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Genome-wide transcription analysis between related species occurring in overlapping ranges can provide
insights into themolecular basis underlying different ecological niches. The co-occurring seagrass species, Zostera
marina and Nanozostera noltii, are found in marine coastal environments throughout the northern hemisphere.
Z. marina is often dominant in subtidal environments and subjected to fewer temperature extremes compared
to the predominately intertidal and more stress-tolerant N. noltii.
We exposed plants of both species to a realistic heat wave scenario in a common-stress-garden experiment.
Using RNA-seq (~7 million reads/library), four Z. marina and four N. noltii libraries were compared representing
northern (Denmark) and southern (Italy) locations within the co-occurring range of the species' European
distribution.
A total of 8977 expressed genes were identified, of which 78 were directly related to heat stress. As predicted,
both species were negatively affected by the heat wave, but showed markedly different molecular responses.
In Z. marina the heat response was similar across locations in response to the heatwave at 26 °C, with a complex
response in functions related to protein folding, synthesis of ribosomal chloroplast proteins, proteins involved in
cell wall modification and heat shock proteins (HSPs). In N. noltii the heat response markedly differed between
locations, while HSP genes were not induced in either population.
Our results suggest that as coastal seawater temperatures increase, Z. marina will disappear along its southern
most ranges, whereas N. noltii will continue to move north. As a consequence, sub- and intertidal habitat
partitioning may weaken in more northern regions because the higher thermal tolerance of N. noltii provides a
competitive advantage in both habitats. Although previous studies have focused on HSPs, the present study
clearly demonstrates that a broader examination of stress related genes is necessary.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Species-specific patterns of gene expression are predicted to
correlate with their ecological niches and can now be compared and
analyzed using global transcription analysis via RNA-seq. For example,
inter-species transcriptomics of the invasive cordgrass Spartina
alterniflora and the native Spartina maritima, suggested that the
sgenetik, Vetmeduni Vienna,

anssen).

iversity, 400 Little Harbor Road,

. This is an open access article under
competitive success of the invasive congener might be due to growth
advantages and a higher stress tolerance (Chelaifa et al., 2010). In the
present study, we apply inter-species transcriptomics to two, closely
related marine flowering plants that occupy different ecological niches
(Den Hartog, 1970; Phillips and Menez, 1988).

The seagrasses, Zostera marina (eelgrass) and Nanozostera noltii
(dwarf eelgrass; formerly Zostera noltii) (Coyer et al., 2013) diverged
~14Mya (Kato et al., 2003; Coyer et al., 2013). They provide the founda-
tional habitat for the seagrass community of many, soft-sediment,
coastal systems along European coasts. Z. marina ranges from southern
Portugal to northern Norway and Iceland, as well as into warm temper-
ate areas of the Mediterranean, where it becomes more sparse (Borum
et al., 2004). In contrast, N. noltii ranges from southern Norway to
Mauritania, also including the Mediterranean, Black, Aral, and Caspian
the CC BY-NC-ND license (http://creativecommons.org/licenses/by/3.0/).
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Seas (Phillips and Menez, 1988; Borum et al., 2004). The two species
overlap in their distributional range roughly between the northern
Mediterranean and southern Norway.

Z. marina is predominantly subtidal, particularly inwarmer southern
European locations (Laugier et al., 1999; Billingham et al., 2003; Massa
et al., 2008), where it experiences relatively constant physical condi-
tions and fewer extreme temperatures due to the balancing effect of
the surrounding water column. In more northerly latitudes it occurs
both subtidally (northern Denmark) and, to a lesser extent, intertidally,
(Wadden Sea) (Oetjen and Reusch, 2007). At the Thau Lagoon location
(Mediterranean coast of France) it is sheltered, permanently supplied
with nutrients and less exposed to environmental extremes (Laugier
et al., 1999). In contrast, N. noltii is predominantly an intertidal species,
where it experiences more variable environmental conditions of sea
and air exposure, as well as physical stressors such as wind and waves
(Laugier et al., 1999; Massa et al., 2008). In the Ria Formosa Lagoon in
southern Portugal, N. noltii experiences summer temperatures of 36 °C
during tidal exposure, which is mainly a function of air temperatures
and irradiance due to the thin water columns characteristic of intertidal
pools (Massa et al., 2008, 2011). In this environment local extinction of
Z. marina has been correlated with the warmest summers in the Ria
Formosa from 2003 to 2008 (Massa et al., 2008).

Extreme weather events are increasing under global warming
scenarios and are predicted to have strong influences on ecosystems
and associated species (Easterling et al., 2000; Walther et al., 2002).
Water temperatures of ~25 °C are the critical threshold for Z. marina
in northern Europe (Reusch et al., 2005; Nejrup and Pedersen, 2008;
Bergmann et al., 2010), but not for N. noltii. Thus, the northerly range
expansion of N. noltiimay well blur subtidal–intertidal niche dynamics.
Interest in niche comparisons, as well as shifting biogeographic ranges,
are therefore relevant to understanding the effects of climate change.

