
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.245.215.185

This content was downloaded on 17/06/2014 at 09:22

Please note that terms and conditions apply.

New highly fluorescent pH indicator for ratiometric RGB imaging of pCO2

View the table of contents for this issue, or go to the journal homepage for more

2014 Methods Appl. Fluoresc. 2 024001

(http://iopscience.iop.org/2050-6120/2/2/024001)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/2050-6120/2/2
http://iopscience.iop.org/2050-6120
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Methods and Applications in Fluorescence

Methods Appl. Fluoresc. 2 (2014) 024001 (8pp) doi:10.1088/2050-6120/2/2/024001

New highly fluorescent pH indicator for
ratiometric RGB imaging of pCO2

Susanne Schutting1, Ingo Klimant1, Dirk de Beer2 and Sergey M Borisov1

1 Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology,
Stremayrgasse 9, A-8010, Graz, Austria
2 Max-Planck-Institute of Marine Microbiology, Celsiusstrasse 1, D-28359, Bremen, Germany

E-mail: sergey.borisov@tugraz.at

Received 24 October 2013, revised 8 December 2013
Accepted for publication 18 December 2013
Published 9 April 2014

Abstract
A new diketo-pyrrolo-pyrrole (DPP) indicator dye for optical sensing of carbon dioxide is
prepared via a simple one step synthesis from commercially available low cost ‘Pigment
Orange 73’. The pigment is modified via alkylation of one of the lactam nitrogens with a
tert-butylbenzyl group. The indicator dye is highly soluble in organic solvents and in polymers
and shows pH-dependent absorption (λmax 501 and 572 nm for the protonated and
deprotonated forms, respectively) and emission spectra (λmax 524 and 605 nm for the
protonated and deprotonated forms, respectively). Both the protonated and the deprotonated
forms show high fluorescence quantum yields (8prot 0.86; 8deprot 0.66). Hence, colorimetric
read-out and ratiometric fluorescence intensity measurements are possible. The emission of
the two forms of the indicator excellently matches the response of the green and the red
channels of an RGB camera. This enables imaging of carbon dioxide distribution with a
simple and low cost optical set-up. The sensor based on the new DPP dye shows very high
sensitivity and is particularly promising for monitoring atmospheric levels of carbon dioxide.

Keywords: optical sensor, fluorescence, absorption, carbon dioxide, imaging

S Online supplementary data available from stacks.iop.org/MAF/2/024001/mmedia

1. Introduction

Carbon dioxide is one of the most important parameters for
environmental monitoring, marine research and oceanography.
The increase of carbon dioxide concentration in the oceans
causes acidification, which severely affects the flora and
fauna therein [1–6]. The analytical tools for detection of
dissolved carbon dioxide are limited to only a few such as
the Severinghaus electrode [7] or IR analyzers. The former
suffers from electromagnetic interferences and has slow
response. IR analyzers are fast [8], but are mostly suitable
for measurements in gaseous phase [9, 10] since water causes
a significant interference. Several new concepts of carbon
dioxide chemosensors were published in recent years [11–15];
however so called ‘plastic type’ sensors remain the most
common ones [16, 17]. These materials contain a pH-sensitive
dye and a base (most commonly a quaternary ammonium
base) dissolved in a polymer matrix. The pH indicator

responds to the analyte by altering its optical properties,
mostly the absorption or emission characteristics. In case
of the fluorescent sensors referencing of the fluorescence
intensity is required to enable reliable measurements. This
can be achieved by adding a second analyte-insensitive dye
which emission spectrum is clearly separated from that of
the indicator (ratiometric read-out) or which luminescence
decay time is significantly different from the lifetime of
the indicator (dual lifetime referencing scheme) [18–20]. In
both schemes photobleaching (indicator, reference dye or
both) causes a dramatic change of the emission ratio of the
indicator and the reference dye. Therefore, self-referencing
indicator dyes are highly desirable; however only a few such
dyes have been reported [21–24]. Spectral compatibility with
commercially available red/green/blue (RGB) cameras is also
of great interest. The read-out with RGB cameras is a simple
and low cost technique for imaging different parameters such
as CO2 [25], pH [26–29] or oxygen [30–33], to name only
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a few. Recently, we presented a new class of pH-sensitive
indicator dyes based on diketo-pyrrolo-pyrroles (DPPs)
[29, 34]. DPPs are usually insoluble in organic solvents and are
mainly used as pigments [35]. The soluble derivatives (mainly
N -alkylated dyes) [36–43] are also of much practical interest
and are applied e.g. in photovoltaics [37–39]. So far only a
few applications of DPPs as fluorescent probes are found in
the literature [29, 44–46]. The new DPP-based pH indicators
were shown to be highly promising for application in optical
pH and carbon dioxide sensors [29, 34]. Particularly, dual
emission from the protonated and deprotonated forms enabled
ratiometric read-out, but the emission from the deprotonated
form was much weaker than that of the protonated form
(8prot ≈ 1 and 8deprot ≈ 0.1). Unfortunately, these dually
emitting dyes were not fully compatible with the green and
red channels of the digital cameras [47]. In this study, we
present a new DPP-based pH indicator which overcomes these
drawbacks. It will be shown that the new dye possesses high
fluorescence quantum yields for both the protonated and the
deprotonated form and is excellently suitable for the RGB
read-out. The CO2 sensor shows very high sensitivity and is
particularly useful for monitoring atmospheric levels of the
analyte.

