
Live Visualization of Large Software Landscapes
for Ensuring Architecture Conformance

Florian Fittkau
Software Engineering Group

Kiel University
24098 Kiel, Germany

ffi@informatik.uni-kiel.de

Phil Stelzer
Software Engineering Group

Kiel University
24098 Kiel, Germany

pst@informatik.uni-kiel.de

Wilhelm Hasselbring
Software Engineering Group

Kiel University
24098 Kiel, Germany

wha@informatik.uni-kiel.de

ABSTRACT
Large software landscapes are complex Systems-of-Systems.
Systems are added to, modified in, or removed from the land-
scape at runtime. Architectural erosion typically occurs in
such landscapes, resulting in increased maintenance and op-
eration costs. Continuous monitoring can help to ensure the
architecture conformance in such large landscapes. How-
ever, the emerging huge amounts of monitoring data have
to be processed and presented in a scalable visualization.

In this paper, we present ExplorViz which aims for provid-
ing such a scalable live visualization of large software land-
scapes. We demonstrate how our visualization can be used
for ensuring architecture conformance. Furthermore, we de-
scribe an applicability evaluation of ExplorViz concerning
the prerequisite of scalability in our monitoring solution.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Large Software Landscapes, Software Visualization, Moni-
toring, Systems-of-Systems

1. INTRODUCTION
The increasing number of software systems in organiza-

tions and enterprises form large and complex software land-
scapes which are Systems-of-Systems (SoS). These landscapes
evolve over decades [15] and, consequently, architecture ero-
sion occurs. This architecture erosion causes high mainte-
nance and operation costs, rendering architecture confor-
mance checking important [3]. Architecture conformance
enables faster change of functionality and adaptation to new
challenges.

Challenges imposed by architecture conformance check-
ing are, inter alia, multiple programming languages and
platforms, and scalability concern due to the large data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ECSAW, August 25 - 29 2014, Vienna, Austria
Copyright 2014 ACM 978-1-4503-2778-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2642803.2642831

amount [3, 4]. Those challenges become even more appar-
ent in large software landscape. An additional challenge
in large software landscapes is that the architecture can be
hard to analyze statically. Distributed applications dynami-
cally communicate via networks such that architecture con-
formance checking can often only be conducted at runtime.

Furthermore, due to adaptation at runtime of the soft-
ware landscape, continuous monitoring [16] and continuous
architecture checking is important. In general, more support
for evolution in SoS architectures is required [10]. For this
purpose, we developed our ExplorViz1 approach [7]. Due
to its scalable live visualization, it can support in the task
of manually ensuring the architecture conformance in large
software landscapes during its runtime. In summary, our
main contributions are:

• a presentation of our specific visualization for large
software landscapes,

• an example of how ExplorViz can be used for manual
SoS architecture conformance checking, and

• an applicability evaluation of our monitoring solution.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces our ExplorViz visualization. In the next
section, a scenario for checking architecture conformance is
demonstrated. The following Section 4 presents an applica-
bility evaluation of our monitoring solution. Related work
is discussed in Section 5. Finally, we draw the conclusions
and illustrate future work in Section 6.

2. EXPLORVIZ
This section briefly introduces our web-based ExplorViz

visualization. It is developed for large software landscapes
and thus aims for maximal visual scalability. ExplorViz fea-
tures two different perspectives: a landscape-level perspec-
tive and an application-level perspective. For a detailed dis-
cussion of the semantics and more use cases, we refer to [7].

An example of the landscape-level perspective of ExplorViz
is illustrated in Figure 1. The displayed gray boxes represent
software systems. For providing visual scalability, every sys-
tem can be opened (showing internal details) or closed (hid-
ing internal details). Opened systems contain their nodes
represented in light green and nodes contain their applica-
tions (purple color). The dark green box around a node is
another abstraction concept representing a node group. In,
for instance, Cloud environments, some nodes have the same

1http://www.explorviz.net

Figure 1: Landscape-level perspective modeling the Kiel Data Management Infrastructure for ocean science

configuration and can be grouped. Node groups can also be
opened or closed interactively. The control flow is visualized
by orange lines. The amount of communication activity is
mapped to the thickness of the lines. In the bottom, the
timeline of the activity (sum of method calls per time unit)
in the software landscape is shown. It can be used to jump
back and analyze situations of interest.