Differential utilization of habitat by the two related species enables us
to test for concomitant differences in the molecular mechanisms that re-
spond to a variety of stressors, particularly thermal stress. An important
expression response to thermal stress is up-regulation of genes encoding
heat-shock proteins (HSPs). HSPs promote cellular thermal tolerance
through a variety of mechanisms, including protein folding or chaperon-
ing of existing and newly synthesized proteins, aggregation suppression,
reactivation of denatured proteins, shuttling proteins between different
cell compartments, and destruction of damaged proteins (Vierling,
1991; Wahid et al., 2007; Kotak et al., 2007). Though HSP induction is a
universal response to heat-stress (Vierling, 1991), species from different
climatic zones show different HSP induction thresholds (Feder and
Hofmann, 1999). Some of themost extreme examples come fromAntarc-
tic algae that induce HSPs at 5 °C (Vayda and Yuan, 1994), while hyper-
thermophilic Archaea require temperatures of 100 °C for HSP induction
(Feder and Hofmann, 1999). In addition, the correlation between habitat
temperatures andHSP induction thresholds has been observed for conge-
ners from habitats with much more subtle temperature differences
(Ulmasov et al., 1992; Feder and Hofmann, 1999; Knight, 2010).

Heat-stress tolerance is, however, a multigenic trait and non-HSP
genes are also essential (Larkindale et al., 2005; Wahid et al., 2007;
Kotak et al., 2007). These include expression changes to allow themain-
tenance of membrane stability, scavenging of reactive oxygen species,
production of antioxidants, accumulation and adjustment of compatible
osmolytes and induction of signaling cascades (Wahid et al., 2007;
Kotak et al., 2007). It has further been suggested that the acute stress
response and the long term adaptation to stress are based on separate
mechanisms and that HSP expression does not necessarily play a
major role for the evolutionary adaptation to higher temperatures
(Sørensen et al., 2007).

In this study we use RNA-seq to investigate the inter-specific
transcriptomic response of Z. marina and N. noltii under a simulated
heatwave based on actual conditions that occurred in the southwestern
Baltic Sea in 2003, in which Z. marina populations were decimated
(Reusch et al., 2005). Expression profiles were investigated in a
common-stress-garden design using plants fromnorthern and southern
European localities, where the species co-occur. Specifically, we: 1)
identify putative genes and molecular functions involved in the stress
response, 2) quantify differences in the transcriptomic response of
both species relevant to their respective ecological niches, 3) identify
potential mechanisms of microevolutionary adaptation towards
increased temperatures, and 4) discuss potential impacts of global
warming on the species' distribution.

2. Material & methods

2.1. Study species and experimental design

Full details of the experimental setup are outlined in Gu et al. (2012).
Briefly, individuals of Z. marina and N. noltiiwere collected in the spring
2009 from a northern European location (western Baltic/Kattegat, Hals,
Denmark; 56°50′ N, 10°1′ E, 2009, hereafter “northern populations”)
and a southern European location (Adriatic Sea; Gabicce Mare, Italy;
43°50′ N, 12°45′ E, late April, hereafter “southern populations”). At
both locations, both species co-occur in the intertidal to the shallow
subtidal. Summer surface water temperatures ranged from 13 °C to
22 °C (mean 18 °C) in the northern location and 21 °C to 29 °C (mean
25 °C) in the southern location based on in situ records covering the
previous six years (Fig. S1).

Within each population, ca. 30 shoots (leaf bundles plus attached
rhizome) were harvested from each of 15 sub-plots (total 450 shoots),
which were separated by 10 m, to minimize the chance of collecting
shoots from the same genotype (i.e., clone) (Bergmann et al., 2010).
Shoots were transported in coolers filled with seawater and planted in
the AQUATRON (a mesocosm facility installed at the University of
Münster, Germany) within 48 h of collection. The experimental design
is shown in Fig. S2. As described in Gu et al. (2012), the AQUATRON
consisted of two temperature-controlled semi-connectedwater circuits,
each with six 700-L mesocosms and a storage tank. All mesocosms
contained artificial seawater adjusted to 28 psu (practical salinity
units: 1 psu ~ 0.1% salinity) and illuminated under light-saturating
conditions (~400 μmol photons s−1 m−2). Shoots were planted into
boxes with a sediment height of 10 cm (details see Fig. S2). Two boxes
for each of all four populations were placed into each mesocosm (=6
independent replicate units per population and treatment condition)
(Fig. S2). All shoots were genotyped with four microsatellite loci for
Z. marina and five for N. noltii to verify that all genotypes were unique
(Reusch, 2000; Coyer et al., 2004).

2.2. Heat wave simulation

Plants were acclimatized for 50 days, during which the water
temperature in all mesocosms was slowly raised from 14 °C (collection
temperature) to 19 °C (experimental control temperature) (Fig. S3).
Following acclimation, a heat wave was initiated in a common-
stress-garden approach. Six experimental units were maintained at
the control temperature of 19 °C, while the temperature in the remain-
ing sixwas gradually increased by 1 °C per day, up to 26 °C, and held for
3 weeks; then decreased by 1 °C per day to the control temperature of
19 °C (Fig. S3). The experimental profile mirrored the temperature
profile observed during a heat wave in summer 2003 in the shallow
waters of the western Baltic Sea (Reusch et al., 2005).

