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Abstract 

The bladder wrack Fucus vesiculosus is one of the few perennial canopy-forming macrophyte 

in the rather species poor Baltic Sea. It is therefore a highly important bioengineer of shallow 

water coastal areas, creating a habitat for various species.  Presumably, F. vesiculosus has its 

phylogenetic origin in the Atlantic and has recruited to the Baltic Sea at the beginning of the 

Littorina Sea period (7500 BP). Since the 20th century, F. vesiculosus belts have declined in 

the Baltic Sea, considering their depth as well as their geographic distribution. The reasons for 

this are only partly understood. Nowadays, at the German coast F. vesiculosus occurs in the 

intertidal North Sea and in the shallow water along a steep salinity gradient along the German 

Baltic coast (~ 7-17 psu). 

 Although the Baltic Sea does not feature tides, shallow water F. vesiculosus may be exposed 

to strong environmental fluctuations. Those include temperature fluctuations when F. 

vesiculosus is exposed to air, in consequence of water displacement due to strong winds, and 

low salinity conditions in case of heavy rain which dilutes the upper water layer. The 

tolerance of F. vesiculosus towards fluctuating conditions may also provide this species with a 

higher tolerance towards persisting environmental changes. The stress tolerance of early 

fucoid life stages may differ from that of adults, however all life stages are relevant for the 

survival of populations. Especially early fucoid life stages may be vulnerable to 

environmental stress. For the preservation of such an ecologically important macroalgae it is 

highly relevant to test for environmental factors which may influence the recruitment success 

of F. vesiculosus. Several potentially critical steps occur during sexual reproduction of F. 

vesiculosus, which determine the recruitment success: (i) the maturation process of adult 

individuals, (ii) the fertilisation of eggs and (iii) the germination process of zygotes. Thus, the 

main aim of my work was to investigate possible environmental effects on these three steps of 

the reproduction cycle of F. vesiculosus at the German Baltic Sea coast.  

I surveyed the fertility of this macroalga species in situ (‘fertility monitoring’) in five regions 

along the salinity gradient of the German Baltic coast (~ 7-17 psu). This was done, in order to 

test, if geographically different reproductive periods occur in response to different 

environmental conditions.  In a next step, I examined possible environmental drivers of 

fertility in ‘common garden experiments’, namely salinity, air exposure (desiccation, 

freezing), day length and light intensity. Since reproductive periods of Baltic Sea F. 

vesiculosus may be triggered by other factors reproductive periods of F. vesiculosus at the 

North Sea, also North Sea populations were investigated. Furthermore I examined the effect 

of temperature and salinity on the fertilisation success of fucoid eggs and on the germination 
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success of fucoid zygotes under laboratory conditions. Here, I also examined the intraspecific 

variation of temperature sensitivity. For this, I generated offspring (siblings) from single 

parental pairs, which were evenly distributed between the different treatments. 

It was found that the fertility of F. vesiculosus increased with increasing temperature and light 

in spring. At all investigated regions algae reproduced in spring- summer and autumn in long-

day (8 h dark: 16 h light) and short-day (16 h dark : 8 h light) conditions, respectively. One 

exception was a small and isolated F. vesiculosus population living under marginal conditions 

(Rügen, 7 psu), where algae reproduced exclusively in spring and summer during long-day 

conditions and their maturation was negatively affected by prior freezing. In contrast to this, 

algae from North Sea populations were positively affected by prior freezing. In the laboratory 

experiments fertilisation and germination success of fucoid offspring from different 

populations was impaired by the temperature extremes (5 and 25°C). The negative effect of 

temperature stress was partially reduced under the high salinity treatment (17 psu) compared 

to the low salinity treatments (7 and 10 psu). Furthermore, sensitivity to unfavourable 

temperatures differed among sibling groups of F. vesiculosus. 

 

Results of the ‘common garden experiments’ of the present study provide a strong indication 

that reproductive periods of F. vesiculosus is tuned by environmental conditions, such as day 

length, although it cannot be entirely ruled out that genetic constitution may play a role, as 

well. Furthermore results of the present study identified high temperatures as the most 

challenging condition for alga recruitment. Sea surface temperature rise could therefore be 

one of the reasons for the decline of F. vesiculosus populations in the Baltic Sea over the last 

few decades, particularly in the marginal environments (< 7 psu). Additionally, fertility of F. 

vesiculosus from the marginal region, in contrast to all other regions, was very low (allocation 

of resource towards stress prevention), which also indicates towards a lower capacity to deal 

with environmental changes.  A rather high germination success of some sibling groups under 

various environmental conditions, however, is promising in the light of adaptation to climate 

change. 
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Abstract in German/ Zusammenfassung 

In der eher artenarmen Ostsee ist der Blasentang,  Fucus vesiculosus, Lebensraum für viele 

Organismen und somit  eine der ökologisch relevantesten Makroalgenarten im Küstenbereich. 

Vermutlich hat er seinen  phylogenetischen Ursprung im Nordatlantik und hat sich nach der 

Littorina-Transgression (7500 BP) in der Ostsee etabliert. Seit dem 20. Jahrhundert sind die 

Bestände von F. vesiculosus in der Ostsee stark zurückgegangen, was die Tiefenverteilung als 

auch die geographische Verteilung betrifft. Die Gründe dafür sind nur zum Teil bekannt. F. 

vesiculosus kommt an der deutschen Küste sowohl in der Nordsee als auch im 

Flachwasserbereich entlang eines Salzgradienten in der Ostsee vor (~ 7-17 psu). Aufgrund 

von Gezeiten ist F. vesiculosus in der Nordsee ein regelmäßiges Trockenfallen gewohnt. Aber 

auch an der gezeitenlosen deutschen Ostseeküste kommt es, abhängig von der Windrichtung 

und –stärke manchmal zu einem Trockenfallen dieser Makroalgenart. Dabei können 

Makroalgen des Flachwasserbereichs hohen Schwankungen von Umweltbedingungen 

ausgesetzt sein, zu denen Temperatur und niedriger Salzgehalt gehören. Letzteres kommt im 

Falle von Starkregen und einer Verdünnung des Oberflächenwassers vor.  Da F. vesiculosus 

diese natürlichen Schwankungen gewohnt ist, könnte das auch bedeuten, daß diese Art eine 

gewisse Toleranz gegenüber anhaltenden Umweltveränderungen hat. Die Stresstoleranz von 

frühen Lebensstadien unterscheidet sich vermutlich von der Stresstoleranz von Adulten, 

jedoch sind alle Lebensstadien wichtig für den Erhalt einer Population.  Besonders 

stressempfindlich, sind wahrscheinlich frühe ontogenetische Stadien. Zum Erhalt dieser 

ökologisch relevanten Makroalgenart ist es von fundamentaler Wichtigkeit Umweltfaktoren 

zu identifizieren, die den Rekrutierungserfolg von F. vesiculosus beeinflussen. Verschiedene 

potentiell kritische Stadien werden bei der sexuellen Reproduktion von F. vesiculosus 

durchlaufen, welche den Rekrutierungserfolg bestimmen: (i) eine erfolgreiche Reifung der 

adulten Individuen, (ii) die Befruchtung der weiblichen Gameten und (iii) die Auskeimung 

von Zygoten. Somit war Schwerpunkt meiner Arbeit, den Einfluss verschiedener 

Umweltfaktoren auf die Fertilität, Befruchtung und Auskeimung von F. vesiculosus zu 

untersuchen. Um herauszufinden inwiefern sich Reproduktionsperioden von F. vesiculosus in 

verschieden Regionen an der deutschen Küste umweltbedingt unterscheiden, habe ich die 

Fertilität dieser Makroalgenart in situ an insgesamt fünf verschiedenen Standorten entlang des 

Salzgehaltsgradienten der deutschen Ostsee Küste (~ 7-17 psu) untersucht („fertility 

monitoring“). Des Weitern führte ich mehrere „Common garden-Experimente“ durch. Hier 

wurden F. vesiculosus Populationen verschiedenen Kombinationen von Salzgehalt, 

Emersionsstress (Austrocknung, Frost), Tageslänge und Lichtintensität ausgesetzt. Da die 
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Möglichkeit besteht, dass Reproduktionsperioden von F. vesiculosus in der Ostsee von 

anderen Faktoren ausgelöst werden als in der Nordsee, habe ich auch Populationen aus der 

Nordsee untersucht. Des Weiteren habe ich die Befruchtungs- und Keimungsfähigkeit von F. 

vesiculosus unter Extrembedingungen (Temperatur- und Salinitätsstress) im Labor untersucht. 

Zudem habe ich getestet inwieweit sich die innerartliche Empfindlichkeit gegenüber 

Temperaturstress unterscheidet. Dafür habe ich Nachkommenschaften (Geschwister) von 

bestimmten Elternpaaren dieser Makroalgenart erzeugt und diese dann gleichmäßig auf die 

verschiedenen Behandlungen verteilt. 

Die Fertilität von F. vesiculosus nahm im Frühjahr mit zunehmender Temperatur und 

zunehmendem Licht zu. Alle der untersuchten Populationen blühten im Frühling, Sommer 

und im Herbst und die Tageslänge (Langtag: 16 Std. : 8 Std; Kurztag:  8 Std. : 16 Std.) hatte 

keinen Effekt auf die Reifung der Rezeptakel. Eine Ausnahme war eine kleine und isolierte F. 

vesiculosus Population. Pflanzen dieser Population blühten ausschließlich bei 

Langtagbedingugen im Frühling und im Sommer. Die Reifung dieser Algen wurde negativ 

von Frost beeinflusst. Im Gegensatz dazu war der Reifungsprozess von F. vesiculosus Algen 

aus der Nordsee durch Frost gefördert. Des Weiteren war die Befruchtungs- und 

Keimungsfähigkeit von F. vesiculosus durch Temperaturstress (5, 25°C) negativ beeinflusst. 

Verglichen mit einem Salzgehalt von 7 und 10 psu, war der negative Effekt von 

Temperaturstress bei 17 psu geringer. Die Stressempfindlichkeit gegenüber kalter und hoher 

Temperatur unterschied sich deutlich zwischen den Geschwistergruppen. 

 

Beobachtungen während des Algen Monitorings und die Ergebnisse der „Common garden-

Experimente“‚ der vorliegenden Studie deuten darauf hin, dass die Reproduktionsperioden 

von F. vesiculosus auf bestimmte Umwelteinflüsse abgestimmt sind, wie z.B. die Tageslänge. 

Trotzdem kann nicht ganz ausgeschlossen werden, dass auch das genetische Erbgut eine Rolle 

spielt. Des Weiteren zeigt die vorliegende Studie, dass vor allem hohe Temperaturen den 

Rekrutierungserfolg von F. vesiculosus gefährden. Somit ist es wahrscheinlich, dass eine 

Zunahme der Wasseroberflächentemperatur in den letzten Jahrzehnten ein Grund für den 

Rückgang von F. vesiculosus Populationen in der Ostsee ist, vor allem in marginalen 

Habitaten (< 7 psu). Zudem war die Fertilität von F. vesiculosus in der marginalen Region, im 

Gegensatz zu allen anderen Populationen, sehr gering. Der relativ hohe Auskeimungserfolg 

einiger Geschwisterscharen unter den verschiedenen experimentellen Bedingungen ist jedoch 

interessant in Hinsicht auf das Anpassungspotential an die vorausgesagten 

Klimaveränderungen. 
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General Introduction  

Macrophytes belong to the most productive primary producers (Lüning, 1990), provide 

habitat for many species (Christie et al., 2009) and are part of the food web in coastal marine 

ecosystems (Kautsky et al., 1986; Kautsky et al., 1992; Norderhaug et al., 2005). Macrophyte 

species present in the Baltic Sea have recruited to the Baltic Sea at the beginning of the 

Littorina Sea period (7500 BP), when the freshwater lake ‘Ancylus Lake’ (8800 BP) became 

connected to the Atlantic (Ignatius et al., 1981). The semi-enclosed, brackish Baltic Sea is 

connected to the North Sea via the Danish Straits (Great Belt, Little Belt, Oresund). Due to 

only irregular, mostly wind-driven major inflows of high saline water from the adjacent North 

Sea regions, the Baltic Sea is characterized by a salinity gradient from western towards the 

northeastern areas (Kullenberg, 1981; Matthäus & Franck, 1992). Salinities prevail 

approximately 25 psu at the Danish Straits, whereas in the eastern Gulf of Finland and the 

northern Gulf of Bothnia in the northwest of the Baltic ambient salinity does not exceed 

values of 1-2 psu (HELCOM, 1996).  

 
Fucus communities in the Baltic Sea 

 

Seaweed communities of the genus Fucus are the ‘forests’ of the Baltic Sea. The serrated 

wrack, Fucus serratus (Linné, 1753), characterized by its serrated edges and the bladder 

wrack, Fucus vesiculosus (Linné, 1753), with its gas filled bladders occur in the cold 

temperate North Atlantic as well as in the Baltic Sea. In the Baltic Sea, F. serratus is 

distributed along the Swedish coast up to the Gryt archipelago in Östergötland, where salinity 

around 7 psu occurs (balticseaweed.com). At the German Baltic coast F. serratus is only 

found in the western regions (Fürhaupter et al., 2008), where, depending on the distance of 

the region from the North Sea water entrance and the wind-driven inflow of salt-rich North 

Sea water, a salinity of 20-14 psu occurs. F. vesiculosus is mainly found in the western parts 

but few populations occur also in the eastern regions (salinity: 7-12 psu) of the German Baltic 

Sea (Fürhaupter et al., 2008; Fürhaupter et al., 2012) and is also found in the southwestern 

regions of the Gulf of Bothnia with salinities down to 5 psu (Bergström et al., 2005; Pereyra 

et al., 2009). Further north, where salinity is lower than 5 psu, a ‘dwarf morph’ of F. 

vesiculosus was detected (Tatarenkov et al., 2005), which was then described by Lena 

Bergström and Lena Kautsky (2005) as the new species Fucus radicans. F. radicans is thinner 

and bushier than F. vesiculosus and reproduces mainly by fragmentation (Bergström et al., 

2005), has no vesicles and is endemic to the Baltic Sea (Pereyra et al., 2009). At the Swedish 
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east coast F. radicans is found mixed with F. vesiculosus in the southwestern regions of the 

Gulf of Bothnia (Bergström et al., 2005). Further F. radicans stands occur at the Finish coast 

and around the Estonian island Ösel/ Saaremaa (balticseaweed.com).  

Since F. vesiculosus is the most widespread Fucus species in the Baltic Sea (Torn et al., 

2006) providing habitat, shelter and food for numerous species (Kautsky et al., 1992; 

Wikström & Kautsky, 2007), F. vesiculosus communities are of major importance and have to 

be preserved in the Baltic Sea (Schories et al., 2005).  

 
Fucus vesiculosus meets harsh environmental conditions in the Baltic Sea 

 

The Baltic Sea is an enclosed habitat which is only connected to the North Sea through 

narrow Danish straits (Matthäus & Franck, 1992; HELCOM, 1996) where, due to agriculture 

runoff by rivers, high nutrient concentrations occur (HELCOM, 2009b). Baltic Sea water-low 

in oxygen but nutrient-rich is renewed by wind-driven major inflows of North Sea water 

(Kullenberg, 1981; Matthäus & Franck, 1992; HELCOM, 2009b). Without strong influxes 

water exchange in the Baltic deep water is avoided vertically by a permanent halocline and 

horizontally by the bottom topography. Periods of stagnation are the consequence, which are 

marked by increasing phosphate and nitrate concentrations and decreasing salinity and 

oxygen concentrations in the deep water (Matthäus & Franck, 1992; HELCOM, 2009b). In 

this case, nutrients persist in the Baltic Sea, leading to a phytoplankton increase and thus, to 

an increase of organic sedimentation (HELCOM, 2009b). 

 

F. vesiculosus belts have declined in the Baltic Sea during the 20
th

 century, possibly due to 

eutrophication impacts such as decreased light availability and increased organic 

sedimentation and competition (Kautsky et al., 1986; Vogt & Schramm, 1991; Eriksson et al., 

1998). Studies confirmed that nutrient enrichment enhances the growth of filamentous algae 

and the deposition of organic matter, resulting in reduced recruitment of F. vesiculosus, 

probably caused by a negative effect on the settlement of germlings (Worm, 2000; Berger et 

al., 2003; Råberg et al., 2005). Furthermore single pulses of nutrients for only five hours are 

reported to be sufficient to enhance epiphyte growth on F. vesiculosus, resulting in a reduced 

growth rate of F. vesiculosus (Worm & Sommer, 2000). For example, epibionts enhance the 

negative effect of reduced light conditions on growth in greater depths (Rohde et al., 2008) 

and fouling by diatoms on germlings may lead to low light availability and consequently to a 

lower growth of fucoid offspring (Fig. 1). Since nitrate enrichment impairs the attachment and 
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germination of F. vesiculosus zygotes, eutrophication may also have a direct negative effect 

on the recruitment (Bergström et al., 2003). 

 

  

 

Nutrient enrichment increases the amount of unsolvable sugars but simultaneously reduces 

the content of feeding deterrents and the physical toughness of the thallus (Hemmi & 

Jormalainen, 2002). Thus it was suggested by Hemmi & Jormalainen (2002) that 

eutrophication may potentially improve the nutritional quality of F. vesiculosus for the isopod 

I. baltica. 

Grazing pressure can reduce the abundance of F. vesiculosus in the Baltic Sea (Korpinen et 

al., 2007) and increasing consumption by I. baltica was discussed to be one possible reason 

for the decline of F. vesiculosus populations (Salemaa, 1987; Schaffelke et al., 1995; 

Engkvist et al., 2000). In the central Baltic proper, where salinity is low, F. vesiculosus is 

even consumed by the fresh water snails Theodoxus fluviatilis and Lymnaea peregra. They 

can occasionally reach abundances high enough to reduce the recruitment of F. vesiculosus by 

consuming fucoid zygotes and germlings until they reach a safe size of approximately 0.8 to 

1.0 mm (Malm et al., 1999). 

In German and Danish coastal waters one possible reason for the decline of F. vesiculosus 

belts was probably ‘stone fishery’ (Vogt & Schramm, 1991; Karez & Schories, 2005). Large 

stones were extracted for building ports and roads until the early seventies, with a peak during 

the Second World War. Due to coast protection at the German Baltic coast stone fishery was 

forbidden in waters less than 6 m deep (Bock et al., 2003). This meant a reduction of substrate 

for F. vesiculosus, especially in greater depths. Hoffmann (1952) reported the occurrence of 

F. vesiculosus in the German Baltic Sea in water depths down to 10 m (Karez & Schories, 

2005). Nowadays, it is mainly found between 0-2 m (Fürhaupter et al., 2008) and in the 

eastern parts of the German Baltic coast only narrow belts of Fucus occur at the islands Poel 

Fig. 1. Four month old F. vesiculosus 

germling, covered with diatoms. Photographed 

by Inken Kruse & Carola Buchner, Olympus 

Germany. 
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and Rügen (Fürhaupter et al., 2012; Pehlke et al., 2012). So far, it is not clear why Fucus has 

almost disappeared, especially in the eastern regions, but a high competitive pressure from the 

blue mussel Mytilus edulis for the existing substrate might be one reason (Pehlke et al., 2012).  

Analysis of different faunal and floral species, including F. vesiculosus, revealed that Baltic 

populations have generally lower genetic diversity than populations of the same species from 

the Atlantic and may thus be less tolerant to environmental stress; genetic diversity was tested 

using expected heterozygosity (for allozyme and microsatellite data) or haplotype diversity 

(mtDNA) (Johannesson & André, 2006).  Furthermore in the Baltic Sea F. vesiculosus has to 

cope with low salinity conditions and it seems that salinities lower than 5 psu set its 

distributional limit (Bergström et al., 2005). Low salinity confines the sexual reproduction of 

F. vesiculosus (Brawley, 1991; Serrão et al., 1996; Serrão et al., 1999) and in low salinity 

habitats clonality in F. vesiculosus is presumably favoured by natural selection (Tatarenkov et 

al., 2005). The Baltic Sea is without significant tides but with prolonged periods of high or 

low water mainly caused by atmospheric fluctuations. During air exposure, F. vesiculosus 

belts in the Baltic Sea, which grow especially in shallow waters, might be negatively affected 

by desiccation. Pearson et al. (2000) found that in the Baltic Sea F. vesiculosus populations 

have a lower tolerance against desiccation and freezing than populations in the intertidal 

North Sea. The authors assumed that since the recruitment of F. vesiculosus to the Baltic after 

the last ice age, it has lost tolerance to emersion stresses compared to adjacent intertidal 

populations. 

Marine species meet their physiological limits in the brackish and geologically young Baltic 

Sea (HELCOM, 2009a). Species richness of macroalgal taxa decreases from the Kattegat to 

the Bothnian Sea with decreasing salinity (Snoeijs, 1999). For this reason, a preservation of F. 

vesiculosus, one of the few canopy-forming macroalgae species in the Baltic Sea, is of 

enormous value. In Swedish waters F. vesiculosus has recovered since the 80’s and occurs 

nowadays down to around 8 meters (Kautsky et al., 1984; Kautsky et al., 1986), whereas in 

the German Baltic Sea F. vesiculosus populations have not recovered (Fürhaupter et al., 2008; 

Fürhaupter et al., 2012). 
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Reproduction of Fucus vesiculosus  

 

In some regions only summer-reproducing F. vesiculosus occurs (Bäck et al., 1991; Berger et 

al., 2001), whereas other F. vesiculosus populations also reproduce in autumn (Bäck et al., 

1991; Carlson, 1991; Berger et al., 2001). F. vesiculosus is dioecious and produce male and 

female gametes. For reproduction (Fig. 2) fucoid tips grow into receptacles. Inside the 

receptacles, conceptacles are located, which contain the gametangia. In females the 

gametangia are called oogonia where the development of egg cells occurs. Male individuals 

have antheridia, where the sperm cells develop. During the reproduction period gametes, still 

enclosed inside oogonia and antheridia, are released to the surface of the receptacle. In 

seawater at moderate temperatures (8-20°C) polysaccharides, which enclose the gametes, 

dissolve. Eggs, oogonia and antheridia sink down to the bottom (Brawley et al., 1999). The 

sperm is negatively phototactic and attracted to the eggs by a pheromone (Müller & 

Gassmann, 1978). A few hours after fertilisation, female gametes secrete adhesive material 

and attach to the substrate. Fertilised fucoid eggs, or rather fucoid zygotes, germinate around 

1 day after fertilisation (Ladah et al., 2003). 