Figure 2: Application-level perspective visualizing
the Perl-based application EPrints

ExplorViz enables the inspection of the control flow inside
an application. Figure 2 shows our application-level perspec-
tive utilizing a 3D city metaphor [17]. The in and out ports
(bottom and right side) represent the incoming and outgo-
ing control flow to other applications. The flat green boxes
represent opened component, i.e., showing its internal de-
tails. The higher green boxes are closed components which
hide their internal details. The components can be opened
or closed interactively. Classes are represented by purple
boxes. The communication between classes or components
is again displayed by orange lines.

We provide monitoring support for Java applications. How-
ever, to address the heterogeneous nature of large software
landscapes, we provide an extensible adapter for reading ex-
ternal logs produced by software implemented in other pro-
gramming languages. Thus, we can visualize logs from any
systems which were generated by Kieker [14], for example.

3. SOS ARCHITECTURE CONFORMANCE
As a usage scenario, we model the GEOMAR’s Kiel Data

Management Infrastructure.2 It represents a software land-
scape containing six systems and 30 applications. The in-
frastructure is used for planing, processing, and publishing
data collected from scientific ocean measurements.

When a software architect intends to check whether the
actual software landscape of the Kiel Data Management In-
frastructure still conforms to his conceptual architecture,
he opens the ExplorViz visualization of the landscape. In
our scenario, he is only interested in the systems PubFlow,
WDC-Mare, and OceanRep. After closing the other sys-
tems, his view looks like the one shown in Figure 1.

Now, he looks at the relevant systems and verifies that
every application conforms to the conceptual communica-
tion paths. When detecting a mismatch, he jumps into the
application and inspects the control flow pointing to the un-
wanted communication. In this scenario, the architect won-
ders why the EPrints (�) application communicates to an
external database (�). In the application perspective (Fig-
ure 2), he follows the path from the outgoing communication
port (�) backwards and finds the EPrints.Database (�)
class, which he than inspects at the source code level with
our integrated source code viewer. With this knowledge, he
can take appropriate countermeasures to achieve architec-
ture conformance.

2https://portal.geomar.de/

Figure 3: Node allocation of JPetStore instances in
Scenario 1 and 2

4. EVALUATION OF APPLICABILITY
Particularly, in large software landscapes with often run-

ning hundreds applications, the scalability of the monitoring
solution is crucial. Therefore, we have developed a flexi-
ble monitoring solution featuring cloud computing capabili-
ties [6]. With the utilization of micro benchmarks, we have
already shown that our monitoring solution has low over-
head and is applicable for live analysis for one instance [6].
In this section, we provide an applicability evaluation for the
scalability of our monitoring solution. Additional details can
be found in [12]. We generate load on JPetStore instances.
In Scenario 1 no monitoring is performed and in Scenario 2
the JPetStore instances are monitored with ExplorViz.

4.1 Setup
We utilize our private cloud containing 8 servers with 2x

Intel Xeon E5-2650 (2.8GHz, 8 cores) and 128 GB of RAM
each and use four types of nodes: workload generators, mon-
itored applications, analysis workers, and load balancers.
The workload generation is done with JMeter. The workload
generators are configured with 16 VCPUs and 60 GB RAM
each. The monitored JPetStore applications have 2 VCPUs
and 4 GB RAM. Our analysis workers are configured with
2 VCPUs and 4 GB RAM and the load balancers with 4
VCPUs and 12 GB RAM.

For our study, the workload curve in our scenarios sim-
ulates a 24 hour period on an enterprise website [13]. The
workload increases for a first peak at noon and goes on for
its highest peak in the evening. For our scenarios, we scaled
the workload down from 24 hours to a 3 hours duration.
Our capacity management tool SLAstic [13] is configured to
start new instances at an average CPU load above 50% and
to terminate instances at an average CPU below 15%.