2.3. Evaluation of plant performance

Plant performance was estimated by changes in shoot number from
the start of the experiment until the midpoint of the heat wave and ca.
1.5 weeks after the end of the heat wave (Fig. S3). Changes in shoot
number from the beginning of the heat wave to the respective time
point were normalized to the starting number of shoots in the respec-
tive box. Normalized changes were fitted to a generalized linear
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model with the additive factors treatment and population, and statisti-
cal significance of both factors was tested.

2.4. RNA extraction, library preparation and sequencing

Weused RNA samples described in Gu et al. (2012). Briefly, RNAwas
sampled by cutting young and epiphyte-free leaf tips from the second
leaf of Z. marina (4 cm) and N. noltii (10 cm), then immediately frozen
in liquid nitrogen. Frozen tissue was pulverized with a Retsch Mixer
Mill MM301 (Qiagen) and RNA extracted with the Invisorb RNA plant
HTS 96 extraction kit (Invitek). For comparative expression analysis,
eight treatments (Zm, north, control; Zm, north, heat; Zm, south, control;
Zm, south, heat; repeated for Nn) were sampled at the mid-point of the
heat wave (Fig. S3). For each RNA-seq library, RNA was pooled from
seven different genotypes of the respective experimental condition.
Total RNA (ca. ~5 μg per library) was sheared with ultrasound and 3′
polyA fragments were purified by oligo(dT) chromatography (3′ UTR
isolation). First-strand cDNA synthesis was performed using oligo(dT)
priming followed by 12–15 cycles of PCR (GATC Biotech, Konstanz,
Germany; proprietary protocol). Resulting cDNA libraries were tagged
and sequenced in four lanes (2 libraries per lane) with the Illumina
Genome Analyzer II (read length 76 bp).

Gu et al. (2012) used a subset of the libraries used here. In their
study, changes in metabolite composition were related to the trans-
criptomic response involved in metabolic processes obtained from the
RNA-seq reads of the Illumina libraries and annotated from theMetacyc
data base (≈35% of the total annotated genes used here) (Caspi et al.,
2008; Gu et al., 2012). The current study extends the previous work
by including the complete transcriptomic response, accounting for
biological variation in a differential expression analysis framework (see
Section 2.6–2.8) and the focus on ecological differences of both species.

2.5. Generation of expression profiles

No genomic reference exists for either seagrass species, thus a
transcriptomic reference was used for read mapping using BWA v0.5.8
(Li and Durbin, 2009) of the reads primed in the 3′ UTR from the eight
RNA-seq libraries. For Z. marina, a de novo transcriptome containing
30% of all genes of a typical flowering plant (12,380 Arabidopsis thaliana,
12.686Oryza sativa orthologs)was used as a reference (http://drzompo.
uni-muenster.de/downloads; library: Zoma_C) (Wissler et al., 2009;
Franssen et al., 2011a). For N. noltii, a de novo transcriptome described
in Gu et al. (2012) using plant material from the northern and southern
population was used (available at http://drzompo.uni-muenster.de/
downloads, library: Nano_A; further details in the supplemental ma-
terial). Gene expression profiles were obtained from second stage
mapping of the 3′ UTR reads (Illumina) against the reference tran-
scriptome and subsequent contig annotation by orthologous genes
of A. thaliana (TAIR9, Swarbreck et al., 2008) and O. sativa (Rice Ge-
nome Annotation Project v6.1, Ouyang et al., 2007) via BLASTX (for
a complete workflow see Fig. S4).

2.6. Multivariate analysis of expression profiles

Gene-expression profiles were analyzed by multivariate analysis
to identify similarities and differences of the entire transcriptomic
response between species and treatment conditions. Transcription
profiles of the eight libraries were normalized for library size and
composition of expressed transcripts (Robinson and Oshlack, 2010).
Groupings of expression profiles based on the biological coefficient of
variation between library pairs were identified with multidimensional-
scaling (MDS) using the R package “edgeR” v2.5.1 (Robinson et al.,
2010). Identified groupings were tested by ANOSIM analysis (analysis
of similarity, tests distances within vs. between groups) implemented
in the R package “vegan” v2.0–3 (Oksanen et al., 2012). Multivariate
analysis and subsequent expression analysis along with plotting
functions were performed in R (R Development Core Team, 2008).

2.7. Differential gene expression

Differential expression analysis was performed with the R package
“edgeR”, which employs an overdispersed Poisson model (negative
binomial) to account for technical and biological variability, with the
generalized linear model (GLM) functionality for multifactor experi-
ments (Robinson et al., 2010; McCarthy et al., 2012). Differentially
expressed genes were determined for three data sets: 1) eight libraries
including samples of both species, 2) four libraries of Z. marina and 3)
four libraries of N. noltii. In all three data sets, the expression profiles
were normalized for library size and composition of expressed
transcripts (Robinson and Oshlack, 2010). For the data set including
both species (data set 1), the single factor species was fitted to the
GLM to test for differential expression between both species consistent
across treatments. In this case, all four libraries per species from the two
different populations and treatments were used as biological replicates
on the species level. For Z. marina alone (data set 2) the data were ana-
lyzedwithGLM including the factors treatment and population (the fac-
tor population was suggested by the grouping of expression profiles;
Fig. 1). Differential expression, with respect to heat treatment, was test-
ed, while adjusting for the remaining factor. For N. noltii alone (data set
3) the factor “group identity”with three factor levels identified by MDS
(Fig. 1) was fitted to the GLM. Genes displaying differential expression
between heat and control treatment in the northern population (two
of the three groups, Fig. 1) were identified. In all three data sets, the bi-
ological replication as defined by the design of the respective GLM was
used to calculate the tagwise dispersion, the overdispersion value in the
negative binomial model (Robinson et al., 2010; McCarthy et al., 2012).
Resultswere corrected formultiple testing via false discovery rate (FDR)
and reported with a significance threshold of FDR, α b 0.05 (for a com-
plete workflow see Fig. S4).

