,5) modifies s to " abc" and yields s as result.

• match(ss,"abcdef") yields "abcdef" and modifies ss to "ghijklmnopqrstuvwxyz".

13.5 Functions on Sets

The most functions on sets are integrated in the language.

npow k !npow A: the set of all subsets of A with exactly k elements

13.6 File Handling

The I/O-functions can be divided in two parts. First the input and output functions get and put and
their variants are integrated in the language and, therefore, are not mentioned here. The second part
comprises the file handling facilities. These are fopen, fclose, eof and feof. All these functions are
discussed in detail in section 12.

fopen(fn) tries to open a file specified by the file name fn.

fclose(fn) tries to close the file fn.

eof() tests on end of file in standard input.

feof(fn) tests on end of file in the file fn.
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13.7 Further Predefined Functions

abs(s) takes a one-character string and return an internal integer code for this character. If #s 6= 1
an exception is raised.

char(i) the converse function to abs. It takes as its argument an integer value which has to be the
internal code for a character and returns the corresponding one-character string. An exception
is raised, if for all one-character strings s the argument i is not equal to abs(s).

str(x) converts an arbitrary ProSet object into the corresponding printable string. Note that x

must not be an argument of the function, module or instance.

system(x) takes one argument. If the argument is om it will be tested whether a command processor
exists. If the argument is a string, this string is passed to the command processor of the operating
system. For details see section 4.2.4.

Note that the values returned by char and abs depend on the implementation.

13.8 Handling Tuple Spaces

ProSet provides several library functions to handle multiple tuple spaces:

CreateTS(limit): Calls the standard function newat to return a fresh atom. The tuple-space man-
ager is informed to create a new tuple space represented/identified by this atom. The atom
will be returned by CreateTS. Thus you can only use atoms that were created by createTS to
identify tuple spaces.

Since one has exclusive access to a fresh assigned tuple-space identity, CreateTS provides infor-
mation hiding to tuple-space communication.

The integer parameter limit specifies a limit on the expected or desired size of the new tuple
space. This size limit denotes the total number of passive and active tuples, which are allowed
in a tuple space at the same time. CreateTS(om) would instead indicate that the expected or
wanted size is unlimited regarding user-defined limits, not regarding physical limits.

ExistsTS(TS): Provides true, if TS is an atom that identifies an existing tuple space; else false.

ClearTS(TS): Removes all active and passive tuples from the specified tuple space. This operation
should be indivisible for TS.

RemoveTS(TS): Calls ClearTS(TS) and removes TS from the list of existing tuple spaces. Note that
after assigning a new value to a variable that contains a tuple-space identity, the respective tuple
space is not removed. The tuple-space identity is garbage collected, not the tuple space itself.
Garbage collection applies only to first class objects.

If these functions are invoked with actual parameters that are not atoms, then the exception type mismatch

will be raised. If the functions ExistsTS, ClearTS, or RemoveTS are called with an atom, which is not
a valid tuple-space identity, then the exception ts invalid id will be raised.

14 Macros

ProSet allows to define parametrized lexical abbreviations for sequences of tokens. These abbrevia-
tions are expanded by the macro processor before the lexical analysis phase of the compiler sees the
program. The macro processor preserves comments but does not interpret their content.

Although many language designers regard macros as an ancient relict or as a remainder of assembler
programming, we consider them as a convenient improvement of readability allowing the abbreviation
of lengthy code sequences. Certainly this functionality could be achieved by procedures, but at the
cost of inefficiency arising from unnecessary copies and procedure invocations.
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14.1 Macro Definition

A macro definition introduces a new macro which is referred to by the identifier following the keyword
macro. The definition may contain a declaration of local variables which are separated by commas
and terminated by a semicolon. It is syntactically described by

macro-definition ✲ macro ✲ Id

✲ << ✲ Id

; ✛

✲ >>

<

✲ macro-body ✲ endm ✲ Id ✲ ; >

macro-body

✲ local ✲ Id

, ✛

✲ ;
<

✲ token

>

The identifier following endm must be the macro name. The local allows to introduce fresh names
for variables, e.g. to hold temporary values or intermediate results. We assert that for each macro
invocation a fresh variable is generated.

The idea of having no dependencies on the syntax of the source language led to a somewhat unusual
notation of arguments: argument lists are enclosed by double angle quotes (i.e. less- and greater-
symbols), arguments are separated by semicolons. The syntactical restriction posed on the actual
parameters of a macro application are minimal: a semicolon and >> are not allowed. Anything else
(any token, including unbalanced parentheses) is allowed as a parameter.

Note that after the opening angle brackets, at least one formal parameter name is required. If a macro
is to be defined without formal parameters, the angle brackets should be omitted.

Here is an example which will exchange the values of two variables:

macro exchange <<x; y>>

local temp;

temp := x;

x := y;

y := z;

endm exchange;

...

if a(i) > a(j) then

exchange <<a(i); a(j)>>

end if;
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The local variable temp is used as a temporary—no user-variables in the same scope are affected.

Since ProSet can deal with multiple assignment, too, the macro body could equivalently contain
“[x,y]:=[y,x];” without the local-declaration.

The last line in the above example demonstrates a macro invocation; the general form is:

macro-invocation ✲ Id

✲ << ✲ actualparameter

; ✛

✲ >>

>

where Id is a macro name and the parameter list contains exactly as many actual parameters are
given as formals are declared with the macro.
If the macro is defined without any formal parameters, its invocation will not make use of any argu-
ment list provided in angle brackets. However, an argument list in angle brackets occurring after an
invocation of a parameter-less macro must not force an error — the arguments may serve as input to
another macro being invoked by the expansion of the current macros body.

The scope of macros is given lexically: After defining the macro, the identifier after the keyword macro

is bound to it until the end of the compiler run or until it is explicitly dropped by a drop-directive.
This is a directive to the macro processor to undefine a list of macro names. It is constructed as
follows:

drop ✲ drop ✲ Id

, ✛

✲ ; >

Using the name of a macro for another macro definition is not allowed unless it is explicitly dropped.