 

Fig. 2. Life cycle of F. vesiculosus (Scagel et al., 1982) 

 

After gamete release, receptacles decay. In summer, F. vesiculosus thalli loose rotten 

receptacles with parts of the branches whereas autumn-reproducers loose only the rotten 

receptacles (Berger et al., 2001). Another difference between summer- and autumn-

reproducers is, that in summer a higher number of smaller eggs is released than in autumn, 
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which is assumed to be an adaptation to the different environmental factors occurring during 

the different reproductive seasons (Berger et al., 2001).  

In low salinity regions of the Baltic Sea clonality in F. vesiculosus was detected (Tatarenkov 

et al., 2005; Johannesson et al., 2011) and in mussel beds of the Wadden Sea a special form 

of F. vesiculosus exists (Albrecht, 1998). F. vesiculosus forma mytili (Nienburg) Nienhuis 

reproduces vegetatively by fragmentation, has no holdfast and is only fixed to the substratum 

by byssal threads of Mytilus edulis (Nienburg, 1925). Although untill now this phenomenon 

was only observed in the North Sea also in the German Baltic Sea individuals attached to 

mussels were found (F. Weinberger, pers. comm.) (Fig. 3). 

  

  

 
Environmental factors impact reproduction of Fucus vesiculosus   

 

Reproduction periods of F. vesiculosus differ due to environmental factors (Kraufvelin et al., 

2012). Tight control over the timing of gamete release, and therefore sensitivity to 

environmental cues, is very important for reproductive assurance in externally fertilising 

species (Pearson & Serrão, 2006). This may also be the case for receptacle maturation that in 

turn could be the cause for variation in reproductive periods. For example, at wave-exposed 

sites algae allocate more resources into receptacle growth than at sheltered sites (Cousens, 

1986; Mathieson & Guo, 1992; Kalvas & Kautsky, 1993). Fertility of F. vesiculosus tends to 

decrease with decreasing salinity (Ruuskanen & Bäck, 1999). Berger et al. (2001) assumed 

that F. vesiculosus algae that reproduce during autumn may have a selective advantage over 

those that reproduce in summer. Fewer filamentous algae grow on rocks in autumn than in 

summer. Therefore fertilised eggs have more available free substrate in autumn, especially in 

Fig. 3. F. vesiculosus algae attached 

to mussels. Photograph by Dmitry 

Afanasyev. 
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eutrophicated environments. Due to a low wave impact in sheltered coastal regions, high 

abundances of diatoms and filamentous algae develop which may impact F. vesiculosus 

abundance by shading or competing for substrate. Low wave impact also leads to high 

sedimentation that can bury early fucoid life stages, especially at sites with high abundances 

of sandy and muddy substrate. Especially early fucoid life stages are vulnerable. Various 

factors (herbivory, competition, unfavorable abiotic conditions) can suppress recruitment 

success of early life stages (Vadas et al., 1992; Serrão et al., 1996; Worm & Chapman, 1998; 

Bergström et al., 2003; Eriksson & Johansson, 2003; Råberg et al., 2005). For example, low 

salinities reduce velocity and motility of fucoid sperm and therefore the fertilisation success 

of F. vesiculosus (Serrão et al., 1996), nitrate enrichment impairs attachment and germination 

of early life stages of F. vesiculosus (Bergström et al., 2003) and the density of F. vesiculosus 

juveniles is reduced by sedimentation, especially when individuals are smaller than 5 mm 

(Eriksson & Johansson, 2003). Furthermore it was found by Råberg et al. (2005) that zygotes 

are most sensitive to the exudates of the filamentous algae Pilayella littoralis at 6 and 12 h 

after fertilisation. In addition initial attachment is reduced even at the lowest concentration of 

exudates tested, whereas the later life stages, i.e., germlings (5 d) and rhizoids (12 d), are also 

negatively affected by P. littoralis exudates, but only at higher concentrations. Thus, Råberg 

et al. (2005) suggested that F. vesiculosus susceptibility to potentially toxic substances is 

related to its life stage. Another example is that germination is more impaired by copper 

pollution than egg volume, fertilisation and development of apical hairs of Baltic Sea F. 

vesiculosus (Andersson & Kautsky, 1996). 

All these examples demonstrate that reproduction of fucoids may be regulated by 

environmental factors and that especially fertilisation, attachment and germination are 

susceptible to environmental stress. Thus, the main emphases of my work will be the 

maturation of F. vesiculosus receptacles under different environmental factors and the stress 

sensitivity of early fucoid life stages. 

 
Thesis outline 

 

Reproductive periods of F. vesiculosus populations in the German Baltic Sea may differ 

between sites due to differences in local environmental conditions. Thus, I investigated the 

the temporal, seasonal and geographical variation in reproductive periods of different F. 

vesiculosus populations in the German Baltic Sea specifically asking the following question: 
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‘Do reproductive periods differ between F. vesiculosus populations growing in different 

regions of the German Baltic coast?’  

 

The fertility was surveyed in a field experiment by tagging individuals of five different F. 

vesiculosus populations in the German Baltic Sea. The monitoring was conducted in a rhythm 

of four to ten weeks from January-December 2009. Moreover salinity and temperature were 

measured (Chapter I).  

 

The development of F. vesiculosus receptacles can be often induced by either short- or long-

day conditions and reproduction may be regulated by the photoperiod. Furthermore in the 

German Baltic Sea F. vesiculosus belts occur mainly in shallow waters (Fürhaupter et al., 

2008; Pehlke et al., 2012). Here, due to wind direction, algae are sporadically exposed to air 

and thus are stressed by desiccation and frost. The usually intertidal and marine F. vesiculosus 

has established in low salinity habitats but on the other hand has a lower tolerance against 

emersion stressors than populations in the North Sea (Pearson et al., 2000). Thus, since 

fertility of North Sea and Baltic Sea F. vesiculosus might be triggered by different 

environmental factors the second and third questions of my thesis are: 

2. ‘Do salinity, air exposure, frost, day length and light intensity trigger maturation of F. 

vesiculosus receptacles?’  

3. ‘Is receptacle development of populations living in the Baltic Sea triggered by other 

environmental factors than receptacle growth of their ancestors in the North Sea?’ 

 

The effect of salinity, air exposure, day length and different light intensities on receptacle 

development of F. vesiculosus was compared among German populations in a series of 

common garden experiments. Infertile F. vesiculosus individuals originating from six 

different sites in the Baltic Sea and two different sites in the North Sea were exposed to 

different combinations of salinity, air exposure, frost, day length and light intensity (Chapter 

II).  

 

After successful development of receptacles gamete release follows. For recruitment success 

two critical steps in the life cycle of F. vesiculosus have to be survived. These steps are 

successful fertilisation of eggs and germination of zygotes (Fig. 4). 
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In shallow waters F. vesiculosus gametes can be exposed to very low salinity when heavy rain 

and freshwater inflow dilute the upper water layer. At the German Baltic Sea F. vesiculosus 

populations occur along a steep salinity gradient and it might be that they are adapted to their 

respective local salinity. Thus plants growing in a low salinity habitat may be less affected by 

low salinities than from those in a high salinity area. In shallow waters Fucus receptacles are 

near the water surface and may be exposed to higher temperature than eggs and sperm after 

gamete release. Furthermore in summer, stressful high temperatures may affect reproduction 

success of F. vesiculosus negatively. 

Thus the last three questions of my thesis are: 

4. ‘Are fertilisation and germination success affected by temperature and salinity?’ 

5. 
 
‘Does intraspecific variation of sensitivity against temperature stress exist?’ 

6. ‘Are early fucoid life stages originating from a low salinity habitat less stressed by low 

salinity than those from a high salinity habitat?’ 

 

The effect of temperature and salinity stress on fertilisation and germination success was 

examined in a fully crossed and replicated laboratory experiment. F. vesiculosus offspring 

originating from different salinity habitats in the German Baltic Sea were exposed to different 

temperature and salinity combinations. Moreover, the effect of temperature on fucoid 

offspring from single parental pairs originating from different salinity habitats was 

investigated (Chapter III). 
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Abstract  

 

Fucus vesiculosus is a canopy-forming macroalgae which due to its high ecological 

importance has been investigated in numerous studies and it is well known that time of 

reproduction differs in and between populations. Beside light and temperature phases of 

reproduction in F. vesiculosus is possibly influenced by additional factors. At the German 

Baltic coast salinity decreases from the western (Flensburg Fjord) to the eastern regions 

(Rügen Island). Along this salinity gradient F. vesiculosus occurs in exposed as well as in 

sheltered areas. F. vesiculosus today grows in shallow waters up to 3 m and its reproduction 

might be affected by different water depths. To this end we investigated time of reproduction 

and the fertility of five different F. vesiculosus populations at the German Baltic Sea from 

January-December 2009. In the first half of 2009 highest fertility was detected in April/ May 

and at one site a distinct phase of reproduction (initiation, maturing, release, decay phases) 

could be detected, probably due to increasing light and temperature in spring. However, this 

does not explain the blooming of plants in autumn which was detected only at the sheltered 

sites. During our monitoring we surveyed one of only two small isolated populations at Rügen 

Island, the site with lowest salinity. Here reproduction of F. vesiculosus was very low, maybe 

caused by salinity and/ or isolation. Compared to marine environments, in the brackish Baltic 

Sea only few canopy and thus habitat forming macrophytes exist. Thus the preservation of 

such macroalgae species, like F. vesiculosus is of major importance for coastal habitat 

management. The present study provides important knowledge about phases of reproduction 

in F. vesiculosus and their possible drivers at the German Baltic which is the basis for coastal 

habitat management.  
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Key words: fertility, Fucus vesiculosus, maturation, mixed bloomers, receptacle initiation, 

reproduction, seaweed.  

 

Introduction 

Like forests in terrestrial environments, canopy-forming benthic macroalgae species are of 

fundamental importance to coastal ecosystems: whether the giant kelp Macrocystis pyrifera 

off the coast of California, influencing the distributional patterns of several reef fish species 

(Carr, 1989), or the much smaller bladder wrack Fucus vesiculosus in the Baltic Sea, which 

enhances the abundance of vegetation-associated invertebrates (Wikström & Kautsky, 2007). 

Since in the Baltic Sea F. vesiculosus is the most common canopy-forming and wide spread 

species (Torn et al., 2006) of high ecological importance (Kautsky et al., 1992; Schories et 

al., 2005; Råberg & Kautsky, 2007; Wikström & Kautsky, 2007; Wahl et al., 2011) here 

particular care is given to its preservation. In order to achieve this, the first step is to gain 

knowledge about phases of sexual reproduction in F. vesiculosus. The reproductive tissue 

(receptacles) of F. vesiculosus evolves from the tips of the algae and contains the conceptacles 

which include the oogonia with eggs or the antheridia with sperm cells. During maturation 

receptacles grow, the number of conceptacles increases and egg cells mature (Bäck et al., 

1991; Andersson et al., 1994). The duration of the reproductive period differs geographically 

as well as seasonally. At the eastern Swedish coast in autumn plants receptacles mature 

between August-September and January. These autumn-reproducing plants abscise their 

decaying receptacles and develop new vegetative tissue by the end of April. Around the 

islands of Öland and Gotland populations reproduce only in summer (Berger et al., 2001). 

These summer reproducers initiate receptacles in the previous autumn at short-day conditions 

stay dormant over winter and mature not until spring (i.e. the development of receptacles is 

temporarily stopped until environmental conditions are favourable for reproduction). After 

reproduction, summer-reproducing plants abscise the decaying receptacles with parts of the 

branch (Berger et al., 2001). Some F. vesiculosus populations reproduce during both seasons 

(Carlson, 1991; Berger et al., 2001) which is why they are called ‘mixed populations’ (Berger 

et al., 2001). 

The maturation process of algae can be influenced by environmental factors (Lüning & tom 

Dieck, 1989; Brawley & Johnson, 1992; Andersson et al., 1994). For example, temperature 

and light stimulate receptacle (Mathieson et al., 1976; Kraufvelin et al., 2012) and gamete 

maturation (Pearson & Brawley, 1996) in Fucus species. Furthermore, at Tjärnö on the west 

coast of Sweden, where daily tides occur and salinity can vary between 15-30, receptacles of  



Chapter I 
 

31 

 

F. vesiculosus individuals were longer and heavier than receptacles of algae from Askö in the 

non-tidal Baltic Sea with salinities between 5-7 (Kalvas & Kautsky, 1993). Also gamete 

release depends on external drivers, like time of day, tidal height, wave action (Ladah et al., 

2008) and salinity (Serrão et al., 1999).  

In the Gulf of Bothnia fertility of F. vesiculosus decreases towards the harsh northern 

environment, i. e. with rising number of ice days and decreasing salinity (Ruuskanen & Bäck, 

1999). At the German Baltic coast salinity decreases from the western (Flensburg Fjord) to 

the eastern regions (Rügen Island). Along this salinity gradient (17-7 psu) F. vesiculosus 

populations occur in exposed as well as in sheltered areas, and the percentage of hard 

substrate, which is needed for fucoid attachment, varies between sites (K. Maczassek, pers. 

obs.). In the present study we investigated the temporal, seasonal and geographical variation 

in reproductive periods of F. vesiculosus in the German Baltic Sea. For it we surveyed the 

fertility at five different F. vesiculosus populations along the salinity gradient of the German 

Baltic coast from January-December 2009 and discussed possible drivers of reproduction in 

F. vesiculosus.   

 

Material and methods 

 

Fertility monitoring 

The fertility of F. vesiculosus was surveyed at five different stations along the German Baltic 

coast (Fig. 1): at Neukirchen (Flensburg Fjord, 54°48.285 N; 9°44.803 E; Fig. 2), a sheltered 

area with a sandy substrate, where F. vesiculosus individuals mainly occur within the range of 

moles, Maasholm (Schleimünde, 54°41.379 N; 10°01.016 E; Fig. 3), is a sheltered habitat 

with soft bottom and stones whereas Bülk (Kiel Fjord, 54°27.327 N, 10°11.977 E; Fig. 4) is 

an exposed location with a less soft bottom and many stones. The most sandy and muddy area 

is Gollwitz at Poel Island (Lübeck Bay, 54°01.549 N, 11°28.221 E; Fig. 5), where F. 

vesiculosus individuals were found exclusively attached to small stones. Furthermore, F. 

vesiculosus was surveyed in the northeast of Rügen Island at Bisdamitz (Tromper Wiek, 

54°34.853 N; 13°33.409 E; Fig. 6), a very exposed location with almost 100% big stones. 

Map showing locations was generated using Ocean Data View 4.3.7 software (Schlitzer, 

2010) 
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Fig 1. Sites (NK (Neukirchen/ Flensburg Fjord), MH (Maasholm/ Schleimünde, BK (Bülk/ Kiel 

Fjord), PL (Gollwitz/  Poel Island) and RG (Bisdamitz/ Rügen Island)) at the German Baltic coast 

where fertility of F. vesiculosus was surveyed. Grey numbers show salinity values, measured 

hourly in 1-2 m water depth by CTD loggers (Star-Oddi, Reykjavik, Iceland) from May-

November 2009. 

 

Fig. 2. Neukirchen/ Flensburg Fjord. A sheltered F. vesiculosus habitat with sandy substrate, 

where algae occur within the range of harbour moles and on little stones. Photographs: Christian 

Lieberum. 
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Fig. 3. Maasholm/ Schleimünde. (a) A semi-exposed area with sandy substrate, (b) where 

F. vesiculosus algae are attached rather to small stones that are distributed on sandy 

bottom. 

 

Fig. 4. Bülk. A wave-exposed 

F. vesiculosus habitat with less 

soft bottom where algae occur 

mainly on big stones. 

 

Fig 5. Gollwitz/ Poel. A very sheltered site, where F. vesiculosus algae are mostly air-exposed. 

Plants are much fouled and during air exposure extreme buried by muddy substrate.  
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At each site four F. vesiculosus areas with 1 m
2
 in size were tagged with four bars and a rope. 

Because F. vesiculosus gametes usually disperse only 0.5-2 m from the adult individuals  

(Lifvergren, 1996), a distance of at least 2 meters between the different F. vesiculosus-areas 

was kept. Inside these areas all F. vesiculosus individuals were marked (cable clip + tag) and 

their fertility was surveyed every four weeks. At Neukirchen, Bülk, Poel and Rügen the water 

depth of the tagged F. vesiculosus-areas was around 30 cm. At Maasholm the water depth 

between different tagged Fucus-areas differed (Q1: 34 cm, Q2: 46 cm, Q3: 53 cm, Q4: 59 

cm). Sometimes, depending on wind direction, F. vesiculosus specimens were air-exposed 

during investigation period. Since during the exceptional cold winter 2009/ 2010 at all 

experimental sites shallow areas were ice-covered, and in March 2010 all the marked F. 

vesiculosus individuals had vanished, December 2009 marked the end of the observation 

period. Because of bad weather (wind) it was not always possible to assess fertility of F. 

vesiculosus individuals in a continuous rhythm of four weeks, the maximum measurement 

interval was ten weeks. Furthermore the initial number of 694 tagged F. vesiculosus 

specimens in all survey areas decreased to 195 due to external influences (wind, swell). In 

order to analyze distribution patterns of spring/summer and autumn as well as mixed (i. e. 

individuals reproducing both in autumn and also in spring/summer) blooming F. vesiculosus 

populations along the German coast only these survivors were included in the evaluation. At 

Bülk we lost most of the tagged F. vesiculosus algae already by October 2009. This is why no 

information about summer-, autumn- and mixed population at Bülk can be shown. Fertiliy 

monitoring period at the different sites is given in Table S1.  

 

 

Fig. 6. Bisdamitz/ Rügen. A wave-exposed F. vesiculosus habitat where algae occur mainly on big 

stones. 
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 Different developmental stages of fucoid tips were defined (Fig. 7 a-d): 

- infertile F. vesiculosus individual without receptacles: V, vegetative tips (Fig. 7 a) 

- at least one third of fucoid tips of the current thalli  

o commencing swelling: I, initiation of receptacle development (Fig. 7 b) 

o fertile receptacles: F, fertile receptacles (Fig. 7 c) 

o gamete release accomplished: D, decayed receptacles (Fig. 7 d) 

 

 

 

 

 

 

 

At all sites in-situ temperatures close to F. vesiculosus thallus tips were measured in 2009 

(one-hour intervals) using data loggers (HOBO Pendant Temperature data logger, HOBO®, 

Onset Computer Corporation, accuracy ± 0.53°C). Since from some sites and times logger 

data were missing additional temperature measurements were taken manually on monitoring 

days (WTW Cond 315i; accuracy ± 0.5°C). An overview of temperature monitoring period at 

the different sites is given in Table S1.  

 

Analysis of fertility data 

In recently initiated fucoid receptacles (Fig. 7 b), eggs and sperm are not fully developed. In 

decayed receptacles (Fig. 7 d), gametes already had been released (Berger et al., 2001). 

Accordingly, only F. vesiculosus individuals with fully developed receptacles (Fig. 7 c) were 

regarded fertile. 

F. vesiculosus individuals reproducing (i.e., individuals with fully developed receptacles) 

from March-June 2009 are denoted as ‘spring bloomers’ those reproducing from July-

September 2009 as ‘summer bloomers’ and those reproducing during both seasons as ‘spring/ 

Fig. 7 a-d. Different developmental stages of Fucus vesiculosus tips. (a) Vegetative tips: infertile. 

(b) Fucoid tips commencing swelling: initiated receptacles. (c) Fertile receptacles. (d) Gametes 

were released: decayed receptacles. 

(a) (b) (c) (d) 
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summer bloomers’. Plants reproducing from October-December 2009 are denoted as ‘autumn 

bloomers’ and those reproducing at least once during spring/summer season and once again in 

autumn as ‘mixed bloomers’. Individuals which maturated more than once per year were 

weighted more, to consider their higher potential contribution to population progeny (note 

that individuals of autumn bloomers reproduced only once in 2009): 

 

 

The highest possible value for the ‘weighted reproductivity’ is therefore 3. 

 

Assessing developmental stages of F. vesiculosus algae at the different sites a distinct phase 

of reproduction in the first half of the year 2009 could be derived for F. vesiculosus 

population at Bülk. Note that in this evaluation only individuals which survived from the first 

day to the last day from January-June 2009 were included.  

 

Results 

Seasonal variation in fertility and weighted reproductivity  

Due to wind and swell at Bülk we lost most of the tagged thalli already by October 2009. 

Thus we had to terminate our investigation period prematurely and no results can be shown 

from October-December. Furthermore no distribution of spring-, spring/summer-, autumn- 

and mixed bloomers as well as the weighted reproductivity of the F. vesiculosus population at 

Bülk can be shown.  

At all sites, fertility of F. vesiculosus increased with increasing temperature in spring (Fig. 8 

a-e). In 2009 the first fertile individuals were detected at temperatures between 5-10°C: at 

Poel already in February (Fig. 8 d), at Neukirchen, Bülk, and Maasholm in March (Fig. 8 a-c), 

and at Rügen not until April (Fig. 8 e). Most algae were fertile in April 

(Neukirchen,Maasholm, Rügen) and May (Bülk) when in-situ temperatures (i.e., water 

temperatures close to Fucus thallus tips) between 11-14°C occurred. Fertility then decreased 

with increasing temperature from April to August. Poel was an exception to this rule: here 

algae had their peak fertility in summer (August: 21°) and autumn (November: 8°C). Fertile 

plants in autumn were also found at Neukirchen and Maasholm in October (9-11°C) and at 

Maasholm even at 6°C in December. 
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Compared to other sites at Poel higher temperature fluctuations within the individual months 

occurred. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 a-e. Fertile F. vesiculosus individuals and in-situ temperatures close to F. vesiculosus tips at 

different sites of the German Baltic coast from January-December 2009. At each site the fertility of 

individuals in four different F. vesiculosus-areas (1 m
2
) was surveyed (%, mean ± SD, n = 4). 