2.8. Functional enrichment analysis

Gene sets of the differentially expressed genes, between defined
groups of libraries, were tested for enrichment of functional categories.
All genes were annotated with the functional categories defined by
MapMan (Usadel et al., 2009) via their ortholog annotation to
A. thaliana (annotation version: Ath_AGI_TAIR9). Functional enrich-
ment in gene sets vs. all genes was tested via Fisher's exact test and
corrected for multiple testing with the false discovery rate (FDR)
implemented in the software PageMan (Usadel et al., 2006).

3. Results

3.1. Transcriptome assembly & expressed genes

The ortholog mapping of the assembled contigs for Z. marina and
N. noltii against the plant proteomes of A. thaliana and O. sativa revealed
signs of redundancy/fragmentation between assembled contigs
(Table S1A) (Franssen et al., 2011a; Gu et al., 2012), a characteristic also
observed in other de novo transcriptome assemblies (Schwartz et al.,
2010; Franssen et al., 2011b; Feldmeyer et al., 2011; Mundry et al.,
2012). Therefore, gene identification for the subsequent expression anal-
ysis was based on orthology to A. thaliana. A. thaliana was chosen over
O. sativa (despite the latter being a monocotyledon) as it is the better an-
notated plant species and the ortholog annotation of the assembled tran-
scriptome with both references had a similar annotation success.

Importantly, verification has been shown between quantitative real
time PCR analyses of 18 candidate genes and the RNA-seq results for
Z. marina, based on the A. thaliana orthology (Franssen et al., 2011a).
Using the orthology approach, 11,378 genes were expressed in
Z.marina and 10,856 inN. noltii, with 8977 orthologous genes expressed
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Fig. 2. Functional enrichment of differentially expressed genes in Z. marina populations in
response to heat. Functional categories are defined via MapMan (Usadel et al., 2009). En-
richment (blue)/depletion (red) of functional categories up-regulated in either treatment
condition. H: heat treatment; C: control treatment. Coloring represents z-scores of FDR
corrected p-values of the enrichment test. Boxes framed in orange exceed the significance
threshold of FDR α b 0.05.
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Fig. 1. Multivariate grouping of the expression profiles of the eight RNA-seq libraries.
Grouping of the 8977 genes using MDS (multidimensional scaling) was based on the
pairwise distances between the libraries using the biological coefficient of variation (Rob-
inson et al., 2010). Only the most variable 25% of the genes were used for MDS analysis.
Species: Z.marina (Zm),N. noltii (Nn); populations: northern (N), southern (S); heat treat-
ment (H), control treatment (C). Groupings are indicated by color (red: Zm_N_H, Zm_S_H;
blue: Zm_N_C, Zm_S_C); dashed line: N. noltii; solid line: Z. marina.
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in both species. Subsequent analysis utilized the expression profiles
of the 8977 genes for the eight experimental conditions (Z. marina/
N. noltii ∗ north/south ∗ control/heat stress) sequenced by additional
3′ UTR Illumina sequencing with an average library size of ~7 million
reads (Table S1B; for a complete workflow see Fig. S4).

3.2. Multivariate analysis of expression profiles

We compared the expression profiles using multidimensional
scaling (MDS). The greatest difference was found between species
(Fig. 1). In addition, five different groups of expression profiles were
supported by an analysis of similarity (ANOSIM) (R = 0.9733; P =
0.0025) based on the biological coefficient of variation of the 25% most
variable genes. These groupings suggested a smaller variation within
expression profiles of Z. marina relative to N. noltii. For Z. marina, the
present grouping of treatments into control and heat-stressed gene
expression revealed a similar response to heat stress in both northern
and southern populations. In contrast, expression profiles of N. noltii
were more diverse between northern and southern populations.
While the expression difference in response to the heat treatment was
very strong in the northern population, the southern population
showed a weak response with both treatments clustered in the same
group. Differential expression analysis identified 59% (# 5304) differen-
tially expressed genes between the species, with 28% (# 2524) more
highly expressed in Z. marina and 31% (# 2780) more highly expressed
in N. noltii (FDR α b 0.05).

3.3. Molecular heat response: Z. marina

The similarity of expression responses to heat treatment between
northern and southern populations of Z. marina was investigated in
more detail via differential expression analysis of concordant treatment
effects. In this case, treatment effects were tested disregarding popula-
tion identity, i.e., RNA-seq libraries for the two populations served as
biological replication. A total of 427 genes show concordant differential
expression in response to the treatmentwith 267 up-regulated and 159
down-regulated genes under heat stress conditions (FDR α b 0.05)
(Table S2; see workflow Fig. S4).