14.2 The Macro Processor

The macro processor works as follows (in a single pass):

• when the definition of a macro is encountered, the name of the macro, its definition and the
names of the formal parameters are stored

• when the processor sees an identifier associated with a macro definition, it generates a fresh name
for each local variable and substitutes the actual parameters (if any) for the formal parameters in
the macro‘s body. This substitution is done exclusively on a textual basis. The text so generated
replaces the macro invocation and is being read again by the macro processor to replace further
macro applications.

• if a drop-directive is read, all the listed macro names are undefined

This stack oriented replacement mechanism allows for macros in macros (where enclosed macros should
be dropped when leaving enclosing ones, otherwise two expansions of the enclosing macro will result
in a double declaration of the innermost one).
Recursive (direct or indirect) macros, however, will cause infinite loops in the macro processor.

The definition
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macro DefMacro <<x; y>>

macro x

y

endm x;

endm DefMacro;

has the effect that after

DefMacro <<one; 1>>

DefMacro <<two; 2>>

the macros one and two are defined and will expand to 1 and 2, respectively.
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A Contour Model

In this appendix we present the contour model of ProSet. It helps the reader to understand the
execution of a ProSet program and can be seen as an implementation technique for ProSet. The
model is informally specified and only some of its major features being of interest for the users of
ProSetare pointed out. For the purpose of this introductional specification much detail is glossed
over. A more comprehensive specification is available as an internal report.

A.1 Constituents

Every programming language implicitly defines an abstract machine. Therefore a ’ProSet maschine’
can be thought as an imaginary computer whose memory elements and machine instructions consist
of ProSet’s data objects, operations and control structures. The machine also has a state. Execution
of a program, also called interpretation, transforms the state of the machine to another by applying
the operations to the state of the machine. The state is characterized by the set of data objects and
values existing at a given point of time during the execution. Furthermore the procedure call hierarchy
and the representation of the next operation in the program text belong to the state.

The contour model captures these aspects and furthermore provides a conceptual basis for an imple-
mentation of ProSet. The model specifies an abstract machine and describes the execution of pro-
grams on this machine. An executing program is called an application. In the context of the contour
model an application is a sequence of snapshots. Each snapshot consists of a ProSet program and
the current state of the record of execution of that program. A snapshot results from the preceeding
one by the execution of one statement.

A.1.1 Ranges

One important fact in the choice of an appropriate model for ProSet is the concept of static block
structure. Nonlocal objects are taken from a static surrounding range. Another point of view is used
in Lisp taking nonlocal objects by default from the dynamic environment.

The ranges reflect the static block structure of ProSet. As noted in section 4.3 a range is a syntactic
construct that may contain declarations. Ranges are nested and inner ranges are not part of outer
ones. For ProSet ranges are associated with the following (syntactic) units:

• Each ProSet program is embedded in the standard environment containing declarations of all
keywords, e.g. true, false, integer, or om as well as introducing the default exception handler
(section 8.5). These declarations cannot be expressed in ProSet.

• The main program (section 4.1).

• Procedures (section 4.5)

• Modules (section 11)

• Exception handlers (section 8.5)

• Constructs associated with bound variables, i.e. for- and whilefound-loops (section 7.4.4), set
and tuple forming iterations (section 5.2.2 and 5.2.1), and quantified expressions (section ??).

In the following we take the standard environment for granted. Furthermore the main program is
treated like a procedure, this does not alter the scope rules.
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1 procedure demo;

2 visible constant x := 5;

3 hidden y;

4 begin

5 y := x + 1;

6 z := x + y;

7 p();

8

9 procedure p();

10 begin

11 put(x);

12 end p;

13

14 end demo;

Figure 26: An example for the contour model.

z : 11
y : 6

dummy

x = 5
Contour for demo

Figure 27: Contour for demo

A.1.2 Contours

Contours are the basic building blocks of the state descriptions. For ProSet each contour corre-
sponds to exactly one range and contains the objects declared in that range. We use the graphical
representation for contours introduced by Johnston16. A contour is represented by a rectangle. The
notations used for the representation of data objects will be explained with the example in figure 26
(the line numbers are not part of the program). The range corresponding to the top level of the
program demo contains four declarations. It serves as a template for the contour corresponding to
that range, which is shown in figure 27. The contour represents the state of the four program entities
before the procedure p is called.

When a new contour is established, all declared entities are entered. This includes also the implicit
declared entities. Constants and variables are represented by pairs consisting of a name and a value.
To distinguish constants from variables we use the symbol = for the binding of a name identifying a
constant to a value and the symbol : in case of variables. Labels, exceptions, procedures, modules,
and exception handlers are represented by their name. Integers, reals, booleans, strings, tuples, and
sets are represented as usual, e.g. 1, 3.26, true, "ProSet", [1,2,3], {3,4}. For atoms we use
arbitrary, but unique representation, e.g. A2194610371 (probably containing a maschine id, a time
stamp, etc.). The names of visible objects are written in boldface.

A.1.3 Nested Contours

One contour represents only a part of the state. As usual for block-structured languages the entire
state corresponds to a collection of nested contours. The nesting of the contours corresponds to the
structure of the nested ranges. As noted above, one contour corresponds to exactly one range, but
one range may correspond to several contours (e.g. in case of recursive procedure calls). If the ranges
A and B correspond to the contours A′ and B′ and A is immediately nested within B, then A′ is
immediately nested within B′. The contour B′ is called the static predecessor of of A′.

A.1.4 Environment Pointer

When executing a program, one contour corresponds to the range which contains the statement being
currently performed. This contour is addressed by the environment pointer ep and is called the actual
or local contour.

16Johnston, J. B. Contour Model of Block Structured Processes. SIGPLAN Notices 6(2), 55-82, 1971.
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A.1.5 Instruction Pointer

Another constituent of this contour model is the instruction pointer ip indicating the position in the
program text, i.e. ip points to the next operation during execution. In this model the instruction
pointer is represented by the line number of the next operation.

A.1.6 Processor

The environment pointer ep and the instruction pointer ip are combined in the processor P , which
controls the program execution. In this contour model the processor consists of a triple containing
a number for the identification of the processor (pid), an instruction pointer, and an environment
pointer. The use of multiple processors has the advantage that multiprocessing can be modeled in a
simple and natural way. A processor is represented the capital letter P decorated with its pid and its
ip. The environment pointer results from the position of the processor in the graphical representation.
For example the processor controling the execution of the program demo would be placed inside the
contour for demo (fig. 27) as P7

1 . If only one processor is required, the pid may be omitted.