Temperatures represent single measurements and mean values per month ± SD from long-term 

measurements. An overview of monitoring period (fertility and temperature) at the different sites is given 

in Table S1. nd: no data 
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Examining the fertile individuals at Neukirchen (Fig. 9 a), we found 40% of spring and 5% of 

summer bloomers but no autumn bloomers were detected. 48% of F. vesiculosus algae 

reproduced in spring and a second time in summer whereas only 7% of mixed bloomers were 

detected. This resulted in a weighted reproductivity of 1.5 for the population at Neukirchen 

(Fig. 10). 

At Maasholm (Fig. 9 b) 40% of spring, 4% of summer, 8% of spring/ summer and 28% of 

autumn bloomers were detected. An amount of 20% of F. vesiculosus algae at Maasholm 

reproduced at least once in spring/ summer season and once again in autumn (mixed 

bloomers). The weighted reproductivity of algae at Maasholm (1.2) was slightly smaller than 

at Neukirchen (Fig. 10). 

Highest weighted reproductivity (2) was detected for F. vesiculosus population at Poel (Fig. 

10) where mainly mixed bloomers (64%) but also autumn (14%), spring/ summer (10%), 

spring (5%) and summer (7%) bloomers were detected (Fig. 9 c). 

The analysis of fertile individuals at Bisdamitz/ Rügen (Fig. 9 d) showed 73% of spring, 9% 

of summer and 18% of spring/ summer bloomers. Reproduction in autumn was not found and, 

compared to the other locations, lowest overall fertiliy (0.6) was detected (Fig. 10). 

  
Fig. 9 a-d.  Percentage of spring, spring/ summer, summer, autumn and mixed 

bloomers (i.e., plants which maturated at least once in spring/ summer season and 

once again in autumn) at different sites of the German Baltic coast in 2009. For the 

evaluation of the different bloomers only fertile plants were included: (a) Neukirchen 

(n = 41), (b) Maasholm (n = 25), (c) Poel (n = 60) and (d) Rügen (n = 11). 
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Developmental stages of fucoid tips at Bülk 

At Bülk infertile algae were surveyed continuously on the respective monitoring days from 

January-June (Fig. 11). Initiation of receptacle growth was mainly at the end of February and 

March. Fertile receptacles were detected in the end of March, but mainly in the middle of 

May. The highest amount of individuals with decayed receptacles was found in June. 

 

 

 

Fig. 10. Weighted reproductivity of different F. vesiculosus populations in the German 

Baltic Sea in 2009 (NK: Neukirchen, MH: Maasholm, PL: Poel, RG: Rügen). From 

each population the fertility of individuals in four different F. vesiculosus-areas (1 m
2
) 

was surveyed (mean ± SD, n = 4 F. vesiculosus-areas; number of observed 

individuals is indicated by numbers above the bars). For the evaluation of the 

weighted reproductivity individuals which survived from the first day to the last day 

from January-December 2009 were included.  
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At Maasholm in shallower depths a high proportion of thalli (up to 70% in the shallowest 

stand) already became fertile in spring/ early summer (Fig. 12). This amount decreased with 

increasing water depth. At the water depths of 46, 53 and 59 cm there was another smaller 

(about 20%) peak of fertility in late autumn whereas the shallowest stand (34 cm) seemed to 

mature only in spring, but then with the highest portion. 

  

Fig. 11. Different developmental stages of F. vesiculosus individuals (%, mean, n = 77) at Bülk 
(54°27.327 N, 10°11.977 E; German Baltic Sea) from January-June 2009. V (only vegetative 
tips); one third of fucoid tips of the current plant have the developmental stage I (initiated 
receptacles), F (fertile receptacles), D (decayed receptacles after gamete release). In this 
evaluation algae which survived from the first day to the last day from January-June 2009 were 
included. 
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Discussion 

Fertility of investigated F. vesiculosus populations increased with rising temperature in the 

first half of the year (Fig. 8 a-e) which corresponds to the distinct phase of reproduction of F. 

vesiculosus population at Bülk (Fig. 11). At Maasholm 65% of F. vesiculosus specimens 

growing in a water depth of 34 cm reproduced already in early spring and individuals in 

shallow water (34 and 46 cm) tended to reproduce more often than algae in 53 and 59 cm 

water depth and (Fig. 12). At all sites the amount of fertile algae was in summer and autumn 

lower than in spring. Interestingly Poel was the exception (Fig. 8 d) where fertility increased 

with increasing temperature from April-August and where highest weighted reproductivity 

was deteceted (Fig. 10). Lowest weighted reproductivity was found at Bisdamitz/ Rügen 

where, in contrast to Neukirchen, Maasholm and Poel, no fertile algae in autumn were 

detected (Figs. 8 and 9). 

 

Temperature and light are among the factors that contribute the increase of fertile F. 

vesiculosus algae in the first half of the year 2009. This coincide with the pronounced increase 

Fig. 12. Percentage of fertile F. vesiculosus individuals (%, mean) from January–

December 2009 in four different water depths (cm) below mean sea surface at Maasholm/ 

Schleimünde (54°41.379 N; 10°01.016E; German Baltic Sea). Fertility of F. vesiculosus 

individuals (n: number of surveyed algae decreased from January-December) was 

determined monthly in 34 cm (n: 33-2), in 46 cm (n: 29-4), in 53 cm (n: 38-14), and in 59 

cm (n: 55-13). 
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in temperature and light in spring that was discussed by Kraufvelin et al. (2012) to be the 

cause for earlier receptacle growth in warm springs compared to cold springs. In addition it 

was already reported by Mathieson et al. (1976) that rising temperatures and increasing light 

in spring initiates receptacle growth in Fucus algae. 

The positive effect of light and rising temperature on receptacle growth was also shown by 

shallow water F. vesiculosus individuals at Maasholm. Water depths between Fucus-areas 

differed only by a few centimetres (36-61 cm). This means that even small differences in 

water depth may lead to different light supply for individuals and thus to a different degree of 

fertility. Kraufvelin et al. (2012) interpreted higher receptacle weights of F. vesiculosus 

individuals in shallow water (0.8 m) compared to individuals in 3.1 m as result of a higher 

light availability for shallow water individuals. This fits well with the assumption that the 

drastic depth limit decline of F. vesiculosus in the Baltic Sea is mainly driven by lower light 

supply (Kautsky et al., 1986; Vogt & Schramm, 1991; Torn et al., 2006; Rohde et al., 2008). 

In the present study the number of tagged individuals decreased from January-December 2009 

and thus only few algae could be surveyed during the whole investigation period. In addition, 

observations that reproduction differs with water depth were only made at one location. Thus, 

a possible effect of light on reproduction was analysed in more detail in common garden 

experiments (Maczassek et al., in prep.). Furthermore a field experiment is planned to 

examine the light effect on reproduction resulting from small differences in water depth in 

shallow water areas (at different sites, with light measurements, more tagged individuals).  

Another factor that is important is emersion stress. Even in the non-tidal Baltic Sea, shallow 

water F. vesiculosus can be exposed to air from time to time, depending on wind direction, 

whereas individuals growing at greater depths are permanently submerged. Freezing and/ or 

desiccation can be the consequence of air exposure and Baltic F. vesiculosus individuals are 

less tolerant to emersion stresses than those from the North Sea intertidal (Pearson et al., 

2000). Thus, an effect of emersion stresses on reproduction cannot be ruled out for Baltic 

Fucus populations and may have contributed to the observed reproductive pattern of the 

macroalgae growing at 36 cm depth. In winter air temperatures ≤ 0 °C are possible. This 

means that a temperature increase after freezing in February may have stimulated 

reproduction of individuals at a water depth of 34 cm in early spring. Unfortunately at Poel, 

where F. vesiculosus individuals were often air-exposed during investigation period, we had 

to discover on monitoring day in December that most of the tagged plants got lost. 

Nevertheless we observed fertile individuals at this time. Therefore we determined the effect 
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of air exposure and freezing on reproduction of F. vesiculosus algae from Poel in further 

experiments (Maczassek et al., in prep.).  

In spring and summer air exposure can lead to high temperatures, which possibly resulted in 

the high in-situ temperatures we measured at Poel already in spring (Fig. 8 d). High 

temperatures during air exposure are normally caused by solar radiation. Thus the increase of 

fertility of algae at Poel with increasing temperature from April-August (18-21°C) is possibly 

more enhanced by high light supply than by temperature increase. So for example, at Poel 

high fertility of plants was also detected in November at lower temperature (8°C) and high 

weighted reproductivity of F. vesiculosus population at Poel might be a result of the higher 

light availability, compared to other populations. However, the effects of temperature and 

light on receptacle growth in F. vesiculosus in an outdoor tank experiment, Kraufvelin et al. 

(2012) showed that both factors only affected the initiation of receptacle development. Thus, 

although light and temperature obviously play an important role for receptacle growth, 

additional environmental factors may influence the development of reproductive tissue in 

nature. 

Environmental factors can vary between sites and accordingly the maturation of investigated 

F. vesiculosus populations. Lowest weighted reproductivity was detected for F. vesiculosus at 

Bisdamitz/ Rügen where salinity is lower than at more westerly locations (Fig. 1) which leads 

to the assumption that the low salinity impairs the receptacle maturation of F. vesiculosus 

individuals at Rügen. Lower fertility of central Baltic Sea (salinity: 5-7) compared to North 

Sea (salinity: 15-30) F. vesiculosus (Kalvas & Kautsky, 1993) and a decreasing trend in 

fertility with decreasing salinity (Ruuskanen & Bäck, 1999) were documented. Brackish-

water conditions inhibit sexual reproduction in F. vesiculosus (Serrão et al., 1996; Serrão et 

al., 1999), and in low salinity habitats of the northern Baltic (< 6 psu) asexual reproduction in 

Fucus was detected (Bergström et al., 2005; Tatarenkov et al., 2005). Baltic populations may 

have lost genetic diversity compared to Atlantic populations due to varying degrees of 

isolation over 8000 years. The consequences are relatively small population sizes, and 

occasional population bottlenecks (Johannesson & André, 2006). The population at 

Bisdamitz/ Rügen is one of only two small isolated populations occurring at Rügen Island 

(Schories et al., 2009) and thus probably even more genetically isolated than the other Baltic 

populations investigated in the present study. Therefore it might be that at Bisdamitz/ Rügen 

clonal individuals exist. However, a significant relationship between salinity and clonal 

richness in F. vesiculosus populations could not be shown (Johannesson et al., 2011), and in 

the present study it was not determined whether clonality occurs in the population 
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investigated. Thus, the impact of salinity on fertility of German Baltic F. vesiculosus and the 

potential existence of clonal F. vesiculosus at Rügen still have to be investigated in more 

detail. Beside low salinity, high water motion could be an additional cause for the low 

weighted reproductivity of F. vesiculosus algae at Rügen. For example at Poel, which is a very 

sheltered site, weighted reproductivity was three times higher than at Bisdamitz/ Rügen which 

is rather exposed. Previous studies confirm our findings, where Fucus algae occurring in 

wave-exposed habitats reproduce less than plants in sheltered environments (Mathieson & 

Guo, 1992; Kalvas & Kautsky, 1993). 

Fertility surveys at Neukirchen, Maasholm, Poel (sheltered sites) and Rügen (wave-exposed 

site) only allow conclusions on the distribution of spring, spring/ summer, summer, autumn 

and mixed bloomers for 2009. However, we observed the F. vesiculosus population at 

Bisdamitz/ Rügen also in autumn 2007 and 2008 and thus autumn bloomers seem unlikely 

here from 2007-2009. Autumn- and mixed bloomers were exclusively detected at sheltered 

areas, possibly caused by higher sedimentation rates and growth of filamentous algae 

compared to wave-exposed sites. In coastal areas that are sheltered from waves nutrients 

accumulate (Pihl et al., 1999). This can lead to increased growth of opportunistic filamentous 

algae and sedimentation rates are often higher than in more open waters (Lund-Hansena et al., 

1997). Furthermore, sandy bottom dominates at sheltered areas enhancing the already high 

sedimentation rates and thus, burial of macrophytes. Fertilised eggs of F. vesiculosus must 

attach to stones for further development. Since high sedimentation rates and filamentous algae 

cover moreover stones in spring and summer than in autumn and winter it was already 

discussed by Berger et al. (2001) that eutrophicated environments with high sedimentation 

rates might favour the distribution of autumn-reproducing algae. In addition it was 

hypothesized by Worm et al. (2001) that autumn-reproducing F. vesiculosus has a selective 

advantage over spring-reproducing individuals because it may largely escape competition 

from summer annuals such as Enteromorpha spp.  

 

Results of the present study show possible drivers of reproduction in F. vesiculosus and 

indicate the direction for future research. The second step is to confirm our assumptions about 

the influence of light (intensity and day length), temperature and salinity as well as air 

exposure with its resulting effects like frost or desiccation, under controlled laboratory 

conditions. In the coming decades species F. vesiculosus and its reproductive cycle in the 

Baltic Sea will be exposed to shifts in different environmental variables (temperature, salinity, 

pH, eutrophication, etc.). Thus further field surveys in determining the fertility of F. 
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vesiculosus populations should be conducted, building on previous collected data such as 

those from the present study. 
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Abstract 

The development of receptacles at different environmental conditions was compared among 

German populations of the rockweed Fucus vesiculosus in a series of common garden 

experiments. Non-reproductive specimens originating from two North Sea and six Baltic Sea 

populations were incubated together in in-door mesocosms for 75 d. After this time period the 

relative amounts of reproductive specimens were recorded. An important requirement of 

reproduction was attachment, as unattached specimens almost never became reproductive. 

Shifting salinities in the range between 16 and 33 did not affect the algal tendency to generate 

receptacles, despite the differential salinities at Baltic and North Sea locations. In contrast, 

reproduction generally increased with light supply. This was observed at long-day (16 h : 8 h) 

as well as at short-day (8 h : 16 h) conditions, with the exception of one population from the 

Baltic Island of Rügen, which almost exclusively reproduced at long-day conditions. The 

response of the Rügen population contrasts with all other populations of F. vesiculosus that 

have so far been studied and it may result from geographic isolation. Two days of freezing 

prior to incubation also inhibited reproduction in the Rügen population and the specific 

responses of this population to freezing and day length explain its incapacity to reproduce in 

autumn/ winter, which is unique along the German Baltic sea coast. Freezing did not affect 

maturation in a second subtidal Baltic population from the island of Poel, while it increased 

the production of receptacles in an intertidal North Sea population from Nordstrand 

significantly. Periodic air exposure for 1 h in time intervals of 12 h during the incubation 

period also enhanced the development of receptacles in specimens from Nordstrand, although 

non-significantly. The reproductive strategies of F. vesiculosus at Baltic and North Sea coasts 

appear as surprisingly diverse and finely tied to local environmental conditions, which should 

be considered in future environmental management and restoration measures. 

 

Key words: Common garden experiment, maturity, Fucus vesiculosus, German Baltic Sea, 

macroalgae, maturation, Mesocosm, receptacle initiation, seaweed, tides. 
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Introduction 

One of the most important habitat forming organisms in the upper intertidal of the cold 

temperate North Atlantic is the bladder wrack Fucus vesiculosus. Despite its general 

adaptation to marine and intertidal environments F. vesiculosus has colonized since the last 

ice age into the brackish and non-tidal Baltic Sea. Especially here, the Fucus community 

provides numerous ecosystem goods and services (Rönnbäck et al., 2007) and is a high-

priority target of coastal habitat management (Schories et al., 2005).  

Generally, the successful conservation of an organism requires that the conditions for its 

reproduction and life-cycle completion are warranted (Lüning & tom Dieck, 1989). 

Reproduction of F. vesiculosus has been demonstrated to be subject to geographic and 

seasonal variability. For example, in many locations of the German (Maczassek et al., in 

prep.-a) and the central Swedish (Carlson, 1991; Berger et al., 2001) Baltic coast, as well as 

in the Irish Sea (Bäck et al., 1993) F. vesiculosus sexually reproduces in summer and a 

second time in autumn. In contrast, in the northern Baltic proper, but also on the islands of 

Öland and Gotland (Swedish Baltic) and in some locations in S Sweden the species only 

reproduces in summer (Bäck et al., 1991; Berger et al., 2001). Here, the initiation of 

receptacles starts in mid-October, but the receptacles remain dormant over winter until spring 

(Bäck et al., 1991; Berger et al., 2001). Reproduction of F. vesiculosus exclusively in summer 

was also detected on the island of Rügen (German Baltic), but dormant receptacles in winter 

were never observed in this location and the development of summer receptacles began in 

spring (Maczassek et al., in prep.-a). At Nordstrand (German North Sea coast) winter 

reproduction of F. vesiculosus was observed in some years, but not in others (F. Weinberger, 

pers. obs.).  

Various environmental factors could possibly affect and regulate the reproductivity of F. 

vesiculosus. For example, the different reproductive strategies of Swedish F. vesiculosus 

populations have been suggested to result from distinct genotypes that differ in their 

responses to day length signals (Berger et al., 2001). Algal reproduction may be regulated by 

the photoperiod and reproductive structures can be often induced by either short- or long-day 

conditions. The rockweed Ascophyllum nodosum produces receptacles under 8 h : 16 h and 12 

h : 12 h photoperiods (Terry & Moss, 1980). Such short-day induction of reproductivity was 

also observed in Fucus distichus (Bird & McLachlan, 1976) and in individuals of F. 

vesiculosus from Sweden that reproduced during summer (Berger et al., 2001). In contrast 
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autumn reproducing F. vesiculosus from Sweden was unaffected by day length (Berger et al., 

2001).  

Algal reproduction may also indirectly be affected through resource limitation. The metabolic 

investment of fucoids into gametes is probably low (Vernet & Harper, 1980), but the thallus 

structures supporting reproduction are considered as relatively costly (Mathieson & Guo, 

1992). Thus, independent of day length the general availability of light may possibly enhance 

algal reproduction, as limited resources potentially inhibit allocation into supporting 

structures. The lower distribution limit of F. vesiculosus in the Baltic Sea is primarily 

determined by the availability of light (Kautsky et al., 1986; Rohde et al., 2008). A decreasing 

reproductivity toward this lower limit should therefore be observed if resource availability 

limits the reproduction of the alga. Indeed, F. vesiculosus individuals at Maasholm (SW 

Baltic Sea) generated receptacles at decreasing abundance when they grew on plots that were 

in direct vicinity but with increasing water depth (Maczassek et al., in prep.-a). Similar 

negative correlations of water depth and reproduction rates were reported from Fucus 

distichus and Fucus gardneri at San Juan Island (USA) (Wright et al., 2004; Dethier & 

Williams, 2009). 

On the other hand, the physiological effects of extreme environmental conditions may also 

potentially affect reproduction, either through resource reduction or through direct inhibition 

or stimulation of developmental processes that are essential for gametogenesis. For example, 

even in the non-tidal Baltic Sea, shallow water F. vesiculosus can be exposed to air from time 

to time, depending on wind direction, whereas individuals growing at greater depths are 

permanently submerged. Thus the seasonal dynamics of receptacle formation by F. 

vesiculosus at Maasholm varied maybe not only with light availability, but at the same time 

also with air exposure (Maczassek et al., in prep.-a). Likewise, specimens at a wave-exposed 

site in S Finland allocated more resources into reproduction than those at a sheltered site 

(Bäck et al., 1991). Further, as the mean salinity decreases from about 30 in the North Sea to 

about 5 in the inner Baltic (Meier, 2006) and this steep gradient is reflected by several 

adaptations and ecophysiological traits of F. vesiculosus populations (Bäck et al., 1992 a; 

Bäck et al., 1992 b; Pearson et al., 2000; Nygård & Dring, 2008) consequences for the 

reproductive strategies of geographically distant populations seem possible. Indeed, in Fucus 

beds of the eastern Baltic Sea sexual reproduction is inhibited by low salinity (< 6 psu) 

(Tatarenkov et al., 2005). Nearly complete absence of sexual reproduction of F. vesiculosus 

was also observed in mussel beds of the Wadden Sea, where specimens of F. vesiculosus 
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forma mytili (Nienburg) Nienhuis with reduced holdfast rarely ever develop receptacles 

(Albrecht, 1998).  

The variable behaviour of F. vesiculosus with respect to reproduction led us to investigate its 

regulation experimentally. Based upon the available information summarized above various 

factors potentially regulate or modulate the reproductivity. It was the aim of this study to 

investigate their interactive effects, which are so far poorly understood, and to identify factors 

that cause the differences in autumn/ winter reproductivity among German F. vesiculosus 

populations. 

 

In order to distinguish differences in reproductive periods due to genetic determination and 

due to environmental conditions a series of common garden-type experiments was conducted 

under controlled environmental conditions. Fucus specimens originating from various Baltic 

Sea and North Sea populations were exposed to different combinations of salinity, air 

exposure, frost, day length and light intensity. Since we observed F. vesiculosus forma mytili 

in the Baltic Sea, we also tested whether reduced reproduction occurs in Baltic F. vesiculosus 

forma mytili. 

 

Material and methods 

F. vesiculosus devoid of receptacles was collected after the summer bloom had ended. The 

algae (length > 7 cm) were collected with their substrates in the upper distribution ranges of 

eight different populations in Germany (Fig. 1; Table 1). 

 



Chapter II 
 

53 

 

 

  Fig. 1. Sampling sites of immature F. vesiculosus individuals in the German North Sea NS 
(Westen/ Nordstrand), LT ( List/ Sylt) and Baltic Sea (GB (Glücksburg/ Flensburg Fjord), NK 
(Neukirchen/ Flensburg Fjord), MH (Maasholm/ Schleimünde), BK (Bülk/ Kiel Fjord), PL 
(Gollwitz/ Poel), RG (Bisdamitz/ Rügen). Map showing sampling sites was generated using 
Ocean Data View 4.3.7 software (Schlitzer, 2010). 
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Table 1. Geographic coordinates, approximate water depth of F. vesiculosus collection relative to 
mean sea surface, wave exposure and mean salinity (Baltic Sea salinities ± SD) at sampling sites. 