2. Experimental details

2.1. Materials

1,4-diketo-3,6-bis(4-tert-butyl-phenyl)-2,5-dihydro pyrrolo
[3,4-c]pyrrole (Pigment Orange 73), 1,6,7,12-tetraphenoxy-
N ,N ′-bis(2,6-diisopropylphenyl)-perylene-3,4:9,10-tetracar-
boxylic bisimide (Lumogen-red) and N ,N ′-bis(2,6-diiso-
propylphenyl)-perylene-3,4:9,10-tetracarboxylic bisimide
(Lumogen-orange) were purchased from Kremer Pigments
(Germany, www.kremer-pigmente.com). Ethyl cellulose 49
(EC49, ethoxyl content 49%), sodium sulfate (anhydrous),
sodium tert-butoxide, 4-tert-butylbenzyl bromide, tetraoctyl-
ammonium hydroxide solution (TOAOH, 20% in metha-
nol) and anhydrous dimethylformamide were obtained from
Sigma-Aldrich (www.sigmaaldrich.com). All other solvents
were purchased from VWR (Austria, www.vwr.com).
The silicone components: vinyl terminated polydimethyl-
siloxane (viscosity 1000 cSt.), (25–35% methylhydro-
siloxane)-dimethylsiloxane copolymer (viscosity 25–35 cSt.),
1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane and
the platinum–divinyltetramethyldisiloxane complex were
received from ABCR (Germany, www.abcr.de). Ultrafine
hydrophobic titanium dioxide P170 was purchased from
Kemira (www.kemira.com). High purity nitrogen, 5% carbon
dioxide in nitrogen, 0.2% carbon dioxide in nitrogen and
carbon dioxide were obtained from Air Liquide (Austria,
www.airliquide.at). Poly(ethylene terephthalate) (PET)
support Melinex 505 was obtained from Pütz (Germany,
www.puetz-folien.com). Silica gel was received from Roth
(www.carlroth.com). Synthesis of BiPh-DiSA (3,6-bis[4′-bis
(2-ethylhexyl)sulfonylamide-1,1′-biphenyl-4-yl]-2,5-dihydro
pyrrolo[3,4-c]pyrrole-1,4-dione) and MoPh-DiSA (3,6-
bis[4-bis(2-ethylhexyl)sulfonylamide-phenyl]-2,5-dihydropy
rrolo[3,4-c]pyrrole-1,4-dione) was described before [34].

2.2. Synthesis of 2-hydro-5-tert-butylbenzyl-3,6-bis(4-tert-
butyl-phenyl)-pyrrolo[3,4-c]pyrrole-1,4-dione (DPPtBu3)

Pigment orange 73 (2 g, 4.9 mmol) and sodium
tert-butoxide (0.96 g, 10 mmol) were dissolved in anhydrous
dimethylformamide (80 ml). 4-tert-butylbenzyl bromide
(1.1 ml, 6.0 mmol) was added dropwise. After stirring for 8 h
at 60 ◦C the mixture was diluted with deionized water. The dye
was extracted with dichloromethane and hydrochloric acid and
sodium chloride were added to facilitate the phase separation.
The organic phase was collected, dried over anhydrous sodium
sulfate and evaporated to dryness under reduced pressure. The
crude product was purified via column chromatography on
silica gel using dichloromethane/tetrahydrofuran (98:2). The
product was dissolved in dichloromethane and precipitated
with hexane to give an orange powder (0.23 g, 8.3% of
theoretical yield of DPPtBu3).

