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SUMMARY 

 

The Red Sea located between 30°N and 12°30’N separates Africa and Asia. It 

has a length of 1,840 km, an average width of 280 km and a total area of approximate 

4,600,000 km2. The Red Sea harbors complex ecosystems such as coral reefs, sea 

grass beds and mangrove forests. Soft corals are an important component of the reef 

communities and contribute substantially to the biological diversity in coral reefs of 

tropical Indo - Pacific region, and indeed globally. 

This study not only assessed the soft coral distribution along the Saudi Arabian 

Red Sea including diversity, abundance and coverage but also valuated their relation 

with environmental parameters along the large scale latitudinal gradient and at the 

local scale. Moreover, this study asks whether the conspicuous dominance of xeniid 

soft corals in the Red Sea reef systems may be due to their chemical defenses 

against predator reef fishes. 

Rapid ecological assessments (REA) and line intercept transect (LIT) methods 

were used in the field along the Saudi Arabian coast to record the cover and 

abundance of soft coral species. For a comprehensive diversity assessment, around 

1,000 soft coral samples were collected at 24 sites along the Saudi Arabian coast 

from shallow (1 m) to deep reefs (38 m) during three subsequent field trips. Further, 

the environmental parameters such as nutrients, temperature, sedimentation, turbidity 

and reef types were also recorded during these expeditions. The field surveys were 

carried out in February and September 2011, and February/March 2012 and the 

laboratory experiments were conducted from September 2013 to March 2014 at 

GEOMAR in Kiel, Germany. 

Seventeen genera of alcyonacean soft corals belonging to five families were 

found along the Saudi Arabian Red Sea coast by REA: Tubipora, Rhytisma, Klyxum, 

Cladiella, Sarcophyton, Lobophytum, Sinularia, Anthelia, Xenia, Ovabunda, 

Heteroxenia, Paralemnalia, Litophyton, Sterenonephtya, Nepthea, Dendronephthya 

and Siphonogorgia. The highest numbers of genera (fifteen genera) were found in the 

northern reefs. The southern reefs featured the lowest number of soft corals with eight 

genera. The most abundant genera throughout the Red Sea included, Sinularia, 

Xenia/Ovabunda, Sarcophyton and Tubipora. These were found at all reef sites. In 

contrast, the genera Cladiella, Stereonephtya, Heteroxenia and Siphonogorgia were 
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found in few areas only. Overall, the genera Xenia/Ovabunda and Sinularia featured 

highest abundances contributing most to the coverage of soft corals throughout the 

Red Sea. The LIT determined the average soft coral areal cover was 11% (± 3.8 SE), 

relative cover was lowest at southern reefs (Farasan: 0.6% ± 0.9) and highest in the 

northern reefs (Al-Wajh: 27% ± 2.1).  

Eightytwo soft coral species were identified belonging to Alcyoniidae (six 

genera, 40 species), Xeniidae (five genera, 24 species), Nephtheidae (six genera, 15 

species), Nidaliidae, Briareidae and Tubiporidae (one species each). This study 

reported new distribution of soft coral species records for the Red Sea. Bray-Curtis 

clustering of soft coral species composition and abundance grouped the sites into 

three main clusters: representing northern (Maqna and Al-Wajh), central (Yanbu, 

Jeddah, Rabigh, Mastura and Al-Lith) and southern (Doga and Farasan) reef areas 

respectively. 

The factors affecting the pattern of soft coral communities along coastal reefs 

of Saudi Arabia are substrate, depth, slope morphology, temperature, nutrients, 

sedimentation and turbidity. These factors, in combination, explained 65% of the total 

variation in soft coral community structure. The northern section had highest soft coral 

coverage (27% ± 4.1 SE) and diversity (44 species) and was characterized by lowest 

temperatures, low nutrient concentrations, steep reef slopes and low sedimentation. 

The southern section had lowest soft coral coverage (0.6% ± 0.9) and diversity (26 

species), and was characterized by high temperature, high nutrient concentration, 

mostly shallow reef slopes and high sedimentation. The central section was 

intermediate in cover, diversity and the key environmental factors. 

Xeniids, notably Xenia/Ovabunda species, were important components of soft 

coral communities in the Saudi Arabian Red Sea. Xeniids occupied 80% of soft coral 

cover in some areas. The relative coverage of xeniids ranged from 7.5% (± 2.1 SE) to 

14.4% (± 1.9) in the off-shore reefs, and from 0.6% (±1.1) to 8.5% (±3.3) in the near-

shore reefs, in response to major differences in water quality parameters. Eighteen 

species were recorded at the off-shore sites and 13 species in near-shore locations at 

Al-Wajh, Yanbu, Mastura/Rabigh and Jeddah. Multivariate analyses showed that 

xeniid communities differed between the eight reef sites surveyed. The xeniid 

communities were significantly different between inshore and offshore at Yanbu, 

Mastura/Rabigh and Jeddah reefs. They not only differ in coverage but also in the 

predominating genera and species diversity varies under different habitat conditions. 



Summary 

 

3 
 

Community composition partly varied according to anthropogenic impacts at some 

locations. 

The crude extract of two xeniid species deterred reef fishes in the field at the 

Red Sea to 86% (Ovabunda crenata) and 92% (Heteroxenia ghardaqensis. In the 

laboratory, natural concentration of crude extract deterred the reef fish Thalassoma 

lunare (moon wrasse) to 83% and 85%, respectively. Crude extract still showed 

unpalatable for moon wrasse even when reduced to 12.5% of the natural 

concentration in both species. While Heteroxenia ghardaqensis lacking sclerites, the 

sclerites of Ovabunda crenata species did not deter moon wrasses in the laboratory 

even under the increasing double natural concentration suggesting that sclerites 

provide structural support rather than antifeeding defenses. We conclude from that, 

the role of chemical defense against predation contributes to the conspicuous 

abundance of these soft coral species in the Red Sea. 
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ZUSAMMENFASSUNG  

 

Das Rote Meer liegt zwischen den Breitengraden 30°N und 12°30’N und trennt 

Afrika und Asian voneinander. Es ist 1.840 km lang, 280 km breit und bedeckt eine 

Fläche von ungefähr 4.600.000 km². Das Rote Meer beherbergt komplexe 

Ökosysteme wie Korallenriffe, Seegraswiesen und Mangrovenwälder. Weichkorallen 

sind ein wichtiger Bestandteil von Riffgemeinschaften und tragen erheblich zur 

biologischen Vielfalt der Korallenriffe im Indo-Pazifik bei, und sogar weltweit. 

Diese Studie untersuchte nicht nur die Verteilung der Weichkorallen entlang 

der saudi-arabischen Rote Meer Küste inklusive Diversität, Häufigkeit und 

Bedeckungsgrad, sondern auch deren Bezug zu den Umweltbedingungen entlang 

des groß-skalaren Gradienten über die Breitengrade, als auch auf lokaler Ebene.  

Weiterhin geht es in dieser Studie um die Frage, ob die auffällige Dominanz von 

xeniiden Weichkorallen in den Riffen des Roten Meeres mit der chemischen Abwehr 

von Fraßfeinden zu tun haben könnte. 

Die Methoden “Rapid ecological assessments” (REA, wörtlich: schnelle 

ökologischen Einsschätzungen) und “line intercept transects” (LIT, wörtlich: 

Linenabschnitte entlang von Transekten) wurden benutzt, um in den Riffen entlang 

der saudi-arabischen Küste Bedeckung und Vorkommen von Weichkorallen zu 

bestimmen. Für eine ausgedehnte Diversitätseinschätzung wurden circa 1.000 

Proben von Weichkorallen an 24 Standorten entlang der saudi-arabischen Küste in 1 

bis 38 m Tiefe gesammelt, während drei aufeinanderfolgenden Expeditionen. 

Weiterhin wurden während dieser Expeditionen auch die Umweltparameter 

Nährstoffkonzentrationen, Temperatur, Sedimentation, Trübung und Riff-Typ 

gemessen beziehungsweise dokumentiert. Die Untersuchungen im Feld wurden im 

Februar und September 2011 und im Februar/März 2014 durchgeführt, während die 

Laborexperimente von September 2013 bis März 2014 am GEOMAR Kiel, 

Deutschland, durchgeführt wurden. 

17 Gattungen von alcyonacea Weichkorallen zugehörig zu 5 Familien wurden 

entlang der saudi-arabischen Rote Meer Küste mit der REA Methode gefunden: 

Tubipora, Rhytisma, Klyxum, Cladiella, Sarcophyton, Lobophytum, Sinularia, Anthelia, 

Reef slope in Al-Wajh, Saudi Arabia 
Reef slope in Al-Wajh, Saudi Arabia 
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Xenia, Ovabunda, Heteroxenia, Paralemnalia, Litophyton, Sterenonephtya, Nepthea, 

Dendronephthya und Siphonogorgia. Die höchste Anzahl an Gattungen (15) wurde im 

nördlichen Abschnitt gefunden. Die südlichen Riffe beherbergten die geringste Anzahl 

mit nur acht Weichkorallengattungen. Die Gattungen, die am häufigsten vorkamen im 

gesamten Roten Meer beinhalten Sinularia, Xenia/Ovabunda, Sarcophyton und 

Tubipora. Diese kamen an allen Riffen vor. Im Gegensatz dazu wurden die Gattungen 

Cladiella, Stereonephtya, Heteroxenia und Siphonogorgia nur in manchen Gebieten 

gefunden. Generell zeigten die Gattungen Xenia/Ovabunda und Sinularia das höchste 

Vorkommen und steuerten somit den höchsten Bedeckungsgrad an Weichkorallen im 

gesamten Roten Meer bei. Mit der LIT Methode wurde ein mittlerer Bedeckungsgrad 

von Weichkorallen von 11% (± 3.8 SE) festgestellt, während die niedrigste Bedeckung 

im südlichen Abschnitt (Farasan: 0.6% ± 0.9) und die höchste Bedeckung im 

nördlichen Abschnitt (Al-Wajh: 27% ± 2.1) gefunden wurde. 

82 Weichkorallenarten wurden identifiziert welche zu den Familien Alcyoniidae 

(6 Gattungen, 40 Arten), Xeniidae (5 Gattungen, 24 Arten), Nephtheidae (6 

Gattungen, 15 Arten), Nidaliidae, Briareidae und Tubiporidae (jeweils eine Art) 

gehören. Innerhalb der Studie wurden auch neue Arten im Roten Meer entdeckt. 

Bray-Curtis Clustering der Artenzusammensetzung und der Häufigkeit gruppierte die 

untersuchten Riffe in drei Haupt-Cluster, welche durch den nördlichen (Maqna und Al-

Wajh), den zentralen (Yanbu, Jeddah, Rabigh, Mastura and Al-Lith) und den 

südlichen (Doga and Farasan) Abschnitt repräsentiert wurden.  

Die Hauptfaktoren, die das Verteilungsmuster der 

Weichkorallengemeinschaften entlang der Küste von Saudi-Arabien bestimmen, sind 

Substrat, Tiefe, die Morphologie des Hanges, Temperatur, Nährstoffe, Sedimentation 

und Trübung. Diese Faktoren erklären in Kombination 65% der Gesamtvariation in der 

Struktur der Weichkorallengemeinschaft. Der nördliche Abschnitt hatte die höchste 

Weichkorallenbedeckung (27% ± 4.1 SE) und Diversität (44 Arten) und wies die 

niedrigste Temperatur, niedrigste Nähstoffkonzentration, steilsten Riffhänge und 

niedrigste Sedimentationsrate auf. Der südliche Abschnitt hatte die niedrigste 

Weichkorallenbedeckung (0.6% ± 0.9) und Diversität (26 Arten) und wies die höchste 

Temperatur, höchste Nährstoffkonzentration, zumeist recht flache Riffhänge und hohe 

Sedimentationsraten auf. Der zentrale Sektor wies mittlere Bedeckung und Diversität 

auf, und auch mittlere Werte bei den Umweltfaktoren. 
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Xeniidae, beziehungsweise Xenia/Ovabunda Arten, waren wichtiger 

Bestandteil der Weichkorallengemeinschaften im saudi-arabischen Roten Meer. In 

manchen Gebieten beanspruchten die Xeniide bis zu 80% der gesamten 

Weichkorallenbedeckung. Die relative Bedeckung der Xeniidae, reichte von 7.5% (± 

2.1 SE) bis 14.4% (± 1.9) in küstenfernen Riffen, und von 0.6% (±1.1) bis 8.5% (±3.3) 

in küstennahen Riffen, je nach Wasserqualität. In küstenfernen Riffen wurden 18 

Arten gefunden, 13 Arten wurden in küstennahen Riffen gefunden bei Al-Wajh, 

Yanbu, Mastura/Rabigh und Jeddah. Multivariate Analysen zeigten, dass die 

Xeniiden-Gemeinschaften unterschiedlich waren zwischen den 8 untersuchten Riffen. 

Die Xeniiden-Gemeinschaften waren signifikant unterschiedlich zwischen 

küstenfernen und küstennahen Riffen bei Yanbu, Mastura/Rabigh und Jeddah. Sie 

unterschieden sich nicht nur im Bedeckungsgrad, sondern auch in den dominierenden 

Gattungen und in der Artenvielfalt welche je nach Habitateigenschaften schwankte. 

Die Zusammensetzung der Gemeinschaften variierte je nach Stärke des 

menschlichen Einflusses. 

Das Rohextrakt von zwei Xeniide Arten wehrte Rifffische im Roten Meer in 

86% (Ovabunda crenata) und in 92% (Heteroxenia ghardaqensis) aller Fälle ab. Unter 

Laborbedingungen wehrte das Rohextrakt in natürlicher Konzentration den Rifffisch 

Thalassoma lunare (Mondsichel-Lippfisch) in jeweils 83% and 85% aller Fälle ab. Das 

Rohextrakt war immer noch ungenießbar für den Mondsichel-Lippfisch bei einer 

Konzentration von 12,5% der natürlichen Konzentration in beiden Weichkorallenarten. 

Während Heteroxenia ghardaqensis keine Sklerite besitzt, haben die Sklerite von 

Ovabunda crenata keinen Effekt in der Abwehr von dem Mondsichel-Lippfisch 

gezeigt, selbst bei doppelter Menge der natürlich vorkommenden Konzentration. Das 

bedeutet, dass Sclerite höchstwahrscheinlich nur zur strukturellen Stütze vorhanden 

sind und nicht zur Abwehr von Fraßfeinden dient. Wir schließen daraus, dass die 

chemische Abwehr gegen Fraßfeinde zum erheblichen Erfolg dieser 

Weichkorallenarten im Roten Meer beiträgt. 
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GENERAL INTRODUCTION 

 

1. Coral reefs 

Coral reefs are a complex ecosystem with high diversity, biological productivity 

and provide habitat for a vast number of species. Hence, they are considered to be 

the rainforest of the sea (Connell 1978). The tropical reefs are distributed between 

30°N and 30°S where the surface temperature rarely falls below 20°C (Fig.1). By using 

different methods, the estimate of global coral reef areas ranges from 255,000 to 

3,930,000 km
2
 and approximately occupies 0.1 - 0.5% of the ocean floor (Smith 1978; 

Copper 1994; Kleypas 1997; Spalding and Grenfell 1997).  

 

Figure 1: Global tropical coral reef distribution (Source: http://oceanservice.noaa.gov) 

The most recent estimation calculated that the coral reefs total area amounts 

to 284,300 km2 and the total reef area comprises less than 1.2% of the world’s 

continental shelf areas (Spalding et al. 2001), (Tab.1). The distribution of tropical coral 

reefs can be divided into four main biogeographic regions: the Indo-West Pacific, East 

Pacific, West Atlantic and East Atlantic (Paulay 1997). Among these regions, the area 

of coral reef of the Indo-Pacific region is highest, occupying approximately 92% of 

total coral reef area (Spalding et al. 2001).The tropical reefs are distributed along the 

coastal lines of 80 countries of the world; where the lowest extension of coral reef 

Reef in Yanbu, Saudi Arabia Reef flat in Yanbu, Saudi Arabia 

http://oceanservice.noaa.gov/
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areas reaches in Israel (ca. 10 km2), while Indonesia is the country with coral reef 

areas occupying about 51,000 km2 (Spalding et al. 2001). 

Table 1: Estimate of global reef areas in the world (Source: Spalding et al. 2001). 

Regions Area (km2) % of world total 

Caribbean 21,600 7.0 

Atlantic 1,600 0.6 

Red Sea and Gulf of Aden 17,400 6.1 

Arabian Gulf and Arabian Sea 4,200 1.5 

Indian Ocean 32,000 11.3 

Southeast Asia 91,700 32.3 

Pacific 117,500 41.4 

Total 284,300 100 

Coral reefs are among the ecosystems with highest diversity of species with 

around 93,000 macroscopic species described to date (Reaka-Kudla 1997). Among 

corals and allied taxa, around 5,350 species have been described, including 

octocorals, scleractinians, hydrocorals and antipatharians (Williams and Cairns 2013). 

However, these tallies of species are incomplete because it is estimated that 

approximately 91% of the species of the oceans are still to be described (Mora et al. 

2011) and only around 62% - 79% of Hexacorallia and Octocorallia species have been 

described to date (Ward et al. 2012). 

Although coral reefs occupy less than 1.2% of earth’s continental shelf, they 

provide numerous renewable and non-renewable resources and ecosystem services 

(including physical structure service, biotic service, biogeochemical service, 

information service and social/culture service, Moberg and Folke 1999).  

Martínez et al. (2007) calculated that the ecosystem service products 

amounted to approximately 172 billion US dollars per year.  For example, 1 km2 of 

coral reef in a good condition could provide the protein source for over 300 people 

(Jennings and Polunin 1996). Cesar et al. (2003) estimated the global economic 
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benefits from coral reefs at approximately 30 billion USD per year, which includes 

fisheries (5.7 billion), coastal protection (9.0 billion), tourist/recreation (9.6 billion) and 

biodiversity value (5.5 billion). 

Soft corals (Octocorallia, Alcyonacea) represent major components of the 

sessile benthos contributing to the diversity of tropical reef communities (Dinesen 

1983; Fabricius and Alderslade 2001), including the coral reefs of the Red Sea 

(Benayahu and Loya 1977, 1981; Benayahu 1985; Reinicke 1997) and the Atlantic 

Ocean (Cortes 1997; Chiappone et al. 2001).  

More than 200 genera of Octocorallia (Bayer 1981) and around 90 genera 

belonging to 23 families of alcyonacean soft coral have been described from the 

Central-West Pacific, Indian Ocean and the Red Sea region (Fabricius and Alderslade 

2001). Williams and Cairns (2013) calculated around 3,400 Octocorallia species which 

contributed 64% of the total species of the class Anthozoa. The Indo-Western Pacific 

is known to be the ‘hotspot’ of soft coral diversity, in the world’s center for coral reefs 

(Fig. 1, Dinesen 1983; Fabricius and Alderslade 2001; Hoeksema and Putra 2000). 

In general, diversity of soft corals increases towards the equator or decreases 

both with increasing latitude and longitude away from the diversity centre (Ofwegen 

2000; Benayahu et al. 2003). For example, the species richness of Octocorallia was 

found to be greatest in the northern region, between 11° and 13° latitude in the Great 

Barrier Reef (Fabricius and Alderslade 2001; Fabricius and De’ath 2001). 

2. Biology of soft coral 

Soft corals belong to the order Alcyonacea, subclass Octocorallia, class 

Anthozoa and phylum Cnidaria (Bayer 1981). The most important feature of 

Octocorallia distinguishing them from the others is that each polyp bears eight 

tentacles and usually one or several rows of pinnules on both sides of the tentacle. 

Moreover, unlike stony corals with structural skeletons, the small sclerites embedded 

in the coenenchyme in most soft corals are another different characteristic between 

hard and soft corals.  

Along with the hard scleractinian corals, soft corals play an important role as 

components of coral reef benthic assemblages, influencing primary productivity and 

providing a source of food and habitats for other organisms (Fabricius and Alderslade 
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2001). Moreover, the sclerites of fleshy soft coral like genus Sinularia consolidated on 

the substratum could contribute to the reef building (Jeng et al. 2011) 

2.1. Colony growth forms 

 The variable colony shapes is one of the characteristics of soft corals. Each 

kind of colony shape of the soft corals consists of different parts such as stalk, lobe, 

disc and capitulum. Bayer et al. (1983) defined the various growth forms and used 

technical terms such as membranous, encrusting, digitate, massive, arborescent 

shapes (Fig. 2) for the description of Octocorallia. Although, in some soft corals the 

colony form could be variable within species (Benayahu et al. 1998); the colony shape 

is one of the important characteristics for taxonomical classifications (Bayer et al. 

1983).  

 

Figure 2: The various soft coral forms. Note: A: Lobate form (Cladiella kremfi), B: Arborescent 

(lyrate) form (Ctenocella pectinata), C: Encrusting form (Cladiella tenuis), D: Digital form 

(Sinularia capilosa), E: Arborescent (dichotomus) form (Ascolepis splendens) and F: Stolonate 

growth form (Clavularia harma = Briareum hamrum). Adapted from Bayer et al. (1983). 
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2.2. Polyp structure 

Two types of polyps are found in soft corals: autozooid and siphonozooid 

(Ashworth 1899; Pratt 1906). Autozooids contain eight tentacles including eight septa 

to connect with pharynx while siphonozooids have a simple structure with reduced 

size and still eight rudimentary tentacles (Hyman 1940) (Fig. 3).  

 

Figure 3. A The surface of soft corals with expanded autozooid polyps (red arrow) and 

numerous small rounded siphonozooids (yellow arrow) Adapted from Fabricius’ photo in 

Fabricius and Alderslade (2001). B Autozooid structure. Adapted from Williams (1986). C: 

Siphonozooid structure. Adapted from Ashworth (1899). Notes: rp, retracted polyp;  gc, gastric 

cavity; mf, mesenterial filament; ph, pharynx; pp, proximal region of polyp; oc, outer 

coenenchyme; ic, internal coenenchyme; s, solenial tubes; se, septa; t, tentacle. 
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The polyp of soft corals constitute three layers: the outer layer of tissue is 

called the epidermis which contains mucus producing cells, sensory cells and 

nematocysts. The inner layer is called the gastrodemis covering the gastric cavity, 

mesenterial filament, pharynx. The layer between epidermis and gastrodemis is called 

the coenenchyme and consists of fiber, amoeboid cells and calcareous sclerites 

(Fabricius and Alderslade 2001). 

The function of the two types of polyp is different, the autozooid is responsible 

for capture of prey and sexual reproduction while siphonozooids maintain irrigation of 

the colony and take small suspended food particles (Fabricius and Alderslade 2001). 

The total length of autozooid and siphonozooid are not only variable among species 

(Pratt 1906) but can also vary within the same species (Ashworth 1899). The numbers 

of siphonozooids present on the surface of colonies and the distance between 

siphonozooid and autozooid are also important characteristics for identification of 

some soft coral species (Verseveldt 1982, 1983).  

2.3. Symbiotic algae 

 Soft corals can be differentiated into two groups by the presence or absence 

of their symbiosis with dinoflagellate algae called zooxanthellae (genus 

Symbiodinium) embedded in their gastrodermal cells. The colour variation of most 

zooxanthellate soft corals is influenced by the density of the symbiotic algae present 

(Gohar 1940). Moreover, different colors even occur within the same species 

(Verseveldt 1969). The diameter of zooxanthellate cells have been found to be 

between 8 - 12µm in corals and their densities usually range between 1 - 2x106 cm-2 

(Muller-Parker and D'Elia 1997).  

Based on the genetic sequence, the genus Symbiodinium is divided into 9 

groups (= clades) abbreviated as A-I (Barneah et al. 2004; Van Oppen et al. 2005; 

FitzPatrick et al. 2012). Trench (1987) suggested that the post-larval stages of soft 

coral could acquire the dinoflagellate in two ways: (1) The acquisitive direction in 

which larvae receive algae from parental mature source by brooding reproduction, 

called vertical transmission and (2) to receive algae from ambient environment, called 

horizontal transmission. In vertical transmission the host can completely obtain its 

symbiotic algae from parents and thus quickly adapt to the new life conditions, while in 

horizontal transmission, the juvenile stages may take up different clade types of algae 

http://www.academicpub.com/map/authors/S.%2BFitzPatrick.html
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from the surrounding environment, which may result in reduced or enhanced 

adaptation of the holobiont towards environmental conditions.  

Barneah et al. (2004) reported that the vertical transmission belongs to 

Symbiodinium clade A while horizontal transmission belongs to the predominant 

Symbiodinium clade C in the soft corals. However, it appears possible that all suitable 

clades may be either vertically or horizontally transmitted, depending on the biology of 

the coral host. Most xeniiid species exhibit brooding reproduction (Kahng et al. 2011), 

and hence it could be that most of them uptake symbiotic algae by vertical 

transmission (e.g. in Ovabunda macrospiculata (Benayahu and Schleyer 1998); and 

Anthelia glauca (Achituv et al. 1992)). 

2.4. Sclerites  

Calcium carbonate spicules are common attributes in Octocorallia, as well as 

in many Porifera, Echinodermata and Ascidiacea (Kingsley 1984). The sclerites are 

embedded in the coenenchyme of soft corals and they vary in shapes and 

concentration between species or different parts of colony of the same species 

(Sammarco et al. 1987; Van Alstyne et al. 1992). However, the density and length of 

sclerites can also vary along the depth gradient (West 1998; Clavico et al. 2007). 

Sizes and shapes of the spicules are uasually species-specific and are used as 

taxonomic tools (Bayer et al. 1983).  

Most of the studies available suggested that the main function of sclerites is to 

support the structural polyp and colony (Lewis and Von Wallis 1991; Van Alstyne et al. 

1992; O’Neal and Pawlik 2002) or act as defensive tools against predators like 

carnivorous fishes (Van Alstyne et al. 1992, 1994). However, some soft corals lack 

sclerites (Gohar 1940), and hence their function is still under debate (Kelman et al. 

1999; O’Neal and Pawlik 2002) 

2.5. Reproduction 

 Soft corals reproduce both sexually and asexually. Sexual reproduction 

includes both gonochorism and hermaphroditism. In gonochorism, males and females 

form separate colonies (up to 89% of soft corals). In hermaphroditism, mature 

colonies consist of both male and female (Kahng et al. 2011). Three types of sexual 

reproduction are known in Octocorallia and spawning time differs between season and 

species (Gohar 1940; Benayahu and Loya 1983, 1984b; Benayahu 1991): (1) 
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Broadcasting sperm and eggs - the sperm and eggs are expelled synchronously by 

the mature colonies into the water where the fertilization occurs (2) internal brooding - 

the fertilization occurs inside the female colonies and (3) External surface brooding - 

the eggs are fertilized and remain on the surface of female colonies where they 

develop into larvae (Fig. 4).  

 

Figure 4: Sexual reproduction in soft corals. (a) External surface brooding (Briareum 

hamrum), (b) internal brooding (Heteroxenia fuscescens). (Source: Kahng et al. 2011). 

The ratio of broadcasting spawning species (49%) is approximately equal to 

those internally brooding (40%) plus external brooding (11%) in the sexual 

reproduction of soft corals (Kahng et al. 2011). Interestingly, some species may also 

show different sexuality in different regions, for example Heteroxenia elizabethae is 

described to be gonochoric in the Great Barrier Reef but hermaphroditic in the Red 

Sea; Sarcophyton glaucum is gonochoric in the Red Sea but mixed in South Africa 

(Kahng et al. 2011). It could be that the environmental conditions may be responsible 

for the various sexuality of soft corals or that sibling species are present in these 

species. 

Asexual propagation is a common type of reproduction in soft corals (Fabricius 

and Alderslade 2001) including colony fragmentation, fission or budding. These 

asexual strategies are performed on different parts of colonies within and between 

species. For example Sinularia flexibilis produces small buds on the edge or base of 
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colonies (Fabricius and Alderslade 2001), Ovabunda macrospiculata buds the second 

polyp around 3-4 months after settlement on the substratum (Benayahu and Loya 

1984a). Asexual reproduction, as for example by fragmentation, is one of the reasons 

for successful growth and recovery of some soft corals on disturbed reefs (Highsmith 

1982).  

2.6. Nutrition 

 Most soft corals acquire nutrients by two pathways: feeding and 

photosynthesis. Azooxanthellate soft corals get the nutrients by feeding on small 

particles or capture prey from the ambient environment. In contrast, zooxanthellate 

soft corals uptake energy through photosynthesis by symbiotic dinoflagellate but also 

gain additional nutrition (nitrogen, phosphorous, trace elements etc.) by trapping food 

from the ambient environment (Fabricius and Alderslade 2001). 

Feeding: Suspension feeding by selected asymbiotic soft corals targets small 

particulate organic matter (<20 size µm) including phytoplankton, ciliates, 

dinoflagellates, diatoms, bacterioplankton or microzooplankton (Fabricius et al. 1995a; 

Fabricius et al. 1995b; Ribes et al. 1998). Currents of medium speed (ranging 8 - 15 

cm s
-1

) provide good feeding conditions for soft corals. Stronger currents reduce 

feeding efficiency by bending the polyps and increasing speed of particles (Fabricius 

et al. 1995b). 

Nematocysts used in prey capture are embedded in the outer layer of soft coral 

tissue (epidermis) (Fig. 5). These nematocysts are simpler in comparison to other 

animals like jellyfish, hydroids and sea anemones. Thus, the prey capture capacity of 

soft coral nematocysts is limited to weakly swimming organisms, including bivalve or 

gastropod larvae, while zooplankton with stronger swimming activity can often escape 

after being captured (Fabricius et al. 1995b). Hence the proportion of carbon and 

nitrogen contributed by prey capture is less than that from suspension feeding in 

nutrition of soft corals (Fabricius et al. 1995a; Ribes et al. 1998). 

Photosynthesis: Although the zooxanthellate soft corals can acquire nutrients 

by prey capture, they acquire more energy from photosynthesis by their symbiotic 

algae. Conversely, the waste products obtained by prey capture or suspension 

feeding are transported to zooxanthellae by their host coral. Muscatine (1990) 

reported that symbiotic algae can provide up 90% energy by photosynthesis for 



General introduction                                                                                              

 

16 
 

fulfilling the nutrient requirement of the host. However, the supply of photosynthetic 

products to the host coral differs among Symbiodinium clades (Stat et al. 2008).  

Some studies have suggested that tropical soft coral species increase the 

density of zooxanthellae in their tissues in the winter season, in response to the low 

light conditions; and also that azooxanthellate soft corals are more abundantly 

distributed in areas of high turbidity (Muller-Parker and D'Elia 1997; Fabricius and 

McCorry 2006), where zooxanthellate species may receive insufficient illumination 

and/or be stressed by sedimentation. 

 

Figure 5: The nematocytes (arrows) in the gastrovascular cavity of Heteroxenia fuscescens 

(A) and view of a nematocyte (B) note: mf. Mesenteries (Source: Yoffe et al. 2012). 
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2.7. Anti-predator defense of soft corals 

 Predation is known to be one of the factors influencing or controlling 

populations of many marine invertebrates, including soft corals, presumably driving 

natural selection for the evolution of defense mechanisms. Soft corals deter their 

predators by physical defense, chemical defense or both (La Barre et al. 1986; 

Sammarco and Coll 1992; Van Alstyne et al. 1994; O’Neal and Pawlik 2002).  

Chemical defense is defined as the production of metabolites by the prey to 

defend itself against predators through toxicity or unpalatability (Pawlik 2012). Toxicity 

means that the metabolites produced by soft corals can cause damage to, or death of, 

the predators. Unpalatability is achieved through the production of secondary 

metabolites that can deter predators by distastefulness without harming the predators. 

Anti-predatory defenses of soft corals exhibit temporal and spatial variation in 

response to environmental conditions (Slattery et al. 2001). 

Additive and synergistic phenomena are apparent in chemical defense by soft 

corals (Pawlik 2012). For example, single compounds of soft corals could not deter 

predation when tested separately. However, anti-predator defense did occur when 

different compounds were combined (Epifanio et al. 2007). Single compounds have 

also proven less effective at predator deterrence than the sum of effects of all active 

compounds (Fenical and Pawlik 1991; Pawlik and Fenical 1992). 

Unlike the stony corals that have the skeleton for support, most soft coral 

species have small sclerites in the coenenchyme, which may provide a means of 

physical defense. However, such physical defense by sclerites may be effective only 

in those parts of the colony where their concentration is particularly high (Puglisi et al. 

2000). Moreover, the defensive role of sclerites depends on their shape, size, 

abundance and the arrangement of sclerites on the polyp or colony (Sammarco et al. 

1987; Van Alstyne et al. 1992; Koh et al. 2000; Burns and Ilan 2003). 

Some soft coral species showed a deterrence of predators both through 

physical and chemical defense (Van Alstyne and Paul 1992; Koh et al 2000; O’Neal 

and Pawlik 2002). The combination of both physical and chemical defense was found 

to be a more effective deterrent than their activity when separated (Burns and Ilan 

2003). For example, the incorporation of sclerites and crude extracts was more 

unpalatable to predators because of reduced food quality (Duffy and Paul 1992). The 



General introduction                                                                                              

 

18 
 

penetration of chemicals into the tissue was aided by sclerite damage to the mouth of 

the predator (Burns and Ilan 2003). 

3. Environmental conditions and their influence on soft corals distribution  

These parameters may act independently or together in structuring coral 

communities. For example, water motion, depth and slope angle are important abiotic 

factors that can affect local distribution patterns, cover and morphology of soft corals 

(Fabricius and De’ath 1997). 

3.1. Temperature 

Temperature is a limiting factor for distribution of zooxanthellate soft corals. 

Some species of the symbiotic algae in soft coral can become physiologically stressed 

by temperature extremes, typically when the temperature is lower than 18°C or above 

31°C, particularly if such extremes are present for extended periods. Rising 

temperatures can cause bleaching in corals through loss of the symbiotic 

zooxanthallae, the Symbiodinium from their tissues.  

Typically bleaching is a three step process: initiation of signal factors (e.g. 

rising temperature), appearance of symptoms (losing pigment in the symbiont algae 

and/or coral host) and induction of bleaching mechanism (the response of symbiont 

algae and the coral host to signal factors) (Douglas 2003). Susceptibility to 

temperature related bleaching differs between soft coral species (Strychar et al. 

2005). Corals are more resistant in some regions where the temperature is more 

variable (Guest et al. 2012). Azooxanthellate soft corals are not affected by bleaching, 

facilitating their distribution in certain regions unfavorable or inimical to the 

zooxanthellate taxa, and to temperate zones and deep water (Fabricius and 

Alderslade 2001).  

3.2. Light conditions 

 Like terrestrial plants, the zooxanthellate soft corals need light for 

photosynthesis of their symbiotic algae. As zooxanthellae provide photosynthetic 

products to their coral hosts, light conditions may become a limiting factor for the 

distribution of soft corals. Photosynthesis of symbiotic algae is important for 

calcification in corals (review by Tambutté and Ferrier-Pagès 2008). Soft coral 

diversity can shift from zooxanthellate to azooxanthellate species along a gradient of 
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turbidity (Fabricius and De’ath 2001), which means that the ambient light condition, 

like temperature, is an important factor in the structure and distribution of soft coral 

communities. 

3.3. Sedimentation 

 Soft corals are more sensitive to sediment deposition than hard corals (Riegl 

1995). Deposited sediments can affect corals by preventing feeding and/or 

photosynthesis and reducing available substrates suitable for coral settlement (Huston 

1995; Pastorok and Bilyard 1985; Birrell et al. 2005). Sediments deposited on the 

surface of soft corals can cause necrotic tissue in colonies after several days and 

bleaching in some parts of the colony or death after several weeks (Riegl 1995).  

Moreover, like hard corals, the impact to soft corals of sediment deposition 

depends on a wide variety of factors, including the amount and types of sediment, and 

the impact varies between species (Fabricius 2005). Soft corals can use their mucus 

as a sheet to protect themselves against sedimentation (Riegl and Branch 1995), and 

sediments may also be dislodged from their surface by current motion or gravity (Riegl 

1995). Substratum selection for settlement can influence colony development and 

survival rate (Benyahu and Loya 1984b). 

3.4. Human impacts 

 Direct or indirect impacts of human activities have significant effects on the 

distribution, abundance and community structure of soft corals. These can include oil 

pollution, sewage pollution, nitrate, phosphate and sulphur enrichment and inputs of 

other pollutants in river runoff and from shipping, destructive and overfishing and 

recreational activities (Pastorok and Bilyard 1985; Ammar et al. 2007; Tilot et al. 2008; 

Klaus et al. 2008; Mohammed 2012).  

3.5. Predation and competition 

As introduced above in Section 2.7, some soft coral species, notably of the 

families Xeniidae and Alcyoniidae, contribute to the diet of coral reef fishes (Gohar 

1940). Some taxa known to feed on soft corals are egg cowry (Ovula ovum) and 

carnivorous coral fishes. Predation can be a major force structuring reef communities. 

For example, in 27 years (1985-2012) the major decline in hard coral cover on the 

Great Barrier Reef declined to 42% was mainly due to predation by the crown-of-
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thorns starfish Acanthaster planci, but also from impacts of tropical storms, bleaching 

and pollution in river runoff (De’ath et al. 2012). However, such major declines in soft 

coral cover from predation across an entire reef tract so far have not been 

documented. 

Competition for space is common among the sessile organisms dwelling on 

coral reefs. Benayahu and Loya (1981) suggested that stony corals and algae are 

major groups competing for space with soft corals on the reef flat. However, soft 

corals can respond to such space competition by using a variety of strategies. For 

example, some soft corals can cause necrosis of tissue in stony corals when the 

colonies are in contact (Sammarco et al. 1985); or kill stony corals in their direct 

vicinity by releasing allelopathic chemicals into the surrounding sea water (Sammarco 

et al. 1983). Moreover, moving to occupy new space or moving away from each other 

via asexual reproduction are strategies used by soft corals to avoid competition 

(Benayahu and Loya 1981; La Barre et al. 1986). 

3.6. Storms and disease 

As noted above, tropical storms (variously known as cyclones, typhoons or 

hurricanes) can cause significant declines in coral cover, as for example on the Great 

Barrier Reef (De’ath et al. 2012) and in the Caribbean Sea. However, such storms 

also provide new substratum for settlement and recruitment.  

Coral diseases are becoming increasingly important, with 18 coral diseases of 

zooxanthellate corals currently known from the Caribbean and Indo-Pacific regions 

(review in Sutherland et al. 2004). Coral diseases are more common in hard corals 

(0.3%) than soft corals (less 0.03%) in the central Pacific and 0.63% coral disease 

reported in the northern Red Sea (Williams et al. 2011; Mohamed et al. 2012). It could 

be that soft coral are more resistant towards the impacted disease than hard corals 

(Williams et al. 2011). 

 

4. Soft corals in the Saudi Arabian Red Sea 

The Red Sea is the north-western extension of the tropical Indo-Pacific and 

includes complex ecosystems, mainly coral reefs, sea grass beds and mangroves.  
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Environmental parameters such as temperature, salinity, chlorophyll a and 

nutrients vary along a gradient from north to south in the Red Sea (Morcos 1970; 

Sawall et al. 2014). For example, temperature on the sea surface ranges between 20-

26°C in the northern Red Sea and 26-33°C in the southern Red Sea. The highest 

salinity value is 41.2 psu in the North and 37.4 psu in the South and chl a ranges 

between 0.01 µg l-1 in the North to 1.98 µg l-1 in the South (Fig. 6). 

 

Figure 6: Mean of sea surface temperatures 
°
C (A), salinity psu (B) and chlorophyll a content 

(mg m
-3

) in the Red Sea (A, B: Miami Isopycnic Coordinate Ocean Model average over the last 

9 years of simulation. Source:  Sofianos and Johns 2003; C: Field-of-View sensor average of 

chl a concentration for the Red Sea from Jan. 1998 to Dec. 2004. Source: Acker et al. 2008). 

  The total area of coral reefs in the Red Sea is estimated to be approximately 

17,640 km2 of which around 6,660 km2 is present in the Saudi Arabian area, 

representing about 2.34% of world’s total shallow water reef area (Spalding et al. 

2001) (Fig. 7). The three general types of reefs in the Red Sea include patch, fringing 

and barrier reefs. While the Gulf of Aqaba in the northern Red Sea is characterized by 

fringing reefs along the coast, the central and northern Red Sea exhibit all reef types: 

barrier reefs on submerged limestone platforms, fringing reefs along the coast and 

around various islands and diverse patch reefs. Towards the South the slope of the 

coastal sea bed decreases slowly and fringing reefs around islands (Farasan banks 

and islands) and patch reefs are most common (Sheppard et al. 1992). 
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Figure 7: Coral reef distribution in the Red Sea (Adapted from: Wilkinson 2008)  
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  The Red Sea has a long history of coral reef research. First observations about 

soft coral diversity were carried out by Forskål as early as 1775. The knowledge of 

soft coral diversity in the Red Sea increased following various expeditions. Benayahu 

(1985) reviewed the soft coral diversity in the northern Red Sea and reported 183 

species from this region, including 18 new species and 29 new geographical records. 

Benayahu et al. (2002) in a study of soft corals in the southern Red Sea, listed 28 

species, among them five genera and 16 species were recorded for the first time in 

the South. Ofwegen’s (2000) revision of the genus Sinularia indicated that this genus 

in the Rea Sea exhibits the highest diversity among the different reef regions of the 

world. Reinicke (1997) reported 34 species of xeniid soft corals, some of which were 

first records in the Red Sea. Halász et al (2013) reexamined the xeniid samples and 

reported 11 species belonging to new genus Ovabunda Alderslade (2001) in the Red 

Sea. 

During recent years, the rapid economic development and costal activities in 

Saudi Arabia have led to increasing pressure on coral reef systems, especially 

impacting shallow inshore reefs on local scales (PERSGA 2010). For example, the 

amount of wastewater discharged into the sea in Jeddah city was 800,000 m3/day 

(Kotb et al. 2008) and the metal pollution in sediments was recorded to be in a high 

concentration at Yanbu, Rabigh and Jeddah, where there are many industrial and 

human activities along the coast line (Badr et al. 2009).  

These are potentially significant point sources impacting coral reef 

communities in the adjacent near-shore areas. Scuba diving has also been found to 

impact coral communities as it increases both the amount of dead coral and coral 

rubble (Tratalos and Austin 2001). Recreational activities such as scuba diving and 

trampling on coral reefs are common in some areas of the Red Sea, though not in 

Saudi Arabia (Hawkins and Roberts 1993).  

The desalination plants of Saudi Arabia, which supply potable water to towns 

and cities, pump out about 2.27 million m3/day of salty water into the sea (Hoepner 

and Lattemann 2002; Dawoud and Al-Mulla 2012). Hence impact from anthropogenic 

activities may be an important factor affecting local coral reefs along some sections of 

Saudi Arabia coastline, as indeed elsewhere in the Red Sea. 
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5. Thesis outline 

Soft corals in the Red Sea are a dominant component of diversity and 

abundance of coral reef benthos. Indeed, diversity of soft corals in the Red Sea is 

among the highest in the tropical coral region. Given that environmental conditions 

such as temperature, salinity and chlorophyll a all change along a gradient from north 

to south in the Red Sea, this gradient could be considered as a ‘natural experiment’ to 

investigate soft coral diversity and abundance for comparison with other regions.  

Moreover, human activities are increasing along the Saudi Arabian coast. 

Several important questions are: whether or not there is a clear relation between soft 

coral abundance and diversity and the environmental gradient in the Red Sea, how 

human activities impact to soft coral communities in the near-shore and what factors 

influence relative abundance of soft corals on the coral reefs? Moreover, survey of the 

soft coral communities from the northern to the southern Saudi Arabian Red Sea will 

contribute to a better understanding of biodiversity and large scale distribution 

patterns in the Red Sea. 

To address the above questions, this study of soft coral communities in the 

Red Sea undertook to resolve three main aspects:   

 How do the soft coral communities alter in diversity and distribution patterns 

along the gradient of environmental conditions from the northern to the 

southern Red Sea? 

 How do the soft coral communities respond under differing conditions of impact 

from different pollution sources?  

 Why are some soft coral species dominant where generalist carnivorous fish 

are prevalent on the reefs; and how do physical or chemical defences of soft 

corals confer protection against predator fish? 

The first question was addressed in chapter one: Patterns of soft coral 

(Octocorallia, Alcyonacea) diversity and distribution along a strong latitudinal 

environmental gradient in the coastal reefs of the Saudi Arabian Red Sea. This 

chapter focuses on the relative abundance of genera and diversity of alcyonacean soft 

coral species along the Saudi Arabian Red Sea coastline as well as their relation with 

ecological parameters influencing the distribution patterns. 
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The second question of effects of pollution was addressed in chapter two: 

Patterns of Xeniidae (Octocorallia, Alcyonacea) communities impacted by different 

environmental parameters in the Red Sea. The aim of this chapter is the comparison 

of xeniid assemblages in the Al-Wajh, Yanbu, Matura/Rabigh and Jeddah areas on 

the Saudi-Arabian Red Sea coast between near-shore and off-shore reef sites under 

differing conditions of impact from human pollution sources. The study also includes 

the results of substratum coverage surveys and relative abundance of alcyonacean 

soft corals at genus level at reefs effected by different environmental conditions. 

The third question of chemical defense of soft coral against predatory fishes 

was addressed in chapter three: Chemical versus mechanical defense against fish 

predation in two dominant soft coral species (Xeniidae) in the Red Sea. In this 

chapter, the chemical and sclerites defense of two abundant xeniid species in the Red 

Sea Ovabunda crenata and Heteroxenia ghardaqensis were tested against predatory 

fishes both in the field (Jeddah, Saudi Arabia) and in the laboratory (Geomar, 

Germany).
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Abstract 

 

Alcyonacean soft corals were surveyed and sampled in 14 regions over 1840 

km from the northern to the southern Saudi Arabian Red Sea and related to prevailing 

gradients in nutrients and temperature, as well as to changes in bathymetry and 

substrate condition. In total, 82 soft coral species were identified belonging to the 

families Alcyoniidae (6 genera, 40 species), Xeniidae (5 genera, 24 species), 

Nephtheidae (6 genera, 15 species), Nidaliidae, Briareidae and Tubiporidae (one 

species each). Using cluster analysis, the soft coral species composition and 

abundance found at the surveyed sites grouped the sites into three main clusters, a 

northern (Maqna and Al-Wajh), central (Yanbu, Jeddah, Rabigh, Mastura and Al-Lith) 

and southern cluster (Doga and Farasan). The northern section, featuring lowest 

temperatures (up to 29°C), low nutrient concentrations, steep reef slopes and low 

sedimentation, harbored the highest soft coral abundance (Al-Wajh: 27% ± 4.1SE 

substrate coverage) and diversity (Maqna and Al-Wajh: 44 species). The southern 

section, characterized by high temperature (up to 33°C), high nutrient concentration, 

mostly rather shallow reef slopes and comparatively high sedimentation, harbored 

lowest soft coral abundance and diversity (Farasan: 0.6% ± 0.9 and 26 species, 

respectively). The characteristics of the central section mainly lay between the 

northern and southern section. Furthermore, near-shore reefs close to a source of 

pollution (Rabigh, Jeddah and Yanbu) generally featured a lower soft coral abundance 

Xeniid in Jeddah, Saudi Arabia 
Soft coral (Sarcophyton sp) in Maqna, Saudi Arabia Soft coral (Sarcophyton sp) in Maqna, Saudi Arabia 
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and diversity, if compared to their respective non-polluted off-shore site. In addition, 

new zoogeographical records of soft coral species were made in the central and 

southern section of the Red Sea, where Xenia actuosa, Sarcophyton pauciplicatum, 

Sinularia dissecta, S. gyrosa and S. inelegans were recorded for the first time. 

Key words: Soft coral; biodiversity; distribution pattern; community structure; 

environmental gradient; latitudes; Red Sea. 

Introduction 

Soft corals (Octocorallia, Alcyonacea) were considered the wild flowers in coral 

reefs, because of their hidden charms (Allen and Steene 1994). They represent major 

components of the sessile reef benthos and diversity in tropical Indo-Pacific reef 

communities (Dinesen 1983; Fabricius and Alderslade 2001) including the coral reefs 

of the Red Sea (Benayahu and Loya 1977, 1981; Benayahu 1985; Reinicke 1997). 

Along with the hard scleractinian corals, soft corals play an important role as 

components of coral reef benthic assemblages, influencing primary productivity and 

providing a source of food and habitats for other organisms (Fabricius and Alderslade 

2001).  

The narrow trench of the Red Sea extends from the north-west to the south-

east over 2,200 km between the latitudes 30oN and 12oN. It covers an area of 4.6 x 

105 km2 between the African and Asian continental plates. The coastline of the Saudi 

Arabian Red Sea extends roughly over 1,840 km. Four biogeographic zones were 

described for the Saudi Arabian Red Sea (UNEP/IUCN 1988): (1) the Gulf of Aqaba 

and (2) the northern half of the main Red Sea, both zones mainly characterized by 

well-developed steep fringing reefs as well submerged limestone platforms, (3) the 

southern half of the main Red Sea characterized by less steep fringing reefs and 

patch reefs, as well as large reef flats (4) the coastal zone characterized by less 

developed fringing reefs, in particular where sedimentation is high. 

Studies on Red Sea soft corals started as early as 1775, when Forskål 

conducted first diversity studies. During the last century, the knowledge about soft 

coral diversity and physiology increased steadily, when researchers explored the Red 

Sea coral reefs during various expeditions (e.g. Thomson and McQueen 1907; 

Kükenthal 1913; Gohar 1940; Verseveldt 1965, 1969, 1970, 1974, 1982; Verseveldt 

and Cohen 1971; Verseveldt and Benayahu 1978, 1983; Reinicke 1997). Many 
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species were originally described from the Red Sea and later also found in other 

tropical regions (Benayahu 1985). A high soft coral diversity in the Red Sea was 

confirmed by Benayahu, who counted 183 species in the reefs around the Sinai 

Peninsula (northern Red Sea, Benayahu 1985) and 28 species in the most southern 

reefs of the Red Sea (Eritrea and Yemen, Benayahu et al. 2002). The common genus 

Sinularia was found to be the most species rich genus in the Red Sea, if compared to 

other Indo-Pacific coral reef regions (Ofwegen 2000).  

Soft corals in the Red Sea are not only highly diverse, but also show 

considerable abundance on the reefs with coverage values reaching up to 50% in 

some shallow reef areas (~4m depth) forming extensive carpets (Benayahu and Loya 

1981; Reinicke 1997). The high success of soft corals in the Red Sea was previously 

related to the fact that soft corals do not only reproduce sexually, but also intensively 

by asexual propagation, thereby efficiently outcompeting potential space competitors 

(Benayahu and Loya 1977, 1981). Additionally, some soft coral species such as Xenia 

(= Ovabunda) macrospiculata feature a very short planktonic phase and quickly 

propagate by polyp budding after settlement, which contributes to their high success 

in Red Sea coral reefs (Benayahu and Loya 1984). Furthermore, some soft corals 

species in the Red Sea such as Rhytisma fulvum fulvum, Ovabunda macrospiculata, 

Sarcophyton glaucum are also known to feature a strong chemical defense against 

predation or microbial activity (Kelman et al. 1998, 1999, 2006). 

Like stony corals, the distribution of soft corals strongly depends on water 

quality, including for example the availability of light, the strength of water movement 

and the occurrence of sedimentation (Fabricius and De’ath 1997), as well as on biotic 

controls such as predation and competition (Fabricius and Alderslade 2001). Changes 

in octocoral community patterns along water quality gradients were reported for 

example from the Great Barrier Reef (Fabricius et al. 2005) and South China Sea 

(Fabricius and McCorry 2006). There, overall soft coral diversity decreased, while the 

abundance of azooxanthellate octocorals taxa increased when water quality 

decreased (increase of nutrients, sedimentation and turbidity). Furthermore, living soft 

coral cover and diversity is usually higher on exposed reef slopes than on reef flats or 

back reefs, due to stronger water movement and higher water clarity at exposed reefs 

(Dinesen 1983; Evans et al. 2011; Chanmethakul et al. 2010). 

In the Red Sea, the environmental and habitat conditions change over the 

latitudes. From north to south, average annual surface water temperature increases 
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by ~6°C, salinity decreases (42 to 38 psu), nutrient concentrations and turbidity 

increase particularly in the South, and the bathymetry changes from steep reefs to 

slightly sloping reefs. These changes were found to influence the community 

structures of hard corals (Sheppard et al. 1992) and do most likely also shape the soft 

coral community structures. So far, this, however, can only be inferred from 

comparative studies performed at the very northern (Gulf of Aqaba) and at the very 

southern end of the Red Sea (Eritrea and Yemen) (Benayahu 1985; Benayahu et al. 

2002), while systematic and continuous surveys along the latitudinal environmental 

gradients are still lacking.  

Furthermore, increasing human activities in coastal areas cause changes in 

water quality and habitat structure in consequence of, for example, petroleum oil 

pollution, eutrophication, sediment input, overfishing and recreational activities 

(Ammar et al. 2007; Tilot et al. 2008; Klaus et al. 2008; Mohammed 2012). These 

most likely affect near-shore soft coral communities, as well, particularly at shallow 

inshore reefs close to regions of rapid economic development and increasing coastal 

activities (PERSGA 2010). 

The aim of the present study was to assess potential shifts in the structure of 

alcyonacean soft coral communities along the latitudinal environmental gradients in 

the Red Sea and to relate coral diversity and relative abundance to prevailing 

environmental conditions. Additionally, the potential effect of land-based 

anthropogenic alterations of environmental conditions was investigated. 

Methods and materials 

Studying area: Fourteen reef sites within 7 regions (distance between regions 

~300 km) were investigated along the Saudi Arabian Red Sea coast between 16°34’N 

and 28°31’N (Fig. 1, Tab. 1). The northernmost site Maqna (MAQ) is located near-

shore in the Gulf of Aqaba and the southernmost sites are located about 50 km off the 

mainland, close to the Farasan islands (FAR).  

The study sites are listed as followed from north (superscript 1) to south 

(superscript 7) and donated with ‘N’ (superscript) for non-polluted reefs and ‘P’ 

(superscript) for reefs close to a potential source of pollution: Maqna (MAQ1N), Al-

Wajh (WAJ2N and WAJ2P), Yanbu (YAN3N and YAN3P), Mastura (MAS4N), Rabigh 

(RAB4P), Jeddah (JED5N and JED5P), Al-Lith (LIT-N6P and LIT-S6P), Doga (DOG6N) and 

Farassan (FAR-S7N and FAR-S7N). The six reefs categorized as potentially polluted 
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are located less than 500 m away from a sources of pollution which varied in type and 

intensity (specified in Tab.1). It should be noted that this categorization is based on 

circumstantial evidence only, since no environmental monitoring is conducted in these 

regions. 

Environmental parameters: The values of the environmental parameters 

temperature, chlorophyll a, total nitrogen and phosphorous, particulate carbon of the 

study sites/regions were derived from Sawall et al. (2014) for September in 2011 (late 

summer) and March in 2012 (late winter). The data was averaged over the two 

months, providing a rough estimation of the average annual environmental condition.  

The study sites of Sawall et al. (2014) were the same as in this study. 

Additionally the silicate concentration was determined from the same batch of water 

samples as used for the aforementioned parameters. For this triplicate water samples 

(15 ml) were filtered by gravity through a 0.2 µm membrane filter and kept in 

scintillation vials at -20°C until analysis. Silicate was determined photometrically 

following the standard procedure described by Grasshoff et al. (1983). 

Soft coral composition and reef structure: Each reef site was surveyed using 

two techniques: (1) the line intercept transect (LIT) was used to assess the 

composition of substratum coverage and (2) the rapid ecological assessment (REA) 

was used to estimate the abundance and diversity of Alcyonacea genera at each site. 

For the LIT, a measuring tape of 100 m length was laid out at 3 m depth 

parallel to the reef contour and the underlying substrate was recorded every 0.5 m 

(English et al. 1997). The substrate was categorized into the living categories ‘hard 

coral’, ‘soft coral’, ‘macro-algae’ and ‘others’ (e.g. sponge, anemone, tunicates) and 

into the non-living categories ‘rock’ (dead coral boulders and rock), ‘rubble’ (small 

dead coral pieces max. 15 cm long), ‘sand’ and ‘silt’. Percentage cover of each 

substrate was calculated. 

The REA method (Devantier et al. 2000a,b; Fabricius and De’ath 2001; 

Fabricius and McCorry 2006) was chosen to assess soft coral composition and habitat 

structure. It is a highly efficient method considering the amount of data retrieved per 

unit of time spent under water (Dinesen 1983), and considering its power to detect 

rare and heterogeneously distributed taxa within a large range of reefs (Fabricius and 

De’ath 2001; Fabricius and McCorry 2006).  Surveys were conducted at 2 - 4 m and 5 

- 10 m depth always of the same diver (here B. Hoang), who was slowly swimming 

file:///V:/Daten/BEN/San%20ho/Germany/Other/SAWALL%20Monitoring_paper_US_MWdocx.docx%23_ENREF_16
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over the reef for 30 minutes covering a section of 100-150 m length and recorded the 

following data: 

 The relative abundances of each alcyonacean soft coral on a scale from 0 to 5, 

with 0 = absence, 1 = few colonies covering < 1 %, 2 = uncommon, covering 1 

- 5%, 3 = common covering 6 - 10%, 4 = dominant, covering 11 - 20% and 5 = 

highly abundant, covering > 20% (Fabricius and McCorry 2006). Due to 

difficulties distinguishing between the two genera Xenia and Ovabunda 

(previously being one genus Xenia - Alderslade 2001), they were summarized 

as ‘Xenia’ (Xenia/Ovabunda). Samples, however, were retrieved and identified 

later (see description below).  

 The sediment deposit on the reef substratum was assessed by fanning with the 

hand and rated on a scale from 0 to 4, with 0 = no dispersion of sediment , 1 = 

low dispersion, referring to a thin layer of sediment, 2 = medium dispersion 

referring to a medium thick layer of sediment and  3 = high dispersion referring 

to a thick layer of rather fine sediment (Fabricius and McCorry 2006). 

Additionally, the turbidity (water clarity) was estimated based on the horizontal 

visibility (V) and was categorized on a 3-point scale: 1 (V = 0 – 5 m), 2 (V = 6 - 

10 m) and 3 (V > 11 m) labeled as ‘turbid’, ‘moderate’ and ‘clear’, respectively. 

Furthermore, the angle of reef slope was recorded and assigned to one of the 

three categories ‘flat’ (0 to ~15° angled slope = 1), ‘sloping’ (15°~ 45° angled slope = 2) 

and ‘steep’ (45°~ 90° slope = 3). All surveyed reefs were facing towards the open sea 

and exposed to full sunlight. 

Diversity of alcyonacean soft corals: Reference material of soft corals was 

collected for identification during expeditions along the Saudi Arabian Red Sea coast 

in February 2011, September-October 2011 and March 2012, from a total of 24 reef 

sites (previously described sites + additional neighboring sites). This resulted in 

approximately 1000 specimens, which were collected between 1 and 38 m water 

depth. In some southern reefs (Al-Lith and Farassan), where the depth range was less 

than 38 m depth, collection took place down to the maximum depth of reef distribution. 

Prior to collections, colonies were photographed in situ. After collection, samples were 

fixed in 4% formalin, rinsed with fresh water after 24h and transferred to 70% ethanol 

for long term preservation and examination.  
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Tissue samples from different colony parts (polyp, surface layer of the colony 

top, interior of the colony top, surface layer of the colony base and interior of the base) 

were examined separately after dissolving the organic matter in 10% sodium 

hypochlorite to observe the sclerites under an optical microscope at magnifications of 

x 40, x 100 and x 400.  All samples were divided and distributed between the following 

institutions as taxonomic vouchers and reference material: GEOMAR in Kiel 

(Germany), KAU in Jeddah (Saudi Arabia) and Deutsches Meeresmuseum in 

Stralsund (Germany). 

Data analysis 

All data analyses were performed by multivariate statistics using the software 

Plymouth Routines in Multivariate Ecological Research-PRIMER 6 (Clarke and Gorley 

2006) and PERMANOVA (Anderson et al. 2008). 

To assess the similarity between the alcyonacean soft coral community 

structures based on the REA, a resemblance matrix was calculated based on Bray-

Curtis similarity, followed by a hierarchical cluster analysis (based on group 

averages). No data transformation was necessary for the resemblance matrix, since 

the data was categorical. 

In order to assess potential relationships between alcyonacean communities 

and environmental parameters, the same soft coral resemblance matrix was used to 

perform a Principal Coordinate Analysis (PCO) to which the environmental data set 

was added based on Pearson correlations (symbols represent soft coral communities, 

vectors represent environmental parameters).  

The environmental parameters included temperature, all nutrient-related data 

(Chlorophyll a (chl a), total nitrogen (TN), total phosphorous (TP), particular carbon 

(PC) and silicate (Si), as well as sediment deposits, visibility and slope. The 

environmental data was normalized in order to avoid artificial effect from different 

units. PCO was chosen over Principal Component Analysis (PCA, same principal of 

analysis), since it is a more general procedure able to use any kind of distance 

measure, not only Euclidean distance, as it is the case for PCA (Anderson et al. 

2008). 
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Figure 1: Studied reef locations (O) along the coastline of the Saudi Arabian Red Sea  

(The map was designed following SimpleMappr; Shorthouse 2010).  
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Table 1: Description of the study sites from north to south. Superscript number represents the 

region with 1= most northern and 7 = most southern. Superscript 
N
 = non-polluted, superscript 

P
 = polluted/reefs close to a source of pollution. 

Regions Sites Latitude Longitude Remarks 

Maqna MAQ1N 28°31′31.0′′ 34°48′15.9′′ Inshore 

 

Al Wajh 

WAJ
2N

 26
°
04′06.2′′ 36

°
20′23.7′′ Offshore 

WAJ2P 26°14′28.3′′ 36°26′51.6′′ 
Inshore  

(close to a desalination plan) 

 

Yanbu 
YAN3N 23°56′50.7′′ 38°10′31.5′′ Offshore 

YAN3P 23°57′08.0′′ 38°12′18.5′′ Inshore (close to a petro-

chemicals factory, construction) 

Mastura MAS4N 23°02′36.2′′ 38°46′38.3′′ Offshore 

 

Rabigh 
RAB4P 22°37′33.1′′ 39°03′′08.9′′ Inshore (close to a cement 

factory, oil refinery and power 

plant) 

 

Jeddah 
JED5N 20°45′19.8′′ 38°57′71.0′′ Offshore 

JED5P 20°35′57.4′′ 39°06′23.9′′ Inshore (waste water discharge) 

 

 

Al-Lith 

LIT-N6P 20°04′22.3′′ 40°00′18.8′′ Offshore (close to an 

aquacultural waste water 

discharge) 

LIT-S6P 20°18′51.4′′ 40°15′′57.6′′ Inshore (close to an 

aquacultural waste water 

discharge) 

Doga DOG6N 19°36′50.6′′ 40°38′07.6′′ Offshore 

 

Farasan 
FAR-N7N 17°05′44.5′′ 41°54′21.3′′ Near island 

FAR-S7N 16°34′16.2′′ 42°08′57.8′′ Near island 
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Results 

Environmental parameters: A detailed description of water quality parameters 

at the reef sites is provided and discussed by Sawall et al. (2014). The averaged 

environmental data is presented in table 2. From north to south, water temperatures 

ranged from 21°C to 28°C in winter and from 27°C to 32°C in summer. Most nutrient-

related parameters showed a slight increase from north to south with sudden peaks at 

the most southern reefs around the Farasan islands (FAR). 

Some reefs close to a source of pollution (YAN3P, RAB4P and JED5P near-shore 

reefs) revealed substantial variation in water quality, if compared to their 

corresponding non-polluted reefs (YAN
3P

, MAS
4N

 and JED
5N

 off-shore reefs). Here, 

chl a, TN and TP were  about 1.5 to 2-folds higher and particular carbon up to 15-folds 

higher at the reefs close to a source of pollution (Table 2). 

The sediment deposit on the reefs increased from north to south, as well as 

from off-shore to near-shore sites. In the North (MAQ and WAJ), no sediment was 

dispersed by fanning, in the central Red Sea sediment dispersion ranged between the 

categories 0 and 0.25 (MAS4N: 0, YAN4N: 0.25 and JED5N: 0) and between 0.5 and 

1.75 at their corresponding near-shore reefs (RAB4P: 0.5, YAN4P: 1.5 and JED5P: 

1.75), and in the South sediment dispersion ranged from 0.5 to 2.25 (FAR-N7N, FAR-

S7N: 0.5 and LIT-N6P: 2.25). 

Benthic cover: In 3 m depth, mean hard coral cover throughout all surveyed 

sites was 41.5% ± 4.8SE and soft coral cover was 11% ± 3.8. Soft coral cover 

generally increased from south to north with lowest cover found at FAR-N
7P

 (0.6% ± 

0.9) and highest cover at WAJ2P (27% ± 4.2, Fig. 2). The living coral cover (hard and 

soft coral) was strongly reduced at the two sites YAN3P (31.3%) and RAB4P (10%), 

both being close to a source of pollution, if compared to their respective non-polluted 

reefs (YAN
3N

: 81.3%%, MAS
4P

: 68.8%). Macroalgae abundance was generally very 

low with highest cover in the South around the Farasan islands (FAR-N7N: 5.0% ± 1.3 

and FAR-S7N: 3.8% ± 1.7). Coral rubble increased towards the South, while the 

highest cover was found at polluted Al-Lith (LIT-S6P: 28.8% ± 5.4, Fig. 2). The 

coverage of non-coral zoobenthos taxa was overall inconspicuous ranging from 0.6% 

± 1.1 to 1.3% ± 1.5 cover (Fig. 2) and was mainly represented by sponges. 
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Figure 2:  The mean cover of substrate types (%) at each survey site along the coastline of 

the Saudi Arabian Red Sea. 

 

Table 2: The summarized environmental parameters (±SE). The data calculated the average 

of winter and summer value. 