Population 
Geographic 
coordinates 

Approximate water 
depth of F. vesiculosus 
collection relative to 
mean sea surface [cm] Wave exposure Mean salinity (psu) 

Westen/ 
Nordstrand 
 

54°28.867 N 
08°48.717 E 50 High 33  

List/ Sylt 
 
 

55°01.025 N 
08°26.333 E 50 High 33  

Glücksburg/ 
Flensburg Fjord 
 

54°50.2 N 
09°31.4 E -75 Low 18.1 ± 3.1  

Neukirchen/ 
Flensburg Fjord 
 

54°48.285 N 
09°44.803 E -44 Low 14.8 ± 1.9  

Maasholm/ 
Schleimünde 
 

54°41.379 N 
10°01.016 E -50 Medium 15.1 ± 2.7 

Bülk/ 
Kiel Fjord 
 

54°27.327 N 
10°11.977 E -35 Medium 16.1 ± 1.8 

Gollwitz/ 
Poel 
 

54°01.549 N 
11°28.221 E -20 Low 11.6 ± 2.7 

Bisdamitz/ 
Rügen 
 

54°34.853 N 
13°33.409 E -24 High 7,5  ± 1 
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At Nordstrand and List the material grew on wooden spur dykes. These Wadden Sea 

populations live exposed to air during approximately 60 to 70% of the time. The Baltic Sea 

populations, in contrast, are generally considered as subtidal, although they can also be 

subject to irregular and more or less prolonged periods of air exposure, resulting from wind 

and air pressure fluctuations. For example, the upper margins of F. vesiculosus populations in 

the Kiel Fjord have been estimated to be air-exposed during 50 to 60% of the time (Schramm, 

1968). The frequency of air exposure of F. vesiculosus in the Baltic Sea varies with water 

depth and wave exposure (Table 1) and is highest for the Poel population and lowest for the 

Rügen and Glücksburg populations. All specimens collected in the Baltic Sea grew on stones, 

with the exception of F. vesiculosus forma mytili (Nienburg) Nienhuis. F. vesiculosus forma 

mytili originated from Glücksburg, where it grew on sandy bottom, showing the typical 

characteristics of this morphotype as described by Nienburg (1925): holdfasts were missing 

and the algae were anchored to the substratum by byssal threads of Mytilus edulis. Bladders 

were rare, individual thalli were tied down by several mussels and single mussels sometimes 

connected different thalli. Elder branches of the algae were relatively fragile, distributed over 

the sediment and partially buried by sand, while distal parts grew towards the water surface. 

A few stones bearing F. vesiculosus in its usual attached form were present between the 

individuals of F. vesiculosus forma mytili, which allowed for a direct comparison of both 

forms.  

At Neukirchen, Maasholm, Bülk, Poel and Rügen in situ salinity was monitored over 12 

months (2009/2010) using Conductivity-Temperature (CTD) loggers (Star-Oddi, Reykjavik, 

Iceland) in 1-2 m water depth, taking one measurement per hour. Salinity data from 

Glücksburg are CTD-profile data, measured in 1 m water depth from January–November 

2010, July 2010 and July 2011 (n = 73) and provided by the Federal Maritime and 

Hydrographic Agency (BSH, Hamburg, Germany) (Table 1).  

 

General experimental setup 

 The algae were transferred with their substrates into 112 cm x 92 cm x 60 cm (length by 

width by height) mesocosms containing 150 l filtered (5 µm) and aerated seawater from the 

Kiel Fjord (54°19.800 N; 10°9.010 E), with salinities varying from 15 to 20 (measured with 

conductometer WTW Cond 315i) between experiments. The mesocosms were located in an 

indoor climate chamber with temperature control at 15°C. For nutrient supply the mesocosms 

were supplemented weekly with fertilizer (‘Hakaphos Gartenfreund’, Compo 

GmbH/Germany) so that concentrations of 17 µM NO3-nitrogen, 2.7 µM NH4-nitrogen, 1.1 
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µM phosphorous and 50 nM Fe
2+/3+

 were reached. For light treatment halogen-metal vapour 

lamps (250 W; 10,000–12,000 K) were used and light intensity (µmol photons m
-2

 s
-1

) was 

measured with a Licor Li-192 underwater quantum sensor (LI-COR Bioscience, Bad 

Homburg, Germany). For day length treatments algae were exposed to long-day (LD, 16 h 

light : 8 h darkness) and short-day (SD, 8 h light : 16 h darkness) conditions (see detailed 

description of experiments). All incubations lasted for 75 days and the algal maturity was 

determined after this time as presence or absence of receptacles. Maturity was also 

determined after 25 days, in order to make sure that fast developing receptacles were not 

overseen. After the induction of development of reproductive tissue, fucoid tips increase in 

thickness. Even without dormancy it can take several weeks until receptacles are fully 

developed  (Bäck et al., 1991), and in early stages they could be confused with air bladders 

(K. Maczassek, pers. obs.). However, newly developing receptacles can be identified 

relatively early by applying pressure on swollen tips. Thus, it can be determined whether the 

tips are swollen due to a development of reproductive tissue inside or due to being filled with 

air (K. Maczassek, pers. obs.). Development, full maturation and shedding of receptacles for 

less than 75 days was observed in 16 out of 164 treatment groups that were investigated, and 

in these cases the data obtained after 25 days were used instead of those obtained after 75 

days. 

Altogether four common garden experiments were conducted between September 2009 and 

January 2012, in order to investigate the effects of different parameters on the maturity of F. 

vesiculosus. An overview of the experimental setups and tested factors is given in Table 2. 
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Table 2. Experimental design for the common garden experiments of this study. 

Experiment 1 2 3 4 

Experimental time Sept.-Dec. 2009 Oct.-Dec. 2010 Febr.-Apr. 2011 Nov. 11-Jan. 2012 

Origin of 
specimens 

Nordstrand, Poel 

Nordstrand, 
Bülk, Poel, 
Glücksburg 
(F. vesiculosus: 
attached and 
*forma mytili) 

Nordstrand, List, 
Neukirchen, 
Maasholm, Bülk, 
Poel, Rügen 

Nordstrand, Poel, 
Rügen 

Treatment factors 

Salinity,  
tide 
(air exposure: 
1 h at noon and 
at midnight; 
compared to 
submersed 
algae) 

Light condition 
(day length,  
light intensity) 

Light intensity, day 
length 

Day length, frost (for 
24 h at -28°C) 

Mesocosm 
replicates 

3 2 2 2 

Fucus replicates 
per condition 
(length > 7 cm) 

6 3 - 35 1 - 79 7 - 34 

Light conditions 
(day length/PAR 
[µmol photons 
m

-2
s

-1
]) 

LD
a
/200 

LD
a
/100, 

LD
a
/200, 

SD
b
/400 

no light, 
SD

b
/100, SD

b
/200, 

SD
b
/300, SD

b
/400, 

LD
a
/200 

LD
a
/100, 

SD
b
/200 

Experimental 
salinity 

17 and 33 15 15 20 

Acclimation of 
North Sea algae to 
Kiel Fjord salinty 

No 

reduction steps 
(salinity): 30, 25 
and 20 over the 
course of 3 days 

reduction steps 
(salinity): 30, 25 
and 20 over the 
course of 3 days 

No 

* F. vesiculosus forma mytili: F. vesiculosus without holdfasts and anchored to the substratum by 
byssal threads of Mytilus edulis. 
a
Long-day (16 h light : 8 h darkness), 

b
Short-day (8 h light : 16 h darkness). 

 

Experiment 1 

The influence of salinity, tides and origin on the fertility of F. vesiculosus was investigated 

with specimens collected in September 2009 at Nordstrand and Poel (Table 1-2; Fig. 1). Six 

mesocosms were used in this experiment. Three of them contained Baltic Sea water (salinity: 

17) and three contained Baltic Sea water complemented with sea aquarium salt 

(SEEQUASAL GMBH, Münster) to a salinity of 33. Thus, Wadden Sea and Baltic Sea 
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salinity was tested. In order to test for the effect of air exposure, tidal sea water level changes 

were simulated in all six mesocosms: water was pumped twice per day (once at noon and 

once at midnight) from each mesocosm into a reservoir and after one hour of ‘low tide’ back 

into the mesocosm. This pumping procedure was fully automatized and regulated by a flush 

type fluid indicator with light barrier for water level adjustment. The timing and water levels 

in all mesocosms were controlled by a homemade microcontroller unit. A platform made of 

PVC (40 cm high, covering half of the total bottom) was placed into each mesocosm and the 

low tide water level was adjusted in such a way that this platform fell dry while the bottom 

was always covered by a water column of 35 cm. Thus, algae placed on the platform fell dry 

at low tide, while algae placed on the bottom remained immersed (Fig. 2) and specimens that 

were and were not temporarily air-exposed could therefore be incubated in all the mesocosms. 

From every population three F. vesiculosus individuals were incubated on the platform and 

three other individuals on the bottom of each mesocosm. Thus, the effects of salinity, air 

exposure, origin and incubation time were tested in a fully factorial design, replicated in three 

independent mesocosms. Algae placed on the platform and algae placed on the bottom were 

illuminated with two separate lamps. Their intensities were regulated in such a way that all 

algae received PAR at the same average intensity of 200 µmol photons m
-2

 s
-1

. 

 

 
 
 
 
 
 
  

Fig. 2. Schematic diagram of one periodically air-exposed mesocosm (side view) in 
experiment 1. Tidal sea water level changes were simulated by pumping water into a 
reservoir (low tide) and then back into the mesocosm (high tide). They were regulated by 
a flush type fluid indicator with light barrier for water level adjustment. Timing and water 
levels were controlled by a home-made microcontroller unit. 
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Experiment 2 

To determine the effect of light condition and origin on the fertility of F. vesiculosus, infertile 

algae were collected in Nordstrand, Bülk, Poel and Glücksburg in October 2010 (Table 1; Fig. 

1). At Glücksburg specimens of F. vesiculosus and F. vesiculosus forma mytili were collected 

from a mixed stand. After the collection algae from Nordstrand were acclimated by stepwise 

reduction of salinity over three days to Kiel Fjord water salinity (15 psu; reduction steps: 30, 

25 and 20 psu). During this period specimens from the Baltic Sea were maintained at a 

salinity of 15. After this acclimation phase all F. vesiculosus individuals were exposed to one 

out of three different light regimes: LD with a light intensity of 100 µmol photons m
-2

s
-1

 or 

200 µmol m
-2

s
-1

 photons and SD with a light intensity of 400 µmol photons m
-2

s
-1

 (Table 2). 

 

Experiment 3 

To test whether day length or light intensity affects the fertility of F. vesiculosus. Infertile F. 

vesiculosus individuals were collected at Nordstrand, List, Neukirchen, Maasholm, Bülk, Poel 

and Rügen in February 2011 (Table 1; Fig. 1). As in experiment 2 specimens originating from 

the Wadden Sea (Nordstrand, List) were acclimated stepwise over the course of three days to 

Kiel Fjord salinity. Afterwards F. vesiculosus individuals were exposed for 8 h d
-1

 to different 

light intensities (100, 200, 300 or 400 µmol photons m
-2

s
-1

) or for 16 h d
-1

 to 200 µmol 

photons m
-2

s
-1

 or maintained in permanent darkness (Table 2). 

 

Experiment 4 

To test the combined effect of day length and freezing, immature F. vesiculosus individuals 

were collected in Nordstrand, Poel and Rügen in November 2011. Half of the collected 

individuals were frozen for 24 h at -28°C. Subsequently, frozen and unfrozen Fucus 

individuals were maintained in Kiel Fjord seawater with a salinity of 20 at light intensities of 

either 200 µmol photons m
-2

s
-1

 (SD) or 100 µmol photons m
-2

s
-1

 (LD) (Table 2). 

 

Data analysis 

In order to compare the capacity of F. vesiculosus specimens incubated under different day 

length conditions to use a given dose of light the maturation efficiency (ME) was calculated: 

ME [% (mol m
-2

)
-1

] = mature individuals after time period [% d
-1

] /  

                                                   light dose obtained during time period [mol m
-2 

d
-1

] 
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Maturation efficiencies were calculated for the first 25 d and the last 50 d of incubation 

periods of 75 d. Since none of the tested populations exhibited significantly different 

responses during the two periods (p < 0.05, Tukey´s test) mean maturation efficiency data 

were combined in Figs. 5 and 7. 

Statistical data analysis was conducted with the Statistica 8.0 software package (Statsoft, 

Hamburg, Germany). Fertility and maturation efficiency data were generally not normally 

distributed (Shapiro-Wilks test, p < 0.05) and therefore arcsin transformed (Snedecor & 

Cochran, 1967) prior to repeated measures analysis of variance (Tables 3-5, 8) or covariance 

(Table 6). Factors varying between mesocosms were treated as between-subject factors, while 

factors varying within mesocosms were treated as within-subject factors. As 

heteroscedasticity was found in all data sets before as well as after arcsin transformation 

(Levine's test, p < 0.05) the α-level for comparison of between-subject factors was reduced to 

p < 0.01, in order to avoid a type 1 error (Underwood, 1997). Tukey´s multiple comparison 

test was used for posthoc analysis of all data (p < 0.05 or p < 0.01, depending on the α-level 

choosen for ANOVA; Figs. 4, 5 and 6). 

An analysis of variance, (p < 0.01) was conducted to test the effect of origin on maturation 

efficiency of F. vesiculosus (Table 7) and a Mann-Whitney U-test, (α < 0.05) was conducted 

to compare the maturation efficiency of eight different German F. vesiculosus populations 

under LD and SD conditions (Fig. 7). 

 

Results 

Abbreviations used thereafter: LD/100, 200: long-day/100, 200 µmol photons m
-2

s
-1

; SD/100, 

200, 300, 400: short-day/100, 200, 300, 400 µmol photons m
-2

s
-1

. 

 

Experiment 1 

 Neither tides, nor salinity, nor origin significantly affected the fertility of F. vesiculosus 

(Table 3). In tendency, however, periodic air exposure resulted in higher fertility after 75 d of 

incubation, and this was particularly the case with individuals originating from the Wadden 

Sea population of Nordstrand (Fig. 3). After the first 25 d none of the permanently submerged 

specimens from Nordstrand were mature, while receptacles were detected in 22% of the air-

exposed individuals of this population (data not shown). 
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Table 3. Repeated-measures ANOVA for the effect of the within-subject factors origin (Nordstrand, 
Poel) and air exposure (air-exposed, submerged) and for the between-subject factor salinity (17, 33) 
on the fertility of F. vesiculous. 

Factor 
 

df MS F p 

Salinity 1 0.187635 2.22504 0.210061 
Error 4 0.084329   
Origin 1 0.004812 0.04058 0.850187 
Origin × Salinity 1 0.327076 2.75799 0.172107 
Error 4 0.118592   
Tides 1 0.505015 1.31710 0.315085 
Tides × Salinity 1 0.004812 0.01255 0.916199 
Error 4 0.383428   
Origin × Tides 1 0.187635 0.95797 0.383116 
Origin × Tides × Salinity 1 0.004812 0.02457 0.883041 
Error 4 0.195866   

 

 

Experiment 2 

Origin significantly affected the fertility of F. vesiculosus (Table 4; Fig. 4).  Most strikingly, 

the highest relative amount of mature individuals after 75 d was observed among attached 

specimens from Glücksburg (on average 79.4%), while unattached specimens from the same 

population maturated rarely (9.7%). Intermediate degrees of maturity were observed with 

attached specimens from Bülk (35.2%), Poel (34.2%) and Nordstrand (25.4%). In this 

experiment origin also interacted significantly with light condition (Table 4; Fig. 4). In 

particular, unattached F. vesiculosus from Glücksburg maturated at LD/100 and SD/400 

significantly more than at LD/200 and contrasted in this respect with attached specimens from 

Fig. 3. Fertile F. vesiculosus originating from two different populations incubated at two 
different salinities submerged and periodically air-exposed for 75 days in experiment 1. 
Significant differences between treatments were not detected (3-way-repeated 
measures-ANOVA, p < 0.01, compare table 3). Mean ± SD, n = 3. 
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all the other populations, which – although not significantly – always exhibited higher 

maturity at LD/200 than at LD/100 and higher maturity at LD/200 than at SD/400. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
Table 4. Repeated-measures ANOVA for the effect of the within-subject factor origin (Nordstrand, 
Glücksburg (F. vesiculosus: attached, forma mytili), Bülk and Poel) and the between-subject factor 
light condition (long-day (16 h light : 8 h darkness): 100, 200 µmol photons m

-2
s

1 
and short-day (8 h 

light : 16 h darkness): 400 µmol photons m
-2

s
-1

 on the maturity of F. vesiculosus. Significant factors 
are shown in bold. 

Factor 
 

df MS F p 

Light condition 2 0.09907 6.0510 0.088539 

Error  3 0.01637   

Origin 4 0.94012 52.1211 <0.0000001 

Origin × Light condition 8 0.26840 14.8802 0.000039 

Error 12 0.01804   

 
 

  

Fig. 4. Fertile F. vesiculosus originating from different populations under three different light 
conditions for 75 days in experiment 2. Different capital letters next to the legend on the left 
indicate populations that are significantly different. Different small letters indicate significantly 
different interactive effects of origin and light condition (2-way-repeated measures ANOVA, p < 
0.05, compare table 4). Mean ± SD, n = 2. 
Long-day (16 h light : 8 h darkness); short-day (8 h light : 16 h darkness). 
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Experiment 3 

This experiment tested on one hand the effect of day length and on the other hand the effect of 

light intensity on the maturity of F. vesiculosus originating from seven different populations. 

Day length had no significant direct effect (Table 5) when LD/200 and SD/400 were 

compared (Figure S1). Also origin had no significant direct or interactive effect. In contrast, 

ANCOVA revealed that the fertility of F. vesiculosus was affected by the light intensity 

(Table 6). 

 

Table 5. Repeated measures ANOVA for the effect of the within-subject factors origin (Nordstrand, 
List, Neukirchen, Maasholm, Bülk, Poel, Rügen) and the between-subject factor day length (short-day 
and long-day) on the fertility of F. vesiculous. 

Factor 
 

df MS F p 

Day length 1 0.044352 0.25587 0.663216 

Error  2 0.173337   

Origin 6 0.096428 1.99686 0.145047 

Origin × Day length 6 0.053909 1.11638 0.408329 

Error 12 0.048290   
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Table 6. Repeated-measures ANCOVA for the effect of the within-subject factors origin (Nordstrand, 
List, Neukirchen, Maasholm, Bülk, Poel, Rügen) and for the covariate light intensity (no light and short-
day (8 h light : 16 h darkness): 100, 200, 300, 400 µmol photons m

-2
s

-1
) on the maturity of F. 

vesiculous. Significant factors are shown in bold. 

Factor 
 

df MS F p 

Light intensity 1 2.427044 21.53104 0.001666 

Error  8 0.112723   

Origin 6 0.007819 0.18492 0.979658 

Origin × Light intensity 6 0.075359 1.78225 0.122799 

Error 48 0.042283   

 
 

In all seven populations increasing light intensities resulted in increasing fertility (Figure S2). 

The coefficients of these correlations ranged from 0.176 (Maasholm) to 0.523 (Neukirchen) 

and their probability of error was – with the single exception of Maasholm – below 5% 

(Figure S2). The slopes of these correlations exhibited different steepness and this could be 

further analysed after maturation efficiencies (i.e. maturity per light dose) had been 

calculated: The origin of F. vesiculosus affected the maturation efficiency significantly (Table 

7). The Tukey-test revealed that specimens from Neukirchen maturated to a higher degree 

than specimens from the eastern populations of Poel and Rügen when a defined dose of light 

was given (Fig. 5). 

 

 
Table 7. ANOVA for the effect of the factor origin (Nordstrand, List, Neukirchen, Maasholm, Bülk, 
Poel, Rügen) on the maturation efficiency of F. vesiculous.  

Factor 
 

df MS F p 

Origin 6 0.000384 4.9685 0.000483 
Error  49 0.000077   
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Experiment 4 

This experiment tested for the effects of day length, origin and short term freezing. Origin 

affected the fertility of F. vesiculsous significantly and interacted with freezing (Table 8). A 

significantly higher maturity was exhibited by individuals from Nordstrand and Poel than by 

specimens from Rügen, and this difference was primarily detected with algae that had been 

exposed to short term freezing (Fig. 6). Short-term freezing resulted in significantly more 

mature specimens among those from Nordstrand, but (non-significantly) less mature 

individuals among those from Rügen 75 d later.  

 
 

Fig. 5. Maturation efficiency
 
(mature individuals after time period [% d

-1
]/light dose 

obtained during time period [mol m
-2 

d
-1

]) of F. vesiculosus originating from seven different 
populations of the German Baltic coast under short-day conditions (8 h light : 16 h 
darkness; light intensities: 100, 200, 300, 400 µmol photons m

-2
s

-1
) in experiment 3. 

Different letters indicate treatments that are significantly different (ANOVA, p < 0.01, 
compare table 7). Maturation efficiencies were calculated for the first 25 days and the last 
50 days of incubation periods of 75 days. Mean ± SD, n = 8. 
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Fig. 6. Fertile F. vesiculosus originating from different populations after freezing (for 24 h 
at -28°C) and without prior freezing (experiment 4). Different capital letters indicate 
populations that are significantly different.  Different small letters indicate significantly 
different interactive effects of origin and frost (3-way-repeated measures ANOVA, p < 
0.05, compare table 8; day length effects are not shown). Mean ± SD, n = 4, thereof 2 
exposed to long-day conditions (16 h light : 8 h darkness) for 75 days and 2 exposed to 
short-day conditions (8 h light : 16 h darkness) for 75 days. 
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Table 8. Repeated-measures ANOVA for the effect of the within-subject factors origin (Nordstrand, 
Poel, Rügen) and frost (yes, no) and the between-subject factor day length (long-day (16 h light : 8 h 
darkness): 100 µmol photons m

-2
s

-1 
and

 
short-day (8 h light : 16 h darkness): 200 µmol photons m

-2
s

-1
 

on the maturity of F. vesiculous. Significant factors are shown in bold. 

