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Preface

The expedition P386 NAIL (Nice Airport Landslide) aims to shed light on the controls of 

slope failure and submarine landslide processes at the Ligurian Margin in the proximity of 

the Nice international airport, southern France. The cruise was a follow-up project of two 

earlier expeditions in the same area (Kopf et al., 2008; Sultan et al., 2008) and put special 

focus on deepening the knowledge regarding the causes of the 1979 Nice airport landslide 

and tsunami, acquire crucial geological data and materials for the recently submitted IODP 

(Integrated Ocean Drilling Program) drilling proposal 748-full (Stegmann et al., 2009), and 

test state-of-the-art technology for long-term monitoring and data transmission. The latter is 

loosely related to the EU real-time network of excellence ESONET (European Seafloor 

Observatory Network).

Among the methods utilised during Poseidon Leg P386 were echosounding to 

complement existing bathymetric charts, in situ measurements to characterize the natural 

state of the potentially metastable slope, seafloor sampling and place long-term instruments 

to study sedimentological phenomena and further evaluate the performance of acoustic dat 

atransmission systems. The regional goals were restricted to a small area south of Nice as 

well as the adjacent Var Canyon in the Baye des Anges, where mass wasting at various 

scales is observed. The research during and after cruise P386 serves to test key hypotheses 

concerning the trigger mechanisms of the mass wasting, which include ground water 

charging of slope sediments, high excess pore pressures, creep and plastic shear in sensitive 

clay horizons, vertical loading owing to anthropogenic construction, and regional seismicity.  

The majority of the efforts during P386 were dedicated to the failed shallow slope near 

the Nice airport in water depths between 15 to 50 mbsl (meters below sea level). In addition, 

the moderately deep Var Canyon was instrumented to quantify the amount of material 

ending up in this system once sediment gets entrained by the river Var or remobilised from 

the shallow slope. Finally, one deep-water location further southeast was revisited for the 

long-term test of acoustic data communication devices. 

Logistically, cruise P386 was split into two halves because of the number and size of 

seagoing equipment (4 moorings, large Borel buoy, 2 long-term piezometers). In addition, a 

second vessel (Poseidon III) operated in the same study area for part of Leg B; it hosted 

research scuba divers and devices to study groundwater seepage along the slope.
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Abstract

Cruise P386  “NAIL” with R/V Poseidon studied the western Ligurian Margin off 

Southern France, and area in the northeastern part of the western Mediterranean Sea 

characterized by its active tectonism and frequent mass wasting. The region near the Var 

estuary close to the city of Nice is particularly suited for landslide research because it 

represents a natural laboratority where it is possible to study a series of trigger processes of 

geological and anthropogenic origin. The aim of this MARUM expedition was to:  

i. Study the Nice airport landslide and adjacent stable slope in 15-50 m water depth; 

ii. Deploy a number of mooring stations to study sedimentological processes in the 

deeper slope (200-1500 m water depth) in the Var Canyon; and 

iii. Set up a long-term seafloor unit and adjacent buoy to test the performance of data 

communication systems for marine applications such as observatories. 

Accordingly, the wealth of initial results include the successful deployment of several 

moorings as well as the communication system with the buoy. Data will be retrieved once 

the instruments get recovered in early 2010, so no scientific conclusions can be drawn from 

these portions of the cruise. In contrast, a large number of results is already available from 

the sampling and measurements south of the airport of Nice. From the gravity cores taken in 

or adjacent to the headwall of the landslide, the majority showed extremely freshened pore 

water composition (usually in 0.6 – 3.4 m depths) related to groundwater charging at deep 

levels. Although ROV surveying in this area showed pockmark-type seafloor roughness, 

bottom water sampling by research scuba divers failed to attest freshened water at the 

seafloor. Cores further showed evidence for catastrophic emplacement of sediment packages 

which were tentatively related to the 1979 slide/tsunami event. In several cores, steep 

normal faults with mm-displacement further support active deformation in the recent past. 

Results from 65 cone penetration tests (CPT) showed variable penetration depth (max. 3.5 m 

sub-seafloor) and oftentimes excess pore pressure increase during the 30-60 mins. 

“dissipation” period.

In addition to the above, gravity coring as well as CPTesting was undertaken at all 9 

positions proposed for mission-specific drilling (IODP proposal 748-full). Also, 11 cores 

were taken but left unsplit because of the necessity for post-cruise geotechnical testing. 

Those cores originate both from the Nice Airport landslide and its vicinity, but also from the 

deeper landslide complexes sampled in 2007 during cruise M73/1.
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2. Introduction 

Based on the fact that 60% of the Earth's population live within the frontal 50 km of the 

coast, considerable scientific and economic efforts are undertaken to shed light on the 

processes shaping ocean margins. One of the most prominent of these phenomena are 

submarine landslides, which often coincide with earthquake activity and other geohazards. 

Given the highly dynamic setting and complexity of collision zones in the Mediterranean 

Sea, many processes are still poorly understood. Among the shortcomings in understanding 

collision zones, the temporal variation of deep-seated processes as well as their 

manifestations at shallower levels is an emerging key question. As a consequence, scientific 

research has to focus on long-term measurements of key physical parameters that drive 

landsliding. In Europe, the EIU Network of Excellence ESONET has identified a total of 203 

data end-users in 11 countries with a wide-spread need for data monitoring of the solid earth 

beneath the sea, the interface between the solid earth and sea, and the water column. The 

University of Bremen (Germany) and IFREMER Brest (France) have joined forces on a 

multi-disciplinary level to work at the Ligurian Margin within ESONET and the Integrated 

Ocean Drilling Program (IODP). 

Fig. 1: (a) Bathymetric map of the Ligurian Sea and surrounding land masses; (b) Structural/geomorphic  
map of the study area at the Var estuary and canyon. 

Several programmes and national as well as international initiatives dedicated 

considerable parts of their efforts towards submarine landslides. The ‘The Deep-Sea 

Frontier’ initiative (http://ec.europa.eu/research/environment/pdf/deepseefrontier.pdf), as 

well as its successor program DS3F (‘Deep Sea & Sub-Seafloor Frontiers’; cf. Kopf, 2009) 
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by the EC have dedicated work packages concerning geohazards. Also, the IUGS-UNESCO 

IGCP511 project “Submarine Mass Movements and their Consequences” enters its 5th year 

with annual meetings and either books or special issues of journals resulting from the 

conferences (e.g. Solheim, 2006; Lykousis et al., 2007; Mosher et al., 2009). One of those 

meetings, held as an ESF Magellan workshop in Barcelona 

(http://www.geohazards.no/IGCP511/; Camerlenghi et al., 2007), was co-sponsored by 

ECORD and set the spotlight on scientific ocean drilling. The proposal MEDSLIDES

(Camerlenghi et al.; initially a pre-proposal to IODP in 2007, followed by a full proposal in 

2008) was a major outcome here and spans the Eastern and Western Mediterranean 

including the Israel continental slope, Nile deep-sea fan, Gela Basin, Ebro Margin, Eivissa 

channel, and the Herodotus, Ionian and Balearic abyssal plains. In addition an IODP-

sponsored workshop on Geohazard drilling followed in Portland, Oregon in 2007 (see 

http://www.nsfmargins.org/Publications/Newsletters/Newsletter.html). A year later, another 

ESF Magellan workshop on “Drilling seismic hazards in European Geosystems” was held in 

Luleå, Sweden (Ask et al., 2008). Among other things, an APL concerning mass wasting 

events in the forearc to the Nankai Trough subduction system, Japan (proposal #738-APL; 

Strasser et al., 2008) and a mission-specific drilling proposal at the Nice slope (proposal 

#748-full; Stegmann et al., 2009) resulted as a direct consequence of that workshop. 

Fig. 2: Tectonic map of the area showing major faults and direction of movement.  
See text and cross section in Figure 4. 
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In general, the understanding of the temporal variations in geohazards is essential for 

many geoscientific research disciplines as well as mankind as a whole. Especially early 

warning networks for EQs and tsunamis have further become a major societal interest. The 

Ligurian margin is well suited for such a project because of its proximity, well known 

morphological and tectonic setting (Figs. 1-2), regional seismicity and landsliding (Figs. 3-

4), and the wealth of existing data in the region. Cruise P386 aimed to broaden the data base 

in the area and install a number of long-term moorings to collect time series data offshore 

southern France. 

 

Fig. 3: History of seismic events in distribution in the southern Alps and Ligurian Sea, and focal mechanisms 
of Mw>3 earthquakes on the Ligurian Margin between 1960-2001 (from Henry et al., 2005, proposal 685-full). 
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3. Geological background 

General Overview 

The geological setting in the Ligurian Basin is that of a tectonically active and unstable 

margin. Much of the morphology on- and offshore as well as the main tectonic lineaments, 

their direction of movement and seismicity is illustrated in map view (Figs. 1-3) and SW-NE 

cross section (Fig. 4). Most of the sediment is received from the erosion of the Alps in the 

north (Fig. 1; see Mulder et al., 1998). Tectonic deformation rates are small, however, a 

background seismic activity is present, with the largest earthquakes occurring offshore (M~6 

in 1887, and M 6.3 in 1963; see also Fig. 3). This activity may be explained by compression 

on the rim of the Alpine belt, which is now collapsing at least in the French-Italian part (Fig. 

4). However, the active offshore fault network, consisting of both compressional and 

extensional structures, is incompletely understood (see Migeon et al., 2006). 

Fig. 4: Schematic cross section through the study area in SW-NE direction. Earthquakes are most abundant on 
the deep-seated crustal faults in the SW. 

The Ligurian margin has a very narrow (or absent) continental shelf of ~2-3km width and 

a steep continental slope with a mean gradient of ca. 11° (Cochonat et al., 1993). The margin 

is fed with material from several small mountain-supplied rivers (Var, Paillon and Roya 

rivers) that experience semi-annual violent flash floods owing to snowmelt and convective 

rainfall (spring and fall). During floods, suspended sediment concentration can reach tens of 

kg/m3, resulting in hyperpycnal flows (Mulder et al., 1998). High and episodic sediment 

supply at the mouth of these rivers, cause deposition of thick under-consolidated deposits of 

variable grain size on the upper slope. In the Var canyon, the most relevant of the three river 

systems mentioned above, three types of seafloor failures are observed: (1) superficial 

slumping, which occurs in area of low slope angles in the upper slope, (2) Canyon-wall 
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gullying by undercutting currents and debris flows at the canyon wall, and (3) deep-seated 

failures characterised by pronounced headwalls at higher slope gradients and often unknown 

flow paths of the slid material (Klaucke and Cochonat, 1999; Klaucke et al., 2000). Adjacent 

to the Var estuary failures initiate on the upper slope, at less than 200 m of water depth, with 

scarps typically being approximately 100 m wide and mobilized volumes are less than 0,07 

km3 (Migeon et al., 2006). Failure may either be catastrophic, or a successive strain 

accumulation from creeping via folding, slumping to mass wasting and deposition of 

debrites, turbidites, and landslide bodies.

The Nice Slope 

The very narrow or absent continental margin off Nice (Fig. 5a), situated in the Baie des 

Anges and bounded by the prominent Cap d'Antibes Ridge (W) and Cap Ferrat Ridge (E), is 

characterized by a very steep slope characterized by deep erosion and canyoning with 

maximum slope angles of 27° along the side-walls of the canyons (Pautot 1981). The Var 

and Paillon canyons represent the most important erosive features, which are both linked to 

the fluvial systems, the latter being a negligible contributor of terrigenous supply at present 

(Klaucke et al., 2000). During the Messinian salinity crises, the Var paleo-canyon was 

shaped and filled during the Early Pliocene transgression and prograded in the Mid-Pliocene 

as a steep delta to the slope break, which corresponds to the modern coastline (Clauzon et al. 

1990). Quaternary sedimentary sequences of the Var river mouth show a tripartite stack of 

facies (Dubar & Anthony 1995). The oldest Quaternary deposits are made of clast-supported 

gravel with a matrix of sand, silt and clay (Fig. 5b). A thick wedge of Holocene fine-

grained, shallow-marine and estuarine-deltaic sediments interbedded with river flood-plain 

paludal sediments is related to the postglacial marine transgression, whereas an upper fluvial 

channel gravel prograded a Gilbert-type fan delta recently. From a hydro-geological point of 

view these sedimentary sequences act as an aquifer system with pathways for conductive 

flow of meltwater or rainwater in the delta (see below). In the Var delta system, highly 

permeable strata (Pliocene substratum, Quaternary sandy gravel; see Fig. 5b) is confined by 

low-permeability muds (Anthony & Julian, 1997). Following their model the  aquifer layer 

drains seaward at various levels down to a water depth of ~140m (Fig. 5b). Geochemical 

analyses in the upstream part of the Var (Guglielmi & Mudry, 1996), offshore in the water 

column overlying the Nice Slope (Guglielmi & Prieur, 1997), and piezometric 

measurements in the Nice slope sediment (Sultan et al. 2008) support the aquifer model and 

demonstrate a direct relationship between high discharge (flood) events (about 200 m3/s),
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flow through the alluvial aquifer (Guglielmi & Mudry, 1996) and the occurrence of fresh 

water discharge into the sea (Guglielmi & Prieur, 1997). Regarding the superficial sediments 

of the uppermost Nice continental slope, major portions are unstable due to the 

underconsolidated state of the sediment owing to rapid deposition (Klaucke & Cochonat, 

1999). This material has also been imaged during recent geophysical surveys (see Fig. 7 and 

Stegmann et al., 2009). 

 
Fig. 5: Geology of the Nice area on-shore and the Nice slope off-shore compiled from previous workers 
(modified after Dubar & Anthony 1995 and  Anthony & Julian 1997). (a) Map illustrating the different 

lithologies related to the evolution of the Var delta from the Pliocene to present; (b) schematic cross-section 
through the Var delta deposits in N-S-direction south of the Nice airport (see [a] for location). 

 

The 1979 Nice Airport catastrophe

The abovementioned Nice Airport Landslide (NAIL, also the namesake of cruise P386) 

occurred on October 16th, 1979 on the Var prodelta of the Nice Slope (Figs. 5a, 6a). The 

NAIL area is surrounded by smooth, but narrow shelf with water depth ranging between 0m 

and 15m at the headwall. An embankment of the extended airport construction collapsed 

into the sea (Fig. 6a) and generated a tsunami wave of 2-3 m (Gennesseaux et al., 1980). 

Based on bathymetry data the volume of failed material was estimated ~8.7 x 106 m3

(Assier-Rzadkiewicz et al., 2000), which was mobilized and transformed into a debris flow 

cutting two submarine cables tens of kilometres away from the sliding area (Hugot, 2000). 

The path of the failed mass is clearly expressed on the upper slope by a 4.5 km-long gully 

with depths between 25m and 40m (see Fig. 6a, arrows; Mulder et al. 1998). The airport was 

damaged (Fig. 6b), the tsunami affected the nearby village of Antibes (Fig. 6c), and the 
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former embankment was transported to more than 1000 m depth into the Var canyon (Fig. 

6d).

 

Fig. 6: Location and transport pathway of the Nice Airport Landslide (NAIL) on Oct 16, 1979.  
(a) The trace and velocity of the mobilised material running down the Nice Slope southward into the Var 

Canyon, and then redirected towards the West and then South again (data from Dan, 2007). Panels (b) and (c) 
are newspaper clipping from the Nice Matin the day after the event, illustrating the damage to the airport , here 

inspected by airport police (b) and the effect the tsunami had in the village of Antibes (c). In the course of 
detailed mapping of the seafloor in 1986, ROV dives discovered blocks having originated from the fill used for 

the failed harbor construction that got transported to the deeper part of the slope (d). Positions for panels b 
through d is given in Fig. (a).

 

Shortly after the accident, a detailed investigation of the bathymetry was started (Pautot, 

1981) and several studies aimed to characterize the trigger mechanism(s). Reduction of 

sedimentary strength due to an earthquake can be excluded for this event, as no anomalous 

seismic signal was recorded. The MIP (MIP, 1981) proposed retrogressive failure, which 

initiated at the slope and then retrogressively reached the NAIL area. On the other hand, the 

tsunami wave following the slide lowered the sea level by ~2.5m, which resulted in static 

liquefaction of the overloaded slope (e.g. Seed, 1988). Both scenarios were tested by 

numerical modelling and the retrogressive failure mechanism was excluded as this kind of 

failure could not have provided the energy to generate the observed tsunami wave (Assier-

Rzadkiewicz et al. 2000). Slope stability assessment under static conditions demonstrated a 

Factor of Safety (FS) >1., which in case of sealevel lowering of 2.5m decreases, but remains 
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>1 (Sultan et al., 2001). Unfortunately, the landfill operations preceding the airport 

extension, where 11 million tons of material at water depth of 25m and distances of up to 

300m offshore had been additionally put on the slope six month prior to the failure (see 

details in De la Tullaye, 1989), were not considered in the study. Furthermore, the effect of 

overpressuring was disregarded, although the landslide occurred after several days of heavy 

rain (25cm in 4 days). Given that both the extra loading and episodic rainfall events (see 

http://www.hydro.eaudefrance.fr) remain crucial factors destabilizing the present-day slope, 

they were into consideration during recent studies (see Kopf et al., 2008; Sultan et al., 2008; 

Stegmann et al., 2009, below). 

 

Previous work by participant group/institutions 

Over the previous decade, the working groups at IFREMER Brest, CEREGE and MARUM 

Bremen contributed tremendously to the understanding of landslide processes in general 

(e.g. Sultan et al., 2004, 2007, 2008; Stegmann et al., 2007; Kopf et al., 2006, 2007, 2008, 

2009), and the Ligurian Margin in particular. At the Nice slope, the most fundamental data 

set on is a hydrological model and set of questions and hypotheses is based upon is a grid of 

high-resolution MCS data with good penetration (>150 mbsf) acquired during M73/1 cruise 

in 2007 (see Fig. 7; and Kopf et al., 2008 for methodology and specifications). An example 

profile crossing the NAIL scar in N-S-direction is shown in Figure 7b to illustrate the 

overall geological situation and main lithological units.  