A.1.7 Environment

A processor can access entities of its environment, consisting of the contour addressed by ep and all
enclosing contours, by name. The local contour is the starting-point if we search an object identified
by a given identifier i. First we search for i in the local contour. If this fails we continue searching in
the surrounding contours from inner to outer until we find a definition for i being marked as visible.

A.2 State Transitions

Execution of a program on the abstract machine is composed of state transitions. There are several
alternatives to change the state:

• Determination of the next operation.

This can be done either implicitly, e.g. by a sequence of statements, or explicitly by a procedure
call or a quit-statement.

• Assigning a new value to an existing data object.

This happens by an assignment or parameter transmissions.

• Changes of the state size or structure:

– Construction or removal of a value of type function, modtype, and instance.

– Range entry.

– Range exit.

In the following we will discuss some state transitions more detailed.

A.2.1 Bound Variables

In ProSet there are some constructs containing bound variables (for- and whilefound-loops, set
and tuple forming iterations, and quantified expressions). Instead of associating them with ranges, the
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bound variables are consistently renamed, i.e. they are replaced by identifiers not appearing elsewhere
in the program. The following example

x := 5;

for x in {1..10} do

if x in {x*x: x in [1..3]} then put(x); end if;

end for;

put(x);

is consistently renamed to

x := 5;

for t1 in {1..10} do

if t1 in {t2*t2: t2 in [1..3]} then put(t1); end if;

end for;

put(x);

with t1 and t2 as fresh names.

Hence, the introduced identifiers are treated as hidden variables declared in the enclosing range cor-
responding to an exception handler, a procedure, or a module.

A.2.2 Procedures

Upon call of a procedure p, the rd- and rw-parameters are computed in the local contour c. Now a
new contour c′ corresponding to the range of p is established. The new contour is placed immediately
within the contour c′′ being the local contour when p was declared. The actual parameters are
entered in c′′ i.e. the formal rd- and rw-parameters are initialized to the computed values and the
wr-parameters are initialized to om. Then ep is set to point to c′′ and ip is set to the first statement
of p to be executed. The contour c is called the dynamic predecessor of c′. This is indicated by an
arrow from c′′ to c in the graphical representation.

Upon return of a procedure p, the return value, the rw- and wr-parameters are written back to the
dynamic predecessor c. Then ep is set to point to c, ip addresses the statement immediately following
the procedure call, and the contour c′′ is removed.

A.2.3 Exception Handling

When an exception e is raised, we search the dynamic predecessor c′′ of the local contour c for an
association of a handler h with e. If the search succeeds, a new contour c′′ corresponding to the range
of h is established. The placement of the new contour as well as the transmission of parameters are
analogously to procedures. Of course ep now points to c′′ and ip is set to point to the first statement
of h. If the search fails, the default handler will be executed, terminating the program. Conceptually,
the default handler is established in the contour corresponding to the standard environment.

The actions to be executed upon handler exit depend on the form of termination (we suppose, that it
agrees with the raise form; otherwise, the default handler will be executed):

resume: Discard the local contour and let ep point to the dynamic predecessor, i.e. the contour for
the signaller.

return: Discard the local contour c′ and the dynamic predecessor c′. Let ep point to the the dynamic
predecessor c′′ of c′.

abort: Discard c, c′, and c′′ (as used above). The dynamic predecessor of c′′ becomes the local
contour.
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A.2.4 Functions

Values of type function are created by applying the closure operator to a procedure name or
lambda expression (section 5.3.1). The representation of a function reflects the semantics of the
closure operator. Values of type function are represented as triples consisting of the following three
components:

1. an atom (used for the equality test)

2. a line number representing the corresponding procedure or lambda expression.

3. a pointer to the closure, i.e. a copy of the enclosing contours of the procedure or lambda expres-
sion at the time when the closure operator was applied.

Upon call of a function, a copy of its closure is established outside any other contours and the contour
corresponding to the procedure or lambda expression is placed within the innermost contour of this
copy.

A.2.5 Modules and Instances

Modules are represented by their names. Applying the closure operator to a module name yields
a value of type modtype. This value is represented analogously to a value of type function. Values
of type instance are represented in the same way except that their closures additionally contain an
innermost contour corresponding to the top levels of the instantiated modules.

A.2.6 Multiple Processes

As noted in section A.1.6 the use of processors allows a simple and natural modeling of multiple
processes. The spawning of a new process results in establishing a new, additional processor with a
new and unique pid. The placeholder returned as result of process spawning is represented by the pid
of the new processor being put in parentheses. When a processor accesses an object associated with
a placeholder, it is suspended until the future resolves to the value.
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B Predefined Exceptions

exception raised by when see

escape type mismatch() [frequently used] 8.7
escape illegal operand() i ** j type i = integer, j<0 or j=i=0 5.1.1

type i = real, i=0.0 and j=0 5.1.2
i / j type j = integer, j=0 5.1.1

type j = real, j=0.0 5.1.2
i mod j type j = integer, j=0 5.1.1
s with x type s = set, x=om 5.2.2

escape illegal index() f(i) type f = string, i<0 5.1.4
type f = tuple, i<0 5.2.1

f(i..j) type f = string, i<0 or j<i-1 or j>#f 5.1.4
type f = tuple, i<0 or j<i-1 5.2.1

f(i.. ) type f = string, i<0 or #f<i-1 5.1.4
type f = tuple, i<0 or #f<i-1 5.2.1

escape illegal map operation() f{x} type f = set and ( not is map f ) 5.2.3
f(x) type f = set and ( not is map f ) 5.2.3

escape arity mismatch() application of a function object 5.3.1
escape mode mismatch() application of a function object 5.3.1
escape memory full() [frequently used] 8.7
signal ts is full() deposit 10.3.1
escape ts invalid id() ExistsTS, ClearTS, RemoveTS 13.8
escape io file error() I/O-routines 12.4
signal io syntax error() I/O-routines 12.4
signal io type mismatch() .put./.get.-routines 12.4
escape io arguments missing() .put./.get.-routines 12.4
escape io illegal input() .get.-routines 12.4
notify p missing name() persistent declaration 9.1.1
escape p missing pfile() persistent declaration 9.1.1
escape p missing rights() persistent declaration 9.1.1
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C Concrete Grammar