JMeter fetches IPs from our first load balancer and ac-
cesses the JPetStore instances with these IPs. Our mon-
itoring solution uses analysis worker instances which are
scaled according to the induced monitoring workload. The
JPetStore instances fetch IPs from our second load balancer
which determine the analysis worker where the monitoring
data is transfered to.

Figure 4: Node allocation of JPetStore instances
and analysis worker instances in Scenario 2

4.2 Results and Discussion
The node allocation of JPetStore instances for Scenario 1

and 2 are shown in Figure 4. Due to the higher CPU uti-
lization in Scenario 2 (monitoring enabled), the start of new
instances in Scenario 2 takes place earlier and the termi-
nation is conducted later than in Scenario 1. Notably, the
JPetStore node allocation only differs by a maximum of one
instance. Therefore, our monitoring solution imposes only a
low additional load (about 5% additional CPU load during
the 5 instances period) on the monitored applications.

The node allocation of JPetStore and analysis worker in-
stances for Scenario 2 is presented in Figure 3. The analysis
workers are scaled from one instance to three instances for
the first peek, and from three to four instances for the second
peek. With the reduced workload, the amount is decreased
to one afterwards. Therefore, the monitoring analysis scales
with the workload on the monitored applications.

To summarize, we showed that our monitoring solution
scales with the increasing and decreasing workload. Fur-
thermore, it only induces only slight additional load on the
monitored applications.

4.3 Threats to Validity
We conducted our scenarios on our private cloud. For

external validity, it should also be evaluated in other en-
vironments and with other applications. Furthermore, the
duration of our scenarios may be insufficient as the results
may not be valid for longer running tests. To address these
issues, more studies have to be conducted.

5. RELATED WORK
Work related to our ExplorViz approach comes from three

areas: architecture conformance checking, software visual-
ization, and monitoring solutions.

Passos et al. [11] categorize static analysis techniques for
architecture conformance in dependency-structure matrices,
source code query languages, and reflexion models. They
recommend reflexion model [9] based tools for architecture

conformance checking during the development process (for
example, Sotograph [1]). In contrast to our approach, most
of those tools only provide static analysis capabilities. Fur-
thermore, they are often only targeting one system and not
a large software landscape architecture where a scalable vi-
sualization is required.

Application performance monitoring tools like AppDy-
namics, or ExtraHop visualize a landscape similar to our
landscape-level perspective of ExplorViz. However, as far
as we know, those visualizations are limited to visualizing
nodes and applications. Hence, they do not provide suitable
abstraction mechanisms for large software landscapes. In re-
spect to our application-level perspective, many approaches
for software visualization of single applications exist and due
to space constraints we refer to [7] for a detailed comparison
to other application visualization approaches.

Meng et al. [8] propose a Monitoring-as-a-Service solution
for monitoring cloud infrastructures. To monitor the com-
plex infrastructure of Cloud data centers, they developed a
scalable and flexible monitoring topology consisting of differ-
ent services. Compared to our approach, they also monitor
the whole data center environment. Brunst and Nagel [2]
present a parallel analysis infrastructure. In comparison to
our approach, Brunst and Nagel do not use TCP connections
to distribute produced monitoring workload to the analysis
worker nodes. Instead a shared storage infrastructure is used
and the monitoring data is saved in files.

6. CONCLUSIONS
In this paper, we presented our open source ExplorViz

live visualization and its application for supporting in en-
suring the architecture conformance during the runtime of
large software landscape. The presented visualization is ex-
plicitly designed for large software landscapes and provides
abstraction mechanisms for visual scalability. Another use
case of ExplorViz in the context of large software landscapes
(i.e., a control center concept) has been presented in [5].

In our future work, we will conduct a controlled experi-
ment for our ExplorViz visualization targeting comprehen-
sion tasks of large software landscapes and its visualization
scalability. Furthermore, capabilities for modeling the con-
ceptual software landscape architecture in our tool will en-
able automatic continuous conformance checking.