Factor 
 

df MS F p 

Day length 1 0.05204 1.3994 0.358392 
 

Error  2 0.03719    
Origin 2 1.37912 35.1963 0.002891 
Origin × Day length 2 0.08758 2.2350 0.223020 

 
Error 4 0.03918    
Frost 1 0.00035 0.0080 0.936718 

 
Frost × Day length 1 0.01042 0.2376 0.674138 

 
Error 2 0.04386   
Origin × Frost 2 1.02516 20.6668 0.007785 
Origin × Frost × Day length 2 0.07935 1.5996 0.308710 
Error 4 0.04960   

 

 

Maturation efficiency of different populations 

 

From eight different F. vesiculosus populations highest maturation efficiency was detected at 

individuals from Glücksburg (Fig. 7). Algae from Glücksburg, Maasholm, Poel and Rügen 

show higher maturation efficiency under LD, compared to SD conditions. But only at Rügen 

population maturation efficiency was significantly different between LD and SD conditions. 

Higher maturation efficiency under SD conditions was detected at F. vesiculosus populations 

from List and Neukirchen. No differences between different light treatments are shown at 

algae from Nordstrand and Bülk. 
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Discussion 

 

Several intrinsic and external factors that influenced the tendency of F. vesiculosus specimens 

to reproduce could be identified in our study. For example, unattached F. vesiculosus from 

Glücksburg became less frequently mature than attached specimens from the same location, 

suggesting that detachment inhibits reproduction. F. vesiculosus forma mytili was so far only 

known from the Wadden Sea and is primarily characterized by the absence of a holdfast, the 

morphological consequences of secondary thallus attachment by mussels (see material and 

methods) and absent or strongly reduced reproduction (Nienburg, 1925; Nienburg, 1931; 

Albrecht, 1998). All three characters were in our study also observed in the material from 

Glücksburg, suggesting that it was forma mytili, although some additional traits of Wadden 

Sea forma mytili (namely, absence of bladders and presence of adventive shoots) were 

missing. It has been argued in previous studies that the reduction of sexual reproduction in F. 

vesiculosus forma mytili might be an ecological adaptation to lack of hard substrate in the 

Fig. 7. Maturation efficiency
 
(fertile individuals after time period [% d

-1
] / light dose obtained 

during time period [mol m
-2 

d
-1

]) of F. vesiculosus originating from eight different populations 
under long-day (16 h light : 8 h darkness; light intensities: 100, 200 µmol photons m

-2
s

-1
) and 

short-day (8 h light : 16 h darkness; light intensities: 100, 200, 300, 400 µmol photons m
-2

s
-1

) 
conditions. Only unfrosted and attached specimens that had been incubated in Baltic Sea 
water without periodic air exposure in experiments 1 to 4 were considered for the analysis. 
Maturation efficiencies were calculated for the first 25 days and the last 50 days of incubation 
periods of 75 days. Median ± quartiles, n is indicated by numbers above the bars. Asteriks 
indicate significantly different maturation efficiencies under short-day and long-day conditions 
(Mann-Whitney U-test, p < 0.05).  
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Wadden Sea (Nienburg, 1925). However, at Glücksburg stones were present amongst 

unattached and sterile F. vesiculosus and bearing reproductive individuals, suggesting that the 

reduced sexual reproduction in unattached specimens may be rather a loss of function directly 

resulting from detachment than an adaptation. This view is further supported by the fact that 

originally attached F. vesiculosus rarely became reproductive in our study when it was 

collected without its substrate and incubated for 75 d under conditions that usually result in a 

development of receptacles (data not shown). Similar observations have also been reported 

from Ascophyllum nodosum (Norton & Mathieson, 1983) or kelp gametophytes (Perez et al., 

1991) and a requirement of attachment for sexual reproduction seems therefore to be 

widespread among brown macroalgae. The way in which attachment regulates reproduction 

still remains to be elucidated. 

Another important determinant of reproduction in F. vesiculosus is the availability of light. 

Increasing doses of light generally resulted in increased relative numbers of reproductive 

individuals. Thus, the decreasing maturity of F. vesiculosus at increased water depths in 

Germany (Maczassek et al., in prep.-a) may be due to reduced light availability and more 

severe resource limitation. Also in the northern Baltic proper, a higher receptacle wet weight 

was recorded in shallow (0.8 m) than in deeper water (3.1 m), probably caused by a higher 

light availability at 0.8 m (Kraufvelin et al., 2012). Reproduction of all tested individuals was 

rarely observed in our experiments and the dose response curves given in Fig. S2 provide no 

clear evidence of a saturation effect in the range of photon flux densities that was tested in our 

experiments. On average, 0.55% of all individuals became mature within 75 d when 1 M 

photons m
-2

 was provided during this time. The maturation efficiency of F. vesiculosus varied 

both among populations and experiments. Wadden Sea and Flensburg Fjord populations 

tended in some experiments to allocate more into reproduction than eastern German 

populations (Fig. 5). However, this trend was not generally detected (Fig. 7).  

Day length only affected the maturation of F. vesiculosus from Rügen, which became nearly 

exclusively mature at LD conditions (Fig. 7). This corresponds with observations in the 

northern Baltic proper, where receptacle weight of F. vesiculosus increased after the vernal 

equinox with rising day length and light intensities (Kraufvelin et al., 2012). 

Given the relatively stringent control of reproduction by resource availability any factors 

causing a loss of such resources might potentially result in reduced maturation of F. 

vesiculosus. Baltic Sea populations have adapted to a brackish water environment and reach 

the optimum of photosynthesis at lower salinity than populations in fully marine conditions 

(Nygård & Dring, 2008). Thus, reduced availability of resources and subsequently reduced 



Chapter II 
 

70 

 

maturation could be expected in Baltic Sea specimens at North Sea salinity and vice versa. 

However, no negative effect of SW Baltic Sea salinity (17) on receptacle development of 

North Sea specimens (Nordstrand; salinity: 33) was observed and the reproductivity of 

individuals from the SW Baltic (Poel) was unaffected by North Sea salinity (Fig. 3). Thus, 

shifting salinities within the range of North Sea and SW Baltic Sea conditions cannot affect 

the reproductivity of F. vesiculosus specimens originating from these sea areas significantly. 

However, it is still possible that translocation of specimens from the inner Baltic with its 

lower salinities of 3-7 into North Sea water or vice versa might result in more severe stress 

and subsequently in resource limitation and reduced reproduction.  

One major difference among North Sea and Baltic Sea populations of F. vesiculosus is the 

adaptation to air exposure. Specimens from the Baltic Sea are adapted to permanent 

submergence, but they also tolerate temporary desiccation of up to 70% of their water content 

(Schramm, 1968) or 5 h of air exposure at 10°C (Gylle et al., 2009) without measurable 

effects on photosynthetic performance after rehydration. In contrast, specimens from the 

North Sea are adapted to more severe drought conditions (Gylle et al., 2009) and permanent 

submergence for extended time periods has been suggested to be detrimental to them (Bäck et 

al., 1992 b). It was already mentioned by Schiller (1928) that permanently submersed Pelvetia 

canaliculata was sterile whereas periodically air-exposed individuals maturated (Kniep, 1907) 

and we expected similar effects of periodic air exposure on F. vesiculosus from the North Sea 

rather than on specimens from the Baltic. Indeed, the tendency of individuals from 

Nordstrand – but not from Poel – to reproduce approximately doubled when they were twice 

per day subjected to one h of air exposure (Fig. 3). This effect was not statistically significant 

(Tab. 3). However, the F. vesiculosus population at Nordstrand is usually subject to more than 

4 h of air exposure during each tidal cycle, therefore desiccation periods of more than 1 h 

might possibly result in more pronounced effects. 

At German coasts in winter air temperatures often reaches more extreme conditions than sea 

surface temperature. Algal populations that are often subject to air exposure therefore 

generally need to be more adapted to freezing than populations that are submersed during 

most of the time. Indeed, freezing affected the reproductive effort of different F. vesiculosus 

populations differently. An inhibition of maturation was only observed in the case of the 

Rügen population and the inhibitory effects of freezing and SD conditions together obviously 

explain the fact that reproduction in autumn may not be observed in Rügen (Maczassek et al., 

in prep.-a). In contrast, the Poel population, which becomes fertile in autumn, was virtually 

unaffected by freezing. Most interestingly, freezing doubled the reproductive efficiency of the 



Chapter II 
 

71 

 

intertidal Nordstrand population, so that 100 % instead of 50 % of the tested specimens 

developed receptacles within 75 d after 2 d of freezing (Fig. 6). This not only confirms earlier 

findings of more efficient post-freezing recovery of the photosynthetic yield in Atlantic 

intertidal than in central Baltic subtidal populations of F. vesiculosus (Pearson et al., 2000), 

but it also hints at a vernalization effect: The temperature increase after freezing possibly 

induced accelerated receptacle maturation in Nordstrand individuals by simulating the start of 

spring. Similar reproductive behaviour is often observed in flowering plants, including the 

eelgrass Zostera marina (Morita et al., 2010). Interestingly, winter reproduction at Nordstrand 

was observed in January 2011 after mean air temperatures of -2 °C or less had been recorded 

in the region on 26 d in the two preceding months. In contrast, neither dormant nor mature 

receptacles were observed at this location in the two preceding winters and in the following 

winter, which were all considerably warmer (mean air temperatures ≥ -2 °C in November/ 

December on 2 d, 6 d and 0 d, respectively; all data for List/ Sylt with kind courtesy by 

Deutscher Wetterdienst (www.dwd.de)). Thus, freezing is a relevant environmental 

maturation signal for F. vesiculosus at Nordstrand and possibly at other locations in the North 

Sea intertidal. 

In conclusion, our study provides evidence of at least three different types of seasonal 

regulation of sexual reproduction in the German populations of F. vesiculosus: (1) 

Reproduction in autumn/ winter is prohibited by SD conditions and freezing in the Rügen 

population, (2) while all other populations proved to be capable of reproducing under SD and 

LD conditions alike and (3) freezing even enhanced the reproductive effort of the Nordstrand 

population. Surprisingly, some of these regulation strategies are fundamentally different from 

those observed in Swedish populations (Berger et al., 2001), but altogether they result in 

similar seasonal reproductive patterns with two reproductive periods. At Rügen reproduction 

in spring and summer is induced by LD conditions, followed by immediate development and 

maturation of receptacles. In contrast, summer reproduction in Sweden is induced by SD 

conditions in autumn, followed by a phase of dormancy until spring. None of the populations 

in Germany responded in a similar way to day length as summer reproducing specimens from 

Sweden that only became reproductive at SD conditions (Berger et al., 2001) and dormancy 

in winter were not observed at German populations (K. Maczassek, pers. obs.). Obviously the 

reproductive strategies of F. vesiculosus are geographically highly variable and finely tied to 

local environmental conditions. The high level of variability is surprising, as the cellular 

mechanisms behind day length recognition are relatively complex and probably genetically 

determined (Thomas & Vince-Prue, 1997; Takahashi et al., 2007). Most of the Swedish and 
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the German populations of F. vesiculosus that have so far been studied are capable of 

reproduction both at SD and LD conditions. In contrast, exclusively by LD induced 

reproduction was so far only discovered on the island of Rügen, which harbours two 

relatively small and isolated populations (Schories et al., 2009). On a coastal range of 130 km 

west of Rügen F. vesiculosus has so far not been recorded (Schories et al., 2009), probably 

due to the absence of suitable hard substrate. For the same reason the species is apparently 

missing between Rügen and the Polish peninsula Hel, 300 km to the east (P. Schubert, pers. 

comm.). In this light the unique reproductive strategy of F. vesiculosus on Rügen could be 

due to genetic isolation, as geographic separation at this scale has been shown to result in 

genetic differentiation among F. vesiculosus populations (Tatarenkov et al., 2007). During the 

last decades the F. vesiculosus stands at many Baltic Sea coasts have declined (Kautsky et al., 

1986; Schories et al., 2009) and stakeholders currently evaluate possibilities for the 

restauration of lost populations. Given that the reproductive strategies of F. vesiculosus are 

highly adapted to local environmental conditions any translocation of specimens among 

populations need to be conducted with much consideration. Newly introduced ecotypes may 

not only be unsuccessful in a new environment due to poor adaptation, but they could also be 

too successful, suppressing small populations of unique ecotypes, such as the one at Rügen. 
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Abstract 

Over the last decades, Fucus vesiculosus, an ecologically important macroalga in the German 

Baltic Sea, has shown a massive retreat from the deeper zones of its former distribution. In the 

North Sea, F. vesiculosus is primarily found in the intertidal where it may be exposed to 

stressful conditions caused by temperature or salinity extremes. In contrast, in the atidal 

Baltic, F. vesiculosus is found in the subtidal and seems to be less tolerant towards these 

stressors. The stress tolerance of early fucoid life stages may differ from that of adults and 

might be particularly relevant for performance and distribution of populations. Today, in the 

German Baltic Sea F. vesiculosus occurs mainly in shallow waters (0-2 m). To investigate the 

stress tolerance of early life stage Baltic F. vesiculosus towards potential temperature and 

salinity stress in the upper subtidal, fertilisation of eggs and germination success under a 

range of temperature (5, 15, 25°C) and salinity scenarios (7, 10, 17 psu) was assessed by 

laboratory experiments. Within the range tested, fertilisation and germination success of F. 

vesiculosus was enhanced by increasing salinity. Highest fertilisation and germination success 

of F. vesiculosus was observed at 15°C and a salinity of 17 psu. At other temperatures, 

sensitivity differed between fertilisation and germination: high temperature (25°C) impaired 

fertilisation of fucoid eggs less than low temperature (5°C). In contrast, germination success 

was more strongly reduced by high temperature.  Sensitivity against temperature stress varied 

between sibling germling groups. This may indicate an adaptation potential of F. vesiculosus 

for climate warming. 

 

Key words: climate change, fertilisation, fucoid offspring, German Baltic Sea, germination, 

germlings, reproduction, seaweed 
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Introduction 

Macrophytes build important habitats for many organisms in shallow coastal zones and play a 

central role in marine nutrient and carbon cycles (Carr, 1989; Duggins et al., 1990; Arrontes, 

1999; Worm, 2000; Lotze et al., 2001; Wikström & Kautsky, 2007). In the Baltic Sea, the 

most common canopy-forming and widespread species is Fucus vesiculosus (Torn et al., 

2006), which during the second half of the 20
th

 century has experienced a massive retreat 

from the deeper zones of its former distribution and in the Western Baltic is now limited to 

the upper subtidal (Vogt & Schramm, 1991; Torn et al., 2006). This decline is thought to be 

caused by effects of eutrophication such as decreased light penetration and increased 

sedimentation and by loss of hard substrata and increased grazing pressure (Vogt & Schramm, 

1991; Wahl et al. 2011 and references therein). In the German Baltic Sea F. vesiculosus is 

now mainly found between 0-2 m and only few individuals occur at a depth of up to ~3 m 

(Fürhaupter et al., 2008). Although the bladder wrack tolerates low salinity (down to 5 in the 

SW Gulf of Bothnia; Bergström et al., 2005; Pereyra et al., 2009), it not necessarily performs 

well under these conditions. Thus, F. vesiculosus populations in the eastern parts of the 

German Baltic coast (salinity: 7-10 psu) declined more dramatically than in the west 

(salinities: 12–18 psu) (Pehlke et al., 2012). Similarly, former studies revealed that 

recruitment of F. vesiculosus in eastern Baltic regions was lower than in western Baltic 

regions (Worm et al., 2001) and that recruitment success of Fucus in the eastern and northern 

Baltic (salinity: 5-8 psu) was negatively affected by low salinity (Serrão et al., 1996; Serrão et 

al., 1999; Worm et al., 2001). Brawley (1991) observed that even in Fucus ceranoides, which 

is an alga with high tolerance for brackish conditions, i.e. occurring in estuaries with varying 

salinities, but not surviving at constantly low salinities (Bäck et al., 1992), polyspermy 

increased with decreasing salinity. These findings suggest that salinities in the eastern Baltic 

are stressful to Fucus. Also in the western Baltic regions, where Fucus beds are limited to the 

uppermost meters of the subtidal, the algae sporadically are exposed to very low salinity when 

heavy rain and freshwater inflow dilute the upper water layer and to stressfully high 

temperatures in summer. In autumn and winter storm might be a limiting factor for the 

abundance of Fucus beds in shallow water. Nutrient enrichment, resulting in higher turbidity, 

proliferation of epibiotic filamentous algae and increased organic sedimentation (Berger et al., 

2003) may impose additional stress on Fucus. Early life stages (gametes, zygotes and 

germlings) may be particularly sensitive to single or several of these stressors (Ang, 1992; 

Lamote & Johnson, 2008; Wahl et al., 2011) because of their enhanced cell division rates and 
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small sizes. Stress-induced failure in fertilisation, attachment or germination will singly or 

additively constrain population growth. Early life stage biology and ecology were, however, 

often neglected in Fucus research.  

 

In this study, we analyzed the single and combined effects of potential thermal and salinity 

stress on fertilisation and germination success of F. vesiculosus. Fucus vesiculosus is a cold-

temperate species which originated in fully marine and intertidal environments in the North 

Atlantic (Lüning, 1990). Pearson et al. (2000) found that tolerance of F. vesiculosus to 

emersion stresses (freezing and desiccation) is higher in populations from the North Sea than 

in Baltic Sea. Therefore we ask whether sensitivity towards temperature and salinity depends 

on the origin of the alga, i.e. whether populations are best adapted to their respective local 

conditions. For this purpose we made use of the natural salinity gradient along the German 

Baltic coast. Thus, we hypothesized that the impact of low salinity, low and high temperature 

on fertilisation and germination success of F. vesiculosus, which cumulatively determine the 

reproductive success of a population, differs among populations. We thus, expect that 

populations in the eastern parts of the German Baltic coast are less sensitive to low salinity 

than populations in the west. Since at high salinities heat stress is less stressful for fucoid 

embryos (Li & Brawley, 2004) we further hypothesize that high salinity attenuates the 

negative effect of high temperature. To evaluate the potential for such an adaptation by 

differential sensitivity among genotypes we quantified the differences in stress sensitivity 

among offspring from different parents. In the German Baltic Sea some F. vesiculosus 

individuals reproduce in spring/ summer (March-August), some in autumn (September-

November) and some during both seasons (own observation). Conditions experienced by 

parental thalli significantly affected the heat tolerance of embryos in F. vesiculosus (Li & 

Brawley, 2004). Few plants mature at cold temperatures (4-8°C) (Russell, 1985; Bäck et al., 

1991; Kraufvelin et al., 2012) and cold temperatures retard the rate of gamete release 

(Quatrano, 1980). However, we observed fully developed Fucus receptacles in December 

when water temperature was below 8°C (own observation). At the German Baltic coast F. 

vesiculosus occurs mainly between 0-2 m, a water depth range where high temperature 

fluctuations exist. In shallow waters F. vesiculosus receptacles are near the water surface. 

Therefore receptacles may be exposed to higher temperatures than eggs and sperm that sink to 

the bottom after gamete release. Finally, since from March to August water temperature 

increases (~2-18°C) whereas from September to November temperature decreases (~11-8°C), 
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we assume that temperature sensitivity of F. vesiculosus offspring should differ between 

spring/ summer and autumn. 

 

Materials and methods 

Sampling and abiotic on-site measurements 

Reproductive specimens of F. vesiculosus were collected at a depth of 0.2-0.5 m in three areas 

along the German Baltic coast which differ in their salinities (Fig. 1): Neukirchen/ Flensburg 

Fjord (54°48.285 N; 9°44.803 E) (May 2009–Apr. 2010: mean ± SD: 15.6 ± 1.2 psu), 

Sierksdorf/ Bay of Lübeck, (54°04.339 N; 10°47.227 E) (range of six manual measurements 

from 2009-2010: 10-13 psu) and Bisdamitz/ Rügen (54°34.853 N; 13°33.409 E) (May 2009 

and July 2009–Apr. 10: mean ± SD: 7.5 ± 1 psu). 

 

 

  Fig. 1. Locations where reproductive individuals of F. vesiculosus were collected: 

NK (Neukirchen/Flensburg Fjord), SK (Sierksdorf/Lübeck Bay) and BD 

(Bisdamitz/ Rügen). Salinities represent means from long-term measurements (NK, 

SK) and mean value of six manual measurements from 2009-2010 (BD). Map 

showing sampling locations was generated using Ocean Data View 4.3.7 software 

(Schlitzer, 2010). 
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In order to not collect closely related individuals, algae were sampled with a distance of at 

least 2 meters from each other, which is the reported most common dispersal distance of F. 

vesiculosus gametes (Lifvergren, 1996). Fucus vesiculosus specimens were transported in dry 

boxes to the laboratory, covered with a damp towel. Since at Bisdamitz mature F. vesiculosus 

individuals are only found in spring/ summer, fertilisation and germination success of 

Bisdamitz was determined only for this season. Bisdamitz F. vesiculosus algae already 

released their gametes during transport to the laboratory although cool boxes were used 

(experiments in May 2009 and 2011). This probably happened either because algae were riper 

or transport to the laboratory took longer than for the other sites (4 h transport instead of 1 h), 

or both. Thus, data of Bisdamitz offspring are only available for the experiment we conducted 

in July 2008. 

In-situ salinity and temperature was measured in 1-2 m water depth (depending on water 

level) by CTD loggers (Star-Oddi, Reykjavik, Iceland; accuracy ± 1 psu, accuracy ± 0.1°C) 

taking one measurement per hour: Neukirchen (May 2009–Apr. 2010), Sierksdorf (only 

temperature measurements: Dec. 2010–Oct. 2011) and Bisdamitz (May 2009 and July 2009–

Apr. 10). Temperatures during sampling times that are given in the present study are means of 

a two week measurement before sampling days. Since from some sites and times, logger data 

were missing, additional temperature and salinity measurements in 0.5 m water depth were 

taken manually during samplings (temperature at all times and sites in 2008, all sites in 

November 2009 and at Sierksdorf in November 2010 (accuracy ± 0.5°C); salinity at 

Sierksdorf (accuracy ± 0.1); WTW Cond 315i). In shallow waters F. vesiculosus receptacles 

are near the water surface and are periodically air exposed. Thus, for comparisons with our 

measurements at 1-2 m water depth, at one site (Neukirchen) also in-situ temperatures close 

to F. vesiculosus thalli were monitored from Apr.-Dec. 2009 using data loggers (HOBO®, 

Onset Computer Corporation; accuracy ± 0.53°C; Fig. 2). 
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Experiments 

To investigate the effect of temperature and salinity stress on early life-stages F. vesiculosus 

matured in spring/ summer versus F. vesiculosus matured in autumn, we conducted 

experiments in both seasons. Offspring from spring/summer and autumn was exposed to all of 

the chosen temperature levels (5, 15 and 25°C). This enabled us to compare effects on spring 

with those on autumn reproducing algae, although 25°C in autumn may not appear realistic 

even under a climate change scenario. An overview of the experimental setups and tested 

factors is given in table 1. 