DI-EI-TOF: m/z of [MH]+ found 546.3259, calculated
546.3246. 1H NMR (300 MHz, CDCl3) δ 9.38 (s, 1H), 8.28
(d, 2H), 7.77 (d, 2H), 7.53 (d, 2H), 7.50 (d, 2H), 7.34 (d, 2H),
7.16 (d, 2H), 5.04 (s, 2H), 1.35 (s, 18H), 1.30 (s, 9H). Analysis
for C37H42N2O2 found: C81.12, H7.59, N5.12, calculated:
C81.28, H7.74, N5.12.

2.3. Preparation of the planar optodes

‘Cocktail 1’ containing X mg of the dye and 100 µl of
the tetraoctylammonium hydroxide solution (20% TOAOH in
methanol) was purged with carbon dioxide gas. X was 3.0 mg
and 0.5 mg for the absorption and emission measurements,
respectively. ‘Cocktail 2’ containing 200 mg ethyl cellulose
(EC49) dissolved in 3800 mg of a toluene:ethanol mixture
(6:4 w/w) was added to the ‘cocktail 1’. The resulting
solution was knife-coated on a dust-free PET or glass
support. A sensing film of ∼7.5 µm thickness was
obtained after evaporation of the solvent. The sensing
film was covered with a gas-permeable ∼22 µm-thick
silicone layer by knife-coating ‘cocktail 3’ consisting of
800 mg vinyl terminated polydimethylsiloxane, 32 µl
(25–35% methylhydrosiloxane)-dimethylsiloxane copolymer,
2 µl 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane
and 4 µl platinum–divinyltetramethyldisiloxane complex
dissolved in 1600 mg hexane. For emission measurements
a similar layer was prepared but 200 mg of titanium dioxide
were dispersed in ‘cocktail 3’. The sensors were kept in an
oven (60 ◦C) for 10–15 min to complete polymerization of the
silicone rubber.

2.4. Methods

1H NMR spectra were recorded on a 300 MHz instrument
(Bruker) in CDCl3 with TMS as standard. Absorption spectra
were recorded on a Cary 50 UV–vis spectrophotometer
(www.varianinc.com). Determination of the molar absorption
coefficients was carried out as an average of three independent
measurements. Photobleaching experiments were performed
by irradiating the samples (2.5 ml) with the light of a
high-power 10 W LED array (λmax 458 nm, 3 LEDs,
www.led-tech.de) operated at 6 W input power. A lens
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Scheme 1. Synthesis of DPPtBu3 starting from Pigment Orange 73.

(Edmund optics, www.edmundoptics.de) was used to focus
the light of the LED array on the glass cuvette (photon flux:
∼4000µmol s−1 m2 as determined with a Li-250A light meter
from Li-COR, www.licor.com). The photodegradation profiles
were obtained by monitoring the absorption spectra of the
respective dye dissolved in tetrahydrofuran and represented
an average from three independent experiments. The solutions
were homogenized by shaking after each illumination period.
Fluorescence spectra were recorded on a Hitachi F-7000
fluorescence spectrometer (www.hitachi.com) equipped with
a red-sensitive photomultiplier R928 from Hamamatsu (www.
hamamatsu.com). Relative fluorescence quantum yields were
determined according to Demas and Crosby [48]. The
solutions of Lumogen-orange (8 ≈ 1) and Lumogen-red
(8≈ 0.96) [49, 50] in chloroform were used as standards for
the protonated and the deprotonated form, respectively. Three
independent measurements were performed for determination
of the relative quantum yields and the average value obtained
was used. In case of the sensing materials only the absolute
quantum yields were determined. These measurements were
performed on a Fluorolog3 fluorescence spectrometer (www.
horiba.com) equipped with a NIR-sensitive photomultiplier
R2658 from Hamamatsu (300–1050 nm) and an integrating
sphere (Horiba).

Gas calibration mixtures were obtained using a gas
mixing device from MKS (www.mksinst.com). The gas
mixture was humidified to about 85% relative humidity
(saturated KCl solution) prior entering the calibration chamber.
Temperature was controlled by a cryostat ThermoHaake
DC50. Photographic images were acquired with a Canon
5D camera equipped with a Canon 24-105L objective and
two layers of a LEE plastic filter ‘spring yellow’. The same
high-power 10 W LED array (λmax 458 nm, 3 LEDs, www.led-
tech.de) as for the photodegradation experiments combined
with a short-pass BG-12 filter served as an excitation source.

3. Results and discussion

3.1. Synthesis

The DPP chromophores possess planar structure and are poorly
soluble in organic solvents [51]. Low solubility prevents
the dyes from application as indicators in optical sensors.
We previously demonstrated that the dyes are pH-sensitive
due to the deprotonation of the lactam nitrogen [29, 34].
Modification of the phenyl rings with bulky substituents

rendered the pigments soluble in organic solvents and
polymers and the pH sensitivity was preserved. On the
other hand, alkylation of both lactam nitrogens is another
simple way to greatly enhance the solubility of DPPs [52].
Evidently such modification renders the DPPs pH-insensitive.
Mono-N -alkylation of the commercially available ‘Pigment
Orange 73’ (scheme 1) with a tert-butylbenzyl-group preserves
pH sensitivity and dramatically improves the solubility of
the dye in such common solvents as toluene, tetrahydrofuran
(THF), dichloromethane, chloroform, etc. Thus, the dye
becomes suitable for application in optical plastic carbon
dioxide sensors.

3.2. Photophysical properties

Absorption and emission spectra for DPPtBu3 dissolved in
THF are shown in figure 1. The protonated form of the
dye absorbs in the blue and emits in the green part of the
electromagnetic spectrum. Absorption and emission spectra
for the deprotonated form are bathochromically shifted by
∼70 nm compared to the protonated form. This is about
50 nm less than in case of previously reported DPP dye MoPh-
DiSA (3,6-bis[4-bis(2-ethylhexyl)sulfonylamide-phenyl]-2,5-
dihydropyrrolo[3,4-c]pyrrole-1,4-dione, table 1) [34]. The
mono-alkylated dye shows spectral maxima at shorter
wavelengths than not alkylated MoPh-DiSA. The molar
absorption coefficients are typical for the DPP dyes (table 1).
The fluorescence quantum yields are rather high and are
comparable for both forms of DPPtBu3 (table 1). On
the contrary, the emission of the deprotonated form of
MoPh-DiSA is much weaker than the emission of the
protonated form.

DPPtBu3 is highly soluble in organic solvents, but is
not soluble in water. Therefore, determination of the pKa
in aqueous buffers is not possible. The pKa value in a
mixture of tetrahydrofuran and aqueous buffer (1:1 v/v) was
estimated to be rather high (∼12.7; supporting information,
figure S1 available at stacks.iop.org/MAF/2/024001/mmedia).
It should be noted that this is very rough estimation because
of the high content of organic solvent and the alkali
error of the pH electrode at high pH. The pKa value for
DPPtBu3 is likely to be higher than that for the recently
presented DPP dye (3,6-bis[4′(3′)-disulfo-1,1′-biphenyl-
4-yl]-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione dipotassium
salt) [34] which showed a pKa of ∼11.8 since
electron-donating tert-butyl groups of DPPtBu3 are expected
to elevate the dissociation constant.
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Table 1. Comparison of the photophysical properties of DPPtBu3 and the DPP dye MoPh-DiSA in tetrahydrofuran (THF) at 25 ◦C.

Protonated form Deprotonated form

Dye
λabs (ε× 10−3)
(nm (M−1 cm−1)) λem (nm) 8

λabs (ε× 10−3)
(nm (M−1 cm−1)) λem (nm) 8

DPPtBu3 472(25.2); 501(26.8) 524 0.86 572(17.6) 605 0.66
MoPh-DiSA 491(29.8); 528(36.9) 543;583 1 655(23.0) 708 0.11

Figure 1. Absorption (solid lines) and emission (λexc 430 nm,
dashed lines) spectra of the protonated form (A) and the
deprotonated form (B) of DPPtBu3 in THF.

3.3. Carbon dioxide sensors

DPPtBu3 and the base tetraoctylammonium hydroxide
(TOAOH) were non-covalently entrapped in an ethyl cellulose
(EC49) matrix to obtain plastic type carbon dioxide sensors.
The response of the sensor can be described by the following
equation:

Ind−TOA++CO2+H2O↔ IndH+TOA+HCO−3 .

It is essential that the carbon dioxide sensors are kept humid
during the measurements to enable reversible and reliable
response (supporting information, figure S3 available at
stacks.iop.org/MAF/2/024001/mmedia). The sensors respond
to increasing pCO2 with a color change from pink in the
absence of CO2 to yellow in the presence of CO2. This
corresponds to the change in the absorption spectra of the
sensing material (figure 2(A)). Isosbestic points (IP) at 430 and
522 nm are clearly visible which indicates that only two forms
of the dye are present in the acid–base equilibrium. The sensor
shows red fluorescence at low pCO2 and green fluorescence
at high pCO2 (figure 2(B)). For emission measurements

Figure 2. Absorption (A) and emission (B) spectra (λexc 430 nm) of
the CO2 sensor based on DPPtBu3 in ethyl cellulose 49 and
TOAOH as base including the spectral sensitivity for the green and
the red detection channels of the RGB camera (green and red dotted
lines, (B)). (C) the fluorescence intensity changes for the protonated
form (at 529 nm, black curve) and the deprotonated form (at
630 nm, blue curve) with increasing pCO2, the fit is performed
according to the exponential growth/decay model, respectively; high
relative signal changes at low pCO2 values (red box and
exclamation mark) are indicated.

commercially available intense LEDs emitting at wavelengths
between 430 and 470 nm are suitable as excitation sources.
As can be seen, the emission intensity of the deprotonated
form decreases, whereas the intensity of the protonated form
increases with increasing pCO2 (figure 2(C)). Importantly,
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Figure 3. Absorption ((A), (B)) and emission ((C), (D)) calibration curves of carbon dioxide sensor based on DPPtBu3 for the full dynamic
range from 0 to 4.9 kPa pCO2 ((A), (C)) at 5 ◦C (red dots) and 25 ◦C (black squares) and for the respective low range sections ((B), (D)). A
linear fit ((B), (D)), polynomial 2 fit (A) and exponential growth fit (C) were used.

virtually no fluorescence of the protonated form (λmax529 nm)
is detectable in the absence of carbon dioxide, so that the
relative signal changes are very high at low pCO2. Comparison
of the absorption and emission spectra (figures 2(A) and (B))
indicates the effect of Förster resonance energy transfer
(FRET) from the protonated form of the indicator to its
deprotonated form. Indeed, the emission spectrum of the
former and the absorption spectrum of the latter show almost
perfect overlap (figure 1). The dye concentration dramatically
affects the emission due to FRET (supporting information,
figure S4 available at stacks.iop.org/MAF/2/024001/mmedia).
For example, in case of high dye concentration (1.5% w/w) the
emission spectrum is dominated by the deprotonated form at
pCO2 below 5 kPa. Hence, the dynamic range of the sensing
materials relying on fluorescence intensity read-out can be
tuned by adjusting the concentration of the indicator dye.
Highly sensitive fluorescent sensors are obtained only for
relatively low dye concentrations.

Compared to the solution the spectral properties of
the indicator are mostly preserved (figures 1 and 2).
The fluorescence quantum yields are high (8 ≈ 1.0 and
0.63) for the protonated form and the deprotonated form,
respectively. Carbon dioxide sensors based on DPPtBu3 are
highly sensitive to pCO2 at 25 ◦C (red box and exclamation
mark in figure 2(C)). Due to better solubility of CO2
at lower temperatures, the sensitivity is even higher at
5 ◦C (figure 3). It should be mentioned that rather strong
temperature dependence is common for the ‘plastic type’
carbon dioxide sensors [8], but development of the materials
with lower temperature cross-talk was beyond the scope of
this study. Low levels of pCO2 need to be measured in a
completely decarbonated system—from gas lines, gas mixing
device and humidifier to the flow-through cell—which is

difficult to achieve in practice. Particularly, precise calibration
at the atmospheric level of 0.04 kPa pCO2 and lower is
challenging. The exchange of PET foil to gas-impermeable
glass support improved the linearity at low pCO2, but
did not solve the contamination problem entirely. This
is well observable in the absorption measurements where
such contamination results in larger deviation than during
fluorescence measurements influenced by FRET (figures 3(B)
and (D), respectively). Determination of the limit of detection
(LOD) was therefore not possible. Nevertheless, it can
be concluded that the sensor shows excellent response at
atmospheric levels (pCO2 0.04 kPa ≈ 400 ppm in the gas
phase≈13.6µmol l−1 in water at 298.15 K) of carbon dioxide
and therefore is highly promising for e.g. oceanographic
applications.

3.4. Photostability

The sulfonamide-based DPP indicators reported previously
possessed adequate photostability for practical applications.
Electron-withdrawing groups often improve the photostability
of the fluorescent dyes and the electron-donating groups have
an opposite effect [53]. Thus, photostability of DPPtBu3

bearing two electron-donating tert-butyl groups may be
significantly lower than that for the sulfonamide-based
indicators such as BiPh-DiSA [34]. However, photobleaching
experiments carried out for the THF solutions of DPPtBu3

and BiPh-DiSA and an optical CO2 sensor based on DPPtBu3

(using a high-power blue LED array, λmax = 458 nm, for
the excitation of the protonated form of the dye; photon
flux: ∼4000 µmol s−1 m2) revealed that the photostability
of both dyes is very similar. Both dyes showed about 50%
photodegradation in solution after 27 min of continuous
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Figure 4. Absorption of the protonated form (505 nm) at alternating
pCO2 at 25 ◦C.

irradiation. Photostability of the optical sensor based on
DPPtBu3 was very similar to that of the solution of the
indicator (40 min for 50% photodegradation; supporting
information, figure S2 available at stacks.iop.org/MAF/2/
024001/mmedia). Thus, the new dye is suitable for practical
applications. The light intensities necessary for the read-out
of the sensors are typically much lower (10–100 fold) and
only a pulse of short duration (20–50 ms) is required to obtain
a measurement point. However, photobleaching can become
more critical if very high light intensities are used such as
in microscopy. In the absence of photobleaching the response
of the sensor is fully reversible during prolong measurements
(figure 4).

3.5. RGB imaging

The emission of the protonated and deprotonated form of the
sensing material shows excellent compatibility with the green
and red channels, respectively, of a color camera (figure 2(B)).
Importantly, both forms of the dye have comparable
fluorescence quantum yields. Fluorescence imaging was
performed using a consumer digital camera (Canon 5D). The
change in the emission color can be easily distinguished with
naked eye (figure 5). The intensity in the red channel does not
change significantly (±10%) in the entire pCO2 range. On the
other hand the sensor shows dramatic increase of the signal
in the green channel. Thus, referenced ratiometric imaging of
pCO2 with a simple set-up and using a single indicator dye
becomes possible for the first time.

4. Conclusions

A new pH-sensitive indicator dye based on a diketo-pyrrolo-
pyrrole chromophore is presented. A low cost starting pigment
was chemically modified in one step via N -alkylation. The
resulting dye is well soluble in organic solvents and polymers
and is highly promising for preparation of carbon dioxide
sensors. The features include high fluorescence quantum
yields for the protonated and the deprotonated form of the
dye and excellent compatibility of both emissions with the
green and red channels of an RGB camera. These properties
enable self-referenced ratiometric imaging of pCO2 with a

Figure 5. Photographic images of the planar optode based on
DPPtBu3 under illumination with a 458 nm LED array acquired
with a Canon 5D digital camera equipped with a long-pass ‘spring
yellow’ filter (Leefilters) (A) and the respective calibration plot for
the ratio of fluorescence intensities for the red and green
channels (B). The inset shows the curve for low pCO2 range.

single indicator. The optode shows excellent sensitivity at
atmospheric levels of carbon dioxide. This makes the sensor
a promising analytical tool for application in environmental
monitoring, marine research and oceanography, for example
for monitoring of ocean acidification.
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influence of packing effects on the solid-state fluorescence
of diketopyrrolopyrroles Angew. Chem. Int. Edn Engl.
28 478–80

[41] Langhals H, Grundei T, Potrawa T and Polborn K 1996
Highly photostable organic fluorescent pigments—a simple
synthesis of N -arylpyrrolopyrrolediones (DPP) Liebigs
Ann. 1996 679–82

[42] Lorenz I-P, Limmert M, Mayer P, Piotrowski H, Langhals H,
Poppe M and Polborn K 2002 DPP dyes as ligands in
transition-metal complexes Chem.—Eur. J. 8 4047–55

[43] Langhals H, Limmert M, Lorenz I-P, Mayer P, Piotrowski H
and Polborn K 2000 Chromophores encapsulated in gold
complexes: DPP dyes with novel properties Eur. J. Inorg.
Chem. 2000 2345–9

[44] Qu Y, Hua J and Tian H 2010 Colorimetric and ratiometric red
fluorescent chemosensor for fluoride ion based on
diketopyrrolopyrrole Org. Lett. 12 3320–3

[45] Jeong Y-H, Lee C-H and Jang W-D 2012 A diketopyrrolo-
pyrrole-based colorimetric and fluorescent probe for
cyanide detection Chem.—Asian J. 7 1562–6

[46] Yamagata T, Kuwabara J and Kanbara T 2010 Synthesis of
highly fluorescent diketopyrropyrrole derivative and

two-step response of fluorescence to acid Tetrahydron Lett.
51 1596–9
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