/*******************************************

Program and procedure definition:

*******************************************/

xProgDefn ::= ’program’ id ’;’ xProgBody

’end’ id ’;’ .

xProgBody ::= xDecls xcBeginStmts xcPHMDefns .

xcPHMDefns ::= xcPHMDefns xPHMDefn .

xcPHMDefns ::= .

xPHMDefn ::= ’procedure’ id xParamList ’;’

xProgBody ’end’ id ’;’ .

xPHMDefn ::= ’module’ id xParamList ’;’

xProgBody ’end’ id ’;’ .

xPHMDefn ::= ’handler’ id xParamList xImplAsso

’;’ xProgBody ’end’ id ’;’ .

% Parameter list:

xParamList ::= ’(’ ’)’ .

xParamList ::= ’(’ xcParams ’)’ .

xcParams ::= xcParams ’,’ xParamMode id .

xcParams ::= xParamMode id .

% Parameter mode:

xParamMode ::= .

xParamMode ::= ’rd’ .

xParamMode ::= ’rw’ .

xParamMode ::= ’wr’ .

% Implicit handler association:

xImplAsso ::= ’for’ xIdList .

xImplAsso ::= ’for’ ’others’ .

xImplAsso ::= .

xIdList ::= xIdList ’,’ id .

xIdList ::= id .

/*******************************************

Declarations:

*******************************************/

xDecls ::= xDecls xDecl .

xDecls ::= .

xDecl ::= xDeclKey xcVars xExplAsso ’;’ .

xcVars ::= xcVars ’,’ xSingleVar .

xcVars ::= xSingleVar .

xSingleVar ::= id ’:=’ xExpr .

xSingleVar ::= id .

xDeclKey ::= ’visible’ .

xDeclKey ::= ’hidden’ .

xDeclKey ::= ’visible’ ’constant’ .

xDeclKey ::= ’hidden’ ’constant’ .

xDeclKey ::= ’constant’ .

%

xDecl ::= xPersDecl xIdList ’:’ xExpr

xExplAsso ’;’ .

xPersDecl ::= ’visible’ ’persistent’.

xPersDecl ::= ’hidden’ ’persistent’ .

xPersDecl ::= ’visible’ ’persistent’ ’constant’.

xPersDecl ::= ’hidden’ ’persistent’ ’constant’.

xPersDecl ::= ’persistent’ ’constant’ .

xPersDecl ::= ’persistent’ .

/*******************************************

Statements:

*******************************************/

xcBeginStmts ::= ’begin’ xStmts .

xStmts ::= xStmts xStmt xExplAsso ’;’ .

xStmts ::= xStmt xExplAsso ’;’ .

%

xExplAsso ::= xExplAsso ’when’ xHandAsso .

xExplAsso ::= .

%

xHandAsso ::= xIdList ’use’ id .

%

% Simple Statements:

xStmt ::= ’pass’ .

xStmt ::= ’stop’ .

xStmt ::= ’stop’ xExpr .

xStmt ::= ’return’ xExpr .

xStmt ::= ’return’ .

xStmt ::= ’resume’ .

xStmt ::= ’abort’ xExpr .

xStmt ::= ’abort’ .

xStmt ::= ’signal’ id xActuList .

xStmt ::= ’notify’ id xActuList .

xStmt ::= ’escape’ id xActuList .

%

xStmt ::= xStdIO xActuList .

xStdIO ::= ’put’ .

xStdIO ::= ’eput’ .

xStdIO ::= ’fput’ .

xStdIO ::= ’putf’ .

xStdIO ::= ’eputf’ .

xStdIO ::= ’fputf’ .

xStdIO ::= ’get’ .

xStdIO ::= ’fget’ .

xStdIO ::= ’getf’ .

xStdIO ::= ’fgetf’ .

%

% Assignments:

xStmt ::= xLValue ’:=’ xExpr .

xStmt ::= xLValue xBinOp ’:=’ xExpr .

xStmt ::= xLValue xFrom xcSimpleLV .

xFrom ::= ’from’ .

xFrom ::= ’frome’ .

xFrom ::= ’fromb’ .

%

% Function calls:

xStmt ::= xcSimpleLV xActuList .

xActuList ::= ’(’ xExprList ’)’ .

xActuList ::= ’(’ ’)’ .

%

% Recursive lambda calls:

xStmt ::= ’self’ xActuList .

%

% Conditional statements:

xStmt ::= ’if’ xExpr ’then’ xStmts xElIfStmts

xElseStmts ’end’ ’if’ .

xElIfStmt ::= ’elseif’ xExpr ’then’ xStmts .

xElIfStmts ::= xElIfStmts xElIfStmt .

xElIfStmts ::= .

%

xElseStmts ::= ’else’ xStmts .

xElseStmts ::= .

%

% Case statements:

xStmt ::= ’case’ xExpr xCaseStmts xElseStmts

’end’ ’case’ .

xCaseStmts ::= xCaseStmts xcCaseStmt .

xCaseStmts ::= xcCaseStmt .

xcCaseStmt ::= xcCaseList xStmts .

xcCaseList ::= ’when’ xExprList ’=>’ .

%

% Loop statements:

xStmt ::= xcLoopStmt ’end’ ’loop’ .

xStmt ::= xcForStmt ’end’ ’for’ .

xStmt ::= xcWhileStmt ’end’ ’while’ .

xStmt ::= xcWhilefound ’end’ ’whilefound’ .

xStmt ::= xcUntilStmt ’end’ ’repeat’ .

xStmt ::= xLabel xLoops ’end’ id .

xLabel ::= id ’:’ .

xLoops ::= xcLoopStmt .
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xLoops ::= xcForStmt .

xLoops ::= xcWhileStmt .

xLoops ::= xcWhilefound .

xLoops ::= xcUntilStmt .

xcLoopStmt ::= ’loop’ xStmts .

xcForStmt ::= ’for’ xIterator ’do’ xStmts .

xcWhileStmt ::= ’while’ xExpr ’do’ xStmts .

xcWhilefound ::= ’whilefound’ xIterator

’do’ xStmts .

xcUntilStmt ::= ’repeat’ xStmts ’until’ xExpr .

xStmt ::= ’quit’ .

xStmt ::= ’quit’ id .

xStmt ::= ’continue’ .

xStmt ::= ’continue’ id .