Consistently up-regulated genes under heat-stress included several
enriched functional categories. These were: 1) pectinesterases, involved
in cell wall modification and subsequent breakdown of the cell wall;
2) proteins involved in the synthesis of ribosomal chloroplast proteins;
and 3) proteins involved in protein folding,which contain immunophilins
(endogenous cytosolic peptidyl–prolyl isomerases that interconvert
between the cis and trans positions) and molecular chaperones (Fig. 2).
Although the functional category “stress.abiotic.heat”was not significant-
ly enriched, 6 genes with this termwere present (Table S2) and the term
“stress.abiotic” revealed a weak enrichment (Fig. 2). No HSPs were up-
regulated under control conditions, instead a gene with the functional
annotation “stress.abiotic.cold”, a calcium-dependent lipid-binding family
protein, was up-regulated (Table S2). Enriched functional categories in
the gene set of up-regulated genes under control temperature were
functions involved in secondary metabolism, particularly lignin biosyn-
thesis (Fig. 2).

As somedifferenceswere observed in the heat responses of northern
and southern populations of Z. marina, we tested the hypothesis that
southern populations, originating from a warmer local climate, show
stronger up-regulation of heat responsive (HR) genes than northern
populations. The expression strength of the 267 up-regulated genes in
response to heat in Z. marina showed higher expression in the southern
population in comparison to the northern population in the control
treatment (paired Wilcoxon test, one sided: V = 23,792, p-value =
1.942e−07), as well as the heat treatment (paired Wilcoxon test, one
sided: V = 33,904, p-value b 2.2e−16) (Fig. 3, S5). Additionally, this
directional population effect on the gene expression strength was more
pronounced in the heat treatment compared to the control treatment
(paired Wilcoxon test, one sided: W = 34,248, p-value b 2.2e−16).
Thus, genes that are important duringheat stress showed a slight increase
in their constitutive expression (under control conditions) and an even
stronger increase under heat conditions (acute heat response) in the
southern population as compared with the northern population.
3.4. Molecular heat response: N. noltii

Expression responses to the heat treatment in N. noltii were very
different between the northern and southern population with a very
weak response in the southern and a strong response in the northern
population (Fig. 1). We further investigated genes responsible for the
divergent expression in the northern population. Because no biological
replication was available, we modeled the biological variation in
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response to heat for N. noltii via the biological variation between treat-
ments of the southern population. Investigation of the strong northern
response revealed differential expression of 369 genes between treat-
ments with 28 genes up-regulated and 341 genes down-regulated
upon heat treatment (see Section 2.7 “Differential gene expression”;
workflow: Fig. S4; Table S2).

The up-regulated set of genes in the northern population consisted
of only 28 genes, none of which encoded an HSP gene or were enriched
in any functional category (Table S2). Conversely, the large set of 341
down-regulated genes in response to heat included enriched functions
for cell wall modification, synthesis and degradation, hormonemetabo-
lism (brassinosteroids and gibberelins), protein synthesis and various
functions combined under “misc” (Fig. 4). Although “stress” associated
Fig. 4. Functional enrichment of differentially expressed genes in the northern N. noltii
population. Functional categories are defined viaMapMan (Usadel et al., 2009). Enrichment
(blue)/depletion (red) of functional categories that are up-regulated in either treatment
condition. N: northern population; H: heat treatment; C: control treatment. Coloring repre-
sents z-scores of FDR corrected p-values of the enrichment test. Boxes framed in orange
exceed the significance threshold of FDR α b 0.05.
functions were not significantly enriched, various subcategories were
present [Fig. 4; “stress.abiotic”: 1 gene (osmotin 34), “stress.abiotic.cold”:
2 genes, “stress.abiotic.drought/salt”: 4 genes, “stress.abiotic.heat”: 1
gene (heat-shock protein binding) “stress.abiotic.unspecified”: 4 genes]
(Table S2).
3.5. Role of HSP expression in Z. marina and N. noltii

Shoots from both species displayed decreased shoot counts in
response to heat stress (see Section 3.6 “Effects of the heat wave simu-
lation on population performance”). We therefore investigated the role
of HSP expression in both species, as HSPs are well known markers for
heat stress. For each species, expression profiles for all 78 genes
annotated with the functional term “stress.abiotic.heat” of all four
libraries were comparedwith the constructedmaximum andminimum
expression profile of the respective species viaMDS analysis. These con-
structed maximum (minimum) expression profiles of HSP genes for
each species were obtained by taking the maximum (minimum)
expression value of each gene out of the four respective libraries.

For N. noltii, none of the libraries grouped with the maximal expres-
sion profile (Fig. S6A). In contrast, heat-treated libraries of Z. marina
showed a clear grouping with the constructed maximal expression
profile, while control libraries were more similar to the minimum
expression profile (Fig. S6B). This suggests that while HSPs were up-
regulated under the simulated heat at 26 °C in Z. marina, no up-
regulation of well-known members of the heat shock protein family
occurred in N. noltii.