The typical lithological succession on the Nice continental slope consists of three main 

units: (a) Along some profiles, lenses or homogeneous carpets of seismically transparent, 

~10 m-thick “mobile layers” are found (Unit A). These have been identified earlier (Dan, 

2007) and may represent modern spill-over deposits from snowmelt floods, recently 

mobilized material with a higher mobility (debris flow type or fluidized units). (b) Below 

the transparent series, parallel layered Quaternary deposits of variable thickness (a few m to 

~50 m, Unit B) are probably Var delta sediments with various facies (clay, silt, sand and 

even gravel layers with components exceeding 10 cm in diameter; see cross-section in Fig. 

5b). On the Nice shelf, those deposits are perfectly horizontal and in places show discordant 

contact to the inclined sand package. Closer to the shelf edge, prograding and aggrading 

delta deposits (i.e. topset to foreset beds) show tilting of the layers towards the Ligurian 

basin, possibly indicating deposition during a sealevel rise. Presumably, some of the 

uppermost layers may represent floodplain deposits, because the Var river mouth migrated 

westward over time (Sage, 1976). Inside the NAIL scar as well as in some locations down-
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slope, the Holocene units lacks coherent internal layering and is hence difficult to interpret. 

While the surface topography may suggest displacement of some of these sequences 

(potentially from mass movement and sliding), other incoherent units lie topographically 

exposed and cannot result from downslope transport. (c) A S-dipping, well-stratified 

coherent package (Unit C) of sand/gravel or otherwise reflective, competent lithology, with 

its upper ~80 meters showing higher amplitude reflections (Fig. 7b). Its surface and contact 

to the overburden is predominantly smooth (in particular towards the deeper basin), but 

rough in places close to the coast. Nearshore, the top of the unit is interpreted as a former 

land surface during sea level low-stand. When compared to earlier work, this succession is 

presumably Upper Pliocene in age (see Savoye et al., 1993, their Fig. 12) and typically 

contains puddingstones, marls, sand and gravel (Guglielmi & Mudry, 1996). In a second 

seismic profile, the cascading normal faults in the mid-slope suggest that portions of the 

slope may have indeed been mobilised in a retrogressive manner (Fig. 7c). 

 

Fig. 7: (a) map with track chart offshore Nice from expedition M73/1 (Kopf et al., 2008), including N-S 
trending MCS lines 262 (b) and 272 (c) through the study area. Please note topset strata in line 262 (right) 

and possible evidence for retrogressive failure in line 272. 
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Fig. 7 continued. 

In order to overcome limited penetration by gravity coring, pushed CPT profiling gathered 

in situ information on the strength of the sediments down to a penetration depth of 28m 

(Sultan et al., 2008). Those tests were carried out during PRISME cruise with R/V 

L’Atalante (fall 2007) using the Penfeld penetrometer (Meunier et al., 2004). The 

experiments focused on the stable western part of the Nice Slope. Based on 35 gravity cores 

(Fig. 8a) and 37 CPT profiles (12 pushed / 25 free fall) (Fig. 8b), which can also used to 

define the profiled sediments lithologically by soil types (e.g. Ramsey, 2002), significant 

sandy/silty layers were correlated successfully with commercial onshore CPT tests by 

SolsEssaies that were carried out shortly after the 1979 catastrophe. The coarser grained thin 

layers (cm scale) are deposited in the upper part of the slope in ~20mbsf and ~40mbsf (Fig. 

8c). The in situ information also attests that (i) prominent sand/gravel layers are found in the 

Quaternary succession (Fig. 8c), (ii) developing shear zones in the Holocene foreset series, 
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as evidenced by low cone resistance and decreasing p-wave velocity when running the sonic 

CPT mode (see Fig. 9; Sultan et al., in press), and (iii) a sharp increase in cone resistance for 

2 of the onshore tests that reached up to 60 m subbottom depth (Fig. 8c). This latter 

discontinuity is found in ca. 35-40 m depth, which corresponds to about the extrapolated top 

level of the Pliocene package (unit a; see above).

 
 
Fig. 8: Compilation of data collected in the NAIL area during several previous expeditions, showing locations 

of a) gravity cores, b) in situ measurements of sedimentary strength and pore pressure with different CPT 
devices, c) depth information of prominent silt, sand and gravel layers from coring and CPT testing, and d) 

locations of freshwater occurrence in the sediments or in the overlying water body (the latter from Guglielmi & 
Prieur 1997). 

Based on a finite element model relying on geotechnical and sedimentological data, Dan et 

al. 2007 postulated a combination of trigger mechanisms including (i) the creeping of the 

sensitive clay layer, (ii) the point load of the construction and, (iii) the circulation of fresh 

water in the permeable sandy layers. Furthermore, their calculation attested the metastable 

state of the Nice Slope before and after the construction work. The “sensitive layer” 

hypothesis is supported by the good correlation between the maximum thickness of the 

sliding mass (max. 38 m) and the depth of the sensitive clay. Furthermore, the progressive 

failure scenario according to the creeping process agrees well with the observations 

mentioned in the official report (cracks, settlements, failures, collapses) following 
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landfilling operations (Seed et al., 1988). Due to the presence of these sensitive, 

mechanically weak clay layers, failure of the Nice Slope could have occurred regardless of 

the additional load posed upon the slope by the construction (Savoye et al., 2005; Dan et al., 

2007). These zones exhibit a significant loss of strength between 3 and 9 mbsf during CPT 

profiling in the non-failed area (Sultan et al., in press). Following Leroueil et al. (2001) 

these zones can be defined as shear zones often associated with progressive failure (Thakur 

et al., 2006). 

Fig. 9: Results from two Penfeld CPT deployments in the area immediately east of the NAIL scar. Data show 
low p-wave velocities (not shown here) and low frictional resistance in the slope apron where cklay minerals 

are abundant and minor amounts of gas are also suspected (from Sultan et al., in press). 

Another crucial factor that episodically saps the stability of the Nice Slope is the 

hydrological regime in this area. For instance, the 1979 landslide occurred after a period of 

exceptionally heavy rainfall and river discharge (see above). Submarine freshwater sources 

are known to occur along the Ligurian coast (see Gugliemi, 1993; Guglielmi & Prieur, 1997; 

see above), which can affect the stability of the slope by lowering the effective strength of 

clays. Geochemical analyses on pore water extracted from coarse-grained, permeable layers 

in gravity cores attest the occurrence of fresh water in several locations within the NAIL 

scar (see Fig. 8d, and Kopf et al., 2009). Furthermore, a long-term piezometer installed in 

the NAIL scar recorded an increase in pore pressure linked to the amount of precipitation. 

Mid-term CPTU deployments in the same area have equally attested ambient overpressures 

up to 8 kPa, which in the location of deployment is very close to the overburden stress (Kopf 

et al., 2008). 
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Sedimentary processes in the Var canyon 

Apart from landslide-related processes, the fate of material being mobilised in the shallow 

part of the Nice slope, the Var delta, or areas further upstream is of increasing interest. In 

general, canyon-turbidite systems collect, by a series of single, energetic and catastrophic 

events, a significant amount of the continental erosion products. Much of the material that 

accumulates at the shelf break or on the upper continental slope is in an instable situation 

and likely to move down the slope. Such movements impact on the slope and the deep-sea 

environments, determine the depositional architecture and evolution of deep-sea 

sedimentary systems. One of the distinctive feature of these turbiditic systems is the 

concentration and channelling of the terrigenous bed load from the mouth of large rivers (or 

the edges of platforms) to the abyssal plain. Processes involved in sediment transfers appear 

to be very efficient for particle grain size segregation and are a way to create huge sand 

accumulations in the deep-sea, providing in that way high quality reservoirs of high interest 

for the oil industry as it is moving deep offshore. These processes are also a major source of 

geohazards and damage for infrastructures lying on the sea floor and on coastal areas. 

Fig. 10: The Var canyon-turbidite system from source to sink.
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The sedimentary system of the Var is placed on an unusual passive margin, presenting a 

very narrow continental slope (2 to 3 km) and a steep continental slope that was reshaped 

during the Messinian crisis. The PlioQuaternary Var turbidite system has been supplied by 3 

main canyons: the Var, the Paillon and Roya (Fig. 10). The canyons are active in both 

lowstand and highstand periods, with the preserved canyon activity during the present 

highstand period being a major research focus. The Var watershed is supposed to be the 

main sediment source of its fan (2830 km2, highly mountainous). The Var river connects 

with the Var canyon head. The turbiditic activity in the canyon is hence controlled by the 

seasonal cycle of the river. 

The mean flow of the Var river, at its mouth, is estimated to be around 53 m3.s-1.

Nevertheless the river regime is characterised by sudden floods surpassing 10 folds the 

mean runoff. The sediment discharge related to the Var river is not well estimated. Present 

days estimation indicates a total annual sediment discharge of 1,63.106 tons/yr; extreme 

values being twice this estimation. There is significant evidence that during floods 

hyperpycnal flows occur at the head of the Var canyon. This regular and controlled activity 

is the main reason the Var turbiditic system may be considered as a natural laboratory for 

the study of turbidity currents. 

Along the slope, the Var canyon presents a regular U shape during 25 km long. Its width 

increases from 300 m at the head to 1 km at its transition to the upper valley. Its depth 

presents a longitudinal variation as well. From 130 m depth at the head its incision reach 

370 m further down the slope. The increase of the canyon transverse section correlates to the 

decreasing of its mean slope from 16 % to 3,3 %. Several terraces bordering the canyon 

present fine sediment deposits whereas the canyon is characterized by gravels and coarse 

sand. After its canyon, the Var system develops a long valley, 155 km long from canyon's 

confluence to the distal lobe at the base of the Corsican marge. The Upper Valley is 5 km 

long. Its width is comprised between 1,7 to 4,8 km and its slope varies from 3,3% to 3% at 

2000 m water depth. The Middle Valley presents a long eastward turn of 50 km to 2500 m 

water depth where it turns again southwards. Its very wide channel (15 to 5 km) is bordered 

by a high and continuous right-hand levee, called the Var Sedimentary Ridge, above which 

turbiditic events regularly overspill. The left-hand levee is very low and discontinuous. At 

the end of the Middle Valley the slope has decreased to 0,4%. The 100 km long Lower 

Valley is characterized by a long, straight and shallow (20 to 30 m deep) by-pass channel 

and discontinuous flat levees. Its slope decreases to a very low value of 0,2% by 2700 m 

water depth at the location of the distal halocene lobe of 80 km long and 40 km wide. 
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The simplified morphology of the Var system and its present days activity constitutes an 

optimum to study and model turbidity currents. The direct connection to the Var river, the 

Canyon and the associated terraces, the overspilling ridge and the extent of its lower valley 

present singular features to constrain and be approached by numerical modelling. 
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4. Scientific rationale and State-of-the-art 

(A. Kopf, P. Henry, S. Stegmann, J. Blandin, R. Silva Jacinto) 
 
Overview

The stability of marine sediment at ocean margins is a function of the intrinsic strength of 

the material and forces counteracting this strength (e.g. Hampton & Lee, 1996). When 

broken down to the particle scale, the strength is controlled by the friction coefficient for the 

individual mineral particles at a given confining stress, minus the pore pressure that is 

compensating for some of the external stress. This relationship, known as the effective stress 

(Terzaghi, 1946), is a crucial aspect in slope stability since pore pressures may equal the 

overburden stress, exceed lithostatic values, and hence cause liquefaction (in coarse-grained 

sediment) or softening (in fine-grained material) by destroying the particle network (e.g. 

Maltman, 1994; Moore et al., 1995). Both non-destructive soft sediment deformation 

(creeping, slumping, liquefaction), as well as brittle failure (faulting, hydrofracture), are 

important processes in mass wasting along continental slopes.

The inherent mechanisms and factors governing slope stability and submarine landslides are 

known because of extensive research carried out by academia and industry (e.g. Hampton et 

al., 1996; Locat 2001; Locat & Lee, 2002; Mienert, 2004; Lee, 2009), however, the temporal 

and spatial variability of landslide processes remain poorly understood. In general, 

submarine landslides occur in areas of weakness, often posed by the presence of weak 

mineral phases such as clay minerals, or by excess fluid that enhances pore pressure. 

Spatially, slides are a global phenomenon occurring in fjords, river deltas and fan-canyon 

systems, open continental slopes and volcanic flanks (e.g. Huehnerbach & Masson 2004). 

Temporally, they are influenced by the sedimentology of depocenters as well as variations in 

seafloor pressure and temperature, seismicity and volcanic activity, or groundwater flow 

conditions (Lee, 2009). Although the abovementioned processes are broadly understood, the 

exact trigger mechanisms of only a few given submarine landslides are known with certainty 

(Mienert et al. 2003; Sultan et al. 2004). For the majority of slides, multiple triggers are 

usually considered, with pore pressure being the favourite, but ineluctably unsatisfactory 

explanation because of an uncompromising lack of evidence (see below). 

Submarine landslides range greatly in their size, from small, frequently occurring failures 

in active environments such as coastal zones and canyons, to failures that involve hundreds 

of km3 of sediment but occur much more infrequently. In either case, they represent a major 

geohazard for offshore infrastructure (platforms, pipelines, cables and submarine 
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installations; e.g. Vaunat & Leroueil, 2002; Longva et al., 2003; Sultan et al., 2004) and, if 

tsunamigenic, to coastal structures and populations, both locally and in the far-field (Tappin 

et al., 2001). Slope failure is generally controlled by long-term governing factors and short-

term triggers (Leroueil et al., 2001; Locat 2001; Sultan et al., 2004). The first include 

topographic effects such as slope gradient, the geodynamic evolution of the margin 

(sedimentary or tectonic loading, unroofing, erosion, etc.) or other effects (glacial 

loading/unloading, marine transgression/regression, etc.; Lee, 2009). The second group of 

trigger mechanisms acts at a much shorter time-scale and usually causes a significant change 

in stress state. Among the processes most crucial to slope stability are (i) seismic loading 

(i.e. earthquakes), (ii) storm wave loading, (iii) rapid sedimentation (in deltas, through mass 

wasting, etc.), (iv) gas hydrate dissociation, (v) deep-seated fluid generation, upward-

migration and seepage, (vi) oversteepening, (vii) cyclic loading by tides, (viii) gas charging, 

and (ix) groundwater charging (see Locat and Lee, 2002 for details on many of those 

points). Despite the variety of processes in this list, one overarching aspect is the transient 

change in pore pressure that is the primary or indirect result of all of them. One of the key 

goals in landslide research is hence to establish the relationship between the pre-

conditioning factors governing the area and the short-term triggers causing the slope to fail. 

There are regions on Earth where wide stretches of ocean margins provide evidence for 

mass flows at many scales and a wide range of water depths (e.g. Maslin et al., 2004; Lee, 

2009). Within Europe, the Mediterranean Sea represents such a region. Mass wasting has 

been reported from many of the large estuaries and delta systems in both the Eastern and 

Western Mediterranean (e.g. Ebro (e.g. Urgeles et al., 2006), Rhone, Var (e.g. Dan et al., 

2007), and Nile fans, to name just a few), the seismogenic Algerian (e.g. Dan et al., 2009) or 

Ligurian margin (e.g. Klaucke & Cochonat, 1999), the Mediterranean Ridge and Cretan 

margin (e.g. Chronis et al., 2000), the Florence Rise, Anaximander mountains, Cyprean and 

Hellenic Arcs, or slopes of islands forming the Aegean volcanic arc. With approximately 

46000 km of coastline, 160 Million along it (plus an additional 135 Million tourists each 

year, i.e., 30% of the global tourism), landslides pose a considerable risk. The French 

Riviera, northern Ligurian basin, seems particularly vulnerable because it is one of the areas 

with the highest population density (e.g. Marseille, Toulon, Cannes, Nice, Monte Carlo) and 

clearly with the largest economical vulnerability (i.e. insured capital). From these cities, 

Nice is the 5th largest city in France and the 2nd busiest international airport in France with a 

potential of 13 million passengers each year (Anthony, 2007). 
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When returning to tectonically active, hazard-prone zones like the Ligurian Margin, the 

key issue remains whether brittle failure in a formation or slip on an existing fault is 

triggered by fluid pressure transients, or solely by the mineralogy of the fault gouge (see 

competing hypotheses by e.g., Byerlee, 1978, 1990 vs. Rice, 1992). A considerable amount 

of work has been done in recent years to solve this problem (Logan & Rauenzahn, 1987; 

Saffer et al., 2001; Kopf & Brown, 2003), attesting that the pore pressure may be of similar 

importance as the friction coefficient of the gouge material itself. As a consequence, one of 

the central research goals into the behaviour and evolution of sediment failure is to separate 

the effects of intrinsic frictional properties and fluid pressure variations. For research 

expedition P386, the main aim is to clearly distinguish between those effects by 

� Cone Penetrating Testing (CPT) where pore pressure and sediment strength are 

obtained,

� Measuring mid-term fluid pressure background and transients related to seismic events 

(in collaboration with IFREMER Brest, France, using mid- to long-term piezoprobes), 

and

� Doing selected laboratory tests on sediment gravity cores to measure the mechanical 

response to static and dynamic loads. 

In situ geotechnical testing 

Cone Penetration Tests are a widely used method for in situ sediment characterisation in 

onshore and offshore settings, both in science and industry (e.g., Lunne et al., 1997). With 

the autonomous, modular free-fall probes (hereafter as FF-CPT) developed in Bremen, a 

straightforward cost- and time-effective way was found to measure sediment resistance and 

pore pressure response to insertion into soft sediments. Measurements are carried out pogo-

style, and after retrieval of the data disk, pore pressure evolution and sediment stiffness 

(measured as frictional resistance of the tip and a mantle sleeve; see Fig. 11a) as well as 

temperature are immediately available. In addition to the direct observations, other 

parameters can be rapidly estimated from the CPT data. 

The maximum insertion pressure produced at the probe tip can be used to estimate the 

undrained shear strength of the sediment (Cu). For typical deep sea sediments, Esrig et al. 

(1977) suggest the relation: Cu = Uimax/6, where Uimax is the maximum insertion pressure. 