%

% Process spawing statement:

xStmt ::= ’||’ xExpr .

%

% Tuple-Space Operations:

xStmt ::= ’deposit’ xDepList ’end’ ’deposit’ .

xStmt ::= ’deposit’ xDepList ’blockiffull’

’end’ ’deposit’ .

xDepList ::= xDepList xExprList ’at’ xQualId .

xDepList ::= xExprList ’at’ xQualId .

%

xStmt ::= ’fetch’ xTempListAt xElseStmts

’end’ ’fetch’ .

%

xStmt ::= ’meet’ xTempListAt xElseStmts

’end’ ’meet’ .

%

xTempListAt ::= xTempListAt ’or’ xcTempList

’at’ xQualId .

xTempListAt ::= xcTempList ’at’ xQualId .

xcTempList ::= xcTempList ’or’ xTemplate .

xcTempList ::= xTemplate .

xTemplate ::= ’(’ xcEFEmpty ’)’ ’=>’ xStmts .

xTemplate ::= ’(’ xcEFEmpty ’)’ .

xcEFEmpty ::= .

xcEFEmpty ::= xcEFList .

xcEFList ::= xcEFList ’,’ xExprFormal .

xcEFList ::= xExprFormal .

xExprFormal ::= xExpr xInto.

xExprFormal ::= ’?’ xFormal xInto.

xInto ::= ’into’ xExpr .

xInto ::= .

xFormal ::= xcSimpleLV ’|’ xExpr .

xFormal ::= ’|’ xExpr .

xFormal ::= xcSimpleLV .

xFormal ::= .

%

/*******************************************

Iterators:

*******************************************/

xIterator ::= xSimpleIts ’|’ xExpr .

xIterator ::= xSimpleIts .

xSimpleIts ::= xSimpleIts ’,’ xSimpleIt .

xSimpleIts ::= xSimpleIt .

xSimpleIt ::= xLValue ’in’ xExpr .

xSimpleIt ::= xLValue ’=’ id xMapSel .

/*******************************************

Map Selectors for simple iterators:

*******************************************/

xMapSel ::= ’(’ xcLValList ’)’ .

xMapSel ::= ’{’ xcLValList ’}’ .

xcLValList ::= xcLValList ’,’ xLValue .

xcLValList ::= xLValue .

/*******************************************

Left hand side values:

*******************************************/

xLValue ::= xcSimpleLV .

xcSimpleLV ::= xQualId .

xcSimpleLV ::= xcSimpleLV xSelector .

xLValue ::= ’[’ xcComps ’]’ .

xcComps ::= xcComps ’,’ xcComp .

xcComps ::= xcComp .

xcComp ::= xLValue .

xcComp ::= ’-’ .

/*******************************************

Selectors:

*******************************************/

xSelector ::= ’(’ xExprList ’)’ .

xSelector ::= ’{’ xExprList ’}’ .

xSelector ::= ’(’ xExpr ’..’ ’)’ .

xSelector ::= ’(’ xExpr ’..’ xExpr ’)’ .

/*******************************************

Former:

*******************************************/

% sets:

xcSetFormer ::= xFormer .

xcSetFormer ::= xExpr ’,’ xExprList .

xcSetFormer ::= xExpr ’,’ xExpr ’..’ xExpr .

% tuples:

xcTupFormer ::= xFormer .

xcTupFormer ::= xcTupComp ’,’ xExpr ’..’ xExpr .

xcTupFormer ::= xcTupComp ’,’ xcTCList .

xcTCList ::= xcTCList ’,’ xcTupComp .

xcTCList ::= xcTupComp .

xcTupComp ::= xExpr .

xcTupComp ::= ’-’ .

% general:

xFormer ::= xExpr .

xFormer ::= xExpr ’..’ xExpr .

xFormer ::= xExpr ’:’ xIterator .

/*********************************************

Expressions:

*******************************************/

xExprList ::= xExprList ’,’ xExpr .

xExprList ::= xExpr .

/*******************************************

Primary Expressions without possible selections:

*******************************************/

xcPrimary ::= int .

xcPrimary ::= float .

xcPrimary ::= ’true’ .

xcPrimary ::= ’false’ .

xcPrimary ::= ’om’ .

xcPrimary ::= ’atom’ .

xcPrimary ::= ’boolean’ .

xcPrimary ::= ’integer’ .

xcPrimary ::= ’real’ .

xcPrimary ::= ’string’ .

xcPrimary ::= ’tuple’ .

xcPrimary ::= ’set’ .

xcPrimary ::= ’function’ .

xcPrimary ::= ’modtype’ .

xcPrimary ::= ’instance’ .

xcPrimary ::= ’rd’ .

xcPrimary ::= ’rw’ .

xcPrimary ::= ’wr’ .

xcPrimary ::= ’{’ ’}’ .

xcPrimary ::= ’[’ ’]’ .

%

% Newat:

xcPrimary ::= ’newat’ ’(’ ’)’ .

%
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% module instantiations:

xcPrimary ::= ’instantiate’ xExpr xcClauses

’end’ ’instantiate’ .

xcClauses ::= xcClauses xClause .

xcClauses ::= xClause .

xClause ::= ’rd’ xcImports ’;’ .

xClause ::= ’rw’ xcImports ’;’ .

xClause ::= ’wr’ xIdList ’;’ .

xcImports ::= xcImports ’,’ xImport .

xcImports ::= xImport .

xImport ::= id ’:=’ xExpr .

/*******************************************

Primary Expressions with possible selections:

*******************************************/

xcPrimary ::= xcPriSel .

xcPriSel ::= str .

xcPriSel ::= ’$’ .

xcPriSel ::= ’argv’ .

xcPriSel ::= ’{’ xcSetFormer ’}’ .

xcPriSel ::= ’[’ xcTupFormer ’]’ .