Parameters Remark Maximum Minimum 

Chl a 

(µg l-1) 

Polluted sites 0.47 ± 0.02 (LIT-S6P) 0.29 ± 0.01 (WAJ2P) 

Non-polluted sites 1.98 ± 0.52 (FAR-N7N) 0.16 ± 0.04 (WAJ2N) 

TN 

(µmol l-1) 

Polluted sites 6.46 ± 1.30 (FAR-N7N) 3.13 ± 0.12 (MAS4N) 

Non-polluted sites 12.17 ± 4.48 (JED5P) 6.12 ± 1.12 (RAB4P) 

TP 

(µmol l-1) 

Polluted sites 0.59 ± 0.24(FAR-N7N) 0.17 ± 0.05 (MAS4N) 

Non-polluted sites 0.55 ± 0.02 (JED5P) 0.33 (0.04) (WAJ2P) 

PC 

(µg l
-1

) 

Polluted sites 1,150 ± 453 (RAB4P) 79.70 ± 3.10 (WAJ2P) 

Non-polluted sites 259.9 ± 91.18 (FAR-S
7N

) 66.1 ± 26.7 (MAQ
1N

) 

PN 

(µg l-1) 

Polluted sites 34.10 (10.60) (RAB4P) 79.70 ± 3.10 (WAJ2P) 

Non-polluted sites 36.90 ± 5.13 (FAR-S7N) 11.80 ± 0.40 (MAQ1N) 

Si 

(µmol l-1) 

Polluted sites 1.49 ± 0.20 (JED5P) 0.73 ± 0.01 (RAB4P) 

Non-polluted sites 1.21 ± 0.11 (MAQ1N) 0.50 ± 0.04 (MAS4N) 

Temperature 

(0C) 

September 31.85 ± 0.35 (FAR-N7N) 26.96 ± 0.54 (MAQ1N) 

March 28.52 ± 0.31 (DOG6N) 21.45 ± 0.21 (MAQ1N) 
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The abundance of soft coral genera grouped the 14 sites into three main 

clusters from north to south (Tab. 3): The first group includes the northern reefs 

MAQ1N, WAJ2N and WAJ2P, the second group includes the central reefs YAN3N, 

MAQ4N, RAB4P, JED5N, JED5P, LIT-N6P and LIT-S6P and the third group includes the 

southern reefs DOG6N, FAR-N7N, and FAR-S7N, as well as the near-shore reef YAN3P 

from the central Red Sea.  

The clusters could be clearly related to the environmental conditions, 

particularly slope, visibility, and sediment deposit and temperature (Fig.3). In the 

northern cluster most genera occurred, the reef slope was steep, visibility was high 

and silicate concentrations were slightly increased. In contrast, in the southern cluster, 

where abundance and diversity of soft coral was low, sediment deposit, chl a 

concentrations, TP and temperature were high. The central group showed 

intermediate levels of the aforementioned parameters, but featured highest levels of 

TN and PC (Fig 3.). 

Diversity of alcyonacean soft corals: Identification of more than 1000 soft coral 

reference samples from 24 sites throughout the Red Sea revealed 82 species 

belonging to 20 genera and 6 families (see appendix). The family Alcyoniidae showed 

highest diversity with 6 genera and 40 species, followed by Xeniidae with 5 genera 

and 24 species, and Nephtheidae with 6 genera and 15 species. The other 3 families 

Nidalidae, Briareidae and Tubiporidae were only represented by one species each.  

The species diversity was highest in the northern and central Saudi Arabian 

Red Sea ranging from 44 to 47 species, while it was rather low in the southern region 

with only 25 to 29 species. The most common species included Tubipora musica 

(Tubiporidae), Rhytisma fulvum fulvum, Sinularia dissecta, S. leptoclados 

(Alcyoniidae), Paralemnalia thyrsoides (Nephtheidae), Ovabunda biseriata, 

Heteroxenia elizabethae (Xeniidae), which were found at most investigated sites. Rare 

species included Sarcophyton trocheliophorum, S. muqeblae, S. vrijmoethi 

(Alcyoniidae), Sympodium caeruleum, Xenia actuosa (Xeniidae) and were found only 

once amongst all sampled specimen. 

 

 

 



Chapter 1                                              Patterns of soft coral in the Saudi Arabian Red Sea  

 

47 
 

 

 

Figure 3: The principle coordinate analyses (PCO) of the alcyonacean community pattern 

(number of genera and abundance). Different symbols characterize the dif ferent clusters 

determined by cluster analysis. The environmental parameters are presented as vectors: 

direction and the length of the vector represent the correlation between the environmental 

parameter and alcyonacean community pattern and the strengths of correlation, respectively. 

 



 

 
 

Table 3: Relative abundance of alcyonacean genera recorded during the rapid ecological assessment (REA). Sites are clustered into 3 gr oups 

(cluster analysis - northern, central and southern) according to their alcyonacean community composition (number of genera and abundance). 

Degrees of relative abundance are indicated as: ◦ = few, ● = uncommon, ●● = common, ●●● = dominant and ●●●● = abundance. 

 

 Group 1 (Northern) Group 2 (Central) Group 3 (Southern) 

 MAQ1N WAJ2N WAJ2P YAN3N MAS4N RAB4P  JED5N JED5P LIT-N6P LIT-S6P YAN3P DOG6N FAR-N7N FAR-S7N 

Tubipora ● ● ● ● ●● ● ● ● ● ● ● ● ● ● 

Rhytisma ◦ ◦ ◦ ◦  ●●◦ ◦ ● ● ● ● ◦ ◦ ◦ 

Klyxum ●● ● ● ◦ ◦ ◦ ◦ ◦       

Cladiella ●● ◦ ●● ◦    ◦       

Sarcophyton ● ● ● ● ● ● ● ●● ●● ● ● ● ◦ ● 

Lobophytum ◦ ◦ ◦ ◦ ◦ ◦ ● ● ● ● ● ● ● ● 

Sinularia ●● ●●●● ●●●● ● ● ●● ●● ●● ●● ● ● ● ● ● 

Xenia/Ovabunda ●● ●● ●● ●●●● ●●●● ●● ●●●● ●●● ●●● ●●● ● ● ●● ●● 

Anthellia ● ●● ● ◦ ◦ ◦ ◦ ◦       

Heteroxenia ◦ ◦ ◦ ◦ ◦  ◦  ◦      

Paralemnalia ●  ●   ◦  ◦    ◦  ◦ 

Litophyton ● ◦ ◦ ◦ ◦  ◦ ◦       

Sterenonephthya ◦ ◦  ◦ ◦   ◦  ◦     

Nepthea ●● ●● ●●  ◦ ◦    ◦  ◦   

Dendronephthya ◦ ◦   ◦ ◦    ◦   ◦ ◦ 

Siphonogorgia  ◦             
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Discussion 
 

In this study, we confirmed a high soft coral diversity and abundance in the 

Red Sea. Some genera, such as Xenia/Ovabunda, Sinularia and Sarcophyton, are not 

only the most abundant concerning soft coral cover, but are also the most diverse. 

Moreover, we provided a comprehensive data set relating soft coral communities to 

the strong latitudinal environmental gradients and change in habitat structure. Results 

showed clear reductions in soft coral cover, abundance and diversity from north to 

south, which could be related to an increase in temperature and turbidity, as well as to 

a change in habitat structure. Furthermore, we found that octocoral communities are 

clearly affected by poor water quality at some near-shore reefs close to a source of 

pollution. 

Abundance and diversity of alcyonacean soft corals: Among the 16 soft coral 

genera recorded during the REA surveys; the six genera Xenia/Ovabunda (Xeniidae) 

Sinularia, Sarcophyton, Rhytisma (Alcyoniidae) and Tubipora (Tubiporidae) were the 

most abundant. Thereof, the genera Sinularia, Sarcophyton and Rhytisma are 

generally known as ‘dominant’ genera in the Indo-Pacific, as evidenced in 

Madagascar (Evans et al. 2011), the Great Barrier Reef (Dinesen 1983; Fabricius and 

Alderslade 2001), the Indian and South China Sea (Chanmethakul et al. 2010), in 

southern Taiwan (Benayahu et al. 2004) and in Vietnam (Hoang 2010).  

The strong dominance of the genera Xenia/Ovabunda, however, particularly in 

the central section (<15% substrate coverage, >80% to the total soft coral cover in 

YAN3N and JED5N; Ben Hoang, unpublished data), seems to be specific for the Red 

Sea. Also previous studies reported high coverage rates of Xenia/Ovabunda, reaching 

up to 50% in some shallow reef areas of the Red Sea (~4m depth), where they form 

extensive carpets of several square meters in size (Benayahu and Loya 1981; 

Reinicke 1997). In reefs close to a source of pollution, the genus Rhytisma, mainly 

represented by the polymorphic species Rhytisma fulvum fulvum (Haverkort-Yeh et al. 

2013), was most abundant. Here, the particularly high abundance of dead corals and 

rubble seems to serve as an ideal substrate for this species, which is known to coat 

large surface areas with a thin tissue (2-4 mm thick) including overhanging substrate, 

(Benayahu 1985; Fabricius and Alderslade 2001).  

Highest soft coral diversity, including the number of genera as well as the 

number of species samples, was found in the northern and central Red Sea. The most 
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diverse genus was Sinularia with 21 species and confirms the striking diversity of 

Sinularia species reported previously from the Red Sea (38 species, Ofwegen 2000). 

Sinularia is a widely distributed genus growing in most reef habitats, from shallow 

water to more than 30 m deep and from turbid to clear water environments (Fabricius 

and Alderslade 2001). Three species of Sinularia (viz. S. dissecta, S. gyrosa and S. 

inelegans), as well as one species of the genus Sarcophyton (S. pauciplicatum) were 

found in the southern Red Sea for the first time, rising the species number of Sinularia 

and Sarcophyton in southern Red Sea to 10 and 3 species, respectively.  

The genera Klyxum, Cladiella, Sympodium and Anthelia, however, were 

lacking in the southern Red Sea, as previously reported from the Dahlak Archipelago 

and Kamaran island (Eritrea and Yemen Benayhu et al. 2002), as well. The rare 

occurrence of Siphonogorgia in this study (only found at Al-Wajh) is in agreement with 

a former study around the Sinai Peninsula (Benayhu 1985).  

The most common and highly diverse soft coral family Xeniidae comprises 

currently about 34 species (Reinicke 1997). Thereof, 11 species belong to the 

relatively new genus Ovabunda (Halász et al. 2013), which differ from their former 

genus Xenia by their large micro-corpuscular sclerites (Alderslade 2001). In this study, 

we identified 10 out of the 11 Ovabunda species with O. crenata, O. macrospiculata, 

O. impulsatilla and O. biseriata being present in most regions. Within the genus Xenia, 

some species were found for the first time in some regions, such as X. membranacea 

in the central section (Jeddah) and X. lillieae (Doga, Farasan) and Heteroxenia 

elizabethae (Farasan) in the southern section of the Red Sea.  

The doubtful presence of Xenia garciae BOURNE, 1895, in the Red Sea 

(Reinicke 1997) could be dispelled by our findings, since we found specimens of this 

species at a near-shore reef in front of Jeddah (JED5P). The species X. actuosa, so far 

only known from the Bismarck Sea in Papua New Guinea (Verseveldt and Tursch 

1979), was found in the Red Sea for the first time (Farasan). Its presence and 

taxonomic identity, however, needs further proof (i.e. more material and genetic 

identification).  

Factors affecting soft coral distribution: The decrease in soft coral cover and 

diversity from north to south is most likely related to the increase of nutrient 

concentration and temperature. In particular, the increase in nutrients, as well as in 

sedimentation and turbidity were previously found to negatively affect the abundance 



Chapter 1                                              Patterns of soft coral in the Saudi Arabian Red Sea 

 

51 
 

and diversity of octocorals (Van Woesik et al. 1999; Fabricius and De’ath 2001; 

Fabricius et al. 2005). In consequence, only few genera could be found in the south, 

with Xenia/Ovabunda, Sinularia, Sarcophyton and Lobophytum (Farasan, Doga) being 

the most abundant ones. In particular, Sinularia and Sarcophyton are known to cope 

with a large range of turbidity levels (Fabricius and Alderslade 2001). Also some 

species of the genus Xenia are known to grow in turbid habitats, as described from 

other regions in the Red Sea (Benayahu 1985). In contrast, the genera Nephthea and 

Dendronepthya are known to favor clear waters (Fabricius and Alderslade 2001) and 

were therefore rare in the South. 

 Another potential challenge for soft corals are high temperatures, as they 

occur in the South, particularly in summer, (>32°C for several weeks Sawall et al. 

2014). Like hard corals, also soft corals can lose their symbiotic unicellular algae 

(zooxanthellae) in consequence of heat related damage, a process called bleaching 

(Douglas 2003). The susceptibility to thermal stress, however, varies between soft 

coral genera (Floros etal. 2004; Marshall and Baird 2000). Rather heat tolerant genera 

include Sinularia, Sarcophyton and Lobophyton, (Strychar et al. 2005), which would 

explain their dominance in the South.  

Substrate condition is another important factor, which determines the success 

of soft corals. Therefore, changes in substrate conditions from north to south 

contributed to the explained variation of soft coral community structures in the Red 

Sea.  In the northern reefs, the reef slopes are rather steep, consist of mostly solid 

substrate and reach down deeper than 40 m. These changes gradually towards the 

South, where rather gently sloping reefs are found covered by larger areas of soft 

substrate (i. e. sand). Consequently, species predominantly known from deeper reefs, 

such as of the genera Cladiella and Siphonogorgia (Loya 1972), were only found in 

the North (see also Benyahu 1985). Furthermore, intermediate reef depth (10-30m) 

and steep slopes are generally known to harbor a higher soft coral species diversity 

compared to shallow and rather flat reef areas (Loya 1972; Riegl and Velimirov 1994; 

Sheppard 1980; Reinicke and Van Ofwegen 1999; Huston 1985; Liddell and Ohlhorst 

1987).  

In order to discriminate, however, between the effects of the different 

environmental parameters which change more or less simultaneously from north to 

south, experimental studies are required. Those should test for the effect of 
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temperature, nutrients, sedimentation and substrate availability individually and 

combined on soft corals from the northern and southern Red Sea. 

The soft coral communities also changed with changing water quality between 

near-shore reefs close to a source of pollution and non-polluted off-shore reefs. 

Increased nutrient levels, turbidity and higher sedimentation at most near-shore reefs, 

could be related to a lower soft coral abundance and diversity.  

This effect was strongest at YAN
3P

, a reef close to the industrial city Yanbu 

with factories processing petro-chemicals and with extensive coastal construction 

work. Strong impacts on the soft coral community were also found at RAB4P, a reef 

close to an oil refinery, cement factory and power plant of the city Rabigh. At these 

sites, the generally rather dominant genera Tubipora, Rhytisma, Lobophytum, 

Sinularia, Sarcophyton and Xenia/Ovabunda, revealed a very low relative abundance 

at these impacted sites. Furthermore, the overall soft coral cover was strongly 

reduced (YAN3P: 1.8 %, RAB4P: 4.4 %), although the hard coral coverage was still 

rather high at least at YAN3P (31.3%). This indicates that soft corals are generally 

more susceptible to water quality degradation than hard corals (Fabricius et al. 2005).  

The concomitant low soft coral and low hard coral cover at RAB
4P

, however, 

may not only related to pollution, but also to previous coral bleaching events (1998, 

2010) in that region (Devantier et al. 2000a; Furby et al. 2013). Further south, the reef 

LIT-S6P, close to the aquacultural waste water discharge of a large shrimp farm in Al-

Lith, seemed to be affected by nutrient enriched and polluted effluents leading to a 

particularly low soft coral diversity (15 species).  

Although, we could not find a significant relationship between soft coral cover 

and sediment deposits in this study (Spearman Rank, rs
 = 0.14, P > 0.05), unlike 

reported from other regions before (Loya 1976), shifts in the abundance of different 

soft genera were found. While some genera could not be found in near shore reefs 

with high sediment deposits, other genera such as Sinularia, Sarcophyton, 

Lobophytum were still present. Those are considered more tolerant towards elevated 

levels of sedimentation due to their morphology, which include a high profile growth 

form, a flexible talk and disk or a pliable shape (Schleyer and Celliers 2003). 

Moreover, soft corals diversity was reduced in some regions where high sediment 

deposited were found, as previously reported from the Great Barrier Reef (Fabricius 

and De’ath 2001). Overall, considerable changes in soft coral community structures 
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close to major industrial sites were found along the Saudi Arabian Red Sea coast, 

likewise along the Egyptian Red Sea coasts as previously reported (Mohammed 2006; 

Mohammed et al. 2009). 

In conclusion, this is the first study, which systematically investigated the soft 

coral community structures along the latitudinal environmental gradients of the Red 

Sea. It confirms an extraordinary high soft coral diversity in the Red Sea, including 

many species found in the wider Indo-Pacific and some new zoogeographical records, 

such as the species Xenia actuosa, Sinularia dissecta and, Sarcophyton 

pauciplicatum. Soft coral communities, however, strongly changed from north to south 

along the Saudi Arabian Red Sea coast, considering soft coral cover, diversity and 

abundance. This could be related to various environmental factors, which changed 

from north to south, generally creating a less soft coral friendly environmental in the 

southern Red Sea, where temperatures, nutrient input and turbidity are high and 

substrate conditions are less favorable for larvae settlement. Here, only the more 

tolerant genera, such as Sinularia and Sarcophyton were found, covering rather small 

areas. Near shore reefs close to industrial areas were generally characterized by high 

sedimentation, which lowered soft coral diversity and cover. The results of this study 

form an important base line on soft coral community structures in the Red Sea and 

provide information on potential changes in soft coral communities in consequence of 

environmental changes. 
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Appendix  

 

List of alcyonacean soft coral species identified from the Saudi Arabian Red Sea coast 

 

Species Areas 

 MAQ WAJ YAN MAS RAB JED LIT DOG FAR 

Tubiporidae Ehrenberg, 1828                   

Genus Tubipora Linnaeus, 1758                   

 

Tubipora musica Linnaeus, 1758 + + + + + + + + + 

Alcyoniidae Lamouroux, 1812                   

Genus Rhytisma Alderslade, 2000                   

 

Rhytisma fulvumfulvum (Forskäl, 1775) + + + + + + + + + 

GenuaKlyxum Alderslade, 2000                   

 

Klyxum flaccidum (Tixier-Durivault, 1966) + +       +   +   

 

Klyxum utinomii (Verseveldt, 1971) + +       +       

Genus Cladiella Gray, 1869                   

 

Cladiella brachyclados Ehrenberg, 1834 + + +             

 

Cladiella pachyclados (Klunzinger, 1877) + + +     +       

 

Cladiella sphaerophora (Ehrenberg, 1834) +         +       

Genus Lobophytum  Von Marenzeller, 1886                   

 

Lobophytum crassum Marenzeller, 1886     +       +     



 

 
 

Species Areas 

 MAQ WAJ YAN MAS RAB JED LIT DOG FAR 

 

Lobophytum depressum Tixier-Durivault, 1966   + +             

 

Lobophytum pauciflorum (Ehrenberg, 1834)   + +   + + + + + 

Genus Sarcophyton Lesson, 1834                   

 

Sarcophyton auritum Verseveldt & Benayahu, 1978 +           +     

 

Sarcophyton boletiforme Tixier-Durivault, 1958 + + +     +   +   

 

Sarcophyton crassocaule Moser, 1919    +               

 

Sarcophyton digitatum Moser, 1919        +       +   

 

Sarcophyton ehrenbergi Von Marenzeller, 1886         + +   +   

 

Sarcophyton glaucum (Quoy & Gaimard, 1833)  + +     + + + + + 

 

Sarcophyton pauciplicatum Verseveldt & Benayahu, 1978 +   +     + + + + 

 

Sarcophyton serenei Tixier-Durivault, 1958               +   

 

Sarcophyton trocheliophorum Marenzeller, 1886      +             

Genus Sinularia May, 1898                   

 

Sinularia compressa Tixier-Durivault, 1945           +     + 

 

Sinularia cruciata Tixier-Durivault, 1970     + +           

 

Sinularia dissecta Tixier-Durivault, 1945 + + +   + + + + + 

 

Sinularia erecta Tixier-Durivault, 1945   + + + + + + + + 

 

Sinularia flexuosa Tixier-Durivault, 1945 + + +             

 

Sinularia gardineri (Pratt, 1903)   + + +   +     + 



 

 
 

Species Areas 

 MAQ WAJ YAN MAS RAB JED LIT DOG FAR 

 

Sinularia gyrosa (Klunzinger, 1877) + + + +   +   + + 

 

Sinularia heterospiculata Verseveldt, 1970   + +         +   

 

Sinularia hirta (Pratt, 1903)   + +     +       

 

Sinularia inelegans Tixier-Durivault, 1970   + +     + +   + 

 

Sinularia leptoclados (Ehrenberg, 1834) + + + +   + + + + 

 

Sinularia loyai Verseveldt & Benayahu, 1983 + +               

 

Sinularia minima Verseveldt, 1971 + + +             

 

Sinularia muqeblae Verseveldt & Benayahu, 1983       +           

 

Sinularia notanda Tixier-Durivault, 1966 + + +             

 

Sinularia prattae Verseveldt, 1974 +             +   

 

Sinularia polydactyla (Ehrenberg, 1834) + +             + 

 

Sinularia querciformis (Pratt, 1903) + + + +   + +     

 

Sinularia rigida (Dana, 1846)   + +     +       

 

Sinularia vrijmoethi Verseveldt, 1971             +     

Nephtheidae Gray, 1862                   

Genus Nephthea Audouin, 1826                   

 

Nephthea acuticonica Verseveldt, 1974 + + +   +     +   

 

Nephthea albida (Holm, 1894)     +     +       

 

Nephthea chabrolii Audouin, 1828  +   +   +         



 

 
 

Species Areas 

 MAQ WAJ YAN MAS RAB JED LIT DOG FAR 

Genus Dendronephthya Kükenthal, 1905                   

 

Dendronephthya ehrenbergi Kükenthal, 1904              +   + 

 

Dendronephthya formosa Gravier, 1908   +         +   + 

 

Dendronephthya hemprichi (Klunzinger, 1877) + +   +       + + 

 

Dendronephthya klunzingeri (Studer, 1888)   +             + 

Genus Paralemnalia Kükenthal, 1913                   

 

Paralemnalia eburnea Kükenthal, 1913 +   +     +       

 

Paralemnalia thyrsoides (Ehrenberg, 1834) + + +   + + + + + 

 

Litophyton acutifolium Kukenthal, 1913 + +         + +   

 

Litophyton arboretum Forskäl, 1775 + + +   +     +   

Genus Stereonephthya Kükenthal, 1905                   

 

Stereonephthya bellissima Thomson & Dean, 1931 +         +       

 

Stereonephthya cundabiluensis Verseveldt, 1965 + + +     + +   + 

 

Stereonephthya imbricans Thomson & Dean, 1931 + +         +     

Genus Scleronephthya Studer, 1887                   

 

Scleronephthya corymbosa Verseveldt and Cohen, 1971 +         +       

Nidallidae Gray, 1869                   

Genus Siphonogorgia Kölliker, 1874                   

  Siphonogorgia fragilis Verseveldt, 1965    +       +       



 

 
 

Species Areas 

 MAQ WAJ YAN MAS RAB JED LIT DOG FAR 

Briareidae Gray, 1859                   

Genus Briareum Blainville, 1830                   

 

Briareum hamrum (Gohar, 1948)         +     +   

Xeniidae Wright &Studer, 1889                   

Genus Sympodium Ehrenberg, 1834                   

 

Sympodium caeruleum Ehrenberg, 1834   +               

Genus Anthelia Lamarck, 1816                   

 

Anthelia glauca Lamarck, 1816 + + + +   +   +   

Genus Ovabunda Alderslade, 2001                   

 

Ovabunda ainex (Reinicke, 1995) + +     + +       

 

Ovabunda biseriata (Verseveldt & Cohen, 1971) + + + +   + + + + 

 

Ovabunda crenata (Reinicke, 1995) +   + +   +  + +   

 Ovabunda gohari (Reinicke, 1995)      +    

 Ovabunda hamsina (Reinicke, 1995) +   +     +    

 

Ovabunda impulsatilla (Verseveldt & Cohen, 1971) + + + +   + +   + 

 

Ovabunda macrospiculata (Gohar, 1940) +   + + + + +     

 

Ovabunda verseveldti (Benayahu, 1990) +         +   +   

Genus Xenia Lamarck, 1816                   

 

Xenia actuosa Verseveldt &Tursch, 1979                 + 



 

 
 

Species Areas 

 MAQ WAJ YAN MAS RAB JED LIT DOG FAR 

 

Xenia garciae Bourne, 1895           +       

 

Xenia hicksoni Ashworth, 1899     + + + +       

 

Xenia lillieae Roxas, 1933 + +           + + 

 

Xenia mayi Roxas, 1933     +             

 

Xenia membranacea Schenk, 1896           +       

 Xenia miniata Reinicke, 1995           +    

 

Xenia ternatana Schenk, 1896     +             

 

Xenia umbellate Lamark, 1816     +     +     + 

Genus Heteroxenia Kölliker, 1874                   

 

Heteroxenia elizabethae Kölliker, 1874 + + + +   + +   + 

 

Heteroxenia fuscescens (Ehrenberg, 1834)           +   +   

 

Heteroxenia ghardaqensis Gohar, 1940 +     +   +       

 

Total (82 species) 44 44 46 20 15 47 25 29 26 
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Abstract 

 

Xeniid communities were studied at eight reef sites in near- and off-shore 

positions of the Saudi Arabian Red Sea, where the water quality parameters showed 

different conditions. 20 xeniid species belonging to five genera were recorded at all 

study sites, with 18 species recorded at the off-shore sites and 13 species in near-

shore locations at Al-Wajh, Yanbu, Mastura/Rabigh and Jeddah. The relative 

coverage of xeniids ranged from 7.5% (±2.1SE) - 14.4% (±1.9) in the off-shore reefs 

and 0.6% (±1.1) - 8.5% (±3.3) in the near-shore reefs. The relative abundance of 

Alcyonacea genera was also different between both sets of reef areas. Multivariate 

analyses showed that xeniid communities differed among eight reef sites surveyed. 

The results demonstrate that the xeniid communities were significantly different 

between inshore and offshore at Yanbu, Mastura/Rabigh and Jeddah reefs, but 

showed no significant differences at Al-Wajh in and offshore. Our study showed that 

the xeniid community patterns relate to water parameters and environmental 

conditions in different reefs. They not only change in the coverage but also 

predominating genera and species diversity varies under different habitat conditions. 

The results strongly suggest that the abundance, diversity and distribution patterns of 

soft corals like Xeniidae have influenced, if not controlled by environmental nutrient 

levels. 

Key words: Xeniidae; diversity; distribution; nutrient; Red Sea. 
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Introduction 

The Red Sea is known as an outstanding area of coral reefs distribution 

situated at the north-western edge of the tropical Indo-Pacific region. First studies of 

the diversity and distribution of coral reefs in the Red Sea started in the 18th century 

by Forskål since his “Arabia Felix”-expedition in 1761. However, the knowledge of soft 

coral diversity in the Red Sea has substantially increased only following the time of 

traveling expeditions during the early and ongoing 20th century (e.g. Kükenthal 1904, 

1913; Verseveldt 1965, 1969, 1970, 1974, 1982; Verseveldt and Cohen 1971; 

Verseveldt and Benayahu 1978, 1983; Reinicke 1997; Benayahu et al. 2002; Halász 

et al. 2013) 

The relationships between octocoral communities and water quality 

parameters on inshore reefs were investigated in the Great Barrier Reef (Fabricius et 

al. 2005) and the South China Sea (Fabricius and McCorry 2006). The distribution 

patterns of soft corals showed strong relations with physical environmental 

parameters such as light, water motion or sedimentation (Fabricius and De’ath 1997).  

Living soft coral cover was recorded highest on outer shelf reef slopes and low 

diversity levels were observed on shallow reef flats in the Great Barrier Reef (Dinesen 

1983), the highest abundance and diversity of alcyonacea was found on exposed 

reefs under high water clarity in Northern Madagascar (Evans et al. 2011). Soft corals 

were also recorded dominant on reef slopes and lower reef zones in the Andaman 

Sea and the Gulf of Thailand (Chanmethakul et al. 2010).  

In the Red Sea soft corals as parts of the benthic coral communities were not 

only impacted by severe natural disaster such as coral bleaching (Devantier et al. 

2000a; Furby et al. 2013) but are also effected by human local to regional activities 

such as pollution by petroleum oil, uranium, phosphate and sulphur enrichment during 

their loading and shipping, overfishing and recreational activities (Abu-Hilal 1994; 

Ammar et al. 2007; Tilot et al. 2008; Mohammed 2012). A recent coral reef monitoring 

program in the South Sinai reefs indicated a moderate decline in coral coverage 

during recent decades (Tilot et al. 2008).  

Environmental parameters such as surface temperature, salinity, turbidity, 

nutrient concentrations reveal a gradient from north to south in the Red Sea 

(Sheppard et al. 1992) also influencing, if not controlling coral reefs distribution. The 

latitudinal attenuation was related to distribution of soft coral diversity at both species 
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and genus level (Benayahu 1985; Benayahu et al. 2002). The presence of hard 

substrata for juvenile settlement is a major factor limiting the distribution of soft corals 

in the Red Sea reefs (Benayahu 1985). In some areas soft corals were controlled by 

sedimentation rates, direct exposure, wave action and hydrodynamic exposure (Dar et 

al. 2012).  

The soft coral family Xeniidae (Wright and Studer, 1889) is distinguished from 

all other Octocorallia by their soft, fleshy texture growing as polyp bearing membranes 

or upright lobes, often with sterile stems carrying more or less distinct branches or 

capitula covered with polyps (Ashworth 1899). Regular pulsating tentacle movements 

are a unique feature of some xeniid species (Reinicke 1997b). The family is one of the 

most common and widely distributed octocoral families and comprises of 34 accepted 

species reported in the Red Sea (Reinicke 1997a). Here it reaches substrate 

coverage rates of up to 50% in some shallow reef areas (~4m depth) forming 

extensive carpets (Benayahu and Loya 1981; Reinicke 1997). Depending on available 

light intensities (turbidity), depth distribution may extend down 40 and 70 m depth in 

the northern (Gulf of Aqaba, Reinicke 1997b) and central Red Sea (Reinicke 1997a), 

respectively.  

Studies on the biology of Xeniidae in the Red Sea by Benayahu and Loya 

(1977, 1981) investigated the space partitioning and competition among coral reef 

sessile organisms on the coral reefs. Observations of planulae shedding and post 

larval development of Xenia macrospiculata suggested that this species exhibits high 

reproductive potential maintaining conspicuous dominance in Red Sea coral reefs 

(Benayahu and Loya 1984). Yoffe et al. (2012) studied characteristic nematocysts of 

Heteroxenia fuscescens species in the Red Sea revealed that two types of 

nematocysts are a trichous isorhiza and a novel macrobasic-mastigophore. Kremien 

et al. (2013) demonstrated benefits of tentacle pulsation could be enhancement of 

their photosynthesis in some xeniid species colonies. In the field of chemical defense, 

results of Kelma et al. (2006) revealed an active compound of Red Sea xeniids such 

as the antimicrobial activity of Ovabunda macrospiculata, and an anti-predatory, 

repelling activity against coral reef fish in Ovabunda crenata and Hereroxenia 

ghardaqensis (Hoang, work in progress). 

The aim of this study is the comparison of xeniid assemblages in the Al-Wajh, 

Yanbu, Mastura/Rabigh and Jeddah areas on the Saudi-Arabian Red Sea coast, 

including near-shore and off-shore reef sites under differing conditions of impact from 
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different pollution sources. The study also includes the results of substratum coverage 

surveys and relative abundance of alcyonacean soft corals at genus level at reefs 

effected by different environmental conditions. 

Method and materials 

Study area: Four coral reef areas at Al-Wajh (WAJ), Yanbu (YAN), 

Mastura/Rabigh (MAS/RAB) and Jeddah (JED) with four non-impacted (off-shore sites 

WAJ1, YAN1, MAS and JED1) and four reefs close to potential sources of pollution 

(near-shore sites WAJ2, YAN2, RAB and JED2) were selected for this study (Fig. 1). 

The details of reef topography recorded during diving on coral reefs at each sites, the 

different natural and anthropogenic disturbances at the different sites were 

quantitatively estimated by surveying team in the field. All information are presented at 

table 1 and figure 2.  

 Al-Wajh area: two reef sites selected: off-shore fringing reef about 11 km far 

from mainland (WAJ1 at 26°11'06.2" N, 36°21'23.7"E), and a near-shore 

fringing reef about 60 m from the shore (WAJ2 at 26°14'28.3"N, 36°26'52.3"E).  

 Yanbu area, two reef sites selected: off-shore patch reef about 4 km far from 

mainland (YAN1 at 23°56'50.7''N, 38°10'31.8''E), and a near-shore fringing reef 

about 1 km from the shore (YAN2 at 23°57'18.0''N, 38°12'18.5''E). 

 Mastura/Rabigh area, off-shore patch reef about 1 km far from mainland (MAS 

at 23°02'36.2''N, 38°46'38.3''E) and near-shore fringing reef about 150 m from 

the shore (RAB  at 22°37'33.1''N, 39°02'28.9''E).  

 Jeddah area, two reef sites selected: off-shore patch reef about 14 km far from 

the mainland (JED1 at 21°45'11.4"N, 38°57'45.9"E), and a near-shore fringing 

reef at about 100 m from the shore (JED2 at 21°35'38.5''N, 39°06'17.3''E). 

The potential sources of pollution were within the proximity of about 500 m and 

varied in type and intensity: WAJ2 was located close to a desalination plant in front of 

the small city of Al-Wajh. YAN2 was located close to a petro-chemicals factory and 

construction site. RAB was close to the oil refinery, cement factory and power plant in 

Rabigh city. JED2 was located in proximity of a domestic waste water discharge of the 

major city Jeddah. All other reef sites were categorized as non-impacted/polluted (off-

shore reefs) since there was no potential source of pollution within the range of at 

least 3 km. 
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Environmental parameters: The values of the environmental parameters 

chlorophyll a (chl a), total nitrogen (TN), total phosphorous (TP), particulate carbon 

(PC), particular nitrogen (PN), Nitrite (NO2), Nitrate (NO3) and Silicate (Si) of the study 

sites were derived from Sawall et al. (2014). Nutrient related parameters were 

measured in water samples derived at the experimental depth in September 2011 and 

March 2012 following the standard procedure Grasshoff et al. (1983). The sediment 

deposits on the reef substratum were recorded by rating on a 0 - 4 scale applied by 

fanning (Fabricius and McCorry 2006): 0 = none; 1: thin layer; 2: medium; 3: thick. 

Water clarity: The turbidity was estimated as horizontal visibility at each survey site. 

The visibility (V) was categorized on a 3-point scale: 1 (V = 0-5 m), 2 (V= 6-10 m) and 

3 (V>11 m) labeled as “turbid”, “moderate” and “clear”, respectively. 

Survey methods for coral reefs: Each reef site was surveyed using two 

techniques: (1) the line intercept transect method (LIT) was applied to assess the 

coverage of substrata and (2) the rapid ecological assessment (REA) was used to 

estimate the abundance and diversity of alcyonacean soft coral genera. 

 The line intercept transect (LIT) method: Transects of 20 m length and were 

laid out leaving 5 m gaps towards the neighbouring transect line. Four replicate 

transects were laid at 3 m depth in parallel to the reef contour for all the 

selected reef sites. Thus, a total of 32 transects were surveyed at all eight sites 

studied (8 sites x 4 transects each). Substrate types were recorded every 0.5 

m (English et al. 1997). The substrate was categorized into living categories as 

hard coral, soft coral, macro-algae and others (e.g. sponge, anemone, 

tunicates) and into the non-living categories as rock (dead coral boulders and 

rock), rubble (small dead coral pieces max. 15 cm long), sand and silt. 

 

 Rapid ecological assessment (REA) method: This method had been used 

successfully for studying and monitoring coral reef communities since the 

1970s. REA was chosen for its advantages in terms of efficiency of surveys 

carried out per unit of time spent in the field (Dinesen 1983) and its power of 

detecting rare and heterogeneously distributed taxa within a large range of 

reefs (Fabricius and De’ath, 2001; Fabricius and McCorry 2006). The genera 

Xenia and Ovabunda were not visually differentiated in the field, thus recorded 

as “Xenia/Ovabunda” in the survey. Species ID for these genera was done in 

the lab yielding the list of species in table 3. Eight reefs were surveyed by 

modifying the one-off REA methods (Devantier et al. 2000b; Fabricius and 

file:///V:/Daten/BEN/San%20ho/Germany/Other/SAWALL%20Monitoring_paper_US_MWdocx.docx%23_ENREF_16
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De’ath 2001; Fabricius and McCorry 2006). Each survey was carried out 

visually for 30 minutes within a range of approximately 100-150 m length. The 

surveys were conducted at two depths 2-4 m (labeled as “shallow”) and 5-10 m 

(labeled as “deep”) depending on the reef morphology. For each survey the 

data were recorded as follows: The relative abundances of Alcyonacea (RA) 

genera were graded according to the rating scale of 0-5 (Fabricius and 

McCorry 2006): 0 = absence; 1: one or few colonies covering < 1%; 2: 

uncommon, covering 1- 5%; 3: common covering 6 - 10%; 4: dominant, 

covering 11 - 20% and 5: abundant, covering > 20%.  

Diversity of Xeniids: Approximately 200 samples were collected by boat and 

SCUBA diving from 1 m to 30 m depth or to the bottom end of the coral reefs deep 

extension at some sites. Prior to collections, most of the colonies were photographed 

in situ, the presence of pulsation, colours of the colonies and water depth were 

recorded. The samples were fixed in formalin (4%), rinsed with fresh water after 24 h 

and transferred into ethanol (70%) to further preservation and study. The taxonomic 

identification was based on the literature of (Roxas 1933; Gorha 1940; Verseveldt and 

Cohen 1971; Benayahu 1990; Reinicke 1997a; Alderslade 2001; Hala’sz et al. 2013). 

All samples were deposited at KAU in Jeddah (Saudi Arabia) and Deutsches 

Meeresmuseum (Stralsund) in Germany (Taxonomic voucher). 

Data analysis: The percentages of substrate categories were calculated 

according to the following formula: Percentage cover of each category = Intercept 

length/Transect length x 100. 

The coverage of xeniids data were analysed using ANOVA (with Bonferroni 

post-hoc comparisons) to determine the different significance between sites. Analyses 

were performed with the software Statistica 8.  

To assess the similarity between the alcyonacean soft coral community 

structures based on the REA, the hierarchical cluster analysis was conducted using 

clusters with group average. Prior analysis a resemblance matrix was calculated 

based on Bray-Curtis similarity. Since the data is already categorical, no data 

transformation was necessary. 

Multivariate analyses were performed using Plymouth Routines in Multivariate 

Ecological Research PRIMER 6 (Clarke and Gorley 2006). Non-parametric 

multidimensional scaling (MDS) was performed with variations of xeniid communities 
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between eight reefs (including abundance, species richness and cover). ANOSIM 

comparisons were run as one-way tests (Analyse of similarities), where ANOSIM 

showed significant differences between sites (P<0.05), the SIMPER (Similarites 

Percentage) were used to assess the different xeniid communities between reefs.  

 

PERMANOVA (Anderson et al. 2008) used to to assess the relations between 

alcyonacean communities and environmental parameters, Principal Coordinate 

Analyses (PCO) were conducted with the soft coral data set and the environmental 

data were correlated post-analysis based on Pearson correlation. The xeniid data was 

the same as for the cluster analysis and the environmental parameters included 

temperature, all nutrient-related data (chl a, TN, TP, PC, NO2, NO3, Si) as well as 

sediment deposits. The environmental data was normalized in order to avoid artificial 

effect from different units. Principal coordinates analysis (PCO) was chosen as a more 

general procedure than Principal Component Analyses (PCA), PCO can be based on 

any resemblance matrix, allows using any distance measure and a projection of the 

points onto axes that minimise residual variation in the space of the resemblance 

matrix. The ordination plot representing the sites is based on the Bray-Curtis similarity. 
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Table 1: Observations of reef topography reefs and quantitative evaluation of different natural 

and anthropogenic disturbances impacts at the different sites listed. Degrees of impacts are 

indicated from – (no impact) to + (minor) ++ (moderate ) and  +++ (high) impact. (Nut.: 

Nutrients, Plas.: Plastic waste, Cons.: Constructions, Ind.: Industry, and Por.: Ports).  

 

Area Topography Nut. Plas. Cons. Ind. Por. 

 

WAJ1 

Type: fringing reef. Inshore island 

(200m) and offshore mainland (11km) 

Reef flat: 3m. Reef slope: steep (6-

18m). Bottom: sand (25m) 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

WAJ2 

Type: Fringing reef. Near shore (60m). 

Reef flat: 2-3m. Reef slope: Steep (6-

18m). Fore reef: sand (20m) 

 

+ 

 

+ 

 

+ 

 

+ 

 

- 

 

YAN1 

Type: Patch reef. Near shore (4 km) 

Reef flat: 2-3m. Reef slope: steep 7- 

10m. Fore reef: sand (15m) 

 

 

+ 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

YAN2 

Type: Fringing reef. Near shore  

(1 km). Reef flat: 2-4m. Reef slope: low. 

Fore reef: sand (11m) 

 

 

++ 

 

 

+ 

 

 

+ 

 

 

+++ 

 

 

++ 

 

JED1 

Type: Patch reef. Offshore (14 km) 

Reef flat: 1-2m. Reef slope: steep 

(10m). Fore reef: sand (20m) 

 

 

+ 

 

 

- 

 

 

- 

 

 

- 

 

 

- 

 

JED2 

Type: Fringing reef. Near shore 

(100m). Reef flat:  1-3m. Reef slope: 

steep (7-10m). Fore reef: sand (20m) 

 

 

++ 

 

 

++ 

 

 

+++ 

 

 

+ 

 

 

+ 

 

MAS 

Type: Fringing reef. Near shore (1 km). 

Reef flat:  2-3m. Reef slope: steep (5-

10m). Fore reef: sand (16m) 

+ - - - - 

 

RAB 

Type: Fringing reef. Near shore 

(150m). Reef flat: 3m. Reef slope: 

steep (3-6m). Fore reef: sand (8m). 

+ ++ + +++ + 
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Figure 2: Photos of typical community structures and reefs at. a: cover on the xeniid reef flat 

at WAJ1; b: Xeniid reef flat at Mastura; c: Colonies of the Sinularia spp on reef flat at WAJ1; d: 

reef slope at WAJ2; e: Coverage on the reef flat at YAN1; Recently dead covered by sediment 

at YAN2 (f) and RAB (g); h: The particle load of sediment on the reef at JED2. 
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Figure 1: Map of study locations and sites (a), Al Wajh (b), Yanbu (c) Mastura/Rabigh (e) and 

Jeddah (d) areas. Map designed by following SimpleMappr; Shorthouse 2010 (a, e) and 

openstressmap (b,c and d). 
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Results 

 

Environmental parameters: The results of water quality data showed that 

almost all environmental parameters differed between near-shore and off-shore reef 

sites, most environmental indices showed higher values in the near-shore (WAJ2, 

YAN2, RAB and JED2) than the off-shore sites (WAJ1, YAN1, MAS and JED1). A 

detailed description of water quality parameters at the reef sites was given and 

discussed in Sawall et al. (2014) and summarized in figure 3.  

Near-shore reefs, close to a source of pollution, showed clearly different values 

as compared to the corresponding off-shore reefs. The chl a ranging from 0.29 to 0.43 

µg L-1, TN: 6.12 to 12.17 µmol L-1, TP: 0.33 to 0.55 µmol L-1, PC: 79.7 to 1150 µg L-1, 

PN: 11.8 to 34.1 µg L-1, NO2: 0.04 to 0.09 µmol L-1, NO3: 0.12 to 1.18 µmol L-1 and Si 

0.73 to 1.49 µmol L
-1

. Meanwhile, in the off-shore reefs the water quality values were 

lower with the chl a ranging from 0.16 to 0.26 µg L-1, TN: 3.13 to 4.79 µmol L-1, TP: 

0.17 to 0.33 µmol L-1, PC: 84.3 to 131.4 µg L-1, PN: 10.7 to 17.0 µg L-1, NO2: 0.02 to 

0.04 µmol L-1, NO3: 0.04 to 0.23 µmol L-1 and Si: 0.5 to 1.02 µmol L-1. 

Amounts of sediment deposits on the reef substratum and turbidity values also 

differed between near- and off-shore reefs. The sediment deposits at YAN2, RAB and 

JED2 were “medium” layers and horizontal visibilities were turbid (V < 5 m). On all off-

shore reefs no sediment deposit were recorded and the water clarity in terms of 

horizontal visibility ranged from 6 to over 15. 
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Figure 3: The environmental parameters in study sites. 

(The data calculated the average of winter and summer value, bars ±SE). 
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Benthic coverage and abundance of Alcyonacea: Results from the LIT method 

showed that the coverage of living coral was quite high at all study sites (Tab. 2). The 

overall values of living coverage ranged from 10.0 % (RAB) to 81.3 % (YAN1). The 

soft coral coverage was high at WAJ2 and WAJ1 (27.0 % ± 4.1SE and 25.6 % ± 3.5, 

respectively) and lower at YAN2 and RAB (only 1.8 % ± 1.2 and 4.4 % ± 0.6, 

respectively).  

Table 2: The mean of coverage (%) of substrate types at each study site.  

(The value in the parentheses showed ±SE) 

 
Substrate 

types 

Study sites 

WAJ1 WAJ2 YAN1  YAN2 MAS RAB JED1 JED2 

Hard coral 

35.5 

(4.1) 

45.8 

(4.9) 

64.4 

(3.2) 

31.3 

(3.6) 

51.3 

(1.8) 

5.6   

(0.6) 

45.6 

(3.9) 

64.4 

(4.4) 

Soft coral 

25.6 

(3.5) 

27.0 

(4.1) 

16.9 

(2.7) 

1.8  

(1.2) 

17.5 

(1.1) 

4.4 

(0.6) 

18.1 

(1.9) 

11.3 

(3.4) 

Algae 

1.0  

(1.1) 

0.0   

(0) 

0.0    

(0) 

2.0  

(1.5) 

0.0     

(0) 

0.0    

(0) 

0.0     

(0) 

0.0    

(0) 

Sponge 

0.0     

(0) 

0.0    

(0) 

0.0    

(0) 

0.0    

(0) 

0.0    

(0) 

0.0    

(0) 

0.0    

(0) 

0.0   

(0) 

Rock 

37.9 

(4.5) 

27.3 

(3.6) 

18.3 

(2.3) 

63.1 

(3.2) 

28.1 

(3.2) 

66.9 

(3.0) 

21.3 

(3.8) 

20.0 

(3.6) 

Rubble 

0.0     

(0) 

0.0    

(0) 

0.5 

(1.2) 

1.3 

(1.5) 

2.5 

(0.5) 

6.9 

(0.6) 

15.0 

(3.4) 

3.1 

(2.1) 

Sand 

0.0     

(0) 

0.0    

(0) 

0.0    

(0) 

1.3 

(1.5) 

0.0    

(0) 

10.6 

(3.4) 

0.0    

(0) 

0.0    

(0) 

Silt 

0.0     

(0) 

0.0    

(0) 

0.0    

(0) 

0.0    

(0) 

0.0   

(0) 

4.4 

(3.0) 

0.0    

(0) 

0.0    

(0) 

Other 

0.0     

(0) 

0.0    

(0) 

0.0    

(0) 

0.0    

(0) 

0.6 

(0.3) 

1.3 

(0.4) 

0.0    

(0) 

1.3 

(0.4) 

 

16 genera of Alcyonacea belonging to 5 families were recorded from the REA 

surveys, including Tubipora, Rhytisma, Klyxum, Cladiella, Sarcophyton, Lobophytum, 

Sinularia, Anthelia, Xenia/Ovabunda* (* not recorded separately in the field), 

Heteroxenia, Paralemnalia, Litophyton, Sterenonephtya, Nepthea, Dendronephthya, 
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Siphonogorgia. The genera diversity recorded was highest at WAJ1 (16 genera) and 

lowest at YAN2 (6 genera). Xenia/Ovabunda and Sinularia were the two most 

common taxa dominating at the study sites (Tab. 3).  

Table 3: Alconacean community composition show the relative abundance (RA) of each 

genus in the study sites. Degrees of RA are indicated that ◦: few ●: uncommon, ●●: common, 

●●●: dominant and ●●●●: abundance. 

 

 Al-Wajh Yanbu Mastura/Rabigh Jeddah 

 WAJ1 WAJ2 YAN1 YAN2 MAS RAB JED1 JED2 

Tubipora ● ● ● ● ●● ● ● ● 

Rhytisma ◦ ◦ ◦ ●  ●●◦ ◦ ● 

Klyxum ● ● ◦  ◦ ◦ ◦ ◦ 

Cladiella ◦ ●● ◦     ◦ 

Sarcophyton ● ● ● ● ● ● ● ●● 

Lobophytum ◦ ◦ ◦ ● ◦ ◦ ● ● 

Sinularia ●●●● ●●●● ● ● ● ●● ●● ●● 

Xenia/Ovabunda ●● ●● ●●●● ● ●●●● ●● ●●●● ●●● 

Anthellia ●● ● ◦  ◦ ◦ ◦ ◦ 

Heteroxenia ◦ ◦ ◦  ◦  ◦  

Paralemnalia  ●    ◦  ◦ 

Litophyton ◦ ◦ ◦  ◦  ◦ ◦ 

Sterenonephthya ◦  ◦  ◦   ◦ 

Nepthea ●● ●●   ◦ ◦   

Dendronephthya ◦    ◦ ◦   

Siphonogorgia ◦        

 

Xeniids community: Generally, the xeniid communities showed differences 

between near- and off-shore reefs in this study (Fig. 4; Tabs. 2 and 3). The ANOVA 

was used to compare the mean xeniid cover showing significant difference (d.f = 1 

and 5, P<0.0001), the Bonferroni post-hoc comparisons showed the differences of 

xeniids cover between YAN1 and YAN2, MAS and RAB, JED1 and JED2 reefs were 

significant (P<0.05), but at Al-Wajh the reefs showed no significant difference xeniid 

communities between WAJ1 and WAJ2 (P>0.05). 
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Figure 4: The cover of xeniids at the studying sites 

Multivariate analyses (MDS and PCO) showed that the xeniids communities 

differed between the eight reefs surveyed (Figs. 5 & 6). ANOSIM results confirmed the 

conclusion (Global R = 0.64, P<0.01). The Pair-wise comparisons revealed that the 

xeniid communities were significantly different at YAN1 and YAN2 reefs (P<0.01), at 

MAS and RAB (P<0.05), at JED1 and JED2 reefs (P<0.05), but no difference was 

detected at WAJ1 and WAJ2 (P>0.05). SIMPER analyses indicated that the 

differences between the xeniid community at Yanbu and Mastura/Rabigh reefs related 

from the strong decrease of xeniid richness, cover and abundance at YAN2 and RAB, 

between Jeddah reefs difference were due to a reduced contribution of xeniid cover 

and abundance at JED2. 
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Figure 5: Multidimensional ordinations (MDS) of xeniid communities structure at eight reef 

sites surveyed. 

 

Figure 6: Results of principle coordinate analyses (PCO) of the alcyonacean community 

pattern (diversity, cover and relative abundance). The environmental parameters are 

presented as vectors: direction and the length of the vector represent the correlation between 

the environmental parameter and alcyonacean community pattern and the strengths of 

correlation, respectively. 
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This result recorded 20 species belonging to 5 genera. They are shown in table 4.  

Table 4: Xeniidae (Wright & Studer, 1889) species recorded at the study sites. (1: WAJ1, 2: 

WAJ2, 3: YAN1, 4: YAN2, 5: MAS, 6: RAB, 7: JED1, 8: JED2) 

Genera/Species Study sites 

1 2 3 4 5 6 7 8 

 Genus Sympodium Ehrenberg, 1834               

 Sympodium cæruleum Ehrenberg, 1834 +             

 Genus Anthelia Lamarck, 1816               

 Anthelia glauca Lamarck, 1816 + + +   +  + + 

 Genus Ovabunda Alderslade, 2001               

 Ovabunda ainex (Reinicke, 1995) + +      +   + 

 Ovabunda benayahui (Reinicke, 1995)     +       + 

 Ovabunda biseriata (Verseveldt & Cohen, 

1971) + + +   

+  

+  + 

 Ovabunda crenata (Reinicke, 1995)       + +  +    

 Ovabunda faraunensis (Verseveldt & 

Cohen, 1971)   + +   

+  

    

 Ovabunda gohari (Reinicke, 1995)           +   

 Ovabunda hamsina (Reinicke, 1995)     +         

 Ovabunda impulsatilla (Verseveldt & 

Cohen, 1971) + +   + 

 

+ 

 

  + 

 Ovabunda macrospiculata (Gohar, 1940)     + + + + + + 

 Ovabunda miniata (Reinicke, 1995)             + 

 Ovabunda verseveldti (Benayahu, 1990)           +   

 Genus Xenia Lamarck, 1816               

 Xenia garciae Bourne, 1895             + 

 Xenia hicksoni Ashworth, 1899         + + +   

 Xenia lillieae Roxas, 1933 +             

 Xenia ternatana Schenk, 1896     +         

 Xenia umbellate Lamarck, 1816     +     + + 

Genus Heteroxenia Kölliker, 1874               

 Heteroxenia elizabethae Kölliker, 1874 + + + + +  + + 

 Heteroxenia ghardaqensis Gohar, 1940           + + 

Total (20 species) 7 6 9 4 8 3 10 11 
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Of these, the genus Ovabunda was most diverse with 11 species, the genus 

Xenia was represented by 5 species, Heteroxenia by two species, Sympodium and 

Anthelia were recorded by one species each. Some species such as Ovabunda 

impulsatilla, Heteroxenia elizabethae and Anthelia glauca were present and abundant 

at most of the study sites. However, nine xeniid species were only recorded at one 

site and absent at all the other sites.  

The diversity of species also differed between near- and off-shore reefs. In off-

shore reefs (WAJ1, YAN1, MAS and JED1) the total of 18 xeniid species recorded 

represent 5 genera, while 13 xeniid species belonging to 4 genera were recorded on 

the near-shore reefs (WAJ2, YAN2, RAB and JED2). Comparison between areas 

yielded higher numbers of species at YAN1, WAJ1 and MAS than at YAN2, WAJ2 and 

RAB. JED2 reef the highest number of xeniid species (11) was recorded, while the 

lowest number (only 3 and 4 species) was observed at RAB and YAN2, respectively 

(Tab. 4). 

Discussion 

The xeniid communities were difference between near-shore and off-shore 

where the environmental conditions varied by activities from mainland and the shift in 

xeniid communities included covering, abundance and species richness related to 

water quality in this study. 

Water quality data revealed that environmental parameter concentrations 

showed higher values at near-shore (close to the coastline including potential sources 

of impact pollution) as compared to off-shore sites due to elevated levels of (diffuse) 

land-based nutrient input. The water parameters showed a decline at reefs located 

close to a source of impact pollution, which was evident at YAN2 lying close to a 

petro-chemical factory and construction site, and JED2 close to an inlet of domestic 

waste water. For examples, at YAN2 the difference is supported by 2-fold values of 

the chlorophyll a and nitrite, JED2 showing from 2 to 10-fold higher concentrations of 

nitrite, nitrate, total nitrogen if compared to the corresponding reef sites off-shore.  

The water parameter data at Al-Wajh area showed that WAJ2 seemed to be 

largely unaffected by the nearby desalination plant and potential effluents by the Al-

Wajh town if compared to WAJ1, this result suggesting either low input levels of 

nutrients or rapid dilution (or both). Moreover, at YAN2, RAB and JED2 higher 
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amounts of sediment deposits on the reef substrata (labeled 2 with “medium” layers) 

indicate less water exchange than in the off-shore reefs. Our water quality data 

supported  that the rapid economic development of the Saudi Arabian coast leads to 

locally elevated nutrient levels in near-shore waters at the Red Sea coast (PERSGA 

2010), such as phosphate, hydrocarbons, sedimentation, temperature, salinity and 

dissolved oxygen (Ammar et al. 2007; Mohammed 2012; Dar et al. 2012).  

In the Al-Wajh area, 16 genera of Alcyonacea were recorded by REA method 

in this study. However, the data showed that the relative abundances of Alcyonacea 

largely agree between WAJ1 (16 genera) and WAJ2 (13 genera). Some genera such 

as Sinularia, Xenia/Ovabunda and Nepthea are common on the reefs.  

The cover of Xeniidae was higher at WAJ2 than WAJ1 but this difference 

between both reef sites was not significant. Our survey demonstrated that this area 

was characterized by high horizontal visibility (>10m), and no significant sediment 

deposition on the reef. Previous studies demonstrated that low visibility featured 

strong negative relation with the abundance and diversity of octocorals on inshore 

reefs of the Great Barrier Reef (Fabricius and De’ath 2001b; Fabricius et al. 2005). 

Some soft coral genera such as Nepthea are most abundant at clear-water locations 

and negatively affected by turbidity (Fabricius and Alderslade 2001). The presence of 

Nepthea species on both reefs at Al-Wajh provides evidence to support this finding.  

The differences of water quality parameter data between both reefs appear 

less distinct. For example, values of chlorophyll a concentration, total nitrogen and 

phosphorus were higher at WAJ2 than at WAJ1, while nitrite, nitrate, silicate 

concentrations were higher at WAJ2 than WAJ1. This may indicate that the reef site 

WAJ2 does not exhibit distinct pollution source pattern from the mainland, or potential 

nutrient inputs may get rapidly diluted by physical factors such as waves and currents. 

In the Yanbu area, YAN2 appeared strongly impacted by a landbased source 

of pollution as compared with the off-shore reef at YAN1. The coverage of xeniids was 

14.4 % ± 3.2 SE at YAN1, significantly higher than at YAN2 with only 0.6 % ± 1.1, with 

10 xeniid species recorded at YAN1 and only 4 at YAN2. Only two species Ovabunda 

macrospiculata and Heteroxenia elizabethae were observed at both reefs. The 

abundant presence of O. macrospiculata species was also reported from many Red 

Sea reef locations (e.g. Sanganeb-Atoll, Reinicke 1995). However, more detailed 

studies about the resilience of soft coral communities under impacted environmental 

conditions would be needed to evaluate the distribution patterns of this species.  



Chapter 2                                                                          Xeniid communities in the Red Sea 

 

84 
 

Generally, the diversity of Alcyonacea with only 16 species recorded also was 

lowest at YAN2 as compared with the other sites (Hoang, work in progress). Six 

genera Tubipora, Rhytisma, Lobophytum, Sinularia, Sarcophyton and 

Xenia/Ovabunda were recorded at YAN2 by the REA method with very low relative 

abundances of each genus and most of these genera distributed over a wide range of 

habitat types from turbid to clean environments (Fabricius and Alderslade 2001). The 

generic abundance of soft corals showed a low value and the water quality presented 

high concentration at YAN2 suggesting that alcyonacean abundance demonstrates 

negative correlate with turbidity, suspended particulate matter and total organic 

sediment contents (Van Woesik et al. 1999). 

Moreover, some taxa missing in this reef as compared with YAN1 further 

confirmed that water quality effects xeniid richness. The YAN2 was located close to a 

petro-chemicals factory, the cover of living coral at YAN2 showed the lowest while the 

algae exhibited the highest value (2 % ± 1.5SE) as compared with the other study 

reefs supported that impacts from the petro-chemical plant lead to decreasing living 

coral and increasing algae and sea urchin abundance in the Red Sea (Ammar et al., 

2007). The significant differences in the hard coral communities were evident towards 

some reefs close to a source of impact pollution such as YAN2 featuring a general 

decrease of coral abundance (Sawall et al. 2014). The difference of soft and hard 

coral coverage (1.8 % ± 1.2SE and 31.3 % ± 3.6, respectively) under impacted 

environmental conditions at YAN2 also reflects that soft corals tend to react more 

sensitively and specifically to modified water conditions than do hard corals (Fabricius 

et al. 2005). 

Rabigh area showed the status of xeniid communities similar to YAN2 with low 

xeniid cover and species richness. The xeniid cover at RAB was 1.9% ± 1.6SE and 

only 3 species were recorded, further overall observations suggested that the living 

coral in this area might be affected by the regional bleaching events in 1998 

(Devantier et al. 2000a) and 2010 (Furby et al. 2013), as well as by continuing or 

sporadic effects by pollution sources from the mainland. Thus, anthropogenic activities 

appear to play a role influencing the coral community’s distribution in the near shore 

areas of the Saudi Arabian coast line.  

The genus Rhytisma characteristically grow as attached membranes over non-

living or overhanging substrates (Benayahu 1985; Fabricius and Alderslade 2001). 

Colonies of the genus Rhytisma which was newly established by Alderslade (2000) for 
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species separated from the taxon Parerythropodium. In this study the Red Sea 

polymorphic species Rhytisma fulvum fulvum (Haverkort-Yeh et al., 2013) was 

recorded dominant at RAB where were characterized by high shares of rock (66.9% ± 

3.0SE) and rubble (6.9% ± 0.6) cover on the reef providing extended substrata for the 

colony spreading colony shapes of this species are thin-encrusting about 2 - 4 mm 

thick and often overgrowing dead substrate (Fabricius and Alderslade 2001). 

In the Jeddah area, JED2 lay close to a domestic waste water inlet (200 m), 

the environmental parameters showed significant differences towards the off-shore 

site at JED1. The sediment deposits on the reef at JED2 scored ‘‘medium’’ (2) and the 

horizontal visibility was “turbid” (<5 m). Rising sewage effluents are potentially 

increasing impact coral reef communities (Pastorok and Bilyard 1985). The xeniids 

were reported to settle in turbid habitats of the Gulf of Suez (Benayahu 1985). As 

opportunistic colonizers their planktonic larvae distribute and successfully colonize 

suitable substrates under sufficient light exposition to meet developmental needs 

(Benayahu and Loya 1984; Reinicke 1997b).  

Two xeniid species, Ovabunda impulsatilla and O. biseriata were dominat at 

JED2 while being absent at JED1, O. impulsatilla was also recorded dominant at 

YAN2. O. biseriata occurred with high frequency at Farassan island (Southern Red 

Sea) where environmental conditions featured high nutrient concentrations, 

sedimentation and low visibility (Hoang, work in progress). The frequent, abundant 

occurrence of these two species at impacted (polluted) sites (YAN2 and JED2) 

indicates their robustness and stress-tolerance towards turbidity. The Heteroxenia 

fuscescens was a common species and widely distribute in the Red Sea (Gohar 1940; 

Benayahu 1985; Reinicke 1997), although this species not encountered at study sites 

but it was recorded at the other reefs in the Jeddah, Farassan (Hoang, work in 

progress). 

In Conclusion, this study shows that variations in xeniid communities 

distribution patterns reflect differences in water and environmental habitat parameters 

of reef sites at four surveyed locations. The xeniid communities not only vary in 

coverage but also in dominance of the genera and species diversity shifts the status 

under different impact conditions. The variability of alcyonacean communities reflects 

alterations of environmental conditions. Survey sites at Yanbu (YAN2), Rabigh (RAB) 

and Jeddah (JED2) being subjects to significant impacts from landbased pollution 

sources feature decreasing values of coverage and diversity of Alcyonacea. 



Chapter 2                                                                          Xeniid communities in the Red Sea 

 

86 
 

Meanwhile the Al-Wajh area (WAJ1, WAJ2) showed no detectable differences 

between living benthic and alcyonacean communities patterns, reflecting the 

predominant environmental parameters quality exhibiting no detectable (significant) 

deviation from overall conditions, that influence the Alcyonacea an patterns in this 

area. 
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Abstract 

 

Soft corals of the family Xeniidae are particularly abundant in Red Sea coral reefs. 

Their success may be partly due to a strong defense mechanism against fish 

predation. In field and laboratory experiments we assessed the antifeeding activity of 

their secondary metabolites. In feeding deterrence assays the soft coral crude extract 

of secondary metabolites was mixed at natural or reduced concentrations into food 

pellets made of freeze-dried squid and phytagel. The feeding bioassays showed that 

at natural concentration the metabolites of both investigated species deterred reef 

fishes in the field (Red Sea) to 86% (Ovabunda crenata) and 92% (Heteroxenia 

ghardaqensis). In the laboratory, natural concentration of crude extract deterred the 

reef fish Thalassoma lunare (moon wrasse) to 83% and 85%, respectively. Moon 

wrasse feeding was even reduced at extract concentrations as low as 12.5% of the 

natural concentration in living soft coral tissues. When individual fish were fed 

repeatedly the same moderately deterrent feed (25% of natural concentration), their 

acceptance of the pellet decreased by 3 to 8% with each successive trial suggesting 

learned avoidance. To assess the potential of a physical anti-feeding defence, 

sclerites of O. crenata were extracted and mixed into food pellets at natural or double 

natural concentration combined with crude extract. The sclerites did not show any 

effect on the feeding behavior indicating that sclerites provide structural support rather 

than antifeeding defenses. Heteroxenia ghardaqensis species lacks sclerites. The 

remarkable chemical deterrence detected is likely to contribute to the conspicuous 

abundance of these soft coral species in the Red Sea. 

 

Key words: chemical defence; feeding deterrence; sclerites; soft coral; Ovabunda; 

Heteroxenia; Red Sea. 
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Introduction 

Soft corals (Octocorallia, Alcyonacea) are a major component of the sessile 

coral reef benthos and feature a high diversity in tropical Indo-Pacific coral reefs 

(Dinesen 1983; Fabricius and Alderslade 2001), including the Red Sea (Benayahu 

and Loya 1977, 1981; Benayahu 1985; Reinicke 1997). Some soft corals species of 

the families Xeniidae and Alcyoniidae contribute to the diet of coral reef fishes (Gohar 

1940). Secondary metabolites of some soft corals have been shown to possess 

ecological functions including anti-predatory protection (La Barre et al. 1986), 

allelopathy (Sammarco et al. 1983, 1985) and antifouling activity (Limna Mol et al. 

2010, Changyun et al. 2008).  

These chemical defenses may be as effective as the biomineralized skeleton 

protecting hermatypic corals from predation by most reef fishes (Sammarco and Coll 

1992). Some Alcyoniidae species (e.g. Sinularia polydactyla, Rhytisma fulvum fulvum) 

were shown for example, to possess secondary metabolites, which protect the soft 

corals against predation by carnivorous fish (Wylie and Paul 1989; Van Alstyne et 

al.1994; Kelman et al. 1999). A survey by Coll et al. (1982) showed a high prevalence 

of toxic species among the soft coral order Alcyonacea (>50% of the species) in the 

central Great Barrier Reef, suggesting that secondary metabolites which are active 

against predators are common in the Alcyonacea. In an extensive study by La Barre 

et al. (1986) it was found that the majority of soft coral taxa in the Great Barrier Reef 

are defended against fish predation, but that toxicity and repellence are not 

necessarily related.  

Chemical defense against predation may already be present in eggs, embryos 

or larvae of some soft corals (Coll et al. 1989; Kelman et al. 1999; Slattery et al. 1999; 

Lindquist 2002) hinting at the importance of chemical antifeeding defense in soft 

corals throughout life history. In addition to their well-studied antifeeding role, 

secondary metabolites of soft corals may also serve to combat fouling on their surface 

(Bhosale et al. 2002; Limna Mol et al. 2010) and to protect corals against viral 

infections (Ahmed et al. 2013). The conspicuous richness of chemical defenses in soft 

corals (Rocha et al. 2011) may contribute to their remarkable invasion potential 

(Lages et al. 2006; Fleury et al. 2008). 
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Chemical defense could be supplemented by mechanical defense such as 

mucus secretion (La Barre et al. 1986; Sammarco et al. 1987; Harvell and Fenical 

1989) or elevated spicule concentration in the tissue (Van Alstyne et al. 1992). 

Calcium carbonate spicules are common attributes in Octocorallia, as well as in 

Porifera, Echinodermata and Ascidiacea (Kingsley 1984). Size and shape of the 

spicules are often species-specific and used as taxonomic tools (e.g. Bayer et al. 

1983). They are thought to mainly function as structural support of the polyps and 

colonies (Lewis and Von Wallis 1991; Van Alstyne et al. 1992; O’Neal and Pawlik 

2002), but can also function as defensive structures. The latter was demonstrated for 

some soft coral species, where fishes rejected sclerite containing artificial food (Van 

Alstyne et al. 1992, 1994), but not for others (Kelman et al. 1999; O’Neal and Pawlik 

2002).  

The antifeeding defense by sclerites may be effective only in those parts of the 

colony, where their concentration is particularly high (Puglisi et al. 2000). Where 

sclerites do play a defensive role, their shape, size and abundance determine their 

protective efficiency, traits which may differ throughout a coral colony (Sammarco et 

al. 1987; Van Alstyne et al. 1992; Koh et al. 2000). Similarly, Ilan and Burns (2003) 

found that in sponges only spicules larger than ~250 µm deterred predation. 

The family Xeniidae comprises 34 species and is one of the most common and 

widely distributed octocoral families in the Red Sea (Reinicke 1997). Here, it can 

cover up to 50% of the substrate in some shallow reef areas (~4m depth) forming 

extensive carpets (Benyahu and Loya 1981; Reinicke 1997).  

The family differs from all other Octocorallia by the soft, fleshy consistency of 

the colony and by its non-retractile polyps (Ashworth 1899). Some xeniid species lack 

stinging nematocysts (Janes 2008), which might reduce their capacity for protection 

against predators (Vermeij 1978; Bakus 1981; McIlwain and Jones 1997). Their 

competitiveness, nevertheless, is high presumably due to the motility as adults, their 

rapid asexual reproduction (Benayahu and Loya 1981), and the widespread 

allelopathy against space competitors and hard coral recruitment (Sammarco et al. 

1983; Atrigenio and Alino 1996). Secondary metabolites with antimicrobial (Kelman et 

al. 1998, 2006) and anti-fouling activity (König et al. 1989) also seem to abound. 

Indeed, xeniids, like many other soft coral taxa, are remarkably rich in bioactive 

secondary metabolites (König et al. 1989; El-Gamal et al. 2005). Some chemical 
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compounds were isolated from xeniid species considered to be useful candidates in 

the field of medicine such as blumiolide A and B (Xenia blumi), a range of xeniolide 

(X.blumi, X.novaebrittanniae, X.umbellata) and different umbellacins (X. umbellate) 

(e.g. anti-tumor activity, El-Gamal et al. 2005, 2006; Bishara et al. 2006). Their 

potential chemical defense against fish predation, which could contribute to their high 

abundance in the Red Sea, has to the best of our knowledge not been investigated so 

far. 

In this study we investigated the chemical defense against fish predation in two 

particularly abundant xeniid species in the Red Sea, Ovabunda crenata and 

Heteroxenia ghardaqensis. We further studied whether or not chemical defense is 

enhanced by the presence of sclerites. To this purpose artificial food was made and 

charged with crude extract (i) at natural concentration and fed to the reef fish 

community in situ and, (ii) at natural and reduced concentrations, with and without the 

addition of sclerites, and fed to the moon wrasse fish Thalassoma lunare in aquaria.  

 

Materials and Methods 

 

Sample collection and identification:  The soft coral samples were collected 

near the city of Jeddah, Saudi Arabia, in the central Red Sea. Here, the cover by living 

coral (hard and soft coral) was 36 to 61% to which the family Xeniidae contributed with 

7.5 - 14% (unpublished data of line intercept transects in 3-4 m depth). The two xeniid 

soft coral species were collected by SCUBA diving in 3–6 m depth. The species 

Ovabunda crenata was collected at off-shore reefs (10 km from shore) while 

Heteroxenia ghardaqensis was collected near-shore (50 m from shore), where the 

respective species dominated the soft coral populations in the reefs. Five replicate 

samples of each species were collected with about 0.5 kg wet weight per sample. The 

samples were brought to the laboratory, the volume was determined immediately by 

water displacement (live colonies), and their identity was verified under the 

microscope following the identification criteria of Reinicke (1997). 

Chemical extraction: The extraction was carried out in two steps in order to 

guarantee maximum metabolite extraction of a wide polarity spectrum. For the first 

extraction, fresh samples (whole colonies) were immersed in ethyl acetate for 24h at 

room temperature (Lages et al. 2006). The gained crude extract was filtered through a 
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paper filter and the solvent was removed with a rotary evaporator. The extracted coral 

tissue was stored in a freezer at -20oC until further processing. A second extraction 

followed, for which the frozen coral sample was freeze-dried, chopped into small 

pieces of about 0.5 cm3 and weighed (dry weight). The tissue was then immersed in a 

solvent consistent of a 1:1 (v/v) mixture of dichloromethane and methanol 

(DCM:MeOH) for 24h at room temperature (Wylie and Paul 1989). This second crude 

extract was also filtered through filter paper and the solvent was evaporated until 

dryness. Finally, the crude extracts of the first and second extraction were combined 

and kept at -20oC until further processing. The calculation of the natural concentration 

of crude extract was based on the volume of samples. The values were 32 mg ml-1 for 

O. crenata and 35 mg ml-1 for H. ghardaqensis and were used as reference for the 

preparation of the food pellets. 

Sclerite preparation: In order to obtain pure sclerites of the soft corals, each 

colony of O. crenata species was cut into small pieces and immersed in 12% sodium 

hypochlorite to dissolve the tissue and leave the sclerites. H. ghardaqensis does not 

contain sclerites. After 12 hours the supernatant was carefully decanted and new 

sodium hypochlorite was added. This process was repeated until the tissue was 

completely dissolved. The sclerites remained on the bottom of the tube. They were 

collected and rinsed 3 times with distilled water, dried in an oven (80oC, until 

completely dry) and weighed. The natural concentration of sclerites was calculated by 

dividing the dry weigh of sclerites by the dry weigh of the colony. 

Field assay: The frozen crude extract was re-dissolved in ethanol. Food pellets 

were produced after Pawlik and Fenical (1992) with some modifications: the basis of 

the food pellets was made by mixing and boiling of 1.30 g phytagel (Sigma- Aldrich 

Company, USA), 1.38 g of freeze-dried powdered squid and 30 ml distilled water. 

After the mixture cooled down to ~40°C the crude extract dissolved in ethanol (1.1 ml 

of O. crenata or 1.08 ml of H. ghardaqensis) was added at natural concentration as 

found in the soft coral tissue.  The viscous mixture was poured into a plastic mould 

containing a piece of mosquito net with a mesh size of 1 mm2. After the matrix cooled 

down, the solidified gel was removed from the mould and cut into pieces of three 

different sizes: 1, 2 and 3 cm2. From each extract (n=5) 3 pellets were made, resulting 

in 15 pellets (replicate and sub-replicate) for each species.  

 



Chapter 3                                           Chemical defense of soft coral against fish predation                                                    

 
 

96 
 

The feeding assay was conducted at the same off-shore reef and the same 

depth, where the xeniid samples had been collected. The procedure was similar to the 

method described by Van Alstyne et al. (1992, 1994), where pellets were individually 

weighed and fixed to a fishing line. Each size class (1, 2, or 3 cm²) was represented 

as a pair with one pellet containing crude extract and the other pellet (of identical size) 

containing ethanol only. The distance between the pellets of a pair was 5 cm and the 

distance between pairs was 25 cm. A buoy at one end and a weight at the other end 

held the rope in a vertical position in the reef. The lowest pair was 1 m above the 

ground. The feeding activity of the reef fish was observed by SCUBA divers from 

about 3 m distance. The ropes were re-collected after one of the control or treatment 

pellets on each rope were eaten completely by reef fishes. The pellets were re-

weighed to determine the percentage consumed. 

 

Aquarium experiment: The food pellets for the aquarium experiment were 

made after Pawlik et al. (1995). Here the crude extract dissolved in ethanol was mixed 

with 0.3 g alginic acid and 0.5 g powdered squid. Distilled water was added to obtain a 

final volume of 10 ml. The mixture was stirred until it was homogeneous, and then 

loaded into a 10 ml syringe. The tip of the syringe was immersed into a 0.25 M CaCl2 

solution and the content of the syringe was slowly expelled into the CaCl2 solution to 

form noodle-like food pellets. After several minutes, the solidified “noodles” were 

rinsed with sea water and cut into 2-5 mm long pieces.  

 

The effectiveness of the antifeeding activity was assessed at different 

concentrations of crude extract in the food pellets. This was done to assess the 

efficiency of secondary metabolites, which may vary in concentrations within the soft 

coral tissue seasonally, among populations, among organs and/or among life stages 

(Slattery et al. 1999, 2001). Thus, we produced pellets with 100%, 50%, 25% and 

12.5% of the natural extract concentration. In order to assess the potential anti-

feeding effect of the sclerites, sclerites were added to the food pellets (without extract) 

in their natural concentration (0.13 g sclerites g-1 soft coral dry weigh). Additionally, 

sclerites were added to food pellets containing reduced concentrations of crude 

extract (25% of the natural concentration) in different concentrations (50%, 100% and 

200% sclerites of natural sclerite concentration) to determine the potential interactive 

effect of sclerites and secondary metabolites. We used 25% extract concentration not 

to mask any potential sclerite effect by a dominant chemical effect.  
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The feeding experiment in aquaria was carried out in Kiel, Germany, using the 

climate rooms of the GEOMAR institute. The moon wrasse, Thalassoma lunare, 

(bought from the company Aqua Inspiration, Bonn, Germany) was chosen, because it 

is an abundant species in the central Red Sea and known to be a generalist feeder on 

a wide assortment of benthic invertebrates including soft corals (Randall 1983; Rotjan 

and Lewis 2008). Furthermore, this species has been used frequently for aquarium 

bioassays (Pawlik et al. 1987; Harvell et al. 1988; Kelman et al. 1999; Epifanio et al. 

2007), due to its wide prey spectrum, its fast adaptation to aquarium conditions and 

slow satiation (Pawlik et al. 1987). Each fish (n=9) was placed in a separate aquarium 

filled with 40-l artificial sea water with a salinity of 35psu, a temperature of 25°C and a 

12h light : 12h dark rhythm.  

The feeding choice test was done by feeding the fish alternatingly with control 

and treatment pellets loaded with extract and/or sclerites. In case the fish ignored the 

treatment pellet, another control pellet was offered in order to discriminate between 

the repellence of the treatment pellet and satiation. A pellet was considered rejected, 

when it was ignored or spit out by the fish and the fish consumed a control pellet 

thereafter. The feeding tests were repeated with 10 control and 10 treatment pellets at 

a time with each of the 9 fish. The number of pellets consumed or rejected was 

recorded. Different treatments were tested at different days, with 3-5 days of rest 

between each test. During resting time, fish were fed with artificial food (fish food).  

Analyses: The feeding deterrence in the field assays was assessed by 

comparing the consumption rates on the pairwise deployed pellets using Repeated 

Measures ANOVA according to Molis et al. (2006) which takes account of the spatial 

dependence of the two pellets with and without extract forming a pair. Only the data of 

the large pellets were used, because in this case the control pellets were not entirely 

consumed. Prior to the analysis, all data were Box-Cox-transformed to ensure 

normality (see Molis et al. 2006). 

The learning capacity of the fish in the aquaria experiment, which were 

repeatedly (10x) fed an identical extract pellet (intermittently with a control pellet), was 

assessed as the % decrease of acceptance between successive offerings during a 

given test day (i.e. increasingly experienced fish) relative to the acceptance at the first 

offering of an extract-loaded pellet (i.e. naive fish). These slopes were calculated for 

the pellets containing 25% of the natural extract concentration, because with full 

concentration the acceptance in most cases reached zero too early to calculate 
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reliable slopes and at concentrations below 25% repellence and learning were almost 

absent. Because the fish showed some learning capacity, only the acceptance or 

rejection of the first treatment pellet (i.e. the reaction of a naive fish) was used for the 

statistical assessment of the extract defense strength.  

The discrimination between control and extract pellet was tested by Fisher’s 

exact test for the two soft coral species separately. Replication was done on the 

extract side (n = 5 colonies extracted) and on the consumer side (n = 9 fish individuals 

tested). This procedure assesses the difference in proportion of eaten relative to 

rejected pellets between pellets with versus without extracts for the 5 replicate 

extracts per soft coral species offered to 9 fish. Analyses were performed with the 

software Statistica 8. 

 

Results 

In the field experiment, food pellets containing extracts of both soft coral 

species at natural concentration were avoided by the reef fish community relative to 

the pellets without coral extract (F=44.6, p<0.001; Fig. 1, Tab. 1). In contrast to the 

control pellets (97% ±2.5 SE and 92% ±2.9), only 14.4% (±3.9) and 8.7% (±3.2) of the 

pellets containing O. crenata extract and H. ghardaqensis extract, respectively, were 

eaten by the fishes.  

Repellency did not differ significantly between the two xeniid species (F=0.07, 

p=0.8, Tab.1). The main fish species observed feeding on the pellets were 

Thalassoma lunare, T. rueppellii, Pomacentrus sulfureus, Sufflamen albicaudatum, 

Oxycheilinus digramma and Cephalopholis argus. In addition, some allegedly 

herbivorous fishes such as parrot fishes and surgeon fishes fed on the pellets 

occasionally. 
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Figure 1: Field assay. Mean percentage of pellets consumed by reef fishes in field. Dark grey 

columns: pellets without crude extract, light grey columns: pellets containing crude extracts at 

natural concentration. 

 

Table 1: Results of repeated measures analysis of variance (repANOVA) on the consumption 

rates of natural reef communities on pellets loaded with either Ovabunda crenata or 

Heteroxenia ghardaqensis extracts (factor “Extract”) at natural concentrations relative to 

pellets not containing any coral extract. The comparison of feeding on the pair-wise deployed 

control and extract pellets is represented by the “R1” term. Shown are: df = degrees of 

freedom, SS = sum of squares, MS = mean squares, F = test statistic, and p = significance. 

 

 

SS df MS F p 

Intercept 13.43845 1 13.43845 18.70672 0.002529 

Extract 0.0507 1 0.0507 0.07057 0.797225 

Error 5.747 8 0.71838 

  R1 30.62576 1 30.62576 44.63039 0.000156 

R1*Extract 0.0301 1 0.0301 0.04387 0.839335 

Error 5.48967 8 0.68621 

   

In the aquarium experiment the fish quickly adapted to the new condition and 

readily accepted the control food pellets (without extract). For most concentration 

levels of both crude extracts most fish individuals learned to recognize and avoid the 
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repellent pellets during the series of 10 subsequent encounters with a given pellet 

type. For the 25% natural concentrations, we assessed the slope of decreasing 

acceptance by increasingly experienced fish. The average slopes of the learning 

curves of the 9 fish, i.e. increasing rejection with increasing experience, were -3.3 

(±1.6 SE) and -8.6 (±2.7) for Heteroxenia and Ovabunda extracts, respectively. This 

means, that each time the fish faced a further extract-loaded pellet they, on average, 

accepted it 3.3% to 8.6% less often than at the preceding encounter. Between the first 

and the tenth encounter the acceptance thus decreased by 33% and 86% for 

Heteroxenia and Ovabunda extracts, respectively. The difference in learning speed of 

fish with regard to the 2 potential prey species was, however, not significant (t-test, df 

= 11, t= 1.6, p = 0.13). 

At the first encounter between pellet and the naive fish, the control pellets were 

always eaten, while the treatment pellets containing the natural concentration of crude 

extracts were rejected by the moon wrasse to different degrees. On average, only 

21% (±6.4 SE) of the pellets containing crude extract of O. crenata and 26% (±8) of 

the pellets containing crude extract of H. ghardaqensis were consumed by the naive 

moon wrasse (Fig. 2), which in both cases was significantly less than the feeding on 

control pellets (repANOVA and Fisher’s Exact test p< 0.0001, Tabs.1 and 2). 

The repellent activity decreased with decreasing crude extract concentration 

for both soft coral species (Fig. 2). This trend appeared slightly stronger in H. 

ghardaqensis compared to O. crenata, but both species showed a significant 

repellence even at the lowest tested concentration of crude extract (12.5%) (Tab. 2). 

Comparing the treatment pellets of the two species only (Fig. 2), Ovabunda extracts 

appear less repellent than Heteroxenia extracts (Tab. 3). However, only at 25% 

natural concentration was this difference significant. 

Sclerites of O. crenata did not affect the feeding behavior of moon wrasses at 

any sclerite concentration (50%, 100% or 200% of natural sclerites) when added to 

food pellets without coral extract or in combination with 25% of crude extract 

concentration (Fig. 3, Tab. 4). 
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Figure 2: Proportion of pellets containing different natural concentration of crude extract of 

Ovabunda crenata (dark grey) and of Heteroxenia ghardaqensis (medium grey) consumed by 

moon wrasse fish. Pellets without coral extract (light grey, 100% eaten in all test s). (* 

significant difference with p<0.05 between pellets containing Ovabunda crenata and 

Heteroxenia ghardaqensis extracts). 

 

Table 2: Feeding discrimination of fish between pellets with versus without coral extracts in 

the aquaria assays analysed by Fisher’s Exact test. “Extract %” = concentration of coral 

extract in % of natural concentration. “Fisher’s p” = 2-sided p-value. 

Species Extract (%) Chi² Fisher’s p 

Ovabunda crenata 

100 54 <0.0001 

50 47 <0.0001 

25 29 <0.0001 

12.5 13 <0.001 

Heteroxenia ghardaqensis 

100 49 <0.0001 

50 38 <0.0001 

25 7.9 0.0025 

12.5 5.6 0.0121 
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Table 3: Repellence (assessed as proportion of pellets consumed) of Ovabunda versus 

Heteroxenia extracts compared by Fisher’s Exact test at different extract concentrations. 

“Extract %” = concentration of coral extract in % of natural concentration.  

“Fisher’s p” = 2-sided p-value. 

 

Extract (%) Chi² Fisher’s p 

100 0.06 0.81 

50 0.69 0.37 

25 8.2 0.004 

12.5 2.9 0.08 

 

 

Figure 3: Proportion of pellets containing different crude extract and sclerite treatments of 

Ovabunda crenata consumed by moon wrasse fish. Sc = sclerite, Ex = Ovabunda crenata 

extract, numbers behind these abbreviations indicate the concentration of extract and sclerites 

of the natural concentration in percent. 
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Table 4: Repellence (assessed as proportion of pellets consumed) of various combinations of 

Ovabunda extracts and sclerites loaded pellets compared by Fisher’s Exact test. “Extract %” = 

concentration of coral extract in % of natural concentration. “Fisher’s p” = 2-sided p-value. 

 
Extract (%) Spicule (%) Chi² Fisher’s p 

25 0 8.5 0.002 

0 100 0 1 

25 200 5.9 0.01 

25 100 7.2 0.004 

25 50 7.2 0.004 

 

 

Discussion 

Our results show that the crude extracts from two highly abundant soft coral 

species in the Red Sea, O. crenata and H. ghardaqensis, strongly deter reef fishes 

from feeding on their polyps. This protective effect is not only detected at natural 

concentrations but even at 4-fold reduced concentrations, highlighting the efficiency of 

the involved secondary metabolites. Consequently, these soft coral species are likely 

to be well defended against fish consumption even if the defense metabolite 

concentration fluctuated to some extend among individuals, populations, life history 

stages or seasons. This antifeeding defense most likely contributes to the success 

and remarkable abundance of these soft coral species in the reefs along the Saudi 

Arabian Red Sea coast.  

Sclerites, in contrast, did not show any deterring effect against fish predation. A 

negative relation between sclerite armament and chemical defense, suggestive of a 

defensive role of the sclerites has previously been reported by Sammarco et al. (1987) 

for some soft coral taxa (Sinularia, Lemnalia, Heteroxenia). 

The similarity of the results found in both experiments, the field and laboratory 

assays, suggests that the secondary metabolites of xeniid soft corals are “broad-band” 

repellents against predation of various fishes rather than against specific species only  

(e.g. T. lunare). Xeniids are known as a rich source of terpenoids with antifouling 

activity (König et al. 1989; Bishara et al. 2006) or substances with potential antitumor 

activity (El-Gamal et al. 2005). Although, the chemical composition of the crude 

extracts in our study species is not yet known, the fact that they inhibited feeding by a 

wide variety of fish species even at concentrations substantially below natural 
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concentrations indicates an impressive activity. Similar chemical anti-feeding defenses 

have been described for other soft coral species such as Sinularia polydactyla, 

S.maxima (Wylie and Paul 1989) and Rhytisma fulvum fulvum (Kelman et al. 1999). 

Such effective predator deterrence may be due to the combined effect of several 

different compounds (Van Alstyne et al. 1994), and it might therefore be rewarding in 

a follow-up study to assess the composition of effective metabolites, and whether they 

act additively or synergistically.  

Although, the crude extract of both soft coral species was similarly repellent at 

natural concentrations, repellence decreased slightly faster with decreasing extract 

concentration for H. ghardaqensis than for O. crenata extracts. Concomitantly, fish 

seemed to learn avoiding pellets faster when they were loaded with Ovabunda 

extracts than with Heteroxenia extracts. Whether this was attributable to the stronger 

chemical activity or a more characteristic or stronger olfactory cue in Ovabunda 

extracts is not clear at the moment. It should be noted that our extraction procedure 

did not capture the most polar metabolites of the soft corals. Possibly, highly water-

soluble cues were missed as a consequence. If not, the slightly more active 

repellence and the more pronounced recognition value might confer a better 

antifeeding protection to Ovabunda as compared to Heteroxenia.  

In the field, we also observed fish behavior suggestive of learned avoidance 

when certain chemicals of the treatment pellets were sensed. Thus, some fishes 

approached the treatment pellets but then did not take a bite. In contrast to the fish in 

the laboratory, the natural reef population of fishes was presumably not naive. Given 

the abundance of the two soft coral species in these reefs, the fishes must encounter 

them regularly and learn how to recognize them by chemical cues. The prevalence of 

these highly deterrent chemical cues in soft corals is not necessarily related to toxicity, 

as described by La Barre et al. (1986). A capacity of fishes to use olfactory or visual 

cues to avoid unpalatable organisms has been suggested (Pawlik et al. 1995; Miller 

and Pawlik 2013). 

It is conceivable that the chemical repellence is complemented by other, e.g. 

morphological or behavioural protective adaptations in this coral species. In both 

regards, the two species differ to a certain degree. The colonies of O. crenata species 

reach a total height of 3 cm, while H. ghardaqensis colonies can reach 12 cm in 

height. Ovabunda polyps do not show any pulsating activity, whereas the polyps of 
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Heteroxenia feature continuous pulsation (Gohar 1940; Reinicke 1997). Whether 

these traits increase or decrease the species’ susceptibility to fish consumption is 

unknown so far.  

Many xeniid species are known to release mucus upon mechanical stress 

(Gohar 1940; Ducklow and Mitchell 1979). If this mucus bears olfactory signals it 

might enhance the avoidance behaviour of reef fishes. As a further distinctive property 

with potential relevance to predation, Ovabunda in contrast to Heteroxenia possesses 

sclerites. These, however, even at double natural concentration did not affect fish 

feeding in the lab experiments. In contrast, the presence of calcareous sclerites in 

other prey species was reported to enhance the efficiency of chemical anti-feeding 

defences by neutralizing the digestive enzymes in the stomachs of various 

consumers, including fishes (Hay and Kappel 1994). Also high concentrations of 

sclerites (31-82% of total tissue dry weight) of some Octocorallia (Sinularia maxima, 

S.polydactyla, Annella mollis) were found to deter fish feeding (Van Alstyne et al. 

1992; Puglisi et al. 2000). On the other hand, the soft coral Rhytisma fulvum fulvum, 

which harbours sclerite concentrations of almost 80% of tissue dry weight, did not 

deter feeding (Kelman et al. 1999). Reasons for the lack of anti-feeding activity of the 

O. crenata sclerites may be (i) that the natural (13% of coral dry weigh) and even the 

doubled sclerite concentration is too low to affect the predator’s enzymatic 

functionality and/or (ii) that the sclerite size and shape may be harmless to predator 

fishes (Van Alstyne et al. 1992). The latter reason is underpinned by results from Ilan 

and Burn (2003), who found that sponge spicules deterred fish only when larger than 

~250 µm. The size of O. crenata sclerites in this study were below 50 µm in length 

and the sclerite morphologies were simple flat discs of roundish to oval shape 

(Reinicke 1997; Halász et al. 2013). Those might therefore only play a role as 

structural support (Van Alstyne et al. 1992; Lewis and Von Wallis 1991). In H. 

ghardaqensis, which lack sclerites, structural support is provided by the mesoglea 

which is particularly strong and well-developed compared to the mesogloea of other 

xeniid species (Reinicke pers. comm.).  

In conclusion, the chemical defence of the two xeniid species clearly prevents 

fish-feeding, while the sclerites, where present, seem to serve as structural support 

only or have other functions unrelated to defense. The high anti-feeding efficiency of 

the metabolites most certainly contributes to the robustness, perseverance and 

considerable abundance of xeniid species in the Red Sea. The chemical repellency of 

the soft corals may be enhanced by the capacity of the fish to learn recognizing 

defended prey. 
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GENERAL DISCUSSION 

 

1. Pattern of soft coral community structure 

In general, the results revealed that soft corals decrease in diversity, 

abundance and coverage from north to south along the Saudi Arabian coastline, and 

also display different communities among sites and areas (Figs. 1 & 2). 

 

Figure 1: Soft coral cover along the Saudi Arabian Red Sea  

(±SE: standard error obtained from replicate transects). 

 

Figure 2: Species richness of three main families of soft corals distribution at 9 areas from 

north to south along the Saudi Arabian Red Sea. 
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Although soft coral communities showed different coverage, diversity and 

abundance between studied sites, a significant positive relationship was not found 

between high soft coral coverage and high species richness. For example, Maqna in 

the North had a high diversity of species (ca. 44 species) but the coverage was only 

5.4%. At Jeddah, the coverage was 15% and species richness was ca. 47 species. 

Moreover, the relation between coverage and genera richness showed no significant 

difference. Fabricius and De’ath (2001) did find a relationship between soft coral 

genera richness and low soft coral coverage (less than 8% cover of substrate), and 

the authors also explained that the substitution of less tolerant by more tolerant 

species can cause increasing coverage but decreasing diversity. Based on the 

present results, this reason seems to be not valid for the Red Sea.  

The most diverse soft coral communities occurred in the northern section 

(Maqna and Al-Wajh) with 57 species and 19 genera, representing 70% of the total 

soft coral species recorded in this study. These results were consistent with prior 

studies that revealed the importance of the northern Red Sea for soft coral diversity 

(Benayahu 1985; Benayahu et al. 2002), possibly related to the suitability of biotic and 

abiotic conditions in the North. These not only provide a reef refugium for hard corals 

(Fine et al. 2013) but also for soft coral communities.  

Some species such as Tubipora musica (Tubiporidae), Rhytisma fulvum 

fulvum, Sinularia dissecta, S. leptoclados, Sarcophyton pauciplicatum, Lobophytum 

pauciflorum (Alcyoniidae), Paralemnalia thyrsoides (Nephtheidae), Dendronephthya 

hemprichi (Nephtheidae), Ovabunda biseriata, Heteroxenia elizabethae (Xeniidae) 

were dominant and occurred at almost all study areas, suggesting that they exhibit a 

wide distribution in the Red Sea and are more resilient towards the different 

environmental conditions along the gradient.  

In contrast, species such as Cladiella pachyclados, C. brachyclados, C. 

sphaerophora and Siphonogorgia fragilis were only found in the northern and central 

sections but not in the southern section. It could be that the physical environmental 

conditions in the South are factors limiting their distribution. However, more studies or 

experiments are required to confirm the relationship between their distribution and 

environmental conditions.  

The present study also adds new geographic records of some soft coral 

species such as Sinularia loyai, S. muqeblae, S. auritum, Sarcophyton pauciplicatum 
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(Alcyoniidae), Xenia membranacea, X. actuosa X. lillieae, and Heteroxenia 

elizabethae (Xeniidae). These results suggest that previous studies have not been 

sufficiently detailed over the geographic scale to detect all species present in the 

study region.   

Based on the abundance of soft coral genera in this study, three main clusters 

of soft coral distribution were apparent, separating among northern, central and 

southern sections (see chapter 1). The northern section (Maqna and Al-Wajh) was 

found to have the highest number of genera (16); a result that lends support to this 

section being the most diverse for soft coral in the Red Sea.  

In general, the dominant genera in the northern section are distributed quite 

equally among sites, and ranged between 5-10% coverage overall. The genus 

Sinularia was the main contributor to soft coral cover. The central section is less 

diverse than the northern section and the genera are distributed unequally, with 1-

20% coverage. Xeniid corals are the main contributors to soft coral cover in this 

section. The southern section is characteristically less diverse and has less coverage 

when compared to the other sections. Interestingly, in contrast to coverage, the 

abundance of genera correlated significantly with species richness, because genera 

such as Sinularia, Ovabunda, Xenia were both abundant and the most diverse of 

genera on the studied reefs. 

Previous studies revealed that soft coral diversity increases towards the 

equator or decreases both with increases in latitude and longitude (Ofwegen 2000; 

Benayahu et al. 2003). However, in this study the soft coral diversity decreased in the 

direction of the equator (from north to south in the Red Sea). This can be explained by 

the local conditions in the study region, as physical factors of the environment 

(discussed below) affect soft coral diversity distribution in the Red Sea.  

Clearly, diversity and coverage are not only different between sites (near-shore 

and off-shore) due to variation among the environmental parameters (see chapter 2), 

but the soft coral coverage was also different among the off-shore sites (un-impacted 

sites, Fig.1) in this study. This may be explained by the patchy distribution of soft coral 

communities in the Red Sea and elsewhere (Tursch and Tursch 1982; Benyahu and 

Loya 1977; Dinesen 1983). This may be one of the reasons for the differences in soft 

coral cover between the un-impacted sites investigated in this study. Benayahu (1985) 

reported that the patchiness of soft coral distributions also changed with species 
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diversity. However, the changing diversity composition was not found in this study, 

which detected a significant relation between genera abundance and species richness 

but not between cover and diversity. 

2. Factors impacting soft coral communities in the Saudi Arabian Red Sea 

Soft coral communities, like other sessile communities, are strongly influenced 

by both the abiotic and biotic ‘environment’, the main limiting factors regulating their 

distribution. This study investigated the relative contribution and importance of the 

main physical parameters, including nutrients, slope types, depth, sediment and 

temperature, in structuring soft coral community distribution in the Red Sea. Any 

relation between dominant soft corals and water quality was also investigated. 

2.1. Depth, substrate and slope conditions  

As presented above, the abundance and diversity of soft corals are highest at 

northern reefs. There the substratum is mainly hard or solid, reefs continue down to 

deeper greater depths and slopes are steeper when compared to the rather flat, 

rubble/sand substratum and gently sloping reefs in the South.  

Soft coral communities vary in diversity, composition and cover with depth 

(Tursch and Tursch 1982; Dinesen 1983). Previous studies have reported that soft 

coral species are most diverse between 5-35 m (Reinicke and Van Ofwegen 1999; 

Huston 1985; Riegl and Velimirov 1994; Liddell and Ohlhorst 1987). In this study, soft 

coral species were found to be most diverse between 5 - 25 m depth.  

The depth gradient effect observed among the study sites, notably reduced 

soft coral diversity in shallow water, may be related to the lack of structural skeleton 

structure. In shallow water, where stronger wave action prevails, soft corals typically 

occur as small or flexible colonies (Fabricius and Alderslade 2001). Moreover, soft 

coral communities distributed in deeper zones may be subjected to reduced 

competition for space with other benthic organisms. Soft corals are known to be less 

successful competitors for space in comparison to stony corals and algae in reef flats 

of the Red Sea (Benayahu and Loya 1981). Furthermore, in this study, where the hard 

substratum (as reef rock or massive dead coral) was exposed without algae cover, 

more soft coral cover was present than in places covered by rubble, sand or silt (see 
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chapter 1). This suggested that the substrate condition is one of the main factors for 

soft coral settlement and growth in the Red Sea (Benayahu 1985). 

The angle of the reef slope is another key factor affecting soft coral distribution 

in the Saudi Arabian Red. In the North and Central sections, reefs have characteristic 

steep slopes (angle of slope from 45
°
~ 90

°
) while in the South section the reefs are 

much less steep. Difference in slope morphologies between areas explained 32.6% of 

variation in soft coral communities in this study (Fig. 3). This is consistent with the 

results of Fabricius and De’ath (1997), who showed that 45% of variation in soft coral 

cover was explained by slope and location at Davies Reef (Great Barrier Reef).  

Different soft coral communities occurred on reefs of different slope angle 

along the Saudi Arabian coast, consistent with the fact that soft coral genera have 

preferred angles of substratum. Chanmethakul et al. (2010) also found that soft coral 

distributions were affected by angle of substratum in the sea around India and Gulf of 

Thailand. Similarly Fabricius and De’ath (1997) reported that distribution of the genus 

Nephthea was related to slope angle. In this study, the genus Nephthea and some 

other genera including Klyxum, Litophyton and Cladiella were commonly found in the 

northern section yet were absent or rare in the other sections. The distribution of these 

genera in the Saudi Arabian Red Sea appear correlated with slope angle, although 

further investigations are required to confirm the strength of this relationship between 

distribution and slope. 

2.2. Nutrients, sedimentation, turbidity and temperature 

Nutrient concentrations not only strongly increased from the North to the South 

during both the winter and summer expeditions but also differed between impacted 

and un-impacted sites along the Saudi Arabian coast (Sawall et al. 2014). Conversely 

with nutrient concentrations, soft coral communities decreased in coverage, 

abundance and diversity along the Saudi Arabian coast from north to south, and 

structure of the communities also changed among sites.  

The combined effect of nutrients, sedimentation and turbidity explained 52.8% 

of soft coral variation along the gradient, while turbidity explained 19.3%, 

sedimentation 13% and nutrients 49%, respectively (Fig. 3). This result showed that 

sedimentation and turbidity are not strongly correlated or overlapping, because the 

combination of turbidity and sedimentation explained 29.3% of variation in soft coral 

distribution. This result is similar to the result of Fabricius and De’ath (2001) that 
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underwater visibility (a proxy for turbidity) and sediment explained 24.5% of the 

variation of soft coral richness and both factors seem not to overlap each other in the 

Great Barrier Reef.  

Sedimentation is another important parameter, as soft corals are less diverse 

in some sites such as Rabigh and Yanbu with high sediment deposition on the reef 

substrata. Conversely, Al-Wajh and Maqna have high soft coral diversity and no 

deposited sediment. Sedimentation also caused local loss of soft coral taxa in the 

Great Barrier Reef (Fabricius and De’ath 2001). The result of this study provided 

additional supporting information about the status of soft coral communities in the 

Saudi Arabian coast affected by anthropogenic activities such as petroleum 

production, industrial pollution and sewage.  

 

Figure 3: Proportion of variation in soft coral distribution pattern explained by parameter 

factors (The overall variation is 65% while total factors sum up to more than 100%, it means 

that some factors are correlated each other, producing overlap in variability).  
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Moreover, the relation between soft coral communities with nutrients and 

sedimentation was also reported from Madagascar (Evan et al. 2011), the Chagos 

Archipelago (Reinicke and van Ofwegen 1999) and the Egyptian Red Sea shores 

(Mohammed 2012). Clearly, the Red Sea features an extended gradient of 

environmental conditions, and these, along with cover and dominance of soft coral, 

are required to assess the shift of soft coral communities in the Red Sea. In this study, 

there was a strong signal of the key environmental parameters in explaining the 

variation of soft coral communities, as measured by diversity composition, coverage 

and dominance of genera along the Saudi Arabian coast. These results strongly 

emphasized that the environmental gradient conditions affected the soft coral 

distribution along the Red Sea coast. 

Increasing temperature is one of the triggers of bleaching (Douglas 2003) 

leading to loss of symbiotic algae in the tissue of soft corals. Approximately 21% of 

variation of soft coral communities in the Saudi Arabian Red Sea was explained by 

different temperature along the gradient (Fig. 3). The genera Sinularia, Sarcophyton 

and Lobophytum were dominant on the southern reefs (where the temperature can 

reach 32°C in summer). Interestingly, Strychar et al. (2005) reported that Sarcophyton 

ehrenbergi can tolerate temperature of 34°C for more than 39 h and Sinularia sp can 

survive after long time exposure of 32°C temperature. The results of this study 

suggest that the genera Sinularia, Sarcophyton and Lobophytum may be more 

resistant in terms of thermal tolerance in the southern Red Sea, although more 

focused experimental studies are needed to explain the significance of temperature in 

controlling soft coral distribution in the Red Sea. 

The xeniid communities, as described by coverage, abundance and diversity 

pattern, differ between near-shore (impacted sites) and off-shore reefs (un-impacted 

sites). Difference in the relation of xeniid communities to environmental conditions in 

this study is similar to previous results. These showed that the abundance and 

diversity of octocorals exhibit strong negative correlations with suspended particulate 

matter, silicate and total organic sediment contents (van Woesik et al. 1999; Fabric ius 

and De’ath 2001; Fabricius 2005). Sawall et al. (2014) reported that significant 

differences among the genera abundance of hard coral communities were evident in 

some reefs located close to a source of nutrient pollution. Nutrients impacted both 

hard and soft coral communities along the Saudi Arabian Red Sea coast.  
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3. Chemical defense against fish predation in xeniid species. 

Xeniid communities are dominant in the Red Sea, covering up to 14% of 

substratum or occupying 80% of soft coral coverage in some areas in this study. Like 

other soft corals, the capacity of anti-predator defense is a potential contributor to the 

abundance of these soft coral species in the Red Sea. Such defenses include both 

physical and chemical deterrents to predation, with chemical deterrents ranging from 

outright toxicity to unpalatability. 

Crude extracts of Ovabunda crenata and Heteroxenia ghardaqensis strongly 

deterred reef fishes even when the natural concentrations were reduced 4-fold. This 

suggests that the chemical defenses of secondary metabolites still strongly affect 

predatory fishes, even allowing for significant natural fluctuations in concentration of 

chemical compounds in response to changing environmental conditions or other 

stimuli. Moreover, the strong anti-feeding response, even at low concentrations of 

crude extract, may compensate for the apparent lack of physical defense from 

sclerites of Heteroxenia ghardaqensis species.  

Although not tested in the present study, the natural concentration of defensive 

chemicals also may vary between parts of colonies, such as polyp and stalk, in the 

same soft coral species (Van Alstyne et al. 1994; Harwell and Fenical 1989). Natural 

chemical concentration may be higher in the polyp than other colony parts, because 

polyps are more exposed to predation in closely adjacent stands of xeniid colonies, 

which may consist of numerous conspecific individuals occurring side by side on the 

reef (Gohar 1940). This growth mode can afford some protection to the stalk from 

carnivorous fishes, which may thus have lower levels of chemical (and other) 

defenses. Conversely, the polyp parts that are extended into the water column may 

need a high defense chemical concentration for their protection. 

The two xeniid species tested here differed in morphology, including total 

height of colony, size of tentacles, pulsation of tentacles and the absence/presence of 

sclerites. The pulsation of polyps plays a role in enhancing photosynthetic respiration 

of xeniid species (Kremien et al. 2013). However, whether the pulsation of polyps 

could decrease or increase the attraction of fishes to attack the corals and consume 

the polyp tissue is presently unknown. The presence of high chemical defense against 

predatory fishes in both species used in this study suggests that there is no relation 
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between morphology and chemical defense. However, more studies are needed to 

confirm this observation.  

Previous studies have revealed that some xeniids exhibit marked toxicity 

(Bakus 1981), or ranged from moderately toxic to non-toxic (Coll et al. 1982; 

Sammarco et al. 1987). Although the toxicity of chemical defense was not specifically 

tested for the two xeniid species Ovabunda crenata and Heteroxenia ghardaqensis in 

this study, it is likely that secondary metabolites in both species lack toxicity. The 

reason for this proposal is that the behaviour of generalist fishes in the field and moon 

wrasse in the laboratory did not change after consuming amounts of pellets with 

added chemical extract (the fish behavior after feeding observed following Coll et al. 

1982). Possible reasons for apparent lack of toxicity in both species may be the high 

metabolic costs of producing toxins.  
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CONCLUSIONS 

 

Briefly, this thesis provides the first assessment of the status of soft coral 

communities, including diversity, abundance and cover, from north to south of the 

Saudi Arabian coastline. This region has a strong latitudinal gradient in several key 

environmental parameters. The diversity, abundance and cover of soft coral 

communities strongly varied along this latitudinal environmental gradient, and also 

changed between near shore (impacted reefs) and off shore (un-impacted reefs). 

The major parameters influencing community structure and distribution were 

also reviewed and examined in the field. The study found that each of the main 

parameters, including substrate, depth, slope, temperature, nutrients, sedimentation 

and turbidity, are important determinants of soft coral distribution in the Red Sea, at 

both local and regional scales. The key parameters explained 65% of the variation in 

soft coral communities from north to south.  

Chemical defense against predatory fishes is one of the reasons why two 

species of xeniid soft coral exhibit robustness, perseverance and abundance in the 

Red Sea. Conversely, the role of sclerites in xeniid species, where present, seems to 

serve as structural support only, or perform other functions unrelated to defense. 

 

LOOKING AHEAD 

 

Soft coral communities in the Red Sea are among the most diverse in the 

tropical regions of the world, a finding confirmed in this study. In addition to the 

community structuring parameters examined, other abiotic and biotic factors may also 

be important. These include light and oceanographic current condition, wave action, 

competition between soft coral and other organisms on coral reef, other forms of 

predation, and potentially other community structuring forces. 

Chemical defense against predation by xeniid soft corals in the Saudi Arabian 

Red Sea was demonstrated for the first time. However, this study was limited to the 

crude chemical extract of xeniids, and further research should be conducted to 
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determine which single chemical compound or combined compounds play an 

important role in affecting predator fishes. Moreover, such research should examine 

variation in secondary metabolism between seasons and along gradients. This will 

increase the knowledge of chemical defense of predators of xeniid soft corals, 

contributing to their dominance in the Red Sea. 

Samples of some species belonging to families Alcyoniidae and Nephtheidae 

were not able to be identified in this study. These may be new species (or at least 

newly recorded for the zoogeographical region). These samples need systematic 

verification, potentially including genetic analyses, by taxonomic specialists to confirm 

their identities as either undescribed or new records in the Red Sea. 

Global warming leads to rising sea temperatures, while acidification of the 

oceans and increasing anthropogenic activities will cause more impacts and pressure 

on coral reef ecosystems in the near future. More studies at local, regional and global 

level are needed to understand the impacts on coral reefs and provide the solution to 

protect the coral reefs. 
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