The decay of excess pore pressure produced by the insertion is governed by the 

consolidation process around the probe and can be modeled as radial consolidation. Bennett 

et al. (1985) predict the coefficient of horizontal consolidation (Ch) from the time taken for 
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50% of Uimax to dissipate, and Ch can then be used to determine the permeability k. In places 

where coring and Penfeld deployments are too time-consuming, pogo-style CPT 

measurements will not only provide first-hand in situ results, but with secondary parameters 

to estimate slope stability and hazard potential. In order to make use of the above in situ data 

in hazard mitigation, longer-term observations become a necessity. Temporal records of 

pore pressure changes have been demonstrated to correlate with regional tectonic stresses 

and seismic activity in a number of places (e.g. the Juan de Fuca Ridge; Becker & Davis, 

2003; see also next chapter). For this reason, the previously used piezometer v1 as well as a 

refined design, the piezometer v2 (Fig. 11b), were to be deployed during cruise P386 for 

time series recordings of pore pressure and temperature in the Nice Airport slide scar and 

adjacent slope. This joint work by MARUM Bremen and IFREMER Brest represents the 

continuation of two successful cruises beforehand in the same area: R/V Meteor cruise 

LIMA-LAMO in July/August 2007 (Kopf et al., 2008) and R/V L’Atalante cruise PRISME 

in Oct./Nov. 2007 (Sultan et al., 2008). 

Fig. 11: (a) MARUM  CPT lance; (b) IFREMER piezometer v2; (c) MARUM dynamic triaxial 
apparatus; (d) MARUM ring shear apparatus. 

Long-term pore pressure monitoring 

Pore pressure is known not only for its prevalent role in faulting and other geodynamic 

processes (e.g. Rice, 1992), but also as a powerful proxy for strain (see Bredehoeft, 1967; 

Davis et al., 2004). So far, the routine procedure in ODP/IODP has been the deployment of 

tapered downhole probes (e.g. the DVTPP) during drilling, which have been used in a wide 

range of geological settings at shallow-moderate depths to obtain measurements of in situ

pore pressure (e.g. Moore et al., 2001; Morris et al., 2003; Flemings et al., 2008). However, 

the interpretation of the probe measurements is often problematic, because of limited time 
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available for the induced pressure spike caused by probe insertion to dissipate. Another key 

element in ODP/IODP are pore pressure measurements in CORK long-term observatories 

(Circulation Obviation Retrofit Kit; cf. Davis & Becker [2001]) juxtaposing a cased 

borehole, which is hydraulically separated from the overlying water body.  In the past, direct 

measurements of pore pressure have provided powerful constraints on regional scale flow 

models; for example, two CORK measurements at the Barbados margin (Foucher et al., 

1997; Becker et al., 1997) within a few km of the trench provide tight bounds on the 

permeability of matrix and fault rocks in the outer wedge (Bekins & Screaton, 2007). In 

subduction zones, ambient pore pressure information (Davis et al., 2006) has been correlated 

with that inferred from laboratory consolidation tests on core samples collected during 

drilling (e.g. Karig, 1993; Morgan & Ask, 2004), and porosities obtained from shipboard 

index properties (e.g. Screaton et al., 2002) and inferred from seismic velocity (e.g. 

Cochrane et al., 1996; Hayward et al., 2003).

Using pore pressure signals as a proxy for seismic strain has been neatly demonstrated 

at the Juan de Fuca Ridge flank as well as the Nankai Trough accretionary complex (Davis 

et al., 2001; 2006). In the first case, a M 4.6 earthquake on the western flank of the Juan de 

Fuca Ridge caused a discrete pore pressure spike in three adjacent boreholes. The signal 

reached <0.2 kPa above background value some 70 km away from the epicenter, but up to 

3.2 kPa excess pore pressure in 10-20 km distance at Site 1025 (for details, see Davis et al., 

2001). Similarly, a series of low-frequency earthquakes were recorded in a CORKed hole 

(Site 808) in 2003, causing a 140 kPa pressure anomaly in some formations within the >900 

m of instrumented hole through the frontal accretionary complex (Davis et al., 2006). Even 

seafloor seismometers and fluxmeters have been successfully used to suggest a relationship 

between seepage and seismic events in the vicinity (i.e., in the Costa Rica forearc, Brown et 

al., 2005). Along a similar line of methodology, IFREMER piezometers have been 

successfully recording pore pressure variations related to changes in charged aquifers in the 

Nice Airport Landslide scar for periods exceeding one year, with the excess signals reaching 

15 kPa (Sultan et al., 2008). 

Geotechnical laboratory experiments 

A growing body of geotechnical laboratory work attests that frictional stability may be 

more important than the absolute shear strength of a material in controlling failure and 

sliding/faulting (see review by Scholz, 1998). Frictional stability is a function of the change 

in friction coefficient (µ) at a given effective stress, which is primarily rate dependent. 
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While high-porosity rocks show velocity strengthening (i.e. µ increases with increasing 

shear rate, e.g. during slip), low-porosity rocks weaken. In general, EQs are believed to 

nucleate in unstable materials, so that the replacement of clays in "weak" shear zones by 

precipitation (carbonate, zeolites, quartz) or mineral transformation processes would result 

in either unstable stick slip or conditionally stable behaviour (Moore & Saffer, 2001). 

Similarly, mechanically weak constituents such as sensitive clay minerals are believed to 

provide the failure plane for landslides and other hazardous mass wasting processes. 

To ground-truth both our in situ data (see previous two paragraphs) and the geophysical 

information of the seafloor and shallow subbottom, designated soil mechanical laboratory 

experiments are part of the overall study P386 (see Ch. 6, Methods below). These include 

standard soil mechanical procedures to obtain the sediments index properties (wet and dry 

density, porosity), grain size distribution, liquid and plastic limits, and permeability and 

shear strength at various confining stresses and rates. Simple tests are conducted on board 

(vane shear apparatus, falling cone penetrometer) while more sophisticated ones will be 

carried out shore-based (e.g. dynamic triaxial tests [Fig. 11c] or ring shear tests [Fig. 11d]). 

Especially the latter suite of parameters provides a profound measure on slope stability on 

the seafloor, on how stable a given sediment may deform under certain conditions (namely 

at depth), and whether permeability allows for the build-up of significant pore pressures. 

In addition, a number of locations from an earlier as well as a recently proposed IODP 

drilling expedition were proposed to be visited during P386 (Fig. 12). The main objective of 

this endeavour is to collect data for ground-truthing of some of the hypothesis put forward in 

the proposal (i.e. mechanical stability, pore water chemistry). 
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Fig. 12: Bathymetric chart of the NAIL area including the nine proposed locations for IODP mission-specific 
drilling (proposal 748-full; Stegmann et al., 2009). 

Technological refinements for long-term measurements 

Among the various types of sub-sea observatories, non-cabled infrastructures are worth 

considering given the following features that make them attractive in numerous scientific 

areas and situations: 

� Their price is approximetaly 1 to 2 orders of magnitude less than cabled infrastructures, 

making them affordable to multidisciplinary teams of relatively modest size. 

� They can be successively implemented at different sites within their lifetime, each time 

allowing the acquisition of long time series, without being necessarily left in place for 

more than 20 years.

They also represent a very useful way of investigating a site before making the decision of 

whether or not a heavier (and generally more pricy) cabled infrastructure is worth 

developing and deploying. However, the application field of non-cabled infrastructures is 

limited by the modest amount of data they can transmit. ADCPs, seismometers, echo-

sounders, still and video cameras are among the sensors that are not impossible but still 

difficult to implement on non cabled observatories, when near real time communication of 

data is required.

Within the last ten years in Europe, several research institutions have implemented acoustic 

modems for observatory applications, often in close relationship with their manufacturer, 
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but  the results were sometimes disappointing in terms of achieved data rates and reliability. 

From those separate experiences, it is difficult to point out which manufacturer/model is the 

most suitable for long term observatories. In other respects, recent progresses in digital 

signal processing can make hope that data rates of several thousands of bits per second are 

achievable for vertical links on a routine base. Those data rates are displayed by most 

manufacturers, but it is impossible to discriminate actual performances from commercial 

arguments without a series of in-depth tests. 

The objective of the deployment during cruise P386 was to evaluate and select the most 

appropriate acoustic modems on the world market for fixed, long term observatory 

applications. This task was broken down into three steps: 

� 2007: Paper selection of 5 modems on the world market, the primary selection criterion 

being the quantity of energy necessary to transmit one bit at a given distance. 

� 2008: Short term transmission tests aboard R/V L’Europe (Commodac cruise), between 

a sea-bed station (MAP2) at 2200 mbsl (meters below sea level) and the ship. Among 

the five manufacturers selected at step 1, only three were fully ready for the integration 

deadline before the cruise. 

� 2009-2010: Long term tests of the models ranked 1 and 2 at step 2, between the MAP2 

seabed station at 2200 mwd and a surface buoy (Borel). The deployment of MAP2 and 

Borel was scheduled for the P386 cruise, and recovery is planned for early 2010 with 

R/V L’Europe (see below). 

The testing principles are described in more detail in the Methods section of this report 

(Chapter 6.1).

Long-term data on sediment dynamics 

Direct observation of turbidity currents were seldom obtained, and time series data are even 

less common. The Var system is probably the only system world-wide where regular 

observations (appx. every 2 years) have been made in order to observe, quantify and 

characterise turbidity events. The observations have been carried out by the means of 

moorings where different devices are installed. Data obtained with “classical” moorings 

concern turbidity (not calibrated), pressure, temperature, punctual current meters and 

sediment traps. This type of moorings have shown to be efficient to observe turbidity 

currents but not efficient enough to quantify and characterize them. At the same time, this 

moorings are intrusive and hence subject to the action of the turbidity currents. Entrainment 
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by currents may displace the moorings or at least affect their stability and the accuracy of 

the measurements obtained. 

The main purpose of the ongoing study is to test and improve new tools for the direct 

observation and quantification of turbiditic events along the Var canyon. For this purpose, 

the “classical” IFREMER moorings where improved by the integration of an ADCP current 

meter able to record the vertical structure of the currents up to several tens of meters and 

hence its values near the canyon bed where the current magnitude is supposed to be the 

highest. Other systems include mounted 75 kHz ADCP current meters 300 m above the 

canyon's talweg to shed ligfht on the vertical structure and hence the thickness of the 

turbiditic events. 

The various instruments deployed along the pathway of the Var canyon is described in some 

detail in Chapter 6.2 (see below). 
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5. Logistical approach 

(A. Kopf) 

Given the number and size of instruments to be deployed during expedition Poseidon P386, 

we split the shiptime into two stretches.  

Leg A was mostly dedicated to the long-term deployments in the Var Canyon area and the 

mooring and corresponding sealevel buoy further SE (see Ch. 6.1 and 6.2 below). Given that 

deck operations involving to move/lift/deploy heavy gear are restricted to daylight hours, we 

operated the CPT lance, Rn counter as well as the lightweight ROV during the remainder of 

the time. Given that the majority of the instruments got deployed during the first couple of 

days (e.g. Borel buoy, MAP2 station, Aniitra, Ibsen and Peer Gynt instruments including a 

number of anchor weights), Leg A spanned only from June 20-26, 2009 before returning to 

the mid-cruise port call. For most of the time, we operated R/V Poseidon very close to Nice 

shore (Fig. 13). 

Fig. 13: R/V Poseidon in front of the Promenade des Anglais, Nice.

For Leg B, we then loaded two piezometer probes of >6 m length as well as a seafloor unit 

(Seamonice) for communication with one piezometer. The second leg went from June 26 – 

July 6, 2009. It was mostly dedicated to gravity coring, CPT and piezometer deployments, 

and Rn measurements. Since the deployment of the piezometer v1 plus Seamonice unit 
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required a scuba diver, we arranged for a second vessel aside of R/V Poseidon to optimise 

operations.

Three research scuba divers joined expedition P386 for the period June 27-30. They were 

based onshore and came out to the NAIL study area with the rented platform Poseidon III

during the day (Fig. 14). During that period, Poseidon III also hosted the Rn counter and a 

scientist accompanying the measurements. Vice versa, the divers were picked up by the 

dinghy of R/V Poseidon regularly for scientific discussion and handing over rhizon samples 

taken from the shallowmost sub-seafloor. 

Fig. 14: Diving vessel Poseidon III operating in front of NiceAirport.
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6. Methods 

6.1. Long term tests of acoustic modems for subsea observatories 

(J. Blandin, J.-P. Brulport, P. Crassous, G. Gruyader, J. Legrand, P. Pichavant) 

The two manufacturers selected for these tests are Evologics GmbH (Berlin) and Sercel 

UAD (Brest). The modems under test are mounted between the top of a seabed station 

(MAP2), deployed at a water depth of 2200 m, and the keel of a surface buoy (Borel) 

moored within acoustic range of MAP2 (see schematic layout in Fig. 15). On MAP2, an 

electronic unit (Costof) sequences periodic emissions of data files of various sizes, 

alternatively through each modem under test. The energy quantity consumed on MAP2 for 

each transmission is measured and transmitted to the buoy. The buoy sends the result of the 

transmission (number of errors if any, consumed energy) to shore via the Iridium satellite 

system. The functioning parameters of both the surface and seabottom modems can be 

modified at any moment from shore if necessary. The buoy periodically performs local 

measurements (atmospheric pressure, wind speed, X, Y inclination) that are logged on shore 

and can be correlated with the acoustic data transmission results. 

The scheduled duration of these tests is seven months. 

Fig. 15: Sketch showing the long term testing principle using the Borel buoy. 
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6.2. Sediment traps, ADCP and current meters 

(R. Jacinto Silva, J. Legrand, P. Pichavant, J. Blandin, G. Gruyader) 

The main purpose of the on-going study is to test and improve new tools for the direct 

observation and quantification of turbiditic events along the Var canyon. For this purpose, 

the “classical” moorings (termed “Peer Gynt”; see Fig. 16) were improved by the integration 

of an ADCP current meter able to record the vertical structure of the currents and hence its 

values near the canyon bed where the current magnitude is supposed to be the highest. This 

reference current meter is placed 25 m above the talweg and should provide directional 

information of the currents. 

Fig. 16: Photograph of part of the Peer Gynt mooring prior to deployment. 

Complementary to Peer Gynt, a new non-intrusive mooring system has been deployed for 

test purposes. The “Aniitra” system (Anchorage of Non-Intrusive Instruments to Track and 

Record under-water Avalanches; Fig. 17) is a buoyant structure mounted with a 75 kHz 

ADCP current meter may stay at a vertical position (300 m above the canyon's thalweg) 

higher than the expected current events. The Aniitra system should provide the vertical 

structure and hence the current thickness of the turbiditic events, a crucial information to 
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quantify the events and constrain any numerical modelling of these events. It hence 

improves the resolution of the vertical structure of the current, but it is unable to give 

directional information. It is henced to be deployed in conjunction with Peer Gynt. 

 

Fig. 17: Photograph of the Aniitra system during deployment.
 
In order to obtain a Lagrangian observation of the currents together with a longitudinal 

capability of the currents to entrain and transport, an Inflow Buoy for Sediment Entrainment 

(Ibsen; Fig. 18) has been developed. Its fairly negative buoyancy becomes positive in 

presence of a denser fluid, as it is supposed to be the case in sediment-laden flows. The 

Ibsen buoy records its vertical position by the means of a pressure gauge. Assuming its 

displacement follows the canyon axis, any vertical position (water depth) is supposed to be 

associated with a single position along the canyon. The quantification of its displacement 

through time provides an estimation of the Ibsen velocity. 
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Fig. 18: Photograph of the Ibsen mooring prior to deployment.

Sediment traps (Fig. 19) are installed in the “classical” moorings at VV and VA. A 

rotational reservoir replaces one of the 24 bottles every 7 days. This means that sediments 

traps are a very low frequency devices providing only a qualitative information on particles 

vertical fluxes. By themselves they are not very accurate, but they provide only information 

available about particles in the suspension. When correlated to current velocity and Var river 

runoff, particle fluxes are objectively the effective signature of the turbiditic nature of the 

measured currents. 

 

Fig. 19: Photograph of a sediment trap (upper centre) used during expedition P386.
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6.3. Shallow water methodology 

6.3.1. Echosounder 

(A. Kopf, S. Stegmann) 

During cruise P386, all research activities could be based on earlier quality bathymetric 

charts recorded with multibeam systems from KONGSBERG MARITIME (formerly 

SIMRAD) during R/V Meteor cruise M73/1 (Kopf et al., 2008) as well as data acquired by 

our colleagues from IFREMER beforehand. The only area not mapped prior to cruise P386 

was the portion immediately south of Nice airport, because larger vessels have too much 

draught to navigate safely that close to shore. 

With R/V Poseidon, we were able to utilise the Pilot echosounder by Krupp-Atlas-

Elektronik, which is designed for extremely shallow water depths (< 50 m), ideally even for 

20 m and below. The x, y data from this system were logged every second. As a 

consequence of the time-consuming station work, in particular during deployments of the 

piezometers, longer CPT tests, Rn counting, and ROV dives, we tried to gather a 

comprehensive data set north of the existing bathymetric chart. 

6.3.2. Underwater video surveys (ROV, scuba dives) 

(A. Kopf, T. Pichler, R. Price, M. Seydel) 

Remotely Operated Vehicle SPY 

The remotely-operated vehicle (ROV) “Spy” is a shallow-water device operable down to 

250 m water depth (Fig. 20). Its depth range is largely limited by the total length of the 

cable, which is supplied on a separate winch; for the Nice Airport area, however, this does 

not pose a problem given ater depths < 100 m. The ROV is powered by either 230 DC or 

350 DC and is controlled by a console unit with VHS TV screen and a keyboard for the 

operations. The ROV is equipped with two underwater cameras. One is looking towards the 

ground while the other one is looking forward. For operation at night or in areas with poor 

visibility, it is equipped with a pair of headlights. Two turbines at the back control 

forward/backward movement, while another pair of subvertically mounted turbines control 

submersion or ascent (Fig. 20). Its total weight of 60 kg (in air) has to be balanced 

depending on water density and payload. During cruise P386, it was largely used for 
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surveying the seafloor to find morphological anomalies or evidence for seepage (using the 

cameras). 