%

% Identifier:

xcPriSel ::= xQualId .

xQualId ::= xQualId ’.’ id .

xQualId ::= id .

%

% Lambda Expressions:

xcPriSel ::= xLambda .

xLambda ::= ’lambda’ xParamList ’:’ xProgBody

’end’ ’lambda’ .

%

% Recursive lambda calls:

xcPriSel ::= ’self’ xActuList .

xcPowTerm ::= ’self’ .

%

xcPriSel ::= xcPriSel xSelector .

xcPriSel ::= xcPriSel ’(’ ’)’ .

%

% Explicit handler associations:

xcPriSel ::= xcPriSel ’[’ xHandAsso ’]’ .

%

% Quantifiers:

xExpr ::= xQuantifier .

xQuantifier ::= xQualifier xSimpleIts

’|’ xcPowTerm .

xQualifier ::= ’exists’ .

xQualifier ::= ’forall’ .

%

% Conditional Expressions:

xcPriSel ::= ’if’ xExpr ’then’ xExpr xElIfExprs

xElseExpr ’end’ ’if’ .

xElIfExprs ::= xElIfExprs xElIfExpr .

xElIfExprs ::= .

xElIfExpr ::= ’elseif’ xExpr ’then’ xExpr .

%

xElseExpr ::= ’else’ xExpr .

xElseExpr ::= .

%

% Case Expressions:

xcPriSel ::= ’case’ xExpr xCaseExprs xElseExpr

’end’ ’case’ .

xCaseExprs ::= xCaseExprs xcCaseExpr .

xCaseExprs ::= xcCaseExpr .

xcCaseExpr ::= xcCaseList xExpr .

%

xcPriSel ::= ’(’ xExpr ’)’ .

/*******************************************

Binary operations:

*******************************************/

xExpr ::= xExpr xcOrOp xcOrTerm / xcOrTerm .

xcOrOp ::= ’or’ .

xcOrOp ::= ’or’ ’%’ .

xcOrTerm ::= xcOrTerm xcAndOp xcAndTerm /

xcAndTerm .

xcAndOp ::= ’and’ .

xcAndOp ::= ’and’ ’%’ .

xcAndTerm ::= xcAndTerm xcBoolOp xcBoolTerm /

xcBoolTerm .

xcBoolOp ::= ’=’ .

xcBoolOp ::= ’/=’ .

xcBoolOp ::= ’<’ .

xcBoolOp ::= ’<=’ .

xcBoolOp ::= ’>’ .

xcBoolOp ::= ’>=’ .

xcBoolOp ::= ’in’ .

xcBoolOp ::= ’notin’ .

xcBoolOp ::= ’subset’ .

xcBoolOp ::= ’=’ ’%’ .

xcBoolOp ::= ’/=’ ’%’ .

xcBoolOp ::= ’<’ ’%’ .

xcBoolOp ::= ’<=’ ’%’ .

xcBoolOp ::= ’>’ ’%’ .

xcBoolOp ::= ’>=’ ’%’ .

xcBoolOp ::= ’in’ ’%’ .

xcBoolOp ::= ’notin’ ’%’ .

xcBoolOp ::= ’subset’ ’%’ .

xcBoolTerm ::= xcBoolTerm xcSetOp xcSetTerm /

xcSetTerm .

xcSetOp ::= ’with’ .

xcSetOp ::= ’less’ .

xcSetOp ::= ’lessf’ .

xcSetOp ::= ’!’ id .

xcSetOp ::= ’with’ ’%’ .

xcSetOp ::= ’less’ ’%’ .

xcSetOp ::= ’lessf’ ’%’ .

xcSetOp ::= ’!’ id ’%’ .

xcSetTerm ::= xcSetTerm xcAddOp xcAddTerm /

xcAddTerm .

xcAddOp ::= ’+’ .

xcAddOp ::= ’-’ .

xcAddOp ::= ’max’ .

xcAddOp ::= ’min’ .

xcAddOp ::= ’+’ ’%’ .

xcAddOp ::= ’-’ ’%’ .

xcAddOp ::= ’max’ ’%’ .

xcAddOp ::= ’min’ ’%’ .

xcAddTerm ::= xcAddTerm xcMulOp xcMulTerm /

xcMulTerm .

xcMulOp ::= ’*’ .

xcMulOp ::= ’/’ .

xcMulOp ::= ’mod’ .

xcMulOp ::= ’*’ ’%’ .

xcMulOp ::= ’/’ ’%’ .

xcMulOp ::= ’mod’ ’%’ .

xcMulTerm ::= xcMulTerm xcPowOp xcPowTerm /

xcPowTerm .

xcPowOp ::= ’**’ .

xcPowOp ::= ’**’ ’%’ .

xcPowTerm ::= xUnOp xcPowTerm .

xcPowTerm ::= xcPrimary .

%

xBinOp ::= xcOrOp .

xBinOp ::= xcAndOp .

xBinOp ::= xcBoolOp .

xBinOp ::= xcSetOp .



C Concrete Grammar 107

xBinOp ::= xcAddOp .

xBinOp ::= xcMulOp .

xBinOp ::= xcPowOp .

/*******************************************

Unary Operators:

*******************************************/

xUnOp ::= ’+’ .

xUnOp ::= ’-’ .

xUnOp ::= ’#’ .

xUnOp ::= ’||’ .

xUnOp ::= ’not’ .

xUnOp ::= ’pow’ .

xUnOp ::= ’arb’ .

xUnOp ::= ’random’ .

xUnOp ::= ’domain’ .

xUnOp ::= ’range’ .

xUnOp ::= ’type’ .

xUnOp ::= ’profile’ .

xUnOp ::= ’closure’ .

xUnOp ::= ’is_map’ .

xUnOp ::= ’is_smap’ .

xUnOp ::= ’!’ id .

xUnOp ::= ’or’ ’%’ .

xUnOp ::= ’and’ ’%’ .

xUnOp ::= ’=’ ’%’ .

xUnOp ::= ’/=’ ’%’ .

xUnOp ::= ’<’ ’%’ .

xUnOp ::= ’<=’ ’%’ .

xUnOp ::= ’>’ ’%’ .

xUnOp ::= ’>=’ ’%’ .

xUnOp ::= ’in’ ’%’ .

xUnOp ::= ’notin’ ’%’ .

xUnOp ::= ’subset’ ’%’ .

xUnOp ::= ’with’ ’%’ .

xUnOp ::= ’less’ ’%’ .

xUnOp ::= ’lessf’ ’%’ .

xUnOp ::= ’!’ id ’%’ .

xUnOp ::= ’+’ ’%’ .

xUnOp ::= ’-’ ’%’ .

xUnOp ::= ’max’ ’%’ .

xUnOp ::= ’min’ ’%’ .

xUnOp ::= ’*’ ’%’ .

xUnOp ::= ’/’ ’%’ .

xUnOp ::= ’mod’ ’%’ .

xUnOp ::= ’**’ ’%’ .
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Keyword index

A
abort 56
and 20
arb 24, 40
argv 11, 22
at 67, 68
atom 19, 22, 83

B
begin 10, 76
blockiffull 68
boolean 19, 20, 22, 83

C
case 33, 41, 46, 47
closure 26, 34, 60, 75, 76
constant 14, 59, 76
continue 35, 41, 42, 46

D
deposit 66, 71
do 43–45
domain 25
drop 96

E
else 32, 33, 46, 47, 69
elseif 32, 46
end 10, 15, 17, 32, 33, 41, 42, 56, 66, 75, 77
endm 95
eput 80, 82
eputf 80
escape 52, 54, 57
exists 36, 45

F
false 20
fetch 66, 68, 71
fget 87
fgetf 87
for 41, 44–46, 55
forall 36
fput 80, 82
fputf 80
from 24, 40
fromb 22, 40
frome 22, 40
function 19, 22, 25, 83

G
get 87
getf 87

H
handler 55
hidden 12–14, 59

I
if 32, 41, 46
in 22, 24, 34, 35
include 12
instance 19, 22, 25, 75, 83
instantiate 77
integer 19, 22, 83
into 70
is map 25
is smap 24, 25

L
lambda 17
less 24
lessf 25
local 95
loop 41, 43, 46

M
macro 95
max 19, 20
meet 66, 70, 71
min 19, 20
mod 19, 24
modtype 19, 22, 25, 76, 83
module 75

N
newat 22, 94
not 20
notify 51, 52, 54, 60
notin 22, 24

O
om 19, 94
or 20, 68
others 55

P
pass 41, 76
persistent 59, 76
pow 24
procedure 15
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profile 26, 75, 78
program 9
put 10, 80, 82
putf 80

Q
quit 41, 42, 45, 46

R
random 19, 20, 22–24
range 25
rd 15, 22, 55, 73, 75, 77, 78
real 19, 20, 22, 83
repeat 41, 43, 46
resume 50, 56, 60, 67
return 17, 41, 43, 51, 56, 57, 67
rw 15, 22, 55, 75, 77, 78

S
self 17
set 19, 22, 24, 83
signal 52, 54, 57
stop 11, 42, 56, 67, 80
string 19, 21, 22, 83
subset 24

T
then 32, 46
true 20
tuple 19, 22, 83
type 19–22, 24, 26

U
until 43
use 54

V
visible 12–14, 59, 75

W
when 10, 33, 47, 54
while 41, 43, 46
whilefound 41, 45, 46
with 22, 24
wr 15, 22, 55, 73, 75, 78
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Nonterminal index

A
actualparameter 96
Assocs 10, 54

B
BinOp 39
Body 9, 10, 15, 17, 55
body 75

C
Case 47
Case-Exprs 33
CaseStmt 41, 47

D
Decls 10, 13, 14, 59
Deposit 67

E
Else 69
ElseIf 46
ElseIf-Expr 32
ExplHandAss 37, 54
Expr 13, 14, 17, 29, 29, 31, 32, 33, 34, 36, 36,

37, 39, 42–47, 56, 59, 77
Expr-list 29

F
Fetch 68
FileName 12
For 41, 42, 44
Formal 69
former 31

H
HandDecl 10
HandlerDefn 55
HandlerHeader 55
HandlerTrailer 55, 56

I
Id 9, 10, 13–15, 29, 38, 54–56, 75, 77, 95, 96
Identifier 59
IfFull 68
IfStmt 41, 46
ImplAssoc 55
InclDir 12
Iterator 31, 34, 36, 44, 45

L
l-Selector 29, 38
Label 42, 46
LambdaHeader 17
LambdaTrailer 17
ListOfId 54, 55
Loop 41–43
LValue 34, 36, 38, 39, 40, 69

M
macro-definition 95
macro-invocation 96
macro body 95
MeetTemplate 70
ModDecl 10, 75

P
ParamList 15, 15, 17, 54, 55, 75
ParamMode 15
ProcDecl 10
ProcDefn 15
ProcHeader 15
ProcTrailer 15
ProgDefn 9
ProgHeader 9
ProgTrailer 9, 10

Q
QualId 29

R
RdClause 77
RealNumber 8
Repeat 41–43
RwClause 77

S
Selector 29
set-former 31
SimpleIt 34, 36
Statement 10, 17, 39–42, 46, 54, 56, 65, 66
Stmts 10, 43–46

T
Template 68
token 95
tuple-former 31

W
While 41–43
Whilefound 41, 42, 45
WrClause 77
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General index

# 21, 22, 24
@ 12
$ 81, 82, 85, 88
% 82, 88
& 85
|| 64
| 31, 36, 44, 45
- 38, 39
% 33
( ) 15, 29, 36
* 19, 20, 24
** 19, 20
+ 19–22, 24
.. 29, 31
/ 19, 20
/= 20–22, 24, 26
\ 8, 82, 88
\t 89
#? 90
: 17, 31, 42, 59
:= 13, 14, 39, 77
< 20, 21
<< 96
<< >> 95
<= 20, 21
= 20–22, 24, 26, 36
=> 47, 68
> 20, 21, 90
>= 20, 21
>> 96
{ } 29
[ ] 22, 31, 38

exception handling 37

A ”a” 80
abs 19, 20, 92, 94
acos 20, 92
activation point 54
actual 63, 68
Ada 58, 73, 78
ALGOL 3
any 21, 92
applied 12
archives 62
asin 20, 92
assignment symbol 39
association

explicit 54, 56
implicit 54

associative matching 63
associativity

left 31
atan 20, 92
atan2 20, 92
atomic 63, 71
atoms 72

B backspace 82
backward direction 89
binding 4, 26, 34, 73, 78
body 9
Boehm’s spiral model 1
bound variable 44
break 21, 92

C call by
result 16
value 16
value/result 16

caller 48
cardinality 24
carriage return 82, 85, 86
ceil 20, 92
char 94
ClearTS 94
close bracket 84
Clu 58
command processor 11
concatenation 21, 22
conceptual units 9
constant part 81
control 12

characters 82
copy semantics 16
cos 20
CreateTS 94

D data type 19
declaration 9, 12, 85

hidden 12
declarative specifiers 87
default

formats 82, 87
handler 57
specification 90

deletion 24
directory 73
domain faults 50
double precision 7
drop 96
dummy symbol 38, 39
dynamic
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constant 15
environment 26

E elaboration 13, 15
empty word 82
end-of-file 89
end-of-line 85
enumeration 23, 24, 32
environment

local 35
eof 80, 93
equality 22

test 19
error code 56
error handling 3
escape 82

sequences 8
evaluation order 31
even 19, 92
exception 19, 48, 67

associated 48
binding to handlers 55
escape 48
handler 4, 48, 67
handling 3

ExistsTS 94
exp 20, 92
exported 73
expression

λ 17
lists 31

extraction operators 25

F fairness 71
fair selection 47
#false 90
fclose 80, 93
feof 80, 93
file 80
first class

civil rights 73
first-class

citizens 25
first class 94
fix 20, 92
float 19, 92
floor 20, 92
Floyd 1
fopen 80, 93
formal 63, 68
formal parameters 15
format specification 80
formatter 81, 82, 88
form feed 82

forward direction 89
freezing 26, 76
futures 63

G garbage collection 65, 94
generic package 4, 73
guarding expression 47

H header 9
host environment 10

I identity 3, 25, 75
implicit associations 56
import 73
ImportIntOps 91
ImportRealOps 91
ImportSetOps 91
ImportsFurtherOps 91
ImportStdLib 91
ImportStringOps 91
inclusion 24
indivisibility 71
information hiding 94
initialization

code 76
part 73

insertion 22, 24
instantiation 34, 73, 77
interconnecting modules 78
intersection 24
interval 23, 24
io type mismatch 91
ISA-relationships 4
iterator 44

J justice 71

L label 42, 46
left associativity 18, 31
left-hand side 16, 38
len 21, 92
length of the string 21
lexicographic comparison 21
library format 78
LINDA 2, 62
line width 86
linking 78
Lisp 3, 64
lists of expressions 31
LITTLE 2
loading 4, 73
local 12

environment 35
variables 95



GENERAL INDEX 113

lock 59
log 20
lpad 21, 92
l-value 39
l-values 30, 38

M manifest constant 15
match 21, 93
matching 63, 69, 71

blocking 69
customizing 69
non-blocking 69, 72

membership 22, 24
memory full 57
mode 80

constants 22
modeling

data 4
of software 1

Modula-2 6, 78
monitoring 51
multi level mechanism 58
Multilisp 5, 63
multiple

loops 42
l-values 38, 39
simple iterators 44
tuple space 72

multiprocessing 62
multiprogramming 62
multiset 66

N new line 82
nondeterminism 47, 71
notany 21, 93
npow 24, 93

O occurrence
applied 12
defining 12

odd 19, 92
open bracket 84
order of evaluation 31
output specification 82
overflow 8

P packages 73
parallel programming 5
parametric polymorphism 3
persistence 72
persistent declaration 50
p missing name 78
pointer semantics 3
polling 72

polymorphic 3
power set 24
precedence 18, 31
predefined type constants 22
process

creation 63, 64
termination 64

processes
termination 65, 94

program blocks 39
programming

experimental 1
exploratory 1
in the large 2, 4, 73
in the small 4

prompt 90
prototyping 1

Q quantified expressions 44
quilt 5

R ”r” 80, 87
raise-statement 52
raising 48
range 12

faults 50
rany 21, 93
RAPTS 2
rbreak 21, 93
rd clause 77
read lock 59
real number 7
resolving 63
resuming 4, 48
return code 11
rlen 21, 93
rmatch 21, 93
rnotany 21, 93
rpad 21, 93
rspan 21, 93
r-values 30

S Scheme 63
Schwartz 1
scope 12

of macro 96
SED 2
selection 22
semantic data models 4
semicolon 10
separate compilation 4, 73
separation symbol 84
separator 10
set
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difference 24
formers 44

SETL 1, 45, 73, 92
optimizer 2

SETL2 2
short circuit-operations 20
side effects 63, 66
sign 19, 20, 92
signal-exception 50
signaller 48
signalling 48
sin 20, 92
single level mechanism 57
slicing 21, 22
Snobol 92
Snyder 2
software life cycle 1
span 21, 93
sqrt 20, 92
standard

error output 80
formatter 82
library 10

static
environment 26
variables 73

status 11
StdLib 10, 91
str 19, 20, 22, 24, 94
string scanning primitives 21, 92
success code 42
suspension 63, 68, 70
synchronization 5
system 11, 94

T tabulator 82, 85, 89
tan 20, 92
tanh 20, 92
template 63, 68
temporal logic 72
termination 4, 42, 48, 56
terminator 10
token 6
touching 64
Tower of Babel 2
trailer 10
transaction 59

manager 59
transmission 64
#true 90
ts is full 67
tuple 22, 66

active 67
changing 70

empty 22
formers 44
passive 67

tuple space
clearing 94
creation 94
handling 94
identity 72
limited 67, 71, 94
manager 72, 94
multiple 72
operations 66
persistent 72

type mismatch 11, 57, 91

U underflow 8
union 24
UNIX 62
user’s involvement 1
user specified formats 87

V value semantics 3, 64
variable part 81
visibility control 9
volatile data 58

W ”w” 80
WAA 2
weakly typed 19
white space 6, 88, 89
width of line 86
write lock 60
write parameter 66