7. REFERENCES
[1] W. Bischofberger, J. Kühl, and S. Löffler. Sotograph -

a pragmatic approach to source code architecture
conformance checking. In Software Architecture,
volume 3047 of LNCS. Springer, 2004.

[2] H. Brunst and W. E. Nagel. Scalable performance
analysis of parallel systems: Concepts and
experiences. In Proc. of the 10th Conf. on Parallel
Computing: Software Technology, Algorithms,
Architectures, and Applications. Elsevier, 2003.

[3] F. Deissenboeck, L. Heinemann, B. Hummel, and
E. Juergens. Flexible architecture conformance
assessment with ConQAT. In Proc. of the 32nd Int.
Conf. on Software Engineering (ICSE 2010),
volume 2. ACM/IEEE, May 2010.

[4] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. IEEE
TSE, 35, July 2009.

[5] F. Fittkau, A. van Hoorn, and W. Hasselbring.
Towards a dependability control center for large
software landscapes. In Proc. of the 10th European
Dependable Computing Conference (EDCC 2014).
IEEE, May 2014.

[6] F. Fittkau, J. Waller, P. C. Brauer, and
W. Hasselbring. Scalable and live trace processing
with Kieker utilizing cloud computing. In Proc. of the
Symposium on Software Performance: Joint
Kieker/Palladio Days 2013, volume 1083. CEUR
Workshop Proceedings, Nov. 2013.

[7] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring.
Live trace visualization for comprehending large
software landscapes: The ExplorViz approach. In
Proc. of the 1st Int. Working Conf. on Software
Visualization (VISSOFT 2013), Sept. 2013.

[8] S. Meng, L. Liu, and V. Soundararajan. Tide:
Achieving self-scaling in virtualized datacenter
management middleware. In Proc. of the 11th Int.
Middleware Conf. (Middleware 2010). ACM, 2010.

[9] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source and
high-level models. In Proc. of the 3rd ACM SIGSOFT
Symposium on Foundations of Software Engineering
(SIGSOFT 1995). ACM, 1995.

[10] E. Y. Nakagawa, M. Gonçalves, M. Guessi, L. B. R.
Oliveira, and F. Oquendo. The state of the art and
future perspectives in systems of systems software
architectures. In Proc. of the 1st Int. Workshop on
Software Engineering for Systems-of-Systems
(SESoS 2013). ACM, 2013.

[11] L. Passos, R. Terra, M. Valente, R. Diniz, and
N. Mendonca. Static architecture-conformance
checking: An illustrative overview. IEEE Software, 27,
Sept. 2010.

[12] P. Stelzer. Scalable and live trace processing in the
cloud. Bachelor’s thesis, Kiel University, Mar. 2014.

[13] A. van Hoorn, M. Rohr, I. A. Gul, and
W. Hasselbring. An adaptation framework enabling
resource-efficient operation of software systems. In
Proc. of the Warm Up Workshop (WUP 2009) for
ICSE 2010. ACM, Apr. 2009.

[14] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker:
A framework for application performance monitoring
and dynamic software analysis. In Proc. of the 3rd Int.
Conf. on Performance Engineering (ICPE 2012).
ACM, Apr. 2012.

[15] M. Vierhauser, R. Rabiser, and P. Grünbacher. A case
study on testing, commissioning, and operation of
very-large-scale software systems. In Proc. of the 36th
Int. Conf. on Software Engineering
(ICSE Companion 2014). ACM, 2014.

[16] M. Vierhauser, R. Rabiser, P. Grünbacher, C. Danner,
and S. Wallner. Evolving systems of systems:
Industrial challenges and research perspectives. In
Proc. of the 1st Int. Workshop on Software
Engineering for Systems-of-Systems (SESoS 2013).
ACM, 2013.

[17] R. Wettel and M. Lanza. Visualizing software systems
as cities. In Proc. of the 4th Int. Workshop on
Visualizing Software for Understanding and Analysis
(VISSOFT 2007), June 2007.