Fig. 20: ROV “Spy” for surveying the sea bottom for locations of fluid seepage; (a) on deck, (b) in the water.

For part of P386 Leg B, research scuba divers joined the P386 science party to do video 

surveying, deploy in situ temperature probes (see Ch. 6.3.3. below) and take fluid samples 

out of the shallow sub-seafloor. 

6.3.3. In situ temperature measurements 

(A. Kopf, T. Pichler) 

On cruise P386 the in situ temperature gradients were measured with miniaturised 

autonomous temperature data loggers (MTL, Fig. 21). For technical specifications and 

detailed information, refer to Pfender & Villinger (2002).

Parameters of autonomous temperature data loggers: 

Instruments serial no.: sediment and water temp. logger: 18543-65C, -67C, -68C, -
70C, -75C, -77C, -78C, -79C

Sample rate: 1 min  
Spacing: 1 m, 2 m, 3m, etc. below the weight set; 

One water temperature sensor at weight set with sensor tip 
looking up. 

Measurements (seafloor penetration) were planned to be carried in two different ways:

(i) Stick MTL into shallow subseafloor (10-30 cm), performed by the scuba divers. The 

probes are marked with flags along a line and remain fully sediment-covered in the sub-
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seafloor for a period of several days before they get recovered. For P386, the planned MTL 

arrays were within the hydologically most active portions of the Nice slope. 

(ii) Mount MTL to gravity core barrel and get gradient at 1m – spacing as well as 

reference temperature in the water column. The probe remains in the seafloor sediment for 

several minutes to allow for some dissipation of artificial frictional heat from inserting the 

gravity corer. 

Fig. 21: Miniature temperature logger (MTL) and its housing with supporting fin along the steel barrel of e.g. 
the gravity corer (top) and deployed in the shallow sediment by a scuba diver (bottom). 
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 6.3.4. In situ CPT testing 

 (S. Stegmann, A. Kopf, A. Förster) 

On R/V Poseidon cruise P386 , we used the lightweight MARUM  free-fall CPTu probe 

(see Fig. 22a, and Stegmann et al., 2006). Cone Penetration Testing (CPT) is an effective 

method for in situ measurements of these geotechnical parameters with one instrument 

(Lunne et al., 1997), namely sedimentary strength (tip resistance, sleeve friction), pore 

pressure, tilt and acceleration. For these measurements, the CPT system relies on 15 cm2

standard industry piezo-cone (Fig. 22b) with the sensors at the tip and a pressure housing 

containing a microprocessor at the top. In addition, deceleration and tilt are monitored for 

vertical profiling of the penetrated sediment column. The lightweight (40-170 kg), shallow 

water (100-200 m depth) lance works completely autonomously with a volatile memory and 

battery package. It has exchangeable CPT probes at its tip to accommodate for the various 

geological settings it is used in. 

Instrument

The lightweight free-fall CPT (FF-CPT) instrument for shallow marine use consists of an 

industrial 15 cm2 piezocone and a water-proof housing containing a microprocessor, volatile 

memory, battery, and accelerometer (Fig. 22; see Stegmann et al., 2006 for details). Strain 

gauges inside the probe measure the cone resistance and sleeve friction by subtraction. A 

single pore pressure port (u2) is equipped with an absolute 10 MPa (CPT probe 1) and 20 

MPa (CPT probe 2) pressure sensor. An inclinometer is used installed to monitor the 

penetration angle at +/-20° relative to vertical. Four different  accelerometers with different 

ranges (+/- 1.7g, +/- 5g, +/- 18g, +/- 100g) provide information about the descent velocities 

and deceleration behaviour of the instrument upon penetration. These data allow the 

researcher to calculate velocity penetration depth during multiple deployments by 1st and 2nd

integration. The aluminium pressure housing tolerates 2 MPa confining pressure (ca. 200 m 

water depth) and hosts the power supply and microprocessor. Frequency of data acquisition is 

variable and depends on the data logger used (see next paragraph). Binary data are 

temporarily stored on a Micro Flash Card and then downloaded to a PC. The two non-volatile 

battery packs available provide performance times of about six and twelve hours, 

respectively. The length of the lance may be varied from 0.5 m to a max. 6.5 m depending on 

what type of sediment is anticipated. The extension is accomplished by adding 1m-long metal 

rods and internal extension data/power cables within them. The weight of the instrument thus 
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ranges from ca. 45 kg to max. 110 kg. If deep penetration is desired, modular weight pieces 

(15 kg each) can be mounted to the pressure housing at the top of the instrument, then 

reaching a max. 170 kg. The instrument is deployed pogo-style and remains in the seafloor 

for about 20 minutes for individual measurements. 

Modes of deployment 

The FF-CPT instrument was used with two different types of CPT-probes, two different 

data logging units, and in two types of deployments (profiling vs. pore pressure dissipation). 

During cruise P386, the probe was generally deployed in 3.5 m long mode with 4 weight sets 

(i.e. 60 kg) attached. 

As for the CPT probe, two systems supplied by GEOMIL (Alphen, NL) were used. The 

first, more sensitive unit is only designed for 100 m water depth (i.e. 1 MPa absolute pore 

pressure transducer, 25 MPa cone resistance strain gauge, 0.25 MPa sleeve friction strain 

gauge). The less sensitive 200 m tip comprises a 2 MPa absolute pore pressure transducer and 

100 MPa (cone resistance) and 1 MPa (sleeve friction) strain gauges. 

Fig. 22: Shallow-water FF-CPTu instrument (left) and detail of the CPT probe (right). 

Two different types of microprocessor data recording units were used. The older model 

contains a TigerBasics microcontroller which logs the data at 40 Hz. It was usually utilised 

for tests aiming at the shape of the pore pressure dissipation curves (>> 30 mins. deployment 
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time). In contrast, a recently developed 1000 Hz AVISARO microcontroller was utilised 

during deployments, which largely aimed at the vertical profiling of the sedimentary 

succession. This usually takes less than 1-2 secs. and at the high sampling rate, provides the 

user with data of a vertical resolution < 1 cm thickness. The controllers are directly linked to 

the two fundamentally different modes of deployment. The first (type A) aims at a high-

resolution vertical record of crucial in situ sediment physical properties. The probe is veered 

at 1.2 – 1.5 m/s winch speed and then dynamically decelerated until its terminal depth of 

several meters sub-seafloor. The instrument is recovered immediately after the probe came to 

a complete halt. The second approach (type B) is initially similar, however, aims at the 

recording of the pore pressure evolution once the instrument is stuck in the sediment. Pore 

pressure dissipation is usually recorded for 30 mins. (assuming the ship can be held at the 

location for that long), occasionally even for 60 mins. Given that R/V Poseidon does not 

have a dynamic positioning system, the majority of the deployments were either type A or B, 

but avoided dissipation periods exceeding 30 mins.  

6.3.5. Piezometer deployments 

(P. Pelleau, R. Approuial, S. Stegmann,  A. Kopf) 

Owing to the interesting hydro-geological processes in the study area, the in situ monitoring 

of pore pressure and temperature are a major focus of the P386 research. In addition to the 

deployment of MTLs (Ch. 6.3.3.) and CPT profiling (Ch. 6.3.4.), those key physical 

properties were measured in different depth levels in the sub-seafloor sediment using 

piezometer probes developed by IFREMER. The IFREMER piezometer is a free-fall device 

composed of a lance and an upper body consisting of the power supply, data storage unit 

and a package of recoverable weights. 

The IFREMER piezometer is a modular free-fall device composed of a lance and an upper 

recoverable part with pieces of weights, power supply and data acquisition (Sultan et al. 

2007). It is already existing in a second generation instrument Piezo v2, which has been 

improved in a number of places compared to the earlier v1 version. The overall design is 

schematically shown in Figure 23. 
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Fig. 23: Piezometer v1 (left) and piezometer v2 (right) used during R/V Poseidon cruise P386. 

Depending on the requirements for the installation of the piezometer in a given 

location, the instrument can be set up in different configurations. The 60 mm-diameter lance 

consists of single rods (0.75m or 1.50m) intersected by sensor packages. The spacing and 

length of rods between the “piezomodules” define the depth levels where pore P and T are 

measured. The maximum total length of the lance is limited to 10 m for stability reasons. 

Each module contains a sensor package comprising a KELLER pore pressure transducer and 

a standard temperature sensor. Pore pressure is measured differentially with a resolution of 

± 0.2 kPa by coupling the pore pressure at the of each sediment level with the open seawater 

(hydrostatic reference) by a tubing. The sampling rate can be set up individually before each 

measurement, with the maximum rate being 1 Hz. 

In the first generation (Piezo v1) the pressure transducer of each port is installed at 

the top of the instrument where the hydrostatic reference port is situated, while the lower 

port is connected via tubing along the lance (Fig. 23, left). The disadvantage is the 

compliance of the tubing in which gas may be trapped during deployment. The advancement 

in the second generation instrument (Piezo v2) is the direct contact of the pressure 
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transducer with both the formation and the hydrostatic reference because the transducer has 

one port as close to the formation as physically possible, whereas the second port points 

towards the inside of the probe through which open flow of seawater over the complete 

length is achieved (Fig. 23, right). Saturation with seawater of both systems is accomplished 

prior to each deployment by dipping the instrument for 20 minutes over its complete length 

into the water at moderate depth above the seafloor. For the final stage of the deployment, 

the instrument is lowered with the winch to the seafloor and the lance penetrates the 

sediment using its own mass. 

The piezometer can be used for short-term (hours to days) as well as long-term 

(weeks to months) installations. For short-term measurements, the instrument is usually 

deployed on different locations without recovery on deck of the vessel in “yoyo-style” (e.g. 

Sultan et al. 2008). For long-term monitoring, the piezometer can be connected to an 

underwater-station providing continuous power and additional data storage capacity. An 

acoustic communication module of the underwater-station allows the transfer of the data 

without recovering the piezometer. During cruise P386, we had one piezometer v1 funded 

by IFREMER) and one piezometer v2 (funded by MARUM) available for long-term 

deployment. Regarding the setup of the two instruments, mode of deployment (yo-yo vs. 

long-term), sampling rates and locations, see Ch. 7.3.5 below. 

6.3.6. Gravity coring and sediment description 

 (A. Förster, T. Fleischmann, K., Weber, S. Stegmann, A. Kopf) 

In order to recover sediment cores, two sampling systems were used during P386: (i) a 

gravity corer with tube lengths of 3 to 6 m and a weight of approximately 2 tons (Fig. 24a), 

and (ii) a light-weight “bobcorer” of only 150 cm length and smaller diameter for use in 

very shallow water (Fig. 24b). Before using the coring tools, the plastic liners (placed inside 

the steel tubes in case of the gravity corer, but representing the outer cylinder in case of the 

bobcorer) have been marked lengthwise with a straight line in order to retain the orientation 

of the core for potential paleomagnetic analyses.  
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Fig. 24: Gravity corer (a) and Bobcorer (b) on board R/V Poseidon.

Once on board, the sediment cores were cut into sections of 1 m length, closed with caps 

on both ends and labelled according to a standard scheme (Fig. 25). By definition, the half 

core with the marked line was stored as archive half (after having passed the Multi-Sensor 

Core Logger – see Ch. 6.3.6.3.), while description, sampling, etc. were carried out on the 

remaining half. For the detailed procedures each working half core underwent, see below. 

112                        212

112                                                                                       212

GeoB 7101-1
Archive
GeoB 7101-1
Work

Inscription:

7101-1
  112
   W

GeoB 7101-1
Archive
GeoB 7101-1
Work

site number : GeoB 7101-1
core depth :  112-212 cm
orientation for paleomagnetic sampling

liner

caps

cutting

7101-1
  212
    W

7101-1
  212
    W

7101-1
  212
    A

7101-1
  112
    A

7101-1
  212
    A

Fig. 25: Scheme of the inscription of gravity core segments used during P386 . 
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Sediment description 

 Split gravity cores were photographed and described from a largely sedimentological 

standpoint. Grain size and composition of sediments were determined mainly visually using 

a simple hand-lens, HCl-testing and analyzing smear slides of dominant lithologies under a 

cross-polarizing microscope in accordance with Rothwell (1989). The size of grains was 

assessed based on Wenthworth’s (1922) classification. The colour of the material was 

determined visually on board using Munsell’s colour chart nomenclature, and also has been 

studied spectrophotometrically after the cruise on the Multi-Sensor Core Logger (MSCL; 

see Appendix 10.3). For each core, a composite one-page core log sheet was compiled. It 

shows core photographs next to a graphical core log and gives information on redeposition-

/event layers (i.e., sand layers, volcanic ash layers or clear evidence for mass movement 

deposits, such as mud clasts in muddy or sandy matrix, tilted beds and repetition of strata), 

bioturbation and the assigned lithological units in three different columns. The core log is 

combined with results from the fall cone penetration test (see below). A wide variety of 

features, such as sediment lithology, primary sedimentary structures, bioturbation, soft-

sediment deformation, and coring disturbance is indicated by patterns and symbols in the 

graphic logs. A key to the full set of patterns and symbols used on the barrel sheets is shown 

in Figure 26. The symbols are schematic, but they are placed as close as possible to their 

proper stratigraphic position. All core descriptions are provided in Appendix 10.2 (see 

below).



- 48 - 

Fig. 26: Key of symbols for barrel sheets of gravity core description. 
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6.3.7. Physical properties 

 (A. Förster, T. Fleischmann, S. Stegmann, K. Weber) 

During cruise P386, shipboard physical properties measurements were restricted to 

falling cone penetration tests and vane shear tests on the working half of the core. Since no 

container with a Multi-Sensor Core Logger (MSCL) could be placed on board RV Poseidon,

these measurements on the undisturbed archive half of the cores were carried out 

immediately after the cruise at MARUM  Bremen. A description of the instrument is given 

below (Ch. 6.3.7.3.). 

6.3.7.1. Cone penetrometer 

 The geotechnical properties along the sediment cores were determined according to 

British Standards Institutions (BS1377, 1975). A Wykeham-Farrance cone penetrometer WF 

21600 (Fig. 27a) was used for a first-order estimate of the sediment's stiffness. For the 

measurement, the metal cone was brought to a point exactly on the split core face. A manual 

displacement transducer was then used to measure the distance prior to and after release of 

the cone (i.e. penetration after free fall of the cone). Precision is 0.1 mm of displacement. 

The distances measured can then be translated into sediment strength (see Hansbo, 1957).

Fig. 27. (a) Falling cone penetrometer and (b) PC-interfaced IFREMER double-vane shear device used on the 
split core surface. 

A falling cone penetrometer with a defined weight (80.51 g) and geometry (30° cone) 

was used by Hansbo (1957) during a detailed study of the relationship between the cone 

penetration and soil strength. The undrained shear strength su can be calculated from the 
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variables mass and tip angle of the falling cone, gravity g, penetration depth d and the cone 

factor k via the “cone factor”. Wood (1985) calculated from fall-cone and miniature vane 

tests average values of cone factors (in our case k=0,85 for a 30° cone). The undrained shear 

strength can then be calculated using the equation su = (k*m*g)/d2.

Shore-based laboratory testing will include ring shear experiments as well as dynamic 

triaxial shear tests to obtain residual strength and rate-dependent frictional properties as well 

as the liquefaction potential of the materials recovered. 

6.3.7.2. Vane shear testing 

In addition to the Cone Penetrometer a double vane shear apparatus by GSC ATLANTIC 

was used for more information about sediment stiffness and residual shear strength (Fig. 

27b). The distance between the two vanes is 15 cm. For the measurements, four-bladed 

vanes (L = 12.5 mm, h = 6.25 mm, d = 12.5 mm) were inserted into the split undisturbed 

core faces and rotated at a constant rate of 90°/min. Data are logged via an interface module 

(GSC ATLANTIC) using the Testpoint software package. 

A spring transmits the rotation at the vane. The torque required shearing the sediment 

along the vertical and horizontal edges of the vane. The undrained shear strength, sU

depends on the torque T, the vane constant K, the maximum torque angle at failure � and the 

spring constant B that relates the deflection angle to the torque (Blum, 1997). The vane 

constant, K is a function of the vane size and geometry and was used during the 

measurements with K=�*d2*(h/2)+�*(d2/6) for full dipping vanes. The undrained shear 

strength can then be calculated using the equation sU= T/K. Shore-based laboratory testing 

will include ring shear tests to obtain residual strength and rate-dependent frictional 

properties of the materials recovered. 

6.3.7.3. Multi-sensor core logger 

The GEOTEK MSCL device at MARUM Bremen combines three sensors on an 

automated track (see schematic diagram in Fig. 28). The P-wave velocity, gamma ray 

attenuation (bulk density), and the magnetic susceptibility were recorded, and from this data 

the fractional porosity and impedance were calculated. RGB images were also produced 

with a full color digital line scan imaging system. Magnetic susceptibility, bulk density, and 

line scan photography were generally measured on all cores. 



- 51 - 

Magnetic Susceptibility

Magnetic susceptibility was measured with a Bartington point sensor MS2 using an 80-

mm internal diameter sensor loop (88-mm coil diameter) operating at a frequency of 565 Hz 

and an alternating field of 80 A/m (0.1 mT). The sensitivity range was set to the low 

sensitivity setting (1.0 Hz). The sample period and interval were set to 2 s and 4 cm, 

respectively, unless noted otherwise. The mean raw value of the measurements was 

calculated and stored automatically. The quality of these results degrades in XCB and RCB 

cores, where the core may be undersized 

and/or disturbed. Nevertheless, general downhole trends are useful for stratigraphic 

correlations. The MS2 meter measures relative susceptibilities, which have not been 

corrected for the differences between core and coil diameters. 

Gamma-Ray Attenuation

Bulk density was estimated for split core sections as they passed through the GRA bulk 

densiometer using sampling periods and intervals of 2 s and 4 cm, respectively, unless noted 

otherwise. A thin gamma beam from a Caesium-137 source with energies around 0.662 

MeV is passed through the core and the relative intensity of this beam can be used to 

measure the gamma density.  These photons are scattered by electrons in the core and loose 

some of their energy.  To determine the gamma density the number of unscattered electrons 

is measured by counting photons with the same principle energy as the photon source.  The 

gamma density of an aluminum billet of stepped thickness is used to obtain calibration 

equations to convert gamma density into actual density values.