Thewithin-species comparison forN. noltii revealed up-regulation of
28 genes in response to heat in the northernN. noltii population, none of
them encodingHSPs or genes of any functional category associatedwith
the term “stress”. To investigate whether the 28 genes were also impor-
tant during the heat response of the southern population, the normal-
ized expression profiles were compared between all four N. noltii
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Fig. 5. Expression strength of the 28 genes that were up-regulated in response to heat in
the northern population of N. noltii. Y-axis: normalized expression strength. X-axis: 4
cDNA libraries of N. noltii (Nn), populations: northern (N), southern (S); heat treatment
(H), control treatment (C). Nn_N_C: exclusion of the 2 greatest values [max. 5451],
Nn_N_H: exclusion of the 4 greatest values [max. 26,527], Nn_S_C: exclusion of the 3
greatest values [max. 7007] and Nn_S_H: exclusion of the 4 greatest values [max.
13,240] in thefigure for displaying purpose. Expression of all 28 genes is different between
libraries in the following order Nn_N_C b Nn_S_C b Nn_S_H b Nn_N_H (FDR α b 0.05;
pairedWilcoxon test, one sided for each of the 3 pairwise comparisons between libraries).
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libraries. While the expression of the 28 “heat response” genes was in
general strongest during heat in the northern population, they show in-
termediate expression levels in both southern N. noltii libraries (Fig. 5;
FDR α b 0.05, Fig. S7). This suggests an increased constitutive expres-
sion in the southern population for the 28 genes of the northern heat
response.

3.6. Effects of the heat wave simulation on population performance

Population performance in response to the heatwavewasmeasured
using normalized changes in shoot abundance. A generalized linear
model (GLM) approach showed significant treatment and time point
effects for both species (p-value b 0.05) with a negative effect of the
heat treatment and a greater shoot loss towards the end of the experi-
ment (Table S3). For Z. marina, the negative effect of the heat treatment
was weakest during acute heat on the northern population; the south-
ern population performed better throughout the experiment (p-value
b 0.05) (Fig. S8, Table S3). For N. noltii, no significant difference was
found in performance between populations (p-value b 0.05, Table S3).
The treatment effect was weakest during acute heat in the northern
population (Fig. S8). Short-term reductions in growth were present in
both species.

4. Discussion

In accordance with the expectation of N. noltii being more stress
tolerant, we observed a higher temperature threshold for the induction
of heat shock proteins in N. noltii compared to Z. marina, regardless of
population origin.Moreover, we identified a higher constitutive expres-
sion of heat responsive (HR) genes in populations from the southern
location of both species, suggesting a possible mechanism for local
adaptation.

4.1. Heat response in Z. marina

Our study supports earlier work on Z. marina showing a largely con-
cordant acute heat stress response between populations from northern
and southern European locations and the expected up-regulation of
several heat shock proteins upon heat treatment (Franssen et al.,
2011a) (Table S4, Fig S6). Across locations, HSP up-regulation in
Z. marina indicates molecular stress during the realistic heat wave
scenario at water temperatures of 26 °C (see also Bergmann et al.,
2010), which is further supported by detrimental effects on shoot abun-
dance as well as reduction in growth rates and poorer photosynthetic
performance shown in previous experiments (Bergmann et al., 2010;
Winters et al., 2011; Gu et al., 2012).

Heat stress responses, however, involve many thermal tolerance
processes other than induction of HSP genes (Krebs, 1999; Larkindale
et al., 2005;Wahid et al., 2007; Kotak et al., 2007; Gu et al., 2012). Addi-
tional functional gene categories up-regulated during heat stress were
identified in our novel approach using 56-fold more RNA-seq reads
compared to earlier work (Franssen et al., 2011a) (for gene list see
Table S2). Among the up-regulated genes were FKBPs (FK506-binding
proteins), which are immunophillins involved in protein folding, signal
transduction and chaperone activity (Aviezer-Hagai et al., 2007). FKBPs
interact with HSP90 in A. thaliana (Rotamase FKBP1, see Table S2)
(Aviezer-Hagai et al., 2007) or protect cells from oxidative stress
(Gallo et al., 2011). Also up-regulated were several components of the
30S and 50S subunits of the chloroplast ribosomes, which are involved
in the translation of chloroplast encoded genes (Nicolaï et al., 2007).
However, no up-regulation of chloroplast genes involved in photosyn-
thesis pathways, lipid acid synthesis, or translation/transcription ma-
chinery (Wicke et al., 2011) was detected.

In Z. marina, genes related to cell wall modifications were up-
regulated, particularly pectin esterases and xyloglucan endotransglucosy-
lases, (Table S2), the latter important for secondary cell wall
reinforcement after the completion of cell expansion (Bourquin et al.,
2002). Similar up-regulation of both classes of cell wall-related proteins
has been observed in Chinese cabbage in response to mild heat treat-
ment, leading to increased cell wall thickness and thermotolerance
(Yang et al., 2006). In summary, heat expression responses in
Z. marina, besides HSPs, included protectors against oxidative stress
and genes that may increase thermotolerance via fortification of
secondary cell walls.

4.2. Heat response in N. noltii

Expression profiles of N. noltii were more divergent among popula-
tions from the northern and southern location compared to Z. marina.
While N. noltii from the southern location showed a weak expression
response to the heat treatment, a large change in gene-expression was
observed in the northern N. noltii, mainly due to the down-regulation
of genes during heat treatment. In contrast to Z. marina, where genes
involved in cell wall modification were up-regulated in response to
heat, N. noltii showed a down-regulation of various genes involved in
cell wall modification and degradation under heat treatment. While
this seems contradictory, it might be explained by different optimal
temperatures of both species. Z. marina, which typically occurs in colder
waters, might require heat “protection” through cell wall fortification
(Yang et al., 2006). In contrast, N. noltii commonly in warmer waters
has adjusted to higher temperatures constitutively but experiences
negative tradeoffs of this “heat protection” in colder waters, which in
turn requires cell wall degradation andmodification. Such a hypothesis,
however, remains speculative and requires experimental validation.

Importantly, up-regulation of HSP genes was detected in neither
N. noltii population (Table S2), although N. noltii (as did Z. marina)
showed reduced shoot growth in response to heat. The results
were surprising because HSP up-regulation typically occurs during
stress (including heat stress) and accordingly, has been used as a bio-
indicator for stress-conditions (Wahid et al., 2007; Kotak et al., 2007).

4.3. Differences in thermal thresholds between both species

Two hypotheses may explain the lack of HSP up-regulation in
N. noltii. First, HSP expression may have been up-regulated earlier
in the heat wave experiment and decreased while the stress-
temperatures continued; or secondly, the critical temperature threshold
was not reached. Evidence supporting the first hypothesis has been
found in N. noltii (and A. thaliana) at 38 °C, where HSP expression
returned to pre-stress levels within several hours or days after heat
stress was initiated (but before it was removed) (Massa et al., 2011).
Conversely, HSP up-regulation in Z. marina can persist for 1–3 weeks
with a constant applied stress at only 26 °C (Bergmann et al., 2010;
Franssen et al., 2011a). The mechanisms behind recovery to pre-stress
HSP expression levels during stress exposure vs. ongoing induction
are not well studied and it is not known to what extent this effect
depends on the strength of the applied heat stress.

Regarding the second hypothesis, the lack of HSP induction
for N. noltii is due to a higher temperature threshold for HSP up-
regulation relative to Z. marina. This correlation between habitat
temperature and HSP up-regulation might be an indicator for different
ecological niches, a phenomenon commonly observed between species
pairs (summarized in Feder and Hofmann, 1999). Numerous examples
include fucoid seaweeds (Jueterbock et al., 2014), mussels (Mytilus),
marine snails (Tegula), fruit flies (Drosophila), ants (Cataglyphis and
Formica), yeast (Saccharomyces) (Feder and Hofmann, 1999), lizards
(Ulmasov et al., 1992) and shrubs (Prunus and Ceanothus) (Knight,
2010), where congeners and/or related species occur in different
ecological niches such as upper vs. lower intertidal areas (Feder and
Hofmann, 1999), south vs. north facing slopes (Knight, 2010) or differ-
ent climatic zones (Ulmasov et al., 1992; Gehring and Wehner, 1995;
Hofmann and Somero, 1996; Krebs, 1999). In each case, the species
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naturally occurring in the environment with higher temperatures have
higher HSP induction thresholds, which usually differ by 2–7 °C
(Ulmasov et al., 1992; Hofmann and Somero, 1996; Feder and
Hofmann, 1999). For the Z. marina and N. noltii species pair, where
long term heat treatment at 25 °C showed over-expression of HSPs in
Z. marina (also see Bergmann et al., 2010; Franssen et al., 2011a), but
not in N. noltii, the only additional study on N. noltii showed HSP up-
regulation in response to a simulated low tide at ~38 °C (Massa et al.,
2011). Thus, the exact difference in HSP induction thresholds in
Z. marina and N. noltii remains unknown.

The lack of HSP induction inN. noltii at 26 °C, in contrast to Z. marina,
may be adaptive. Several studies have shown that over-expression of
HSP genes can be costly in terms of fertility, growth, development and
survival and are only up-regulated when benefits outweigh costs
(Bettencourt et al., 1999; Sørensen et al., 2003; Sørensen, 2010). HSP
expression is known to be induced by denatured proteins (Ananthan
et al., 1986; Krebs, 1999). Thus, the lack of HSP up-regulation in
N. noltii suggests that 25 °C were too low to induce protein denatur-
ation. A higher temperature threshold for protein denaturation can be
achieved through protein stability by 1) intrinsic factors such as
amino-acid composition and 2) extrinsic factors besides HSPs such as
thermostabilizing solutes (Fields, 2001), e.g. 2,3-diphosphoglycerate in
methanogenic bacteria (Hensel and König, 1988) or sugars as protective
osmolytes in seagrasses (Gu et al., 2012). While thermostabilizing
solutes enable more plastic responses by increase or decrease of the
respective solutes, intrinsic protein properties require a multitude of
microevolutionary changes, e.g. changes in amino-acid composition,
which only arise over much greater time scales (Fields, 2001). As both
species co-occur in a wide range of habitats, extrinsic factors seem
more likely to influence protein stability in both species; however, this
requires further experimental investigation.

4.4. Microevolutionary differences between populations fromdifferent tem-
perature regimes

The seagrass populations from northern and southern European
locations were chosen not only to provide biological replication to
infer species differences, but also to gain insights into population differ-
ences from colder (northern) vs. warmer (southern) temperature
habitats (Fig. S1). A common-stress-garden setup with a relatively
long acclimation phase (~50 days) was chosen to minimize non-
heritable components induced by the native habitat (Hoffmann et al.,
2005; Whitehead and Crawford, 2006). Population responses to heat
were similar for Z. marina from both locations with 267 genes concor-
dantly up-regulated during heat and very divergent in N. noltiiwith 28
genes up-regulated in the northern strongly responding population.
The respective heat responsive (HR) genes showed signs for a constitu-
tive up-regulation in the southern population of both species. This
suggests that constitutive up-regulation of HR genes in a species
might be an adaptive mechanism of populations from different local
temperature regimes to cope with elevated habitat temperatures,
which can in general occur over microevolutionary time scales
(Bettencourt et al., 1999).

A similar pattern with a higher constitutive expression of HSPs in
species from habitats with higher characteristic temperatures was
observed among species of lizards (Ulmasov et al., 1992; Zatsepina
et al., 2000) and ants (Gehring and Wehner, 1995), although such a
pattern may not be general (e.g. see Bettencourt et al., 1999; Zatsepina
et al., 2000; Barua et al., 2008). Besides the constitutive up-regulation
of HR genes, the strength of the inducible response might also play an
important role (e.g. Bettencourt et al., 1999; Feder and Hofmann,
1999). In Z.marina, the inducible heat responsewas stronger in the pop-
ulation from the southern location and even exceeded the observed dif-
ference in the constitutive expression change. However, such a pattern
was not observed for N. noltii. While these inter-species differences still
require further study to verify or falsify their adaptive nature, our results
illustrate the importance of inter-population variability of response, i.e.,
variation in the amplitude and duration of transcriptional responses.

4.5. RNA-seq analysis in non-model organisms

Our inter-species transcription analysis relied on RNA-seq with
subsequent mapping to a de novo assembly of a reference
transcriptome, the quality of which has a significant impact on the
accuracy and resolution of the subsequent expression analysis (Martin
and Wang, 2011). Although a growing number of de novo tran-
scriptome assemblies, based on RNA-seq data, have been performed
for higher plants (e.g. Vega-Arreguin et al., 2009; Wang et al., 2009;
Franssen et al., 2011a,b) and improvements in assembly software have
been made, de novo assembly of higher eukaryotes remains a
challenging task (Martin and Wang, 2011). Whenever a reference
genome is available, remapping approaches are used to guide the
transcriptome assembly (Guttman et al., 2010; Robertson et al., 2010;
Trapnell et al., 2010; Martin and Wang, 2011). Because of the current
state of the art and the features of redundancy observed in the
de novo assemblies of Z. marina, N. noltii, and previous studies (Martin
et al., 2010; Franssen et al., 2011b; Grabherr et al., 2011; Martin and
Wang, 2011; Mundry et al., 2012), gene identification via orthology to
the well annotated reference species A. thalianawas chosen.

4.6. Ecological transcriptomics

Our study provides a number of transcriptomic insights into the
concept of functional ecological types. We suggest that the absence of
an HSP up-regulation during the heat wave simulation is a molecular
indicator for the ecological niche of N. noltii, which dominates intertidal
habitats, in which extreme temperatures of 36 °C may be experienced
during tidal exposure (Massa et al., 2008). Z. marina, in contrast, domi-
nates in more thermally stable subtidal habitats with fewer extreme
temperatures and temperature variances. Therefore, extreme tempera-
tures do not explain the dominance of Z. marina in subtidal areas,
whereas they may explain the absence of Z. marina in the intertidal.
Possible causative factors may include competition for light or a
competitive advantage of the taller Z. marina in more stable subtidal
environments (Borum et al., 2004). The latter factor is also in
accordance with the C-S-R triangular diagram of Grime (Grime, 1977),
which groups the characteristics of species in relation to competitive
ability, stress tolerance and dispersal capability (weediness). Under
this categorization intertidal N. noltii has been classified as a stress-
tolerant ruderal, while subtidal Z. marina populations are classified as
competitors (Phillips et al., 1983; Phillips and Menez, 1988).

In general the effects of global climate change, including increased
temperatures and more frequent and/or stronger occurrences of
extreme weather events will result in range shifts, local extinction or
adaptation (Easterling et al., 2000; Lohbeck et al., 2012). The molecular
signals during the simulation of the heat wave scenario suggested that
extreme temperature events (Easterling et al., 2000) will interfere
with current species interaction hierarchies. For example, existing
competitive advantages of Z. marina over N. noltii may decrease, which
could impact other community interactions and result in new commu-
nity assemblies. With growing “omics” resources to explore the roles of
transcriptional diversity, our understanding ofmolecular and functional
diversity will help to redefine our understanding of ecological concepts
(Procaccini et al., 2012; Mazzuca et al., 2013).
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