  

Fig. 2. Water temperatures at 1-2 m water depth and in-situ 

temperatures close to F. vesiculosus thalli at the location Neukirchen. 

Mean values per month (central symbols), SD (columns) and min.-max. 

(thin lines). nd: no temperature data. 
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Experiment Fert Germ SibGerm 

Season 
Nov. 

2010 

May 

2011 

July 

2008 

Nov. 

2008 

May 

2009 

Nov. 

2009 

Treatment 

factors and 

levels 

Temperature 

(5, 15, 25°C) 

 

× 

 

Salinity 

(7, 10, 17 psu) 

Temperature 

(5, 15, 25°C) 

× 

Sibling group 

(May 2009: NK/SK 1-

10; Nov. 

2009: NK/SK 11-20) 

 

Origin of 

specimens 

 

NK, SK 

 

NK, SK, 

BD 

 

NK, SK 

 

NK, SK 

 

 

 

Gamete  

 

release 

 

 

 

 

 

 

 

 

 

 

 

2 pools of 

25 females 

and 25 

males 

respectivel

y 

 

1 pool of 3 

reproducing 

females and 1  

pool of 3 

reproducing  

males 

(at NK, 25°C 

and 7 psu 

only one 

reproducing 

male) 

Pooled zygotes of 60 

F. vesiculosus 

individuals 

10 pools of 1 female 

and 1 male respectively 

(fucoid offpring from 

10 different sibling 

groups) 

Gamete release under 

treatment conditions 

 

Gamete release under culture lab temperature 

(spring/summer: 15°C, autumn: 10°C) 

and home salinity 

 
 

Response 

variables 

 

 

Fertilisation success 

(fertilised eggs) 

 

Germination Success 

  

Table 1. Experimental designs to analyse the effect of temperature and salinity stress on 

fertilisation and germination success of F. vesiculosus (Fert: Fertilisation Experiment; Germ: 

Germination Experiment), and to determine the germination success of sibling groups under 

temperature stress (SibGerm: Sibling Germination Experiment). Experiments were conducted 

consecutively and fucoid offspring from F. vesiculosus matured in spring/ summer and from 

algae matured in autumn was tested. The different treatment combinations (temperature × 

salinity; temperature × siblings) were replicated four times. NK (Neukirchen), SK (Sierksdorf), 

BD (Bisdamitz). 
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In November 2010 and May 2011 fertilisation success of F. vesiculosus from the locations 

Neukirchen and Sierksdorf under different temperatures and salinities was tested, which is 

here referred to as ‘Fertilisation Experiment’. Here, the response variable ‘fertilisation 

success’ was calculated as the proportion of fertilised eggs from the total number of released 

fucoid eggs. Fucoid gametes were obtained from mature Fucus individuals sampled at 

Sierksdorf on Oct 28, 2010 and at Neukirchen on Oct 29, 2010 (water temperature: 10°C). 

Specimens from spring/ summer population were collected on Apr 29, 2011 (Sierksdorf, 

water temperature: 11°C) and on Apr 30, 2011 (Neukirchen, water temperature: 10°C). In 

July and November 2008 germination success of F. vesiculosus from the locations 

Neukirchen, Sierksdorf and Bisdamitz under different temperatures and salinities was 

analysed, which is here referred to as ‘Germination Experiment’. The response variable 

‘germination success’ was calculated as the proportion of germinated zygotes from the 

number of fertilised eggs. For the Germination Experiment we conducted in July, fucoid 

offspring was obtained from mature algae collected on June 26, 2008 at Neukirchen, on June 

27, 2008 at Sierksdorf  (water temperature: 17°C ) and on June 28, 2008 at Bisdamitz (16°C). 

In November water temperature was at Neukirchen (Nov 09, 2008) and Sierksdorf (Nov 08, 

2008) 10°C. In May and November 2009, the impact of different temperature conditions on 

germination success of genetically differing germling groups (i.e. different families produced 

as offsprings of different parental pairs; here termed ‘sibling groups’) was assessed and is 

here referred to as ‘Sibling Germination Experiment’. In May sibling groups were obtained 

from Neukirchen and Sierksdorf algae, sampled at a water temperature of 12°C (Neukrichen: 

May 17, 2009; Siekrdorf: May 18, 2009). In November water temperature was at both sites 

9°C: Neukirchen algae were sampled on Nov 13, 2009 and specimens from Sierksdorf were 

collected on Nov 14, 2009. 

The following method used in all experiments to obtain fucoid gametes was slightly modified 

from the method described by Karez (1997). Gamete release was induced by cutting off 

mature tips, washing them with fresh water and placing them dry at darkness in a constant 

temperature chamber (in spring/ summer: 15°C, in autumn: 10°C). After 5 days, the tips were 

immersed in seawater (for temperature and salinity see Table 1) and exposed to light (200 

µmol m
-2 

s
-1

) for 2-5 hours. 

When gametes are released to the surface of the receptacle they are still enclosed inside 

gametangia and fertilisation occurs only between free gametes (Brawley et al., 1999). The 

time of exposure to light required for release of gametangia decreases with the maturity of the 
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receptacles. Furthermore release of gametes from gametangia depends on water temperature 

(at 8-20°C), i.e. fucoid sperms are released within a minute and eggs within 10 min in calm 

culture dishes (Brawley et al., 1999), and free gametes only survive a few hours after release 

(Serrão et al., 1999). Consequently, receptacles were continuously monitored to not miss their 

gamete release, and fertilisation was initiated as soon as possible thereafter. In the 

Germination and Sibling Germination Experiment gamete release and fertilisation took place 

at constant temperature (spring/ summer: 15°C; autumn: 10°C; Table 1). 

In the Fertilisation Experiment (November 2010 and May 2011) gamete release was induced 

under treatment conditions (Table 1). In November 2010 one pool of 25 male receptacles and 

one pool of 25 female receptacles per treatment combination and origin released gametes into 

500 ml seawater, with all receptacles in the pools stemming from different individuals. 

Gametes were transferred into individual beakers for each treatment combination right after 

their release using a glass pipette. Beakers were topped up to 250 ml with seawater. In May 

2011 gamete release was induced on single individuals to quantify the proportion of 

individuals which released gametes. To do so, 3 receptacles each from 7 individuals, each per 

gender, per treatment combination and per origin were immersed separately in 50 ml-glasses 

filled with 20 ml seawater and kept under treatment conditions. All gametes of the same 

treatment combination, gender and origin released after 5 hours were then combined. Varying 

sets of individuals released gametes in the nine treatment combinations; e.g., in treatment 

combination 5°C × 17 psu × Neukirchen female A, B, C released gametes; at 25°C × 17 psu × 

Neukirchen females A, C, D released gametes. All combinations are listed in Table 2. In both 

the November and the May experiment, 500 µl of homogenous fucoid egg suspension was 

pipetted into 2.5 cm wide wells (in 6-well plates) together with 5 ml of sterile seawater. After 

the total number of fucoid eggs in the wells was counted using binoculars (25 ×), 500 µl of 

homogenous fucoid sperm suspension was added. In both experiments, females were 

separated from males for approximately 2.5h.  Before fertilisation, female and male gametes 

were exposed to 5, 15 and 25°C. Each temperature was combined with the salinities 7, 10 and 

17 psu. Every treatment combination (temperature × salinity × origin) was replicated four 

times, resulting in 72 wells of fucoid gametes. After 24 h of incubation the total number of 

fertilized eggs (attached fucoid zygotes) was counted as described before. 
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Table 2. Gamete release (x) of different F. vesiculosus female and male individuals (capital 

letters) from Neukirchen (NK) and Sierksdorf (SK) at different temperature (5, 15, 25°C) and 

salinity (7, 10, 17 psu) treatments in the Fertilisation Experiment (May 2011). For every F. 

vesiculosus female and male individual, gamete release was induced separately. 

Temperature- 

and 

5°C 15°C 25°C 
salinity treatment 7 10 17 7 10 17 7 10 17 

NK 

Female 

A 

x x x x x x x x x 

Female 

B 

x x x x x x    

Female 

C 

x x x x x x x x x 

Female 

D 

      x x x 

Male E x x x x x x  x x 
 Male F x x x x x x  x x 

 Male G x x x     x x 

 Male H    x x x    

 Male I       x   

SK 

Female J x x x  x x 

No gamete release 

Female 

K 

x x x x   

Female L x x   x x 

Female 

M 

  x  x x 

Female 

N 

   x   

Female 

O 

   x   

Male P x x x  x x 

Male Q x x x x  x 

Male R x x x x x x 

 Male S    x x   

 

In the Germination Experiment and the Specific Sibling Germination Experiment male and 

female receptacles of F. vesiculosus were combined before gamete release. In these cases 

fertilisation took place directly after gamete release. Five hours after combining males and 

females zygotes were harvested using a 20 ml-glass pipette and suspended in a stirred beaker. 

In the Germination Experiment 2 ml of zygote suspension was transferred into wells of 6-well 

plates (well diameter 2.5 cm) together with 8 ml of filtered seawater. After the initial density 

of zygotes was counted using binoculars with 40 × magnification (July 2008; 5 visual fields) 

or an inverted microscope with 10 × magnification (November 2008; 10 visual fields), 

zygotes were incubated at treatment temperatures, combined with the treatment salinities. 

Every treatment combination (temperature × salinity × origin) was replicated four times. 

Surviving germlings were counted daily until zygotes had either germinated or died to 

account for temperature effects on germination speed (days until germination was reached are 

shown in Tables S1 a-c, S2 a-b). In the Sibling Germination Experiment we were interested in 

the performance of single families, so all receptacles of one male and one female each were 



Chapter III 

87 

 

combined in individual containers (10 pairs total) to release gametes. 50 fucoid zygotes from 

each pair, replicated four times, were transferred into 24-well plates together with 1 ml 

seawater from the parental sites. All offsprings were then exposed to the different treatment 

temperatures. The proportion of successfully germinated zygotes was determined after 9 days 

under an inverted microscope (4 ×). 

As only fertilized eggs secrete adhesive material and attach to the substrate (Ladah et al., 

2003) fertilized eggs (zygotes) can be quantified by counting them after removal of 

unattached cells (by rinsing of the cell well plate surfaces twice with sterile seawater). In 

preliminary studies we determined the best time point for this removal by gently rinsing 6, 24 

and 48 h after fertilisation. We found higher numbers of attached zygotes at 24 h than at 6 h, 

whereas between 24 h and 48 h no more zygotes attached. Consequently, in all our 

experiments we rinsed after 24 h. As soon as attached zygotes have developed rhizoid cells 

they were recorded as germlings. 

In the Germination and Fertilisation Experiments we generated three salinity levels using Kiel 

Fjord seawater adjusted by either adding marine salt (Sea aquarium salt; SEEQUASAL 

GMBH) or distilled water. In the Sibling Germination Experiment we used original seawater 

from the respective habitats. All seawater used in experiments was sterile filtered (0.2 µm 

membrane filter/ cellulose acetate + fiber glass filter) and renewed daily. Temperature levels 

were chosen from the natural range of temperatures between spring and autumn (Fig. 2). The 

different temperature treatment levels were obtained by placing the containers with 

receptacles, gametes, zygotes or germlings in constant temperature thermo baths (Thermo 

Fisher Scientific) which allowed maintaining temperatures with a precision of 0.1°C. 

 

All early life stages (eggs, zygotes and germlings) of F. vesiculosus from Neukirchen for 

example are referred to as ‘Neukirchen offspring’ throughout the text; ‘Sierksdorf offspring’ 

and ‘Bisdamitz offspring’ are used the same way. 

 

Statistical Analyses  

We tested normality of response variables using Shapiro-Wilks test. In all experiments, 

response variables were not-normally distributed (p < 0.05), and normality could not be 

achieved through transformation of the data. Therefore, we used the permutational distance-

based approaches, which are suitable also for non-parametric data (Anderson, 2005) 

(PRIMER 6 & PERMANOVA+ from Primer-E). In the Fertilisation and Germination 
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Experiment, resemblance matrices of the response variables fertilisation and germination 

success (%) were conducted using Euclidean distance. In the Sibling Germination 

Experiment, the resemblance matrix for germination success (n) was calculated based on 

Bray-Curtis similarities. For all analyses, tests for homogeneity of dispersion were conducted 

using the PERMDISP routine in PRIMER PERMANOVA. We used Monte Carlo p-value (p 

< 0.05) to test for significance, and pair-wise tests were conducted for further analyses of 

sources of variation in response variables, where factors were significant.  

In the Fertilisation Experiment, the influence of treatment factors temperature (fixed factor 1, 

3 levels), salinity (fixed, 3 levels), season (fixed, 2 levels), and their interactions on 

fertilisation success of Neukirchen offspring were tested (Table S3). Analysis for fertilisation 

success of Sierksdorf offspring was conducted in a similar manner, but since in May 2011 

Sierksdorf algae released gametes not under the temperature level 25°C only the two 

temperature levels 5 and 15°C were included (Table S4). Since season was significant, further 

analyses were conducted separately for November 2010 (for the temperature levels 5, 15, 

25°C; Table S5) and May 2011 (only for the temperature levels 5 and 15°C; Table S6) to 

compare fertilisation success of fucoid offspring among the factor combinations temperature 

(fixed), salinity (fixed) and origin (random). Furthermore analyses were conducted for every 

population and season separately, in which the effect of temperature (fixed) and salinity 

(fixed) on fertilisation success was analysed (Tables 3 a-b, 4 a-b).  

In the Germination Experiment, the influence of treatment factors temperature (fixed factor 1, 

3 levels), salinity (fixed, 3 levels), season (fixed, 2 levels), origin (random, 2 levels) and their 

interactions on germination success of Neukirchen and Sierksdorf offspring was tested. Since 

season did not affect the response variable, season was pooled for Neukirchen and 

accordingly for Sierksdorf to analyse the effects of temperature (fixed), salinity (fixed) and 

origin (random) on germination success of Neukirchen-, Sierksdorf- and Bisdamitz offspring 

(Table 5). 

 

In the Sibling Germination Experiment, the effect of temperature (fixed factor 1, 3 levels), 

season (fixed factor 2, 2 levels), different sibling groups (random factor 1, nested in origin 

and season, 10 levels) and the effect of origin of the algae (random factor 2, 2 levels) on the 

germination success of these sibling groups was analysed. None of these factors showed 

homogeneity of dispersion except the factor sibling group. Thus, to reduce dispersion effects, 

analyses were conducted separately for different populations and different seasons to compare 
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the effect of temperature (fixed) and sibling group (random factor) on germination success of 

fucoid offspring (Tables 6 a-b, 7 a-b). 

 

Results 

Fertilisation and germination success of fucoid offspring was generally enhanced by medium 

temperature (15°C) and the 17 psu treatment. Low temperature (5°C) impaired fertilisation of 

fucoid eggs whereas germination of fucoid zygotes was reduced under the high temperature 

treatment (25°C). The negative impact of temperature stress on fertilisation and germination 

was only partially compensated by 17 psu and sensitivity towards unfavourable temperatures 

differed among fucoid sibling groups. We did not find that eastern populations are less 

sensitive to low salinity than western populations. We also did not find that consistent 

differences between spring/summer- and autumn reproducing algae exist in respect to their 

temperature sensitivities.  

 

In the Fertilisation Experiment season and origin affected the fertilisation success of fucoid 

gametes (Tables S3-S6). In November 2010 and May 2011 at all salinity levels the number of 

fucoid eggs released was lower at high temperature compared to medium and low temperature 

(Tables S7 a-b, S8 a-b). Temperature significantly affected fertilisation success of Neukirchen 

gametes, while both temperature and salinity significantly affected fertilisation success of 

Sierksdorf gametes in autumn. Furthermore an interaction between both factors occurred (Fig. 

3 a-b; Table 3 a-b). Fertilisation success of Neukirchen gametes increased significantly with 

temperature except under the 17 psu treatment. There, significantly more fucoid eggs were 

fertilised under low and high temperatures (5, 25°C) than at 15°C than (see pairwise test 

results indicated by letters in Fig. 3 a). For Sierksdorf algae the favorable effect of 17 psu was 

especially pronounced under low and medium temperature: at 5°C significantly higher 

fertilisation success than at the other salinity levels was recorded; under 15°C it caused 

significantly higher fertilisation than under 5°C (7, 10 psu) and 25°C (7, 10, 17 psu) as 

indicated by pairwise tests (Fig. 3 b). 
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Table 3 a-b. Fertilisation Experiment, November 2010. PERMANOVA for the effect of the 

factors temperature (5, 15, 25°C) and salinity (7, 10, 17) on fertilization success of F. 

vesiculosus from (a) Neukirchen and (b) Sierksdorf. Significance is shown in bold (p < 0.05). 

 df MS Pseudo-F perms p (MC) 

(a) Effect for Neukirchen algae 

 

     

Temperature  2 1551 11.645 9947 0.0003 

Salinity 2 141.71 1.064 9952 0.3606 

Temperature × Salinity 4 604.49 4.5386 9948 0.0077 

Residual 27 133.19    

Total 35     

(b) Effect for Sierksdorf algae      

Temperature* 2 3584.4 9.4479 9946 0.001 

Salinity 2 3621.6 9.5458 9958 0.0009 

Temperature × Salinity 4 1238.9 3.2654 9958 0.026 

Residual 27 379.39    

Total 35     

* No homogeneity of dispersion was found (p < 0.05). 

 

In May 2011, both salinity and temperature affected fertilisation success of both Neukirchen 

and Sierksdorf algae significantly as single factors. For Sierksdorf, additionally an interaction 

Fig. 3 a-b. Fertilisation Experiment, November 2010. Fertilisation success (attached 

zygotes) of F. vesiculosus (%, mean ± 95% CI, n = 4) from two sites that differ in 

their salinities: (a) Neukirchen, (b) Sierksdorf. Fertilisation success was determined 

24 h after joining gametes from 25 male receptacles and 25 female receptacles at 

different temperatures (5, 15, 25°C) and salinities (7, 10, 17). Fertilisation success 

was compared separately between different treatment combinations (temperature × 

salinity) by pair-wise tests. Values represented by bars with different letters differ 

significantly (p < 0.05). Absolute numbers of fucoid eggs/ zygotes and means ± SD 

are shown in Table S2.  
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between both factors is indicated (Table 4 a-b). Since for this site ‘temperature’ and 

‘temperature × salinity’ data showed lack of homoscedasticity, these effects must be 

interpreted with care. Fertilisation success of Neukirchen (5, 15°C) and Sierksdorf (15°C) 

algae increased with salinity (Fig. 4 a-b) being highest at 17 psu and 15°C, close to natural 

conditions. Neukirchen offspring under the low salinity treatment (7 psu) differed from that at 

17 psu significantly as indicated by pairwise tests (Table S9). However, the latter result has to 

be interpreted with care since for Neukirchen at 25°C under the 7 psu treatment only one male 

contributed to the offspring whereas at the other salinities three different males contributed 

(Table 2). At low temperature (5°C) fertilisation success of Sierksdorf algae was near zero 

and at 25°C already gamete release was inhibited (Fig. 4 b). Slight seasonal differences 

occurred: at Sierksdorf at a salinity of 17 gametes fertilized better at low temperature in 

autumn than in spring (Fig. 3 b versus Fig. 4 b). 

   
Fig. 4 a-b. Fertilisation Experiment, May 2011. Fertilization success (attached 

zygotes) of F. vesiculosus (%, mean ± 95% CI, n = 4) from two sites that differ in 

their salinities: (a) Neukirchen and (b) Sierksdorf. Fertilisation success was 

determined 24 h after joining gametes from 3 male receptacles and 3 female 

receptacles (Sierksdorf at 25°C/ 17 psu: from 1 male and 3 male receptacles) at 

different temperatures (5, 15, 25°C) and salinities (7, 10, 17). Absolute numbers 

of fucoid eggs/ zygotes and means ± SD are shown in Table S3. nd (no data: no 

gamete release of Sierksdorf algae at 25°C). 
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Table 4 a-b. Fertilisation Experiment, May 2011. PERMANOVA for the effect of the factors 

temperature (5, 15, 25°C) and salinity (7, 10, 17 psu) on fertilization success of F. vesiculosus 

from (a) Neukirchen and (b) Sierksdorf. Significance is shown in bold (p < 0.05). 

 df MS Pseudo-F perms p (MC) 

(a) Effect for Neukirchen algae      

Temperature* 2 6694.7 13.32 9955 0.0001 

Salinity 2 2281.4 4.539 9945 0.0224 

Temperature × Salinity 4 1328.1 2.6423 9958 0.0526 

Residual  27 502.62    

Total 35     

(b) Effect for Sierksdorf algae      

Temperature* 1 6923.7 75.262 9824 0.0001 

Salinity* 2 2207.7 23.998 9953 0.0001 

Temperature × Salinity* 2 2223.3 24.168 9946 0.0001 

Residual 18 91.996    

Total 23     

* No homogeneity of dispersion was found (p < 0.05). 

 

In the Germination Experiment data of both seasons was pooled, since the factor ‘season’ did 

not have an effect on germination success. Salinity and origin both affected the germination 

success of fucoid offspring significantly (homogeneity of dispersion: p > 0.05; Table 5). 

Temperature and origin interacted in their effects on germination success. However, since for 

this interaction no homoscedasticity was found its effect on germination has to be interpreted 

with care. A pairwise test among salinity treatments showed that at 17 psu germination was 

significantly higher than at the lower salinities 7 and 10 psu (test statistics of pairwise tests: 

Table S10). This effect comes from 5°C and 15°C treatments rather than from the 25°C 

treatment, which diminished germination success especially of Sierksdorf and Bisdamitz 

offspring to near zero (Fig. 5 a-c). Germination success of fucoid offspring was enhanced at 

15°C compared to 5°C and 25°C, with 25°C impairing germination of zygotes more than 5°C. 
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Table 5. Germination Experiment 2008. PERMANOVA analysis for the effect of temperature 

(5, 15, 25°C; fixed factor), salinity (7, 10, 17 psu; fixed factor) and origin (Neukirchen, 

Sierksdorf, Bisdamitz; random factor) on germination success of Neukirchen, Sierksdorf and 

Bisdamitz zygotes (p < 0.05). Significance is shown in bold (p < 0.05). 

Source df MS Pseudo- F perms 

(MC) 

p (MC) 

Temperature* 2 31519 31.607 8382 0.0027 

Salinity 

 

2 3494.7 14.583 8390 0.0089 

Origin 

 

2 3168.4 8.2074 9958 0.0004 

Temperature × Salinity 

 

4 604.71 2.3526 9958 0.1276 

Temperature × Origin* 4 1038 2.6887 9967 0.0354 

Salinity × Origin 4 229.87 0.59546 9954 0.6707 

Temperature × Salinity × Origin 8 248.44 0.64355 9945 0.7414 

Residual 153 386.04    

Total 179     

* No homogeneity of dispersion was found (p < 0.05). 

 

In the Sibling Germination Experiment conducted in spring/ summer, temperature and sibling 

group affected the germination success of Neukirchen and Sierksdorf algae interactively 

Fig. 5 a-c. Germination Experiment, 

2008. Germination success of F. 

vesiculosus zygotes (%, mean ± 95% 

CI, n = 4) from three sites that differ 

in their salinities, (a) Neukirchen, (b) 

Sierksdorf and (c) Bisdamitz under 

different temperatures (5, 15, 25°C) 

and salinities (7, 10, 17). Absolute 

number of fucoid zygotes/ germlings, 

means ± SD and days until 

germination was reached are shown 

in Tables S5 a-b and S6. 
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(Table 6 a-b). However, for all single factors, except for ‘sibling group’ at Sierksdorf and for 

all interactions, no homogeneity of dispersion was found. Five Sierksdorf sibling groups 

showed significant differences in temperature sensitivity compared to five other sibling 

groups (Fig. 6 a-b): in SK-1, SK-2, SK-3, SK-4 and SK-7 germination success was each 

higher than for SK-5, SK-6, SK-8, SK-9 and SK-10 (test statistics of pairwise tests: Table 

S11). 

 

 

 

 

Table 6 a-b. Sibling Germination Experiment, May 2009. PERMANOVA for the effect of 

temperature (5, 15, 25°C; fixed factor) and sibling group (1-10; random factor) on 

germination success of F. vesiculosus from (a) Neukirchen and (b) Sierksdorf. Significance is 

shown in bold (p < 0.05). 

 df MS Pseudo-F perms p (MC) 

(a) Effect for Neukirchen algae      

Temperature* 2 25034 11.259 9934 0.0001 

Sibling group* 9 3183.1 5.7667 9887 0.0001 

Temperature × Sibling group
*
 18 22223.4 4.028 9860 0.0001 

Residual  90 551.98    

Total 119     

(b) Effect for Sierksdorf algae      

Temperature* 2 18052 5.3877 9955 0.0006 

Sibling group 9 4434.4 4.1692 9901 0.0001 

Temperature × Sibling group
*
 18 3350.6 3.1503 9875 0.0001 

Residual 90 1063.6    

Total 119     

Fig. 6 a-b. Sibling Germination Experiment, May 2009. Germination success (n, mean 

± 95% CI) of (a) Neukirchen (NK) - and (b) Sierksdorf (SK) zygotes from specific sets 

of parents (offspring NK-1 to NK-10 and SK-1 to SK-10) under different temperatures 

(5, 15, 25°C). The two sites Neukirchen and Sierksdorf differ in their salinities. 

 

* No homogeneity of dispersion was found (p < 0.05). 
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In the Sibling Germination Experiment conducted in autumn, both ‘temperature’ and ‘sibling 

group’ significantly affected the germination success of Neukirchen and Sierksdorf algae, 

with both factors showing an interaction (Table 7 a-b). The ‘temperature x sibling group’ 

interaction for Neukirchen and the single factor ‘sibling group’ for Sierksdorf showed 

homogeneity of dispersion, all other factors and interactions not. Germination success of 

Neukirchen offspring was generally favoured under the 15°C treatment (Fig. 7 a), whereas 

sensitivity against 5°C and 25°C differed significantly among fucoid sibling groups. Pairwise 

tests showed that high temperature (25°C) significantly reduced germination success of eight 

sibling groups (NK-11, NK-12, NK-13, NK-14, NK-16, NK-17, NK-18, NK-20) whereas no 

negative impact for the families NK-15 and NK-19 was found (test statistics of pairwise tests: 

Table S12 a-b). The low temperature treatment reduced germination success of four sibling 

groups: NK-12, NK-14, NK-16 and NK-19, but the families NK-11, NK-13, NK-15, NK-17, 

NK-18, NK-20 were not affected. In the case of Sierksdorf algae the single factor ‘sibling 

group’ affected germination success significantly (Table 7 b). The high temperature treatment 

generally reduced germination success of sibling groups and the main differences among 

sibling groups are shown within the temperature levels 5 and 15°C (Fig. 7 b). Pairwise tests 

showed that sibling group SK-11 germinated better than each of the seven sibling groups SK-

12, SK-13, SK-14, SK-15, SK-17, SK-18 and SK-20. The siblings SK-16, SK-17 and SK-18 

germinated at higher rates than SK-14 and SK-15 (Table S13). 

 

 
 

 

 

 

Fig. 7 a-b. Sibling Germination Experiment, November 2009. Germination success (n, 

mean ± 95% CI) of (a) Neukirchen (NK) - and (b) Sierksdorf (SK) zygotes from specific 

sets of parents (offspring NK-11 to NK-20 and SK-11 to SK-20) under different 

temperatures (5, 15, 25°C). The two sites Neukirchen and Sierksdorf differ in their 

salinities. 
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Table 7 a-b. Sibling Germination Experiment, November 2009. PERMANOVA for the effect 

of temperature (5, 15, 25°C; fixed factor) and sibling group (1-10; random factor) on 

germination success of F. vesiculosus from (a) Neukirchen and (b) Sierksdorf. Significance is 

shown in bold (p < 0.05). 

 df MS Pseudo-F perms p (MC) 

(a) Effect for Neukirchen algae      

Temperature* 2 17553 24.571 9956 0.0001 

Sibling group* 9 969.48 4.9838 9900 0.0001 

Temperature × Sibling group 18 714.36 3.6723 9872 0.0001 

Residual  90 194.53    

Total 119     

(b) Effect for Sierksdorf algae      

Temperature* 2 59964 26.439 9954 0.0001 

Sibling group 9 3755.4 4.4427 9910 0.0001 

Temperature × Sibling group* 18 2268 2.6831 9865 0.0001 

Residual 20 845.3    

Total 119     

* No homogeneity of dispersion was found (p < 0.05). 

 

Discussion 

 

For growth of adult F. vesiculosus at Helgoland (island, German North Sea) 15°C were 

already reported as the optimal temperature (Lüning, 1990). At least for the German part of 

the Baltic Sea, this study was the first one to explore optimal conditions for the youngest life 

stages of F. vesiculosus. From all temperatures (5, 15, 25°C) and salinities (7, 10, 17 psu) we 

tested, best conditions for the entire Fucus vesiculosus reproduction process (fertilisation, 

germination and reproductive success) in the German Baltic Sea were the combination of 

15°C and a salinity of 17 psu. For the first step of the reproduction process (fertilisation) we 

could show that a warm deviation (25°C) from the temperature optimum (15°C) was less 

harmful than a low deviation (5°C) (Figs. 3, 4). In contrast, Fucus distichus in Maine, USA, 

completes the entire reproduction process until settlement at temperatures between -1°C and 

7°C (Pearson & Brawley, 1996). This population of F. distichus must be better adapted to low 

temperatures than F. vesiculosus since it lives in the intertidal and is found with fertile 

receptacles even under ice cover.  

The next step of the reproduction process (germination) of F. vesiculosus was negatively 

affected by a temperature of 25°C (Figs. 5-7). Thus F. vesiculosus reproduction may be 

increasingly stressed by summer heat waves during summer seasons, especially in the shallow 

habitat which present western Baltic Fucus is restricted to. Lüning (1984) reported an upper 

tolerance limit of 28°C for adult F. vesiculosus in the North Sea. In our experiments we 
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observed a real strong negative impact on fucoid zygotes already at 25°C. Thus for the early 

fucoid life stages from the western Baltic Sea survival temperature may be lower than for 

adult F. vesiculosus. 

On average, we found highest fertilisation success at a salinity of 17. Similarly, previous 

studies found that sperm from Baltic F. vesiculosus males originating from a salinity of 6.5, 

which were cultured for 16-18 days at 21 psu swam better, i.e. with higher velocity and 

motility, than at their original salinity (Serrão et al., 1996). Despite the reported reduction in 

velocity and motility of fucoid sperm at low salinities (Serrão et al., 1996), in our study at 

high temperature and low salinity a high fertilisation success of Neukirchen algae was 

recorded (Figs. 3 a, 4 a). High fertilisation success of F. vesiculosus may go along with 

polyspermy (Serrão et al., 1999). We cannot exclude polyspermy in our experiment since 

after three days at 25°C and low salinity treatment, fucoid reproductive success was almost 

zero (data not shown). Since polyspermic eggs of F. vesiculosus attach to the substratum and 

germinate (Brawley, 1991), they were undistinguishable from non-polyspermic eggs in our 

assessments of fertilisation success. Only during the next three days polyspermic eggs may 

have died and may have accounted for the low reproductive success. 

While the negative effect of high temperature occasionally was damped by high salinity 

germination success of Sierksdorf and Bisdamitz zygotes was almost zero under high 

temperature, even under the 17 psu treatment. In addition, no increase of fertilisation success 

with rising salinity was found (Fertilisation Experiment). 

We had expected that eastern populations would be less sensitive to low salinity than western 

populations given the gradient of decreasing salinity along the German Baltic coast from west 

to east. Since germination success of Bisdamitz zygotes (eastern population) was at low 

salinity (7 psu) almost zero (high and low temperature) our assumption could not be 

confirmed. Possibly, the maximum distance between sites (250 km) as well as the maximum 

salinity difference of 10 psu between sites may not be enough for detecting signatures of 

adaptation to local salinities. For the intertidal seaweed Fucus serratus signatures of selection 

were found in populations on a 12 km scale only in a Norwegian fjord along a salinity 

gradient, but this gradient ranged from 2.7 to 33 psu (Coyer et al., 2011). Comparing adult  

Fucus vesiculosus from the northern Baltic Sea (5 psu) and the Irish Sea (35 psu), (Nygård & 

Dring, 2008) found significant differences in photosynthetic performance and growth rates for 

each population cultured at both salinities, with home salinity always providing the optimal 

condition. However, these two examples also involve Atlantic Fucus sp. populations, which 
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showed higher intraspecific genetic diversity than Baltic Fucus sp. (Johannesson & André, 

2006) and may thus provide more ‘raw material’ for selection than our Baltic-only 

populations. 

Instead of salinity effects, we found differences in response to high temperature between 

western and eastern populations. High temperature was more harmful for germination of 

Sierksdorf and Bisdamitz zygotes than for Neukirchen zygotes (northwestern population). 

There is no significant gradient of decreasing temperature along our three sites from west to 

east. Instead, it may be speculated that Neukirchen algae are located closer to North Sea 

algae, may be stronger related to them and may thus harbour more of their resistance to heat 

stress occurring during desiccation at low tide in summer. Pearson et al. (2000) found that 

adult North Sea F. vesiculosus populations are more able to recover from desiccation than 

Baltic Sea plants and (Nygård & Dring, 2008) found a temperature optimum of 4–10 °C for 

adult F. vesiculosus from the far north of the atidal Baltic Sea, while that for adult intertidal F. 

vesiculosus from the Irish Sea was 15-20°C. 

Contrary to our expectations we did not find that sensitivity of F. vesiculosus offspring 

consistently differs between seasons. Li & Brawley (2004) found that conditions experienced 

by parental receptacles before gamete release significantly affected the heat tolerance of 

embryos in F. vesiculosus. Algae used for the germination experiment in 2008 were sampled 

at 16-17°C in spring/ summer and at 10°C in autumn, but since no season effect was found, 

data was pooled across seasons (Fig. 5 a-c). Thus, no temperature imprinting effect from the 

field on germination was found. Samplings for the fertilisation experiment were undertaken at 

the same temperatures in the two seasons: at 10–11°C. In spite of these temperature 

similarities we found one slight difference between seasons: only at Sierksdorf at a salinity of 

17 psu gametes fertilised better at low temperature in autumn than in spring (Fig. 3 b versus 

Fig. 4 b). If distinct sub-populations reproduce in the two seasons (Berger et al., 2001; 

Tatarenkov et al., 2007), this could also generate sensitivity differences. However, our 

moderate seasonal differences as well as the resolution of the two subpopulations in the 

phylogenetic tree (Tatarenkov et al., 2007) are not strong enough to support this hypothesis.   

In contrast to only slight response differences attributable to origin and season, the early 

ontogenetic sensitivity towards temperature stress varied substantially between sibling groups 

(Figs. 6, 7). To our knowledge, this is the first study assessing inter-sibling-group variability 

in temperature sensitivity of F. vesiculosus germlings. This variability might be caused by 

genetic differences and could represent a potential for adaptation to climate change. During 

the coming decades in the Baltic Sea temperature will increase and salinity will decrease as a 
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result of global warming (Meier, 2006; Gräwe et al., 2013). We show that decreasing salinity 

can impair the fertilisation success of fucoid eggs. Hence decreasing salinity because of 

climate change may shift the distributional limit of Baltic Sea F. vesiculosus populations 

upwards the existing salinity gradient, i.e. from north and east towards the south and west 

(Tatarenkov et al., 2005; Johannesson et al., 2011). However, compared to fully marine 

Fucus, Baltic Fucus species may better cope with decreasing salinities because of pre-

adaptation. Nielsen & Nielsen (2012) found that growth and survival of fully marine F. 

serratus germlings (Belhaven Bay, Scotland UK) was impaired by a ‘low salinity’ of 18 psu. 

In our study germination success of fucoid zygotes was less inhibited by low salinity (7 psu), 

but more strongly impaired by high temperature (25°C). Our monitoring of in-situ 

temperatures in F. vesiculosus habitats show that 25°C and higher values already occur today. 

The predicted global and regional warming and more frequent heat waves in the Baltic Sea 

might reduce the reproductive success of F. vesiculosus stronger in the future, in synergy with 

a possible desalination (Meier, 2006; Gräwe et al., 2013). This multiple stress effect will be 

more intense in the northern and eastern ranges of Baltic Fucus. It may further be enhanced 

by UV radiation which interferes with the germination of fucoid zygotes (Wiencke et al., 

2000; Schoenwaelder et al., 2003) and can accompany high temperatures in shallow waters. 

The eutrophication and shading driven retreat of F. vesiculosus from its deeper range to 

shallow habitats now exposes the populations to enhanced temperature and salinity stress 

(more pronounced in the uppermost meters of the water column) – a further example for the 

interactive amplification of multiple stress associated with global change. The persistence of 

F. vesiculosus  in the western Baltic will depend on its potential for adaptation. 
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General Discussion 

In my study, I have demonstrated that reproductive periods of F. vesiculosus in the German 

Baltic Sea differ temporally, seasonally and geographically and that three different types of 

seasonal regulation of sexual reproduction in German F. vesiculosus populations exist 

(chapter I and II). Furthermore, I found that the first stages of fucoid life history are 

susceptible to temperature stress. Temperature stress impaired reproductive success more than 

low salinity did and was only partially compensated by favourable salinity. In addition, 

sensitivity to temperature stress differed between families (chapter III). Figure 1 illustrates an 

overview of my results and points out factors affecting reproductive success of F. vesiculosus. 

  

 
 

 

 

Reproduction of F. vesiculosus is tied to specific environmental conditions 

 

1. Reproductive periods and reproductive effort of F. vesiculosus in the German Baltic Sea 

 

One central question is to what degree the genetic make-up of an alga determines the time of 

bloom and how environmental factors affect this. Possibly, wave-exposure contributes to the 

reproduction of F. vesiculosus. Only at sheltered sites autumn- and mixed blooms were 

detected whereas at Bisdamitz/Rügen, which is a wave-exposed site, algae reproduced 

exclusively in spring and summer. Furthermore, lowest weighted reproductivity and 

maturation efficiency was detected in algae from Bisdamitz/Rügen compared to more 

sheltered sites. Since external fertilisation of benthic species is less successful in habitats with 
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high water motion (Denny & Shibata, 1989; Chapman, 1995; Schiel & Foster, 2006) fucoids 

developed mechanisms to ensure gamete encounter and therefore fertilisation success; e.g., 

reviews by (Brawley et al., 1999; Santelices, 2002; Pearson & Serrão, 2006). In order to avoid 

dilution of gametes F. vesiculosus in the Baltic Sea releases gametes exclusively under calm 

conditions (Serrão et al., 1996a). Few phases of calm conditions occur in wave-exposed areas, 

which may explain the low weighted reproductivity and maturation efficiency of algae at 

Rügen. In previous studies, lower reproductive effort of Fucus algae occurring in wave-

exposed habitats vs. plants in sheltered environments have been reported (Cousens, 1986; 

Mathieson & Guo, 1992; Kalvas & Kautsky, 1993). This was supposed to be a ‘combination 

of disturbance and stress resulting in less energy being used for reproduction’ (Kalvas & 

Kautsky, 1993).  

Furthermore, eutrophication may be among the factors that affect the time point of 

reproduction. I mentioned above that reproductive effort is presumably favoured by a high 

frequency of calm conditions in sheltered areas. On the other hand, at sheltered sites 

reproduction may be more impaired by eutrophication than in wave-exposed habitats, 

possibly causing autumn- and mixed blooms in sheltered areas. Berger et al. (2001) assumed 

that eutrophicated environments with high sedimentation rates might favour the distribution 

of autumn-reproducing algae. Due to low wave impact in sheltered areas high sedimentation 

rates occur and nutrients accumulate, leading to increased growth of filamentous algae, 

especially in spring and summer. This may have the consequence that attachment of fucoid 

zygotes on stones is inhibited by filamentous algae and sediment on stones. However, 

contrary to the assumption from Berger et al. (2001) are findings by Råberg et al. (2005). 

Here, recruitment success (1 to 2 years old juveniles) did not differ between summer- and 

autumn reproducing F. vesiculosus (Råberg et al., 2005). Thus, beside eutrophication other 

factors may determine the time point of the bloom. 

 

2. Effect of light intensity, temperature and salinity on reproduction 

 

In all investigated populations, growth of receptacles was presumably enhanced by rising 

temperature and light in spring. Furthermore, in most populations under investigation there 

was a general positive effect of light intensity. At Maasholm even small differences in water 

depth may have led to a different light supply for specimens and thus to a different degree of 

fertility. This was confirmed by laboratory experiments where a general positive effect of 

light intensity (100-400 µmol photons m
-2

s
-1

) on maturation was detected. Kraufvelin et al. 

(2012) also demonstrated the importance of temperature and light for the development of F. 
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vesiculosus receptacles in spring: (i) in an outdoor aquarium experiment a positive effect of 

temperature and light on receptacle initiation was detected; (ii) in the northern Baltic proper, 

development of receptacles occurred earlier during warm springs than during cold springs; 

(iii) probably due to higher light availability a higher receptacle wet weight was recorded in 

shallow (0.8 m) than in deeper water (3.1 m). 

In the study at hand, the highest amount of fertile algae was mainly detected in four out of 

five surveyed F. vesiculosus populations in April and May when in-situ temperatures (i.e., 

water temperatures close to Fucus thallus tips) were between 11-14°C. Furthermore, in the 

laboratory reproductive success of fucoid offspring was generally favoured by 15°C. 

Therefore, optimal temperatures for reproduction are probably between 11-15°C, similar to 

temperatures measured during highest growth of receptacles of a British F. vesiculosus 

population (12-16°C) (Russel, 1985). Furthermore, fully developed receptacles of F. 

vesiculosus from the Baltic Sea were detected at a temperature of 16°C (Berger et al., 2001). 

However, although highest reproduction of F. vesiculosus seems to be at temperatures higher 

than 11°C, results of the present study demonstrate that reproduction is also possible at colder 

temperatures. For example, fertile F. vesiculosus algae were detected in February (Poel), 

March (Neukirchen, Maasholm) and in December (Maasholm) at temperatures between 5-

6°C. Furthermore, algae released gametes, eggs were fertilised, and fucoid zygotes 

germinated at 5°C. It has been shown in previous studies that F. vesiculosus algae develop 

receptacles at cold temperatures (4-8°C) (Russel, 1985; Bäck et al., 1991; Berger et al., 2001; 

Kraufvelin et al., 2012) and egg release of F. vesiculosus was detected already at 6°C (Berger 

et al. 2001). 

For every temperature rise of 10°C, rate of biochemical reactions double (van´t Hoff´s rule 

1884). Fertilisation success of F. vesiculosus eggs was very low at 5°C and zygotes 

germinated faster at 25°C than at 15 and 5°C. This ‘slow down effect’ of fertilisation and 

germination may impair reproductive success. The longer fucoid zygotes take to germinate 

the longer they are endangered by other stressors (Vadas et al., 1992), for example, grazing, 

sedimentation, competition by filamentous algae or wave exposure. Attachment strength can 

vary with time and a delayed attachment can lead to a delay in rhizoid development (Vadas et 

al., 1992). In addition, F. vesiculosus zygotes which attached (without germinating) for more 

than two days were easily dislodged by water stream (Hardy & Moss, 1979); zygote adhesion 

can be delayed because of cold temperatures (5°C) (Coleman & Brawley, 2005). However, in 

the study at hand, reproductive success was more negatively affected by high than by cold 

temperature. For example, egg release of F. vesiculosus receptacles was higher at 5 and 15°C 
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than at 25°C and germination success of specimens was strongly impaired by high 

temperature. Furthermore in the 25°C treatment reproductive success was almost zero three 

days after fertilisation. Receptacles were not acclimated to temperatures prior to the 

experiments. Since parental history modifies the tolerance of fucoid embryos to high 

temperatures an acclimation of receptacles before gamete release might have increased the 

heat tolerance of fucoid offspring. (Li & Brawley, 2004) found out that embryos of F. 

vesiculosus that were preacclimated at 29°C beginning at 21 h of age are significantly more 

tolerant to 33°C at 24-27 h post-fertilisation than embryos cultured at 14°C until heat stress at 

33°C (preacclimation improved survival by ~ 30% and embryos that survived exposure to 

33°C showed normal development after 2-3 day). However, the high temperature applied was 

not unnatural. In the German Baltic Sea during summer, temperature extremes up to 25°C are 

reached in shallow water depths where F. vesiculosus individuals occur. As a consequence, 

reproduction of F. vesiculosus in the German Baltic Sea may be negative affected by high 

temperatures in summer. 