P-Wave Velocity

The P-wave velocity is measured at 4-cm intervals and 2-s periods using two PWL 

transducers. The PWL measured P-wave velocity across the unsplit core sections. In order to 

determine the P-wave velocity, the PWL transmits 500-kHz P-wave pulses through the core 

at a frequency of 1 kHz. The transmitting and receiving transducers are aligned 

perpendicular to the core axis while a pair of displacement transducers monitors the 

separation between the P-wave transducers. Variations in the outer diameter of the liner do 

not degrade the accuracy of the velocities, but the unconsolidated sediment or rock core 

must completely fill the liner for the PWL to provide accurate results. During this 

measurement good acoustic coupling between the core liner and transducer is achieved by 

adding water to the contact points. 
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Fig. 28: Schematic of  the Geotek Multi Sensor Core Logger (MSCL). 

 6.3.8. Pore water chemistry 

 (T. Pichler, S. Pape, S. Hammerschmidt, R. Price, M. Seydel) 

Pore water sampling 
All gravity cores were taken by plastic liners and cut into 1 m segments on deck. To 

prevent a warming of the sediments on board, the sediment cores were immediately 

transferred into the cooling room after recovery and maintained at a temperature of about 

4°C. The wet sediment was exposed by means of cutting a small ‘window’ in the plastic 

liner at an interval of 25 cm. Eh and pH were measured directly in the sediment using 

punch-in electrodes before the pore water was extracted (Fig. 29a). From most of the cut 

segments of the cores 5 ml syringe samples of wet sediment were taken for methane 

analysis. The pore water was then extracted by means of rhizons (pore size 0.1 µm) (see Fig. 

29b). The gravity cores were each processed in this way within a few hours after recovery. 

Depending on the porosity of the sediments, the amount of pore water recovered ranged 

between 4 and 20 ml. Solid phase samples of the majority of cores were taken for total 

digestions, sequential extractions and mineralogical analyses at 25 cm intervals, kept in gas-

tight glass- and heavy plastic bottles under an argon atmosphere and stored at 4°C. 

Pore water analyses of the following parameters were carried out during this cruise: Eh, 

pH, ammonium, alkalinity, iron (Fe2+). Salinity was also measured using a 

conductivitymeter for selected cores where fluid freshening was suspected. Eh and pH, as 

mentioned earlier, were determined with punch-in electrodes before pore water was 

extracted. Ammonium was measured using a conductivity method. Alkalinity was calculated 
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from a volumetric analysis by titration of either 0.5 or 1 ml of the pore water samples with 

0.01 M HCl, respectively. For the analyses of dissolved iron (Fe2+), subsamples of 1 ml were 

taken from pore water extracted by rhizons, immediately complexed with 50 µl of 

“Ferrospectral“ and determined photometrically. Salinity was measured using a conductivity 

probe placed directly into the pore water samples. 

Fig. 29: (a) pH measurement and (b) rhizon pore water extraction in split working half of the gravity core. 
 
For further analyses at the University of Bremen aliquots of the remaining pore water 

samples were diluted 1:10 and acidified with ultra pure HNO3 for determination of cations 

(Ca, Mg, Sr, K, Ba, S, Mn, Si, B, Li) by ICP-OES. Additionally, 0.6 mL of a ZnAc solution 

was added to a 1.5 mL subsamples of the pore to fix hydrogen sulfide as ZnS for later 

analysis. Finally, all remaining pore water was stored at 4 °C for additional analyses at the 

University of Bremen. A complete overview of sampling procedures and analytical 

techniques used on board and in the laboratories at the University of Bremen is available on 

http://www.geochemie.uni-bremen.de/. 

To test for direct venting of submarine groundwater into the shallow water portion of the 

study site pore waters were collected every 10 m along the transect prepared with MTLs 

(see Ch. 6.3.3. above). These were collected into 60 mL syringes by inserting the syringes 

approximately 5 cm into the sentiment and slowly pulling the plunger. The entrainment of 

fine particles could not be avoided, nevertheless, these were filtered out once the syringes 

were passed to thegeochemists onboard R/V Poseidon for further analyses. After filtration, 

these samples passed the same analytical routines as those extracted from the gravity cores.
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 6.3.9. In situ Radon measurements  

 (A. Mayer, P. Henry) 

Overview

Radon-222 is a radioactive noble gas produced by decay of radium-226. The half-life of 

radon is 3.8 days, which implies that this gas is never “far” from its source (radium). Several 

studies have shown that groundwater often presents high radon activity. This is due to the 

presence of radium at the surface of the aquifer solids. Groundwater may reach in some 

cases an activity of millions of Bq/m3. By contrast, due to atmosphere degassing and decay 

(or more correctly  the distance from the radon source), radon activity in seawater is very 

low (10-14 Bq/m3). Seawater affected by seepage of groundwater might thus be detected 

because of the large contrast in radon concentrations. In addition, steady state radon 

inventory in water column implies that radon natural decay is sustained by radon production, 

thus radon concentrations might be readily translated into water fluxes. 

Radon concentrations measured at different depths along a vertical profile off the Nice 

airport might be used to detect local seepage of groundwater, and estimate involved seepage 

flux once knowing radon activities in a) groundwater and b) offshore seawater. 

Methods

The available (up-to date ) radon measurement methods developed by Adriano Mayer 

(CEREGE) allows precise measurement of radon activity in situ, without the need for 

collection a sample. Two alpha spectrometers, gas-exchange cell, water stripping system 

might be installed in a water resistant wooden box (1.2 x 0.6 x 0.8 m, about 40 kg; Fig. 30a), 

allowing continuous measurement of radon, with 30 minutes count integration for each 

acquisition. Once launched, the apparatus does not require presence of personnel, and may 

be used on a small (3-4m long) rubber craft (Fig. 30b). Typically, the measurement in one 

spot - one depth requires: 5 minutes for installation, 30 minutes for purge of previous 

measurement (might be done earlier), 1h 30 minutes acquisition (for six values, having 2 

spectrometers). More precise values are obtained with longer acquisition time. 

During acquisition, a 12V immersion pump (turbine) with attached flexible pipe produces 

a continuous water flow of about 1.5-3 litre/minute from the desired depth to the gas 

exchanger in the wooden box. The seawater is discharged to the sea after radon degassing 

(no sample is retained). In addition to the Rn counts, conductivity measurements are carried 

out in the water cylinder surrounding one of the filters oof the pump. This way the 
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researcher can tell immediately whether fresh, brackish or saline water is entering the 

system, and can hence relate this information to the Rn counts. The latter are estimated at 

real time by an acoustic signal. The precise protocol of the Rn counts is  measured by two 

The sampling depth is attained maintaining the flexible pipe and 12V cable in vertical 

position, tied to a rope with a weight attached to its lower end. During cruise P386, both 

concrete weights as well as a metal weight (both appx. 10-15 kg) were used to keep the hose 

close to the seafloor. A buoyant device was tied to the nozzle of the hose to ensure that the 

open end of the hose is not dipped into the sediment-water interface (Fig. 30c). 

Application

Rn measurements were usually not carried out as a stand-alone measurement, but 

complemented other deployments at the same station (CPT, gravity core). Depending on the 

time spent for the measurements, radon concentrations could be measured on station from 

the deck or dinghy (see previous paragraph and Fig. 30), or continuously near the sea 

surface while the dinghy or the ship is slowly sailing (max. 3-5 knots). In the latter case, a 

horizonztal transect of radon concentrations of the near surface seawater is obtained, which 

would nicely supplement the vertical Rn profiles (see above). If the radon background 

concentration in the local seawater, far from the radon source, as well as the concentration 

of radon in the groundwater are known, under given assumptions a groundwater seepage 

rate may be calculated. The strategy for the Nice slope was (a) to collect sufficient data near 

the sealevel as well as in the deeper water to determine a “background Rn concentration” for 

the ocean water in the Nice landslide vicinity, (b) to carry out measurements in the estuary 

of the river Var to determine the “input Rn concentration”, and (c) to measure Rn 

concentrations very close to the seafloor in locations where (gas) flares were seen in 3.5 kHz 

seismic profiles (based on Sultan et al., 2008) or in locations where previous workers found 

evidence for freshening of the seawater (Guglielmi & Prieur, 1997; Kopf et al., 2008, 2009). 

Fig. 30: (a) Setup of the Rn counters, pumps, filters and conductivity meter in the wooden box on the deck of 
R/V Poseidon; (b) Rn setup on the dinghy; (c) buoyancy device attached to lower end of hose. See text. 
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Figure 30 shows the two types of deployment strategies used on P386. The first approach 

has the Rn measuring unit on deck of R/V Poseidon, close to the railing. The hose with the 

nozzle is lowered either to a few meters sub-sealevel depth (to determine the background 

water body Rn concentration) or lowered to the seafloor where a buoyancy device hinders 

sucking of sediment suspension into the pump, filters and Rn counter (Fig. 30a). Although 

this is the least laborious setup, the disadvantage is the fact R/V Poseidon usually does not 

remain on station for very long periods of time (only 20 mins. for gravity coring, and appx. 

40 mins. for a CPTu test). Hence, the Rn measurements from deck served mostly the 

collection of background data (see Type “a” above). Only in spots where mid-term pore 

pressure dissipation tests were planned with the CPTu instrument (see Ch. 6.3.4. above), the 

hose was lowered all the way to the seafloor to get signals at fresh water sites. For longer 

term Rn counts, the unit was either placed onto the dinghy (Fig. 30b) or onto the diving 

platform Poseidon III (see Fig. 14). Both small watercrafts aimed for fresh water locations 

only, so that measurements of up to >2 hrs. got achieved. 
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7. Preliminary Results 

 The preliminary results from cruise P386 can be divided into three major topics:  

(i) Technological developments regarding acoustic data communication for seafloor 

observatories, (ii) deployments for sedimentological research in the Var Canyon turbidititic 

system, and (iii) the wealth of geological, geotechnical and geochemical measurements and 

long-term deployments in the Nice Airport slide area. Figure 31 provides a map where the 

three objectives were carried out. In the following, results from each of them are 

documented in consecutive chapters. 

Fig. 31: The study areas (black stars) visited during cruise P386. The main focus was on the Nice Airport Slide 
(NAIL), mooring deployments in the Var Canyon talweg (VE, VH, VV) and on long-term acoustic 

communication tests using the Borel buoy (Borel). VA is a point of a former deployment unrelated to P386.  

 7.1. Long term tests of acoustic modems for subsea observatories 

 (J. Blandin, J.-P. Brulport, P. Crassous, G. Gruyader, J. Legrand, P. Pichavant)

The MAP2 station (Fig. 32) containing the acoustic communication hardware was deployed 

on June 22, 2009. It was attached to a deep-sea cable with an acoustic release, then lowered 

from the ship to 2080 m below sea level, and was finally released and traveled the last 100 

m to the seabed in free fall.  
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Fig. 32: The station MAP2 has been moved overboard,  ready to be lowered. 

The Borel buoy was deployed on June 22, 2009 by first bringing it out overboard at a point 

4000 m below wind of the target point for the deployment. Afterwards, the 2400 m of line 

were paid out as the ship proceeded slowly towards the target point (see Fig. 33B). When all 

the line was paid out, R/V Poseidon continued its route until 650 m beyond the target point, 

where the 1900 kg of ballast were released overboard. 
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Fig. 33: The Borel buoy over the port side of R/V Poseidon (A) and when being released during paying out the 
mooring line (B). Note also ballast chain waiting to be deployed.

The link between MAP2, the Borel buoy and shore was established immediately after 

deployment of the buoy. During leg A of expedition P386, the modems from one 

manufacturer performed successful data transmissions every two hours, as scheduled. The 

top modem of the other manufacturer showed difficulties in receiving the messages 

transmitted from the bottom, even with a low data rate and high transmission power. The 

situation was described to the manufacturer who proposed to send a replacement electronic 

board to be installed in the waterproof container of the buoy transducer. This operation 

required good weather and the ability to lift the buoy back to the side on deck-level in order 

to retrieve the transducer from the buoy. This was achieved during leg B where a 

replacement board brought by the second science party was mounted successfully. However, 

tests during the second half of leg B failed to attest successful data communication between 

the second MAP2 modem, the buoy and the shore. 

The Borel buoy and MAP2 station are scheduled to be recovered in January 2010 from R/V 

L’Europe, together with the Var Canyon observation devices (see next chapter). 
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 7.2. Sediment traps, ADCP and current meters in the Var Canyon 

 (R. Jacinto Silva, J. Legrand, P. Pichavant, J. Blandin, G. Gruyader)

Current meters are placed at three locations along the Var canyon: VE, VH and VV (see Fig. 

31). Moorings VH and VE were deployed to provide detailed information for the upper Var 

Canyon (see detailed map in Fig. 34). At location VH (Fig. 35a), three punctual current 

meters are installed at 15m, 25m and 35m above the canyon's talweg in order to provide the 

current structure at the head of the canyon. The mooring placed at VE (Fig. 35b) has a 

300kHz ADCP 30 m above the talweg in order to provide a continuity to VH monitoring. 

Fig. 34: Detailed bathymetric chart of the upper submarineVar Canyon with the locations  
of moorings VH and VE. See text. 

The station VV is the place for a “classical” mooring with a control current meter placed 25 

m above the talweg (Fig 35c). This current meters should provide a directional information 

of the currents. At the same location, the Aniitra mooring is deployed with its 75kHz ADCP 

current meter. 
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Fig. 35: Schematic diagrams of the moorings installed during cruise P386. Mooring VV contains the Aniitra 
unit (see Fig. 17). See Figs. 31 and 34 for locations of deployments. 

 7.3. Nice Airport landslide 

 7.3.1. Echosounder 

(S. Stegmann, A. Kopf)

 No multibeam swathmapping system was mounted on R/V Poseidon during cruise 

P386, and no gephysicists were part of the scientific crew. As a result, we were only able to 

record the echosounder depth and position at intervals of 1 minute using the shipboard 

DATAVIS system. These XYZ-coordinates are filtered regionally and serve to slightly 

extend the existing bathymetric charts by IFREMER and MARUM towards the shore. This 

was possible because R/V Poseidon has lower draft (4.5 m) than R/V Meteor (Kopf et al., 

2008) or R/V L’Atalante (Sultan et al., 2008) when surveying the area two yers earlier. Post-

cruise, the P386 XYZ data were pooled with similar XYZ coordinates from the French 

“Haligure” cruise acquiring Chirp profiles on a dinghy in late August 2009 (P. Henry, pers. 

comm., 2009).  The combined data set is currently processed and will be available in the 

near future. 
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7.3.2. Underwater video surveys (ROV, scuba dives) 

 (A. Kopf, T. Pichler) 

 Underwater photo and video documentation was severely hindered by large amounts 

of suspended matter in the water column, mostly caused by a period of gusty winds and 

rainy thunderstorms in June 2009. As a result, scuba diving operations served mostly to 

deploy temperature loggers (see next section) and take pictures to document their sites of 

deployment (see example in Fig. 21). There is also a set of photographs using a digital 

camera in a transparent pressure housing (Fig. 36a). The scuba diving surveys confirm some 

of the ROV footage of largely fine-grained drape with variable amounts of pebbles 

representing the dominant seafloor lithology in the landslide scar as well as along the steeper 

portion of the headwall. Above the escarpment produced by the 1979 failure, an area with a 

shallower slope gradient, the amount of pebbles increases significantly and in places appears 

almost like a “cobblestone pavement”. Sizes range from cm- to dm- diameter (Fig. 36b). 

Fig. 36: (a) Scuba diver with camera preparing for dive during P386 operations; (b) pebbly seafloor above 
the headwall of the 1979 landslide. See fish (appx. 25 cm length) for scale.

Only one long successful dive could be carried out using ROV Spy before, as a 

consequence of bad weather and some mishap in navigation of the vehicle, the device was 

hit by the propeller of R/V Poseidon and could not be repaired on board. This dive, 

however, was a successful transect starting from some place above the headwall of the 

NAIL landslide scar resulting from the October 1979 event.  

Given the cloudy seawater condition, daylight is limited and headlights were used 

additionally; hence, some of the still photographs shown here are of limited quality. What is 

apparent when studying the videos is the fairly flat topography just above the headwall. The 

seafloor seems to be paved with pebbles of small diameter (<5 – ca. 10 cm across) with no 

or very little loose sediment in between. No clouds of dispersed material are experienced 
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when landing the ROV on the seabed (Fig. 37a). Vegetation is limited to the hummocky 

surface, and no larger seagrass or algae are observed despite operating in the photic zone 

(15-19 mbsl). When crossing the gently curved headwall while diving down, a drape of soft, 

loose deposits with occasional pebbles (now larger in size; Fig. 37b) are observed. Both the 

somewhat steeper gradient and the amount of clasts relative to sediment-covered seafloor 

continues to depths around 27 mbsl (see Fig. 37c as an example). At around 28 mbsl and 

below, the seafloor becomes les inclined and uncosolidated sediment prevails. The surface 

of the sediment shows depressions of small (<5 cm across) to medium size (10±5 cm across) 

which may represent fluid escape structures. Otherwise, the seafloor is smooth and 

populated by sparse vegetation (see Fig. 37d-f). 

Owing to an increase in wind and swell and the close proximity to the airport of Nice, we 

had to recover the ROV unexpectedly at this point. Because of the lack of exact positioning 

of R/V Poseidon relative to the vehicle, the ascent of the ROV resulted in a collision with 

the propeller of the vessel. No other dives were possible during expedition P386 because of 

the structural damage to the vehicle. 

Fig. 37: Panel of ROV still photographs showing typical features from the headwall of the 1979 slide to its 
central scar in >30 m water depth. Numbers in upper right corner indicate depth in mbsl. (a) Flat area near 
headwall with a “pavement” of small pebbles (5-10 cm diameter); (b) Larger pebbles (15-20 cm) scattered 

on soft sediment; (c) inclined slope with pebbles of various size in headwall scar; (d) “pockmark”-like 
depressions (2-5 cm diameter) in soft, gently dipping sediment at base of headwall; (e) soft sediment with 
some algae and plant debris; (f) some vegetation and larger (5-10 cm diameter) depressions in the loose 

sediment (dewatering or degassing structures?). See text.
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 7.3.3. In situ temperature measurements 

 (A. Kopf, T. Pichler) 

In order to test for venting of submarine groundwater discharge (SGD) in a very 

shallow area close to shore where operation of the R/V Poseidon (Fig. 13) is limited, a 

survey by research divers was carried out from June 26 to 29, 2009 using the vessel 

Poseidon III (Fig. 14). The objective was to deploy temperature probes (this section), to 

collect pore waters (see Ch. 7.3.8) and to visually survey the seafloor for venting of SGD 

(see previous Ch. 7.3.2). The purpose of deploying temperature loggers was to test if there 

would be a measurable change in poor water temperature across several tide cycles.  If there 

had been a measurable change in temperature this would be interpreted as a result of 

changing the rate of venting as a result of the tide. 

The transect was established in approximately east to west direction (110°) across a 

location where during previous M73/1 operations (Kopf et al., 2008) fresh water was 

encountered in sediment cores (Kopf et al., 2009). The transect was appx. 120 m long and 

the whole distance was roped and stakes were driven into the sentiment every 10 m. 

Temperature loggers were then deployed at transect positions 0, 20, 30, 40, 50, 60, 70, and 

120 m (see example in Fig. 21). The corresponding water depths were 15.5, 18.5, 19.9, 21.1, 

20.5, 19.9, 22, and 29.5 mbsl. The end point of the transect was marked by a buoy, whose 

location was N43.64703 and E7.21861 (see map in Fig. 39). 

Fig. 38: Temperature data from MTL deployment over almost 48 hrs. along a WNW-ESE transect from above 
the 1979 landslide headwall to a site close to the long-term piezometer station “Seamonice” (Fig. 39). Note 

that the westernmost sensor showed by far the lowest T signal, which is interpreted to represent SGD.

The temperature loggers went into the sediment from SE to NW in the following order: 

7, 4, 1, 2, 8, 6, 5, and 3. Data of the deployment period, which spanned almost 48 hrs., are 

presented in Figure 38. It can be seen that a fairly consistent trend between temperature and 
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water depth is recognised. MTL #7 (29.5 mbsl) shows a significantly lower temperature 

(appx. 2.2°C) than the suite of other sensors, which scatter between 19 and 21°C (all 

deployed in the headwall of the NAIL scar). MTL #3 exhibits higher values (20.5-21.5°C), 

which is attributed to its shallowmost position (15.5 mbsl) above the scar of the 1979 

landslide. The measurements indicate indirectly that groundwater seepage is unlikely to 

occur during the time of the deployment, because the MTLs show a consistent depth-

dependent temperature trend. In the shallowmost subseafloor deposits near the headwall of 

the 1979 landslide scar (MTL #7), temperature is similar to ambient seawater (22-23°C) 

whereas in the landslide scar in appx. 30 mbsl, it is significantly colder (17-18°C). A SGD 

signal, which would be lower than ambient seawater during summer, can not unambiguously 

ruled out for the deeper part of the diving transect (which in fact ends close to the 

Seamonice station where fresh water is evident; see Ch. 7.3.8 below). However, rhizon 

sampling from the subseafloor locations equipped with MTLs does not support a 

groundwater influence (see Ch. 7.3.8 below). 

 7.3.4. In situ CPT testing 

(S. Stegmann, A. Kopf, A. Förster)

A total of 74 FF-CPT drops were conducted over the complete study area (Fig. 39) in water 

depths between 12 m and 200 m maximum (Table 1). Penetration depth ranged between 1 m 

and 4 m below the seafloor. 

CPT deployments addressed following strategy: 

� Completion of the already existing FF-CPT data set of the M73 cruise (Kopf et al., 

2008)

� Investigation of the spatial distribution of coarse-grained layers in the level of 

40mbsl and its pore pressure regime 

� In situ characterisation of sediments running down the western slope 

� Comparison between freefall CPT test and CPT profiles pushed with constant 

velocity (Penfeld CPT, refer to report of PRISME cruise 2007: Sultan et al., 2008) 
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Fig. 39: Map showing the locations of the various FF-CPTu deployments carried out during cruise P386. 
Some “landmarks” are also shown: “Seamonice” site (star in centre of map), buoy and transect for scuba 

diving (grey bar). 

Owing to the huge number of the FF-CPTu profiles and limited space in the cruise report, 

only three profiles are illustrated here. They serve to represent the characteristic mechanical 

differences between the sediments on the plateaus (GeoB13921-06 [Western Plateau]; 

GeoB13905-03 [Eastern Plateau]) and in the landslide scar (GeoB13927-04). 

The sediments on the plateau are characterised by low cone resistance qt and pore pressure, 

which is rising after the penetration up to 100 kPa (Fig. 40). Dissipation is never reached in 

these profiles. Due to the soft und homogeneous composition of the sediments penetration is 

much higher than in the landslide scar. Maximum penetration depth is 3.70 (estimated, e.g. 

GeoB13914, -15). For some profiles on the plateau penetration depth is lower, maybe due to 

the occurrence of coarser-grained layers, which have been detected before with the Penfeld 

Penetrometer in these deposits (Sultan et al., 2008). 
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Fig. 40: CPTu records from stations GeoB13921 (W) and –05 (E). 
See text and map in Fig. 39 for location. 

CPTu profiling carried out in the landslide scar delivered penetration depths ranging 

between 0.9 mbsf and 2.7 mbsf. When running deployments along the 40 mbsl isopach, 

the coarse-grained, gravel-bearing layer was hit nearly in all CPTu profiles and often 

terminated the penetration. Cone resistance increased here to up to 1MPa, as illustrated 

in Figure 41. In contrast to the profiles on both plateaus, pore pressure shows a dilatant 

behaviour with a sudden drop to negative values. 

Fig. 41: CPTu record from station GeoB13927. See text and map in Fig. 39 for location. 
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Table 1: List of CPTu deployments. 
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 7.3.5. Piezometer deployments 

 (P. Pelleau, R. Approuial, S. Stegmann,  A. Kopf) 

7.3.5.1. Operations 

Three different types of deployments were carried out with the twp piezometer instruments 

during cruise P386. The position of the tests and some details regarding the configuration of 

the probes and deployment procedures are summarised in Table 2. 

1. Longterm-installation at the SEAMONICE station using a Piezo v1 

The longterm installation at Seamonice provided a continuation of longterm monitoring, 

which started with a Piezo v1 in November 2006. This instrument was recovered in spring 

2009 as one of the connectors was broken and data download by scuba divers became 

impossible. After maintenance and repair the piezometer was re-deployed during Leg B of 

cruise P386. The capacity of the power supply is calculated for several years. The 

connection of the piezometer with the underwater station Seamonice allows an acoustic data 

transfer without recovery of the piezo.

The deployment at this position took place in several steps (see also Figure 42): 

a) At first the piezometer v1 was deployed at the same position as in the earlier 

installation (see Fig. 42a, and Sultan et al., 2008). It was lowered to a few meters 

below sealevel for saturation of the pore pressure lines, and then deployed at full 

winch speed (1.3-1.5 m/s). 

b) For the release of the piezometer, scuba diving activity was necessary because the 

acoustic release unit was not designed for weights exceeding 1 ton. As a result, a 

research diver released the shackle of the instrument (June 29, 2009 at noon). 

c) Once the diver had left, the underwater station (Fig. 42b) was lowered to the seafloor 

within a distance of 10 meters to the piezometer v1. During this operation the cable, 

which is used for the connection between the piezometer to the underwater station, 

was paid out simultaneously. It was crucial to hold both the cable from the deployed 

piezo v1, but also that of the Seamonice underwater station tight to ensure that 

Seamonice does not get placed onto the loose cable and possibly damage it. This 

operation was done using the dinghy with a technician handling the two ends of the 

cable (Fig. 42c). 

d) After the seafloor unit was acoustically released from the winch cable in appx. 5 m 

above the seafloor, it settled into its final position for long-term acquisition. The 
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technician then released the remaining loose cable to the seafloor and the dinghy was 

recovered.

For more details regarding the positions and configuration of the instrument, refer to Table 

2. A simple acoustic communication test (Fig. 42d) between the ship and the Seamonice 

Piezo v1 was performed immediately after deployment to ensure that the long-term set up is 

working. This test was successful. In addition, the scuba diver who detached the shackle 

from the instrument attested by visual inspection and an underwater photograph that the 

instrument went into the ground vertically to subvertically. The first data set is anticipated to 

be downloaded by research divers during a cruise in early 2010 (on R/V L’Europe led by 

IFREMER).

Fig. 42: The “Seamonice” long-tern deployment of piezometer v1: (a) Piezo v1 lowered over the side; (b) 
the seafloor unit for data acquisition, power supply and communication on deck prior to deployment; (c) 

dinghy operations to control cable handling during deployment; (d) pinger for acoustic communication test 
between instrument and ship. 



- 71 - 

2. Short-term deployments using a Piezo v2 

The piezometer v2 (Fig. 43) was deployed on three different positions for periods of 24 

hours each (yoyo-mode). Configuration of the lance for the piezo is given in Table 2. Water 

depth ranged between appx. 10 and 50m. For the duration of the measurement the 

instrument was decoupled of the wire of the vessel and “moored” with a buoy for recovery. 

The data were downloaded on board after each test. 

Fig. 43: The piezometer v2 ready for deployment offshore Nice airport. 

Deployment GeoB13933 took place on June 30, 2009 from 6.00 a.m. onwards. The 

instrument was first lowered above the planned position of deployment on the non-failed 

portion of the slope west of the NAIL 1979 scar. After 20 mins. on the wire in 10 mbsl for 

saturation of the pore pressure tubing, the device was veered at a rate of 1 m/s until it 

penetrated tha sediment. It was then detached from the winch cable, and a surface buoy was 

mounted for the 24hr-dissipation test (Fig. 44). The position corresponds to that of a gravity 

core (station GeoB13946; see below and station list in Appendix 10.1). 

On July 1st, 2009 GeoB13933 was ended by recovering the instrument (appx. 6.00 a.m.) and 

downloading the data on deck. After about an hour, while R/V Poseidon had drifted to the 

next position at the northern rim of the 1979 NAIL scar, the piezometer was deployed again 

for 24 hrs. following the above procedure (station GeoB13938). The position corresponds to 

that of gravity core GeoB13953 (see below and station list in Appendix 10.1). 
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The piezometer was again recovered on July 2nd, 2009 (6.00 a.m.), followed by successful 

data download on deck. It was noted that penetration was highly efficient since fine-grained 

sediment was found both on top of the base plate as well as various places on the weight set 

overlying  the base plate (see Fig. 23 above). The instrument was redeployed at station 

GeoB13945 in the eastern, non-failed slope in the position where a gravity core was taken 

earlier (GeoB13919; see “Lithostratigraphy” section below and Appendix 10.1). A day later, 

the piezometer was recovered with a slight bent as a consequence of having pulled it out of 

the seafloor at an angle. Data were recovered successfully and the instrument was thereafter 

prepared for the long-term deployment (see next paragraph). 

Fig. 44: Surface buoy of piezometer v2 after deployment offshore Nice airport. 

Table 2: Information regarding the deployment and configuration of the various piezometer tests.

3. Longterm-installation using a Piezo v2 

After the yoyo-tests the piezometer v2 was deployed for a longterm-test at station 

GeoB13959. This location has been chosen to be identical to an earlier deployment by 

IFREMER during the PRISME cruise (Sultan et al., 2008). The capicity of the power supply 
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was calculated for 2 years and sampling was set to a period of 5 minutes. Sampling was 

synchronised with the Seamonice piezometer v1 to get a comprehensive data set from the 

pair of instruments in the stable (v2) and failed (v1 plus Seamonice) portion of the Nice 

slope. In contrast to the piezo v1, the new instrument cannot be visited by scuba divers for 

data download, but has to be recovered. 

On July 4th, 2009, the piezometer v2 was prepared for the long-term monitoring task 

tentatively set up for 24 months. Preparation included the replacement of the bent section of 

the instrument, its elongation by another 75 cm-long segment plus one piezomodule, and 

attachment of a small buoyant device for it to be recognised by research divers for future 

recovery. After the obligatory saturation of the pore pressure tubing in the water column 

(9:30 a.m.), the device was deployed at 1 m/s winch speed. The weight set was then released 

acoustically and got recovered back on deck at 9:44 a.m. During the upcoming cruise led by 

IFREMER in early 2010 (on R/V L’Europe), divers will inspect the piezo v2 when 

downloading data from the v1 instrument. 

 7.3.5.2. Preliminary results

The first “yo-yo” style piezometer deployment targeted the non-failed portion of the Nice 

slope west of the NAIL scar. The measurement at five levels recorded the artificial pore 

pressure spike during impact followed by 24hr-dissipation curves (GeoB13933; Fig. 45). In 

the same position, core GeoB13946 recovered sediment down to 4.15 mbsf. The data 

illustrate that depending on the lithology encountered at each depth level, both the 

magnitude of the initial pressure spike as well as the t50 values from pore pressure 

dissipation (see Davies et al., 1991) vary significantly. In the shallow portion where clay-

rich deposits dominate (level P2, P4; Fig. 45a), the decay of the initial pore pressure value is 

slow and half of the peak is reached only after 183-190 mins. In contrast, the somewhat 

siltier portion of the slope (below 2 mbsf) allowed fluid to be displaced during the insertion 

of the piezometer, and equally faster decay of the pore pressure pulse. As a consequence, t50 

values range between 40 and 61 mins. (Fig. 45a) and decrease along shallower gradients. All 

pore pressure ports reach a “quasi-steady state” with a plateau after 8 and 11 hrs. after 

deployment and generally remain at this level for the remainder of the measurement period. 

At the deeper levels, those “background values” are very close to hydrostatic pressure at the 

respective depth (P1, P3, P5) whereas the shallower, less permeable deposits at level P2 and 

P4 show pore pressures of 2-4 kPa in excess of Phyd (Fig. 45b). 
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Fig. 45: Data from piezometer v2 deployment GeoB13933 offshore Nice airport. (a) Data during insertion and 
t50 values derived from them. The locations of the individual piezo modules at depth is plotted on a gravity 

core photograph at the same site. (b) Long term behaviour of T and pore P at this station. See text. 
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There are two rather interesting phenomena observed in the second half of the 24hr. 

deployment. First, all pressure ports become increasingly noisy after appx. 7  hrs. and 

remain  this way throughout. There does not seem to be a difference in noise level between 

the more permeable layers compared to the upper clayey levels. The spikes, sometimes a 

few kPa in magnitude, are not necessarily synchronous, so they can hardly be explained by 

tidal variations (the latter being rather small in the Baye des Anges anyway). At this level, 

we can only speculate about gas migration as a possible candidate to explain these patterns. 

The second interesting phenomenon was observed only in the slightly overpressured ports 

P2 and P4. After appx. 22.5 hrs in the deployment, the pore P level started to gently rise to 

levels of 5-7 kPa excess pore pressure (Fig. 45b). During the same period, the more 

permeable layers did not transmit any pressure change to the instrument. It is unclear if this 

late increase is approaching the “true ambient” background pressures, or whether external 

forcing in the shallowmost succession has to be held responsible. 

For the second “yo-yo” deployment of the v2 instrument, the northern headwall area of the 

NAIL scar was chosen. The piezometer test (GeoB13938) is complemented by a gravity 

core taken in the same location (GeoB13953; see map in Fig. 48 below). Data from the 

piezotest are shown in Fig 46. Given that the core recovered was somewhat short of 3 m 

length, the lowermost piezomodules (P4, P5) are unconstrained regarding the lithology they 

were inserted into. The plot of the results vs. 24 hrs. of deployment reveals two distinct pore 

pressure responses. Ports P1-3 show the anticipated strong increase in pore pressure upon 

penetration of the instrument, which is followed by an exponential decay towards a 

background value. Calculated t50 values range between 40 and 61 mins. (Fig. 46a). In 

contrast, ports P4 and P5 show a less dramatic increase during insertion of the piezometer, 

which becomes less and less strong and tapers off towards maximum 10-30 mins., not 

seconds. After having reached the maximum value, pore pressure slowly decreases with 

time, eventually approaching ambient values. The majority of the pore pressure ports 

(namely P1, P3, P4) reach hydrostatic pressure over the course of the experiment. 

Transducer P2 at 1.63 mbsf also approaches hydrostatic levels, however, but after 10 hrs. 

within the test the signal becomes noisy and shows a subtle increase in pore pressure (Fig. 

46b). This saw tooth pattern, which was also observed in deployment GeoB13933 (see 

above; Fig. 45b), becomes more accentuated after appx. 19 hrs.; the increase in noise is 

accompanied by an overall increase in pore pressure to values of 10±2 kPa in excess of Phyd

(Fig. 46b). An exception to the overall behaviour is the deepest transducer P5 (Fig. 46b).
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Fig. 46: Data from piezometer v2 deployment GeoB13938 offshore Nice airport. (a) Data during insertion and 

t50 values derived from them. The locations of the individual piezo modules at depth is plotted on a gravity 
core photograph at the same site. (b) Long term behaviour of T and pore P at this station. See text. 
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After having reached the maximum value, pore pressure levels off towards an excess pore 

pressure value of 6 kPa. Given that the gravity corer did not penetrate that far, it is unclear 

what lithology is related to the subtle overpressures. A careful comparison to quasi-static 

Penfeld CPT tests (Sultan et al., 2008) is required as part of the post-cruise research. In

summary, core GeoB13953 was the most diverse of all gravity cores recovered during cruise 

P386 (see detailed description in section 7.3.6 on “Lithostratigraphy” below), so that it is not 

surprising that the pore pressure response is also found rather variable. 

The third v2 deployment was positioned on the slope east of the NAIL scar. It mirrors the 

position of an earlier piezometer test in 2007 (PZ21-2; see Sultan et al., 2008) and is 

complemented by gravity core GeoB13919 (see 7.3.6 and Appendix 10.3). The piezometer 

test was also a pilot study for the long-term deployment of the v2 instrument, which was 

performed in exactly the same position later during the cruise (see station GeoB13959 in 

section 7.3.5.1 above; also refer to station list in Aappendix 10.1). 

Similar to test GeoB13933 at its western counterpart, all 5 piezomodules of test GeoB13945 

east of NAIL show the typical strong increase in pore pressure during insertion of the probe. 

This spike is followed by a moderately strong (P3, P4) to strong (P1, P2, P5) decay (Fig. 

47a), which results in t50 values of less than an hour (48 mins. For the upper, silt-dominated 

protion) and between 89 and 233 mins. for the clay-dominated section below 2 mbsf (see 

Fig. 47a, and Appendix 10.3). When regarding the entire period of the deployment, both T 

and pore P show a rapid exponential decrease towards ambient values. For the temperature, 

this is 15.5°C whereas the pore pressure is very close to hydrostatic values (maybe a little 

higher for P5 at the deepest level). Interestingly, this transducer also shows the noisiest 

record from appx. 11.5 hrs. into the deployment onwards, showing spikes that exceed the 

background decay curve by 5-12 kPa in places. Like for the variations depicted in the earlier 

deployments, it is not easy to explain those fluctuations. Despite the fact that free gas is 

inferred from geophysical data and observations on cores (see Sultan et al., 2008, in press, 

and section 7.3.6 below), it is impossible to assess with certainty that gas migration or 

expansion can be held responsible for pressures which in places are close to lithostatic 

values. Post cruise experimental work on the corresponding cores as well as the long-term 

data records from the two peizometers deployed for months to years will hopefully help 

explain some of these preliminary observations. 
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Fig. 47: Data from piezometer v2 deployment GeoB13945 offshore Nice airport. (a) Data during insertion and 
t50 values derived from them. The locations of the individual piezo modules at depth is plotted on a gravity 

core photograph at the same site. (b) Long term behaviour of T and pore P at this station. See text. 
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7.3.6. Gravity coring and sediment description 

(A. Förster, T. Fleischmann, K., Weber, S. Stegmann, A. Kopf) 

During cruise P386, we took 23 gravity cores as well as a pair of “bobcores”, the majority of 

which were recovered in the NAIL area. Gravity cores GeoB13910, -11, -12, -13 and –14 

complemented earlier coring in the deeper (>1500 mbsl) research on the so-called “Western 

slide complex” adjacent to the Var Canyon (see M73/1 cruise report by Kopf et al., 2008, 

and Förster et al., 2009). The cores were left closed for shore-based geotechnical testing. For 

exact location of these cores, please refer to the station list in Appendix 10.1 below. An 

initial sedimentological description from post-cruise work is given in Appendix 10.2. 

The two “bobcores” served as a proof-of-concept with the recently developed lightweight 

coring system. The recovery was found low (<50 cm) despite repeated use of the falling 

weight and the predominantly fine-grained material. Given that gravity cores were taken 

nearby, the two bobcores were also left unsplit and got archived. For exact location, please 

refer to the station list in Appendix 10.1 below. 

The lithological description focuses entirely on the NAIL slide scar and adjacent slope. The 

wealth of cores is shown in map view in Figure 48. Broadly speaking, they can be separated 

into three groups: (i) cores in the headwall and scar area of the 1979 event; (ii) cores in the 

non-failed slope E, N and W of the NAIL scar, and (iii) cores recovered in somewhat deeper 

water where the slope has also been stable to date. All these cores were taken in water 

depths less than 100 mbsl except for core GeoB13918; for exact depths refer to station list in 

Appendix 10.1 below. The grouping of the cores is as follows: 

Group I: Cores GeoB13925, -29, -30, -34, -39, -40, -53, -63 and -64.

Group II: Cores GeoB13928, -46 (both W’ of NAIL), and cores -19, -20, -26, -35, -36,

 -41, -42, -51, and -52 (E’ of NAIL). 

Group III: Core GeoB13947 (W’ of NAIL), and cores -56, -57, -58 and -64 (E’ of 

 NAIL). In addition, cores GeoB13918 and -48 were taken south in and 

 adjacent to a block of sediment which presumably slid to its present position 

 in October 1979. 

Note that the cores which are underlined above were not opened during cruise P386 so that 

core description does not exist. 

Regardless of the geographical distinction into several groups, a group of gravity cores is 

also to be separated because the represent the shallowmost portion of nine locations where 

IODP drill sites have been proposed (IODP proposal 748-full by Stegmann et al., 2009). 
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These cores are GeoB13928 (NA-01), -29 (NA-02), -39 (NA-03), -40 (NA-04), -46 (NA-

05), -47 (NA-06), -52 (NA-07), -19 (NA-08) and -18 (NA-09). Most of the NAIL cores plot 

in the vicinity of Nice airport, however, GeoB13918 (i.e. NA-08) lies some 2-3 km south of 

the 1979 scar in appx. 150 m water depth (see Fig. 12; and also Stegmann et al. [2009] and 

station list in Appendix 10.1). 

Fig. 48: Map of the Nice airport region showing the locations of the majority of the gravity cores taken during 
P386. Note that cores GeoB13918 into a slid block of the 1979 event and –48 (a little north of –18) are located 

south of the map. The grey bar marks the scuba diving transect and the red star represents the “Seamonice” 
long-term piezometer. 

When regarding the sediment recovered in the different areas, there is a clear separation 

between the groups. They are described one by one summarizing the main caharcteristic 

sedimentological and structural features. Detailed lithological columns with descriptions, 

grain size classification, and some physical properties are given in Appendix 10.2 below. 

Scanned images of the entire core s well as results from MSCL logging of the cores (split as 

well as unsplit ones) is found in the “Physical Properties” section below (Ch. 7.3.7) as well 

as on the DVD in the back sleeve of this volume (Appendix 10.3, only available 

electronically).
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Group I cores in the 1979 landslide scar 

The headwall area and steeply inclined scar of the 1979 failure were among the main goals 

of coring and sampling during cruise P386. As a result, nine gravity cores targeted this zone 

in water depths between approximately 20 and 40 mbsl (Fig. 48). Core recovery was highly 

variable because fine-grained, soft sediments are interbedded with gravel layers. 

The major lithologies in the cores recovered were clays with variable amounts of silt. These 

sediments occasionally show darker, organic-rich layers (mm to a few cm) or lenses, but are 

usually medium to light grey to yellowish. Shell fragments, bioturbation, wood pieces or 

sand patches are also observed. Some of the clay-rich intervals show distinct fractures and 

conduits which were interpreted as evidence for fluid escape (see core geoB13940 below 

250 cm bsl; refer also to lithological descriptions, Appendix 10.3). Apart from core 

GeoB13940, each of the headwall cores also showed at least one layer of gravel (e.g. Fig. 

49b). The size of the generally well-rounded pebbles varied from 1-10 cm across, embedded 

in a yellowish, sandy and silty matrix. Examples from cores GeoB13929, -30, and –34 are 

given in Fig. 49a-c and show the disturbed nature of some of the layers. The suite of 

observations include normal faulting, slumping, erosive contacts between layers, and 

entrainment of silt/sand into finer areas. For the full set of observations, refer to litholog 

diagrams in Appendix 10.2. 

A extraordinary core was recovered at station GeoB13953 in the northern headwall (Fig. 

48). It was taken right at the northern rim of the NAIL headwall in 19.7 m water depth. In 

the upper portion (0-140 cm bsf), it comprises predominantly yellowish to beige sand with 

pebbles and shell fragments, rarely interbedded with dark grey silt. The interval between 30 

and 60 cm shows rapidly buried seagrass in large quantities (Fig. 50a) and further contains a 

several cm long plastic fragment, including the threaded opening of what appears to be a 

food container. The date of manufacturing of this artifact, 09/1976, is embossed into the 

fragment (Fig. 50b). We tentatively interpret this deposit as directly related to the 1979 

catastrophic event, either as a landslide deposit burying seagrass or as a tsunami deposit in 

very shallow water. The plastic container may have served as a fisherman’s buoy at the 

time, or was simply rubbish floating around. Below this rather unusual layer, silty and sandy 

layers are interbedded with finer-grained starta. In various places, thin, red clay bands and 

layers are observed. Clay lenses are also found and may represent remobilized material 
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associated with the landslide. Below 170 cm bsf, the sediment comprises almost pure clay 

(for details, see Appendix 10.2).

Fig. 49: Cores from the headwall area of the Nice airport slide. (a) GeoB13929, 147-162 cm with clearly 
developed normal fault in clay-silt interbeds; (b) GeoB13930, 47-78cm showing coarse gravel deposits in a 
yellowish to beide clay matrix; and (c) GeoB13934, 103-155 cm with tilted, sometimes erosive contacts and 

evidence for slumping. See text. 

Fig. 50: CoreGeoB13953 from the headwall area of the Nice airport slide. (a) coarse-grained sand with pebbles 
(8-20 cm bsf); (b) Inferred „tsunami“ or „syn-depositional landslide“ deposit with the plastic bottle fragment 

with date (32-62 cm bsf). 

Group II cores at the non-failed slope adjacent to the 1979 landslide scar 
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A total of eleven gravity cores were taken in the non-failed slope east (9) and west (2) of the 

1979 NAIL scar (Fig. 48). Core recovery was generally good because of the poorly to 

normally consolidated sediments. The sediments comprise fine-grained (clay, silt) deposits 

of poor to normal consolidation. In several cores, underconsolidation and evidence for the 

presence of gas is observed. This is manifested by gas pockets and fluid escape structures as 

well as gas expension cracks in the sediment (see Fig. 51).  

The cores taken in the non-failed portion of the slope are rarely west of the slide scar 

(GeoB13928, -46), mostly because the “plateau there is rather narrow (Fig. 48). The 

majority was taken east of NAIL, namely cores GeoB13919, -20, -26, -35, -36, -41, -42, -51, 

and -52. Since one of the key goals of the expedition is to characterize some geotechnical 

properties, half of the cores in question were left unsplit and were shipped back to 

MARUM, Univ. Bremen. MSCL data of the unsplit cores are available in Appendix 10.3 

(only on CD in back pocket). 

Fig. 51: Cores from the slope adjacent to the Nice airport slide, often showing homogeneous, undeformed 
clayey sediments with occasional silt bands. Examples given are from intervals (a) GeoB13946, 36-49 cm, (b) 
GeoB13946, 69-89 cm, (c) GeoB13919, 328-365 cm, and (d) GeoB13952, 157-179cm. For location of cores, 

see Fig. 48. 
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The majority of the cores taken on the shallow-dipping slope east and west of the NAIL scar 

are characterized by homogeneous clay of brownish to ellowish and grayish colours. Colour 

banding and interbedding with silt is also common (e.g. Fig. 51). Rarely, irregular 

sedimentation patterns such as tilted surfaces or clay clasts and lenses are found. Given the 

extremely fine-grained matrix of the dominant lithology, permeability is low (Weber & 

Kopf, unpubl. data) and fluids are confined in these sediments at in situ conditions. Once the 

core is recovered and opened, fluids such as microbial methane expand and cause porous 

(mousse-like) textures and small (1-4 mm diameter) gas pockets in the otherwise 

undisturbed matrix (Fig. 52a, b). Aqueous fluid also migrated through the fine-grained 

sediment, causing entrainment of some matrix material during the ascent. Evidence for 

dewatering and fluidisation is found as near-vertical channels and conduits (e.g. Fig. 52c). 

Fig. 52: Cores from the slope adjacent to the Nice airport slide, dominated by clayey sediments with abundant 
evidence for aqueous and gaseous fluids. Examples given are from intervals (a) disruption from gas expansion 
(b). Examples given are (a) GeoB13928, 286-300cm, (b) GeoB13946, 372-394 cm, (c) GeoB13926, 141-177 

cm. For location of cores, see Fig. 48. 

Group III cores at the somewhat deeper slope 

This group can be divided into two subgroups. The first subgroup comprises cores 

GeoB13947, -56, -57, -58 and -62. It shows fairly homogeneous, fine-grained sediments 

which got recovered in cores of 4.59 to 5.39 m total length. These cores have mostly been 
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taken for post-cruise geotechnical studies on slope stability under different conditions. They 

were not opened except for a few sections of cores GeoB13957 and -58. Most interestingly, 

section GeoB13957-3 has several conduits of 5 mm to 12 mm diameter and several tens of 

cm in length (Fig. 53a, b). They are subvertical and intersect a clayey interval which is 

under- and overlain by silty, more permeable units. One of the conduits connects the two silt 

layers and may have been a result of fluidisation and release of overpressure by causing a 

predecessor to hydraulic failure (see Mörz et al., 2007).  

Fig. 53: Core GeoB13957: (a) X-ray scan of a temporarily opened whole core cut layer-parallel in order to 
show the diameter of the fluid conduits (b); one segment was further broken up (c). See text. 

In contrast, the second subgroup contains two cores located in significantly deeper water 

some 2-3 km south of the 1979 scar where the mass flow migrated downslope towards the 

Var Canyon. One of these cores, GeoB13918, equals the proposed drill site NA-09 into a 

portion of partly stratified sediment which is inferred a slid block. Three meters of silty clay 

with darker layers, fine- to medium sand interbeds and lenses, and occasional shell 

fragments were recovered. In the shallowmost portion, the clay layers are water-rich and 

free of internal structures. Deeper in the predominantly homogeneous core, areas rich in 

organic matter and irregular contacts  occur (Fig. 54). Lenses of clay or silt are abundant 

between 100-200 cm bsl, however, it is impossible to decide whether they represent rip-up 

clasts. At the base of the core (290-300 cm bsl) is a gravel layer in which the gravity corer 

lost its momentum and did not penetrate further. The pebbles are well rounded, composed of 

quartzite and claystone/siltstone, and measure a few cm in diameter. Although the presence 

of these pebbly layers is generally associated with landsliding in the Nice area (see Group I 

above where each core has at least one pebbly layer, often the area where fresh water is 

measured (see “Geochemistry” section below), it is not clear at this stage whether the 
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material is unambiguously part of a remobilized block formerly located in the upper slope. 

The second of these cores, GeoB13948, is located somewhat upslope at the northern border 

of the inferred slid block. From seismic reflection data, the location may have “Upper 

Pliocene” substratum (sensu Savoye et al., 1993) cropping out at the seafloor. Since this 

stratum is an assumed potential failure horizon, we tried to sample it for geotechnical 

testing. However, the core has not been split and described yet.

Fig. 54: (a) Photograph of GeoB13918, interval 110-155 cm bsl, showing light to dark grey, clayey and silty 
deposits with irregular surfaces and erosive contacts. Top of core is left. See text.   

 7.3.7. Physical properties 

(A. Förster, T. Fleischmann, S. Stegmann, K. Weber, A. Kopf) 

Key physical properties for the landslide study offshore Nice Airport were measured on the 

fresh, split core (namely shear strength) and also shore based in a non-destructive manner 

(density, porosity, magnetic susceptibility and p-wave velocity using the MSCL). A number 

of other properties was further determined on discrete samples for specific projects and is 

not reported here. Instead, the following two subchapters focus on the shear strength and 

MSCL data. All shear strength data from fall cone experiments and vane shear tests can be 

found in Appendix 10.2; all MSCL data are given electronically in Appendix 10.3 (CD-

ROM only). 

Shear strength 

As for the core description, the shear strength data are presented as regional groups of cores. 

Group I in the  headwall scar of NAIL often shows a gradual increase in strength, with 

values <10 kPa in the upper meter and then higher values (appx. 10-25 kPa for vane shear, 

and somewhat higher values for fall cone tests) below. Although layers rich in pebbles were 

avoided, maximum strength results may reach values >200 kPa (e.g. GeoB13925). We 

interpret these data as exceptions, possibly because a shell fragment or indurated clast was 

hit during the measurement. Silty and sandy horizons often show twice the strength as their 
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finer-grained counterparts. Areas with unusual deposits or other anomalies (e.g. the seagrass 

in GeoB13853) were avoided for strength measurement. Group II in the stable portion of the 

slope generally shows lower strength, because the majority of the cores recovered mainly 

clayey muds. Even long (i.e. >4 m) cores rarely exceed strengths of 10 kPa. All cores show 

a subtle increase in strength with depth, neatly mirroring incipient settling and compaction. 

Even fall cone data, which tend to accentuate shear strength trends because of the dynamic 

mode of measurement, plot below 10 kPa except for individual measurements (see 

GeoB13919 and -46, lower part) or core GeoB13926, where silt is more abundant. Group III 

cores remained largely unsplit, so that only GeoB13918 delivers shear strength data at this 

stage. Despite the fact that the main lithology is clay, the majority of the vane shear data 

ranges >10 kPa and the fall cone data largely plotting between 10 and 35 kPa. We 

tentatively interpret this observation as a result of the core being taken at position NA-09 

(NAIL IODP  drilling proposal by Stegmann et al., 2009). This site represents a block of slid 

material and, as a consequence, may have been modified during emplacement so that more 

indurated material is now in the shallow subsurface. 

MSCL

From the suite of MSCL data, only density (and, derived from that, fractional porosity) plus 

some susceptibility information will be regarded. For all other data, refer to CD-ROM in 

back pocket (Appendix 10.3). 

Group I cores in the NAIL headwall show average densitie sranging from appx. 1.8 g/cm3

(GeoB13925, -53) to 2.05 g/cm3 (GeoB13934). In core GeoB13939, very soft mud (1.7 

g/cm3) overlies significantly denser sediment (2.15 g/cm3).  We interptret these variations as 

evidence for unroofing during the 1979 event, i.e. in places where densities are high the soft 

overburden got remobilized and transported downslope. Fractional porosity mirrors these 

trend in opposite direction, and magnetic susceptibility values often are high in sections 

where density is low owing to clay mineral-rich mud. 

In Group II cores on the non-failed slope E and W of NAIL, many cores show low bulk 

density values of 1.75 ± 0.05 g/cm3. Examples include cores GeoB13926, -28, -41, -51 and –

52. Other cores show somewhat higher densities and porosities of appx. 45-50% 

(GeoB13920, -46). Core GeoB13919 shows exceptionally high densities (and resulting 

porosities of appx. 40%), which is in contradiction with the observations from core 

description and shear strength measurement (see above and Appendix 10.2). It appears that 

these soft (shear strength < 10 kPa) silty clays contain high contents of dark, fibrous organic 
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matter, which may be responsible for the higher density. Magnetic susceptibility and p-wave 

velocity do not show any unusual excursion in this core, so that post-cruise study on discrete 

samples may be required to confirm the density values of 2.1 g/cm3 on average.

Cores of Group III taken downslope of the landslide scar show consistent physical 

properties. Since the majority of these cores remained unopened, MSCL data are the only 

information about the material recovered at this point. In general, density shows a gradual 

increase with depth, starting at ca. 1.7 g/cm3 at the seafloor and gently increasing to up to 

1.9 g/cm3 at the terminal depth of the core. Some cores appear extremely rich in fluid in the 

shallow sub-seafloor, starting with densities of 1.5 g/cm3 and porosities of ca. 70%. 

Magnetic susceptibility is generally below 10, however, there are two exceptions whee 

values are fairly high: Cores GeoB13947 (0.6 – 3.3. mbsf) and –57 (0.7 – 2.2. mbsf). Since 

the latter core was opened and examined because of its fluid channels (see above and Figs. 

53, 54b). 

For a more comprehensive overview, see Appendices 10.2 and 10.3 below. 

 7.3.8. Pore water geochemistry 

(T. Pichler, S. Pape, S. Hammerschmidt, R. Price, M. Seydel)

This chapter is split in two. The first (larger) section will tackle the pore water 

geochemistry of GeoB cores, while the second half will introduce the results from pore 

waters extracted from the shallowmost subseafloor using syringes. 

In total 225 pore water samples were collected from 13 gravity cores and analysed for 

physical and chemical parameters. A detailed listing of these parameters is given in Tables 

X1 and X2. Salinity ranged from that of fresh to seawater, i.e., <100 mg/L to 35 000 mg/L. 

Seven sediment cores (13925, -29, -30, -34, -39, -40, -53) showed a clear impact of 

freshwater, while cores 13919, -26, -28, -46, and 13952 had the pore water composition 

which indicated only seawater. Those cores where a fresh water component was observed 

were generally located in the center of our study site (Fig. 55). Fresh water, although present 

in the cores, did not seem to exit the sediments in the form of submarine groundwater 

discharge (SGD). All the pore water profiles changed to more or less seawater composition 

within the top 50 to 100 cm (Fig. 56). This was also confirmed by the pore waters, which 

were collected by scuba (see below). In general, the pore water profiles can be divided 
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following Schlüter et al. (2004): 

� profiles which did not show any fresh water impact (linear profiles of Cl and Na); 

� profiles where fresh water is present at depth and where curvature of the Cl and Na 

data series indicates that some advective transport was present; 

� profiles where fresh water is present at depth and where the linearity of the Cl and Na 

data series indicates that diffusive transport was present. 

Fig. 55: Location of those gravity cores where pore water profiles were collected. Site numbers highlighted 
in “yellow” indicate pore water profiles with seawater salinities and linear Cl and Na data series. Site numbers 

highlighted in “blue” indicate pore water profiles, which contained a fresh water component. 
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Fig. 56: Pore water profiles of sodium (Na) concentration in mg/L for cores 13919, -29, -39, and -53. 

 The pore water profiles 13952, 13953 and 13939 were examined closer, because they 

are examples for (a) a seawater water dominated profile, (b) a profile with advective 

transport and (c) a profile with diffusive transport, respectively. These profiles are presented 

in Figures 57, 58 and 59. 



- 91 - 

Fig. 57: Pore water profiles for Cl, Na, pH, Alk, NH4, Eh, Ba, SO4 and SO4 calculated for gravity core 
13952. The yellow triangles in the profile in lower right corner represent SO4 values, 

which were calculated based on the Cl/SO4 ratio in seawater. 
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Fig. 58: Pore water profiles for Cl, Na, pH, Alk, NH4, Eh, Ba, SO4 and SO4 calculated for gravity core 
13953. The yellow triangles in the profile in lower right corner represent SO4 values 

which were calculated based on the Cl/SO4 ratio. 

Pore water profile 13952 was chosen as a representative of a profile dominated 

exclusively by seawater. Here, all Cl and Na values show no variation with depth and values 

were around 20,000 mg/L for Cl and 12,000 mg/L for Na, which are representative of 

Mediterranean seawater. pH values showed a little variation generally ranging between 7.4 

and 7.6. These values are slightly lower than expected for seawater. Alkalinity and ammonia 

increase with depth to several times seawater values. Eh shows some variation, which is 

likely to two the uncertainty of the measurement, however, values are always positive. 

Barium increases with depth from the seawater value to about 0.2 mg/L. Sulfate declines 
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from almost 3000 mg/L (a value expected for seawater) to about 500 mg/L since Cl and Na 

to not show this decrease in concentration it is expected that sulfate does not behave inert. 

The likely explanation for the decrease in sulfate is microbial reduction to sulfide (e.g., 

Schulz et al., 1994; Winfrey et al., 1981). The amount of sulfide production can be estimated 

based on the Cl concentrations. Assuming that the Cl/SO4 ratio in seawater is constant, the 

concentration of sulfate can be calculated using the measured Cl value. The comparison 

between the measured and calculated sulfate profiles can be seen in Fig. 57. Sulfate 

reduction increases constantly with depth. 

Fig. 59: Pore water profiles for Cl, Na, pH, Alk, NH4, Eh, Ba, SO4 and SO4 calculated for gravity core 
13953. The yellow triangles in the profile in lower right corner represent SO4 values 

which were calculated based on the Cl/SO4 ratio. 
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Pore water profile 13953 was chosen as an example of advective transport as indicated by 

the curvature of the Cl and Na profiles. Both start at sea water concentration and remained 

stable to about 50 cm sediment depth, after which they decreased to concentrations expected 

for groundwater in the area (Guglielmi & Mudry, 1996; Guglielmi & Prieur, 1997). pH 

increases to about 8 in the top 50 cm then declines again to about 7.4, followed by an 

increase to 8. The pH value of 8 at 110 cm should be evaluated as an outlier – potentially 

due to an unreliable measurement. Alkalinity shows a similar profile to pH with the 

exception of the outlier at 110 cm, however here variations are more pronounced. A sharp 

increase in the top 50 cm is followed by a sharp decrease over the next 40 cm. Ammonia 

increases to a depth of about 150 cm from seawater values to 80 mg/L and then decreases 

towards the bottom of off the profile to about 20 mg/L. Eh values are extremely negative in 

the top 50 cm where the seawater seems to be the dominating pore water source. This 

contrasts the Eh profile seen in core 13952, which was chosen to be the seawater example. 

Barium shows is very similar profile to that observed in core 13939 (see below), except that 

the highest barium value is already reached at about 120 cm sediment depth. The reactive 

layer in which Ba is released from the sediment to the pore water coincides with a sharp 

decline in sulfate. Thus the barite solubility is the likely control for its concentration in the 

pore water. Sulfate remains more or less stable in the top 50 cm of the rich there is a sharp 

decline over the next 50 cm down to a sediment depth of 100 cm, a depth at which its 

concentration is close to that expected for groundwater in southern France (Guglielmi & 

Mudry, 1996; Guglielmi & Prieur, 1997). This however is not likely explained by the 

presence of groundwater, but rather by microbial sulfate reduction. Based on the same 

assumption as for core 13952 a sulfate profile was calculated (Fig. 58). In the calculated 

profile groundwater concentrations are only reached at a depth of 210 cm. Interestingly is 

the decline in concentration much less dramatic than in the measured profile, indicating the 

presence of a pronounced reaction zone. 

Pore water profile 13939, which is representative of diffusive transport (Fig. 59), shows 

more or less a linear decline in Cl and Na concentrations with depth. PH remains relatively 

stable at around 7.5 to 7.8 and only at the depths of 200 and 300 cm values approach those 

anticipated for seawater. Alkalinity and ammonia increase to a depth of about 200 to 220 cm 

after which they remain more or less constant. Barium values start at approximately 

seawater concentration and increase sharply to about 2 mg/L at a depth of 180 cm after 
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which the concentration decreases sharply but never falls below 0.6 mg/L. The sulfate 

concentration show the same linear decline, which was observed for Cl and Na, however, 

again sulfate values were slightly lower than expected (exclusively explained by mixing 

seawater and groundwater). The calculated profile shows much less variation and the 

decrease between 50 and 300 cm is more or less linear – exemplifying diffusion as the 

important process (Schlüter et al., 2004). Detailed results are also reported in Tables 3 and 4 

(available on CD-ROM in back pocket). 

Sediment geochemistry 

The results for those cores, which were selected for chemical analyses by total digestions 

and ICP-OES are presented in Table 5 (available on CD-ROM in back pocket). Despite the 

large variation in pore water profiles and the presence of fresh water only little variation was 

observed in the chemical composition of the sediments. Most values varied within their 

analytical uncertainty. Particularly surprising was that Ba values did not vary, considering 

the large increases of Ba in the pore water fraction of core 13953 of up to 200-times 

seawater concentration. Despite the proximity to shore and, thus, the airport and industrial 

areas in the western part of Nice, the metals Cr, Cu, Ni, V and Zn were not elevated. Values 

corresponded to those expected for “normal” marine sediments (Li, 2000). 

A second set of pore waters was recovered using rhizons (i.e. 50 ml syringes) stuck into 

the shallow subseafloor by scuba divers. The water samples were taken along the same 

transect along which in situ temperature measurements were carried out (see Ch. 7.3.3 

above). Compared to the T loggers, pore water samples were extracted at transect positions 

0, 10 (2), 20 (2), 25, 27, 30 (2), 35, 40 (2), 50, 60, 70, 80 (2), 90, 100, 110 and 120 m ([2] in 

parantheses means that a second sample was taken during a second dive). The corresponding 

water depths range between 15.5 mbsl at the NW’ end of the transect and 29.5 mbsl at its 

SE’ termination near the buoy (see Fig. 39, black bar). Pore water samples were taken along 

the transect every 10 m from a depth of approximately 5 - 10 cm. The purpose was to 

investigate if submarine groundwater discharge (SGD) was present in the area where most 

of the sediments, which were collected gravity coring showed a fresh component in their 

pore water. Results are presented in Table 6 (available on CD-ROM in back pocket) and 

none of the 13 samples indicates SGD – all measured concentrations were within their 

analytical uncertainty those expected for seawater.  
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Visual observations by SCUBA 

In addition visual observations were made by SCUBA, which would indicate SGD, such 

as sediment discolorations, shimmering water, temperature anomalies and discrete vent 

orifices. No such features were observed. The only indication that there might be SGD was 

the discovery of minor microbial mats (Fig. 60), which may have developed due to a redox 

or nutrient gradient (e.g. Bussmann et al., 1999). Nevertheless, a pore water sample did not 

show any fresh water. As a consequence, we deduce that groundwater that may reach the 

deeper subseafloor successions owing to their increased permeability is not discharged into 

the ocean.

There is two obvious explanations for this observation. First, the hydraulic gradient may 

not be high enough to allow outflow into the overlying water body at a given depth. Second, 

the scuba divers may have missed the outcrops of the rather thin (usually <20 cm thick) beds 

of gravel which are charged with fresh water from the Var estuary and adjacent aquifer. 

Only long-term observations at multiple levels below the seafloor can shed unambiguous 

light on this open question. 

Fig. 60: Development of small microbial mats at the boundary between seawater and sediment (see 
arrows).
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 7.3.9. In situ Radon measurements 

 (A. Mayer, P. Henry) 

Table 7 reports the results of the measurements. Figure 61 reports the vertical 

distribution of salinity in all radon measurement stations. It is evident from the figure that 

surface water contains a significant fraction of freshwater that, at the time of the 

measurement sessions, was almost certainly derived from the Var river, particularly during 

falling tides. In the limits of the salinity measurements precision, no significant input of 

freshwater from the seafloor is detected. Variations of salinity are interpreted as due to 

variable proportion of Var river water. 

Radon concentrations are shown in Figure 62. The level of radon activity is quite low 

(just above the limit of detection of the method, i.e. ca. 1.5 Bq/m3) for most of the radon 

stations. Slightly higher activities are observed in zones of shallower water depth in the 

northern sector, but no localised radon input point is detected in this area, nor the gas flares.
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Fig. 61: Vertical distribution of salinity. 

 
Figure 63 illustrates the vertical distribution of radon in seawater.  Radon activity is low, 

but higher than the activity supported by 226Ra dissolved in seawater (blue vertical line) 

(Schmidt & Reiss, 1996). This is true in particular for the deepest station (-37 m), with 

salinity 38.0 psu, which yielded radon activity clearly higher than 226Ra supported activity. 

The slight excess of radon indicates that a slight contribution from pore or submarine ground 

water (GW) occurs in the water column. The figure also shows that for a given depth, north-
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western measurements stations yielded slightly higher radon activities in respect to central 

and southern stations, suggesting that part of the radon ‘excess” arises from eastward 

spreading of the Var river water (out of scale in the Fig. 63). Var river water, measured at 

the mouth, has a radon activity of 173 Bq/m3. Degassing and ageing of this water 

contribution reduce the radon net additions to seawater (arrows in Fig. 63).
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Fig. 62: Radon activity in the investigated area. 
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Fig. 63: vertical distribution of radon in seawater. North, south, west, indicates the location of the 

station sectors in respect to the main canyon (encroachment).  Solid line indicates measurements made 
at different depth in the same stations. 
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Figure 64 illustrates the relationships between salinity and radon activity. About half of 

the measurement stations plots above the instantaneous mixing line between the sea water 

end-member and the Var river end-member. This line represents the maximum activity that 

can be achieved in seawater by mixing with the river water, since the mixing is considered 

instantaneous and degassing is neglected. Samples plotting above this line cannot be 

explained by simple radon addition and salinity sink due to mixing with Var river water, 

even considering the incertitude on the measurements. The results suggest that a small 

contribution of radon from groundwater of normal (or close to normal) salinity exists in the 

area. Alternatively, some radon may be input from re-suspended particles and diffusive 

exchange through the seafloor.
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Fig. 64: Radon activity versus salinity.

 
Discharge rates 

An estimate of the maximum discharge rate of the groundwater can be done using the 

measured radon activities and assumed radon activity of groundwater. Dissolved 226Ra in the 

Ligurian Sea accounts for about 1.33 Bq/m3 (Schmidt and Reiss, 1996). Taking an average 

water depth in the investigated area of 20m and an average radon activity of 4 Bq/m3, the 

excess inventory in the water column in respect to the dissolved 226Ra is 53 Bq/m2. For this 

inventory, the lost of radon by radioactive decay and atmospheric escape is estimated to be 

around 20 Bq/m2/day. To maintain in steady state the radon inventory, radon inputs from 

groundwater should occur. The necessary water flux could be calculated if radon activity in 
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groundwater would be known. Assuming an activity of groundwater of 3.5 kBq/m3, a 

common value measured in the Adriatic Sea and at the submarine spring of Port Miou near 

Marseille, the resulting water flux is ca. 5 litres / m2 seafloor / day, which correspond to a 

seepage rate of 5 mm /day. This result is of the same order as the discharge rate inferred by 

Guglielmi and Prieur (1997), although the latter neglected the contribution of Var river 

water and the contribution of recycled seawater. Large incertitude exists, of course, in this 

calculations due to unverifiable assumptions made above. 

 
radon station lat 43° long 7° Depth Salinity radon activity in water 
139xx-x minutes minutes m Bq/m3 abs error 1S

06-01 38.832 13.558 -1 36.0 3.8 1.6 
06-01 and drifting to next 38.755 13.472 -18.5 37.0 1.4 1.5 
06-02 38.677 13.386 -17 37.0 3.9 1.1 
06-03 38.652 13.310 -17.5 37.0 3.3 1.5 
06-04 38.644 13.269 -17 37.0 5.4 1.9 
drifting between stations 38.638 13.235 -12 37.0 2.1 1.2 
06-05 38.631 13.202 -16.2 36.9 1.4 0.7 
09-01 39.084 13.506 -1 37.6 5.1 1.8 
09-02 38.981 13.396 -13.7 37.2 4.6 1.8 
16-01 38.860 13.260 -14 37.2 3.1 0.8 
16-02 38.802 13.152 -14 37.5 3.3 0.9 
22-1 38.858 13.161 -17 37.8 2.1 0.9 
22-2 core42 38.834 13.045 -26 37.5 2.9 0.8 
22-3 38.867 13.057 -12 37.9 6.1 1.0 
22-4 38.821 13.069 -24 38.0 3.8 1.0 
22-5 38.908 13.116 -12 38.0 3.1 0.8 
43-1 39.070 13.098 -9.5 37.8 5.6 1.1 
43-2 39.093 13.195 -10.5 38.0 3.3 0.6 
44 38.636 12.649 -1 35.5 7.8 1.3 
50-1 38.632 12.653 -14 37.8 4.0 1.3 
50-2 38.721 12.714 -15 38.0 3.2 0.9 
50-3 38.808 13.156 -24 37.9 4.3 1.2 
50-4 38.825 13.348 -14.8 38.0 3.5 0.9 
55 38.708 12.727 -38 38.0 3.9 1.0 
61-1 39.256 12.006 -0.6 0.0 172.6 6.7 
61-2 38.701 11.603 -10 37.6 8.2 1.1 

Table 7: Results from radon measurements.

Perspective for the continuation of the research 

In order to refine the calculation made above, radon activity should be measured in 

groundwater extracted from nearest piezometers. In addition, sediment water equilibration 

experiment should be performed to determine radon activity in pore water and radon 

diffusion rate from the sediments. A more detailed model of vertical diffusion in the water 

column and atmospheric escape should also be carried out to improve the estimate of the 

rate of radon inventory lost. 
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10.2 Lithologs and shear strength data 

Legend:
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10.3 MSCL data logs and core photographs 

(available in electronic version for cruise participants only) 
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Index of CD-ROM in back pocket 

(for cruise participants only): 

� PDF file of cruise report 

� Appendix 10.1 as XLS file 

� Appendix 10.2 as PDF files 

� Appendix 10.3 as PDF files 

� Tables 3 through 6 (Geochemistry) as DOC files 
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