Preprint of: Peer Brauer, Florian Fittkau, Wilhelm Hasselbring: The Aspect-Oriented Architecture of
the CAPS Framework for Capturing, Analyzing and Archiving Provenance Data. In: Proceedings of
the 5th International Provenance and Annotation Workshop (IPAW 2014), Cologne, Germany,
Springer-Verlag LNCS, June 2014.

The Aspect-Oriented Architecture of the CAPS
Framework for Capturing, Analyzing and
Archiving Provenance Data

Peer Brauer,! Florian Fittkau' and Wilhelm Hasselbring?

! Software Engineering Group, Kiel University, Kiel, Germany
{pcb,ffi,wha}@informatik.uni-kiel.de

With aspect-oriented programming techniques, modularity may be achieved via
separating cross-cutting concerns. Data provenance can be considered as a cross-
cutting concern: code for collecting provenance data is usually scattered across
various places in a software system. Aspect-oriented programming allows to
seamlessly integrate cross-cutting concerns into existing software applications
without interference with the original system.

Following this approach, CAPS! is a framework to weave provenance-captu-
ring mechanisms into existing Java applications, which are not yet provenance
aware. The CAPS framework employs AspectJ [5],% the Kieker framework [7,4],3
the Java Management Extensions JMX,* and some Java security mechanisms
to automatically collect the provenance information. Woven inside the applica-
tion as a minimal-invasive integration of the provenance capturing mechanisms,
CAPS monitors the execution of the software. Whenever a data set is processed,
CAPS creates the corresponding provenance graph entry. The graph itself is
stored in an integrated provenance archive build on top of the Neod4j graph
database.® CAPS is implemented and evaluated in the context of the PubFlow
workflow system for semi-automatic research data publication [2]. In particu-
lar, workflow-generated provenance data is automatically gathered via CAPS,
without mixing program logic with provenance mechanisms.

For deployment, CAPS provides a GWT-based web interfaces,® which allows
the user to upload his own scientific Java applications to the CAPS runtime
environment. While uploading the application, the user has to provide basic
information about the application and its runtime environment. These include:

the deployment type of the application (e.g., web based, Java archive),
— virtual machine parameters,
— application parameters and

the URL of an existing CAPS Provenance Archive instance in case of stan-
dalone applications.

! CAPS stands for Capturing and Archiving Provenance in Scientific workflows
2 http://eclipse.org/aspectj/

3 http://kieker-monitoring.net/

4 http://docs.oracle.com/javase/tutorial/jmx/

® http://www.neo4j.org/

S http://www.gwtproject.org/



http://eclipse.org/aspectj/
http://kieker-monitoring.net/
http://docs.oracle.com/javase/tutorial/jmx/
http://www.neo4j.org/
http://www.gwtproject.org/
Willi
Rechteck


Based on the provided information, CAPS suggests a so-called application pro-
files for the application to be deployed. A profile contains a predefined selection
of aspects and Kieker monitoring probes, that are applicable to the type of the
given application. CAPS also provides profiles for Java-based workflow systems
such as jBPM.” The user can refine the suggested profile or switch to another
profile that collects more detailed information profile.

After selection of the profile to be applied to the application, CAPS creates
a runtime configuration based on the provided information. After the creation
of the profile, the user may check the configuration via a profiling run.

If the user chooses to initiate a profiling run, the system starts the application
and displays the provenance information, captured by CAPS. This provides the
user the opportunity to check, whether all relevant aspects of the system are
under surveillance, and whether the monitoring level should be increased or

decreased. The user can repeat this process to optimize the provenance trace
produced by CAPS.

CAPS uses the Java sandbox security mechanism to intercept I/O and net-
work calls.® We employ these components by weaving our monitoring probes
directly into those methods that are responsible for checking the applications’
calls against the JVM security constrains. CAPS also alters the configuration of
the JVM for the client application which always activates the sandbox, when-
ever the application starts. It also obtains additional basic runtime information
about the client application by querying the JMX interface.

Next, the user has to decide, whether the application should be exported as
a standalone application, such that it can be used without CAPS, or whether
the application should be added to the CAPS application library. For standalone
applications, CAPS creates a so-called CAPS connector and embeds it into the
application. The connector is responsible for connecting the application to the
CAPS server, so the provenance data created by the application can be analyzed
and archived.

To extract the provenance information from the collected monitoring data,
CAPS utilizes the existing data analysis functionality of the Kieker framework,
i.e. the analysis framework and the Kieker WebGUT [3].

CAPS provides specific Kieker filters, that can be used to filter the prove-
nance data from the stream of monitoring records. These filters is described in
[1]. CAPS comes with predefined analysis components, and offers the user to cre-
ate her own analysis components. Predefined analyses are, for example, available
for creating the PROV-O? provenance graph or for reconstructing workflows in
scientific workflow environments.

To store the provenance information collected by the framework, CAPS uses
an integrated provenance archive. The archive is built on top of the Eclipse

" http://www. jboss.org/jbpm

8 http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/
security-spec.docl.html

9 http://www.w3.org/TR/prov-o/


http://www.jboss.org/jbpm
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc1.html
http://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-spec.doc1.html
http://www.w3.org/TR/prov-o/

Modeling Framework Project (EMF),!? the Google Web Toolkit (GWT)!! the
PubFlow Graphframework,'? and Neo4j. It was a result of the W3C call for
implementations of the PROV-O data model.'> The provenance archive is de-
veloped based on an extended version of the PROV-DM (6], implemented with
the Eclipse Modeling Framework. We made small additions to the PROV-DM
model, such that we can store some additional information, like execution time
stamps and user roles. However, we keep our model compatible to the original
W3C PROV-DM. As persistence layer for our provenance archive we chose a
Neo4j graph database. This offers the advantage of benefiting from the specific
graph algorithms provided by the database engine. To store our EMF model
in the graph database we are currently building a new persistence layer based
on neodemf,'* a framework that allows mapping an EMF model to a Neo4j
database.

References

1. Brauer, P.C., Hasselbring, W.: Capturing provenance information with a workflow
monitoring extension for the Kieker framework. In: Proceedings of the 3rd Interna-
tional Workshop on Semantic Web in Provenance Management. CEUR-WS (May
2012), http://eprints.uni-kiel.de/19636/

2. Brauer, P.C., Hasselbring, W.: PubFlow: a scientific data publication framework
for marine science. In: Proceedings of the International Conference on Marine Data
and Information Systems (IMDIS 2013). vol. 54, pp. 29-31 (September 2013), http:
//eprints.uni-kiel.de/22399/

3. Ehmke, N.C.: Everything in sight: Kieker’s WebGUT in action. In: Proceedings of the
Symposium on Software Performance: Joint Kieker/Palladio Days 2013. pp. 11-19.
CEUR-WS (Nov 2013), http://eprints.uni-kiel.de/22528/

4. van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: A framework for application per-
formance monitoring and dynamic software analysis. In: Proceedings of the 3rd joint
ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
pp. 247-248. ACM (April 2012), http://eprints.uni-kiel.de/14418/

5. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: ECOOP 2001 Object-Oriented Programming, pp. 327-354.
Springer (2001)

6. Moreau, L., Missier, P.. PROV-DM: The prov data model. Tech. rep., World Wide
Web Consortium (2013)

7. Rohr, M., van Hoorn, A., Matevska, J., Sommer, N., Stoever, L., Giesecke, S.,
Hasselbring, W.: Kieker: Continuous monitoring and on demand visualization of
Java software behavior. In: Proceedings of the IASTED International Conference
on Software Engineering 2008 (SE’08). pp. 80-85 (Feb 2008)

10 http://www.eclipse.org/modeling/emf/

" http://www. gutproject.org/

12 http://www.pubflow.uni-kiel.de/en/the-framework/the-graphframework
13 http://www.w3.org/TR/2013/NOTE-prov-implementations-20130430/

' http://neodent . com/


http://eprints.uni-kiel.de/19636/
http://eprints.uni-kiel.de/22399/
http://eprints.uni-kiel.de/22399/
http://eprints.uni-kiel.de/22528/
http://eprints.uni-kiel.de/14418/
http://www.eclipse.org/modeling/emf/
http://www.gwtproject.org/
http://www.pubflow.uni-kiel.de/en/the-framework/the-graphframework
http://www.w3.org/TR/2013/NOTE-prov-implementations-20130430/
http://neo4emf.com/

	The Aspect-Oriented Architecture of the CAPS Framework for Capturing, Analyzing and Archiving Provenance Data
	Unbenannt