In the present study, the effect of salinity on fertility and reproductive success was also tested. 

Maturation of F. vesiculosus receptacles from the Baltic Sea was not enhanced by high 

salinity (33 psu vs. 17 psu), but fertilisation and germination was partially favoured by 17 psu.  

One possible reason for this could be adaptation of F. vesiculosus to salinity conditions in the 

Baltic Sea. Studies have shown that the usually intertidal brown alga F. vesiculosus has 

adapted to a ‘subtidal-life’ in the Baltic Sea (Andersson et al., 1994; Pearson et al., 2000). 

Furthermore, motility of sperm from Baltic Sea F. vesiculosus (~ 6 psu) is enhanced by 

salinities up to about 10-21 psu, but close to marine conditions it is reduced (Serrão et al., 

1996b). 

 

3. Air exposure and day-length 

In the present study, no effect of air exposure on maturation of receptacles was found, but the 

consequences of air exposure (e.g. freezing, UV and temperature stress) may impair the 

healthy condition of algae. Most fertile plants were detected at Poel. Furthermore, algae from 

Poel (Baltic Sea) developed receptacles after freezing similarly to intertidal individuals from 

the North Sea (Nordstrand) whereas plants from Bisdamitz/Rügen did not. At Poel, algae 

were more air-exposed than at other sites during fertility monitoring. Therefore, frequent air 

exposure of algae at Poel may have led to higher resistance against frost. Pearson et al. (2000) 

found that F. vesiculosus in the central Baltic Sea were less resistant to freezing than intertidal 
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individuals. However, in contrast to individuals at Poel, specimens from the central Baltic Sea 

were permanently submerged. 

Light has been shown to contribute to reproduction of F. vesiculosus. Air-exposed algae are 

exposed to higher light intensities than submerged algae. Therefore, Poel individuals may 

have received more light than individuals at other sites due to air exposure. However, to a 

certain degree Fucus algae can tolerate desiccation (Schramm, 1968). However, during 

extended air exposure high solar radiation can lead to UV and temperature stress. In the study 

at hand, at Poel in-situ temperatures close to F. vesiculosus thalli of up to 26°C have been 

achieved. In addition, algae at Poel are heavily fouled and seem to be in a poor condition 

(pers. obs.), maybe caused by emersion stress. Therefore, high fertility does not necessarily 

mean that individuals are in good condition. Baltic F. vesiculosus individuals have lower 

tolerance to UV radiation (Nygård & Ekelund, 2006) compared to those in the North Sea. UV 

radiation can damage the DNA (Frankling & Forster, 1997) and/or destroy Chl a and 

carotenoids (Dring et al., 1996; Frankling & Forster, 1997) in algae. Furthermore, high 

temperatures can affect survival of macrophytes (Lüning, 1984). However, the effect of 

emersion stress (UV, temperature stress, desiccation and freezing) on the condition of F. 

vesiculosus plants at Poel has to be determined in further experiments (e.g., by measurements 

of photosynthesis). 

One environmental driver of fertility is day length. At Bisdamitz/ Rügen summer-reproducing 

F. vesiculosus individuals required long-day conditions (16 h light : 8 h darkness) for 

initiation and maturation of receptacles whereas algae from other sites developed receptacles 

in short-day (8 h light : 16 h darkness) as well as in long-day conditions. Furthermore, at the 

German Baltic coast, dormancy of receptacles in winter was not observed (e.g., at 

Bisdamitz/Rügen from 2007-2009; pers. obs.). In contrast, in Swedish F. vesiculosus 

receptacle growth of summer-reproducers is induced in short-day conditions in autumn, but 

the receptacles remain dormant over winter until spring (Berger et al., 2001). Therefore, 

different types of seasonal regulation of sexual reproduction in F. vesiculosus populations 

exist. This is most evident in spring/summer-reproducers at Bisdamitz/Rügen. Firstly, algae 

developed receptacles only in long-day conditions. Secondly after freezing, individuals 

originating from Bisdamitz/Rügen developed no receptacles. The island of Rügen harbours 

two relatively small and isolated populations (Schories et al., 2009). Thus, the unique 

reproductive strategy of F. vesiculosus on Bisdamtiz/Rügen could be due to genetic isolation. 
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Therefore, the challenge now is to determine if spring/summer bloom of F. vesiculosus at 

Rügen is genetically determined. 

Recruitment success of F. vesiculosus in the German Baltic Sea, today and in the coming 

decades 

 

 

Early fucoid life stages are very vulnerable and are subject to high mortality (Chapman, 

1995). Experiments identified negative effects on reproductive success of F. vesiculosus due 

to thermal stress (especially to high temperature). Nevertheless, some sibling groups were less 

sensitive to high temperature. Today, in the German Baltic Sea F. vesiculosus occurs mainly 

in shallow waters (Fürhaupter et al., 2012; Pehlke et al., 2012). Especially here, warm 

summer seasons may negatively affect recruitment of F. vesivulosus. Johannesson et al. 

(2011) mentioned that ‘basically, a population will, as a consequence of a change in its local 

environment, either survive by adaptation or disappear from the local ecosystem (that is, 

move or become extinct)’. Due to climate change temperature will increase in the Baltic Sea 

(Meier, 2006; Gräwe et al., 2013). 

Apparently, F. vesiculosus has immigrated into the Baltic Sea from the Atlantic when the 

freshwater lake ‘Ancylus Lake’ (8800 BP) became connected to the Atlantic (Ignatius et al., 

1981). Now the normally intertidal seaweed is widely distributed in the brackish and atidal 

Baltic Sea, which demonstrates its capability to adapt to different environmental conditions. 

Therefore, the possibility exists that Baltic F. vesiculosus populations will also adapt to rising 

temperatures. However, future molecular studies are required to clarify if resistance of 

specific sibling groups to heat stress, that has been shown in the present study, is genetically 

determined. Lago-Lestón et al. (2010) compared the heat shock response to 25°C between F. 

vesiculosus populations from the Skagerrak (North Sea) and central Baltic and found no 

difference between the two populations. This is contrary to findings from (Pearson et al., 

2000) where physiological responses to desiccation differed between North and Baltic Sea 

populations. 

 

Conclusion and outlook 

 

Conclusion 

 

This study has shown that reproductive periods differ between populations of German F. 

vesiculosus. Of all environmental factors tested (day-length, light intensity, salinity, air-

exposure, and frost) maturation of receptacles was mostly affected by day-length and frost. 

Most interesting is that prior freezing enhances maturation of North Sea F. vesiculosus 
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whereas development of receptacles from algae originating from a small and isolated 

population at Rügen Island is impaired by prior freezing. In addition, algae at Rügen 

reproduce exclusively in spring and summer in long-day conditions whereas other populations 

reproduce independent of day-length in spring, summer and autumn. It remains unclear 

whether investigated F. vesiculosus populations are able to reproduce but only do so under 

certain environmental conditions or have a genetically determined bloom. However, in 

contrast to the other investigated Baltic Sea populations, due to isolation F. vesiculosus at 

Rügen may have undergone evolutionary changes and may have developed differently than its 

ancestors in the North Sea. 

In further investigations I have found that especially heat stress impairs reproductive success. 

My results also have shown that intraspecific variation of sensitivity against temperature 

stress exists. Specific sibling groups were resistant to high temperature stress. Thus, in the 

Baltic Sea, adaption of F. vesiculosus to an increasing intensity and frequency of heat waves 

due to climate change may be possible. 

 

Outlook 

 

F. vesiculosus is a perennial macroalga which provides habitat for many organisms. 

Therefore, it is a keystone species for the evaluation of environmental changes in German 

Baltic coastal waters. According to this, particular care is given to its preservation today and 

will be in the coming decades. My results improve our understanding of reproductive 

strategies of F. vesiculosus to survive in a harsh environment like the Baltic Sea and thus may 

help to achieve preservation of F. vesiculosus in the German Baltic Sea. Furthermore, my 

study indicates directions for future molecular research. Based on my results showing that 

specific sibling groups were more resistant to temperature stress than others, an ongoing study 

at GEOMAR by B. Al Janabi will search for signatures of selection in experimental germling 

groups of F. vesiculosus, explore genetic differences in spring- and autumn reproducers and 

test if experimental high diversity germling groups better cope with environmental change 

than low diversity groups. 
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Supporting Information 

Chapter I 
 
Table S1. Monitoring periods (fertility of F. vesiculosus and in-situ temperature measurements close to 
F. vesiculosus thallus tips) in different regions of the German Baltic coast (Neukirchen/Flensburg 
Fjord, Maasholm/Schleimünde, Bülk/Kiel Fjord, Gollwitz/Poel, Bisdamitz/Rügen) in 2009. Long-term 
temperature measurements (one-hour intervals) were measured using HOBO Pendant Temperature 
data loggers (HOBO®, Onset Computer Corporation, accuracy ± 0.53°C); single temperature 
measurements were taken manually on fertility monitoring days (WTW Cond 315i; accuracy ± 0.5°C). 

Sites fertility monitoring 
Long-term 
temperature 
measurements 

Single temperature 
measurements 

Neukirchen 

February 28, March 12, 
April 8, June 17, July 
24, August, 17, 
September 21, October 
26, December 9, 2009 

April 23 – 
December 9, 2009 

February 28 and March 
12, 2009 

Maasholm 

January 9, February 9, 
March 13, April 7, June 
18, July 30, August 18, 
September 18, October 
28, December 10, 2009 

April 22 - August 19 
and October 28 - 10 
December, 2009 

January 9, February 9, 
March 13, and 
September 18, 2009 

Bülk 

January 6, February 20, 
March 31, May 12, 
June 16, August 4, 
September 1, 2009 

August 4 – October 
3, 2009 

January 6, February 
20, March 31, May 12, 
June 16, 2009 

Poel 

January 30, February 
25, March 20, April 26, 
July 6, August 6, 
September 4, October 
10, November 14, 2009 

April 26 – 
September 9, 2009 

January 30, February 
25, March 20, October 
10, November 14, 
2009 

Rügen 

January 24, February 
21, March 21, April 25, 
July 7, August 5, 
September 3, October 
11, November 13, 2009 

August 5 – 
September 3, 2009 

January 24, February 
21, March 21, April 25, 
July 7, October 11, 
November 13, 2009 
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Chapter II 
 

 
 
 
 
 
 
 
 

Fig. S1. Fertile F. vesiculosus originating from seven different populations during incubation in two 
different day length conditions but with supply of identical light doses for 75 days. Significant 
differences among treatments were not detected (2-way-repeaed measures-ANOVA, p < 0.01, 
compare tables 5). Mean ± SD, n = 2. 
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Fig. S2. Light dependency of fertility of 
F. vesiculosus in short-day conditions 
(experiment 3). The fertility of 
specimens originating from seven 
different populations was determined 
after 25 and 75 days. 
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Chapter III 
 
 
 
 

 
 
  

°C psu Zygotes (n) Days Germlings (n)

25 17 21 8 11 Mean SD Mean SD Mean SD

25 17 24 10 5 NK, 25°C, 17 psu 21 4 9 1 7 3

25 17 16 9 4 NK, 25°C, 10 psu 20 5 8 2 4 3

25 17 23 9 7 NK, 25°C, 7   psu 16 3 5 4 2 1

25 10 24 9 4

25 10 14 9 3

25 10 16 6 1

25 10 24 9 8

25 7 21 7 2

25 7 15 0 0

25 7 16 7 1

25 7 13 7 3

15 17 13 7 10 Mean SD Mean SD Mean SD

15 17 18 8 8 NK, 15°C, 17 psu 15 2 9 1 9 1

15 17 14 10 9 NK, 15°C, 10 psu 14 3 9 1 5 1

15 17 14 9 7 NK, 15°C, 7   psu 16 4 8 1 6 5

15 10 17 7 6

15 10 9 9 3

15 10 14 10 4

15 10 15 9 5

15 7 17 7 12

15 7 21 7 2

15 7 14 10 7

15 7 12 8 1

5 17 12 7 5 Mean SD Mean SD Mean SD

5 17 15 7 5 NK, 5°C, 17 psu 16 3 9 2 4 2

5 17 19 9 3 NK, 5°C, 10 psu 16 4 8 1 2 1

5 17 17 11 1 NK, 5°C, 7   psu 16 6 9 2 3 2

5 10 13 7 2

5 10 21 7 4

5 10 16 9 1

5 10 14 7 2

5 7 19 7 5

5 7 22 7 5

5 7 12 9 1

5 7 9 11 1

Zygotes (n) Germlings (n)Days

Table S1 a. Germinaiton Experiment, July 2008. Absolute numbers of Neukirchen F. vesiculosus 
zygotes/germlings, days until germination was reached and means ± SD. Treatment combination: 5, 15, 
25°C × 7, 10, 17 psu) 
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°C psu Zygotes (n) Days Germlings (n)

25 17 21 8 11 Mean SD Mean SD Mean SD

25 17 24 10 5 SK, 25°C, 17 psu 21 4 9 1 7 3

25 17 16 9 4 SK, 25°C, 10 psu 20 5 8 2 4 3

25 17 23 9 7 SK, 25°C, 7   psu 16 3 5 4 2 1

25 10 24 9 4

25 10 14 9 3

25 10 16 6 1

25 10 24 9 8

25 7 21 7 2

25 7 15 0 0

25 7 16 7 1

25 7 13 7 3

15 17 13 7 10 Mean SD Mean SD Mean SD

15 17 18 8 8 SK, 15°C, 17 psu 15 2 9 1 9 1

15 17 14 10 9 SK, 15°C, 10 psu 14 3 9 1 5 1

15 17 14 9 7 SK, 15°C, 7   psu 16 4 8 1 6 5

15 10 17 7 6

15 10 9 9 3

15 10 14 10 4

15 10 15 9 5

15 7 17 7 12

15 7 21 7 2

15 7 14 10 7

15 7 12 8 1

5 17 12 7 5 Mean SD Mean SD Mean SD

5 17 15 7 5 SK, 5°C, 17 psu 16 3 9 2 4 2

5 17 19 9 3 SK, 5°C, 10 psu 16 4 8 1 2 1

5 17 17 11 1 SK, 5°C, 7   psu 16 6 9 2 3 2

5 10 13 7 2

5 10 21 7 4

5 10 16 9 1

5 10 14 7 2

5 7 19 7 5

5 7 22 7 5

5 7 12 9 1

5 7 9 11 1

Zygotes (n) Days Germlings (n)

Table S1 b. Germinaiton Experiment, July 2008. Absolute numbers of Sierksdorf F. vesiculosus 
zygotes/germlings, days until germination was reached and means ± SD. Treatment combination: 5, 15, 
25°C × 7, 10, 17 psu). 
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°C psu Zygotes (n) Days Germlings (n)

25 17 125 5 6 Mean SD Mean SD Mean SD

25 17 80 4 1 BD, 25°C, 17 psu 96 21 5 1 5 4

25 17 83 5 3 BD, 25°C, 10 psu 94 15 5 1 2 1

25 17 96 5 10 BD, 25°C, 7   psu 118 47 4 3 3 3

25 10 103 5 3

25 10 108 4 2

25 10 76 5 1

25 10 88 5 1

25 7 188 5 7

25 7 97 4 2

25 7 97 0 0

25 7 88 8 1 Mean SD Mean SD Mean SD

15 17 86 8 62 BD, 15°C, 17 psu 74 19 8 1 59 22

15 17 89 8 84 BD, 15°C, 10 psu 91 20 9 1 30 7

15 17 47 7 30 BD, 15°C, 7   psu 103 19 7 1 54 11

15 17 75 9 61

15 10 112 8 39

15 10 81 8 30

15 10 68 8 21

15 10 104 10 29

15 7 102 5 67

15 7 119 8 56

15 7 115 7 52

15 7 77 8 40 Mean SD Mean SD Mean SD

5 17 403 25 110 BD, 5°C, 17 psu 481 140 24 1 69 42

5 17 680 23 90 BD, 5°C, 10 psu 582 100 23 2 27 26

5 17 367 23 63 BD, 5°C, 7   psu 736 190 22 4 24 7

5 17 473 23 14

5 10 631 21 18

5 10 675 24 17

5 10 445 20 8

5 10 577 25 65

5 7 924 24 29

5 7 696 15 29

5 7 836 23 24

5 7 488 24 15

Zygotes (n) Germlings (n)Days

Table S1 c. Germinaiton Experiment, July 2008. Absolute numbers of Bisdamitz/ Rügen F. vesiculosus 
zygotes/germlings, days until germination was reached and means ± SD. Treatment combination: 5, 15, 
25°C × 7, 10, 17 psu). 
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°C psu Zygotes (n) Days Germlings (n)

25 17 29 6 7 Mean SD Mean SD Mean SD

25 17 9 0 0 NK, 25°C, 17 psu 16 10 3 3 2 3

25 17 7 0 0 NK, 25°C, 10 psu 21 19 4 3 1 1

25 17 20 4 2 NK, 25°C, 7   psu 15 8 1 2 1 2

25 10 47 4 1

25 10 12 0 0

25 10 4 8 1

25 10 20 4 3

25 7 23 0 0

25 7 11 0 0

25 7 7 0 0

25 7 20 4 3

15 17 30 12 26 Mean SD Mean SD Mean SD

15 17 17 4 12 NK, 15°C, 17 psu 19 9 6 4 15 8

15 17 7 4 6 NK, 15°C, 10 psu 17 10 8 4 11 9

15 17 20 4 15 NK, 15°C, 7   psu 22 18 7 1 17 18

15 10 29 10 24

15 10 20 4 7

15 10 5 12 4

15 10 12 6 10

15 7 47 6 42

15 7 15 6 3

15 7 5 8 4

15 7 22 6 17

5 17 31 14 30 Mean SD Mean SD Mean SD

5 17 12 18 6 NK, 5°C, 17 psu 15 11 15 3 12 12

5 17 5 12 4 NK, 5°C, 10 psu 16 3 14 2 10 6

5 17 10 14 8 NK, 5°C, 7   psu 17 7 15 3 8 4

5 10 19 12 18

5 10 15 16 4

5 10 15 12 7

5 10 13 14 12

5 7 26 12 14

5 7 18 18 4

5 7 9 14 6

5 7 13 16 7

Zygotes (n) Germlings (n)Days

Table S2 a. Germinaiton Experiment, November 2008. Absolute numbers of Neukirchen F. vesiculosus 
zygotes/germlings, days until germination was reached and means ± SD. Treatment combination: 5, 15, 
25°C × 7, 10, 17 psu). 
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25 17 26 0 0 Mean SD Mean SD Mean SD

25 17 22 4 1 SK, 25°C, 17 psu 22 5 4 5 1 1

25 17 8 0 0 SK, 25°C, 10 psu 24 16 3 2 1 1

25 17 32 10 1 SK, 25°C, 7   psu 19 12 1 2 0 1

25 10 19 0 0

25 10 41 4 2

25 10 4 4 1

25 10 33 4 1

25 7 32 0 0

25 7 24 4 1

25 7 5 0 0

25 7 14 0 0

15 17 18 12 10 Mean SD Mean SD Mean SD

15 17 22 4 11 SK, 15°C, 17 psu 18 5 7 4 10 5

15 17 11 4 4 SK, 15°C, 10 psu 21 14 7 4 13 10

15 17 20 9 16 SK, 15°C, 7   psu 19 16 6 3 11 9

15 10 16 12 7

15 10 18 4 17

15 10 8 4 3

15 10 41 9 24

15 7 11 9 7

15 7 16 4 11

15 7 6 4 2

15 7 41 8 24

5 17 25 14 10 Mean SD Mean SD Mean SD

5 17 17 14 7 SK, 5°C, 17 psu 23 3 13 3 9 6

5 17 10 9 1 SK, 5°C, 10 psu 26 14 12 2 7 5

5 17 38 14 16 SK, 5°C, 7   psu 18 16 12 2 7 7

5 10 30 12 11

5 10 20 14 5

5 10 10 9 1

5 10 43 12 10

5 7 7 12 6

5 7 15 14 4

5 7 9 9 1

5 7 41 14 17

Table S2 b. Germinaiton Experiment, November 2008. Absolute numbers of Sierksdorf F. vesiculosus 
zygotes/germlings, days until germination was reached and means ± SD. Treatment combination: 5, 15, 
25°C × 7, 10, 17 psu). 
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Source df     MS Pseudo-F  perms  P(MC) 

se 1 2252.6 70.857 9861 0.011 

te 2 4970.6 15.636 9943 0.0001 

sa 2 1054.6 33.174 9958 0.0428 

sexte 2 3275.1 10.302 9947 0.0001 

sexsa 2 1368.5 43.047 9951 0.0174 

texsa 4 739.44 2.326 9945 0.0678 

sextexsa 4 1193.1 3.753 9937 0.0098 

Res 54 317.91                        

Total 71              

 

 
 

 

 
 

 

 

 

 

  

Source df     MS Pseudo-F  perms  P(MC)

se 1 4427,8 15,331 9822 0,0005

te 1 11069 38,324 9851 0,0001

sa 2 6837,8 23,675 9954 0,0001

sexte 1 155,44   0,5382 9833  0,468

sexsa 2 419,27 14,517 9959 0,2468

texsa 2 112,17  0,38836 9961 0,6763

sextexsa 2 3146,7 10,895 9967 0,0002

Res 36 288,82                     

Total 47                           

Source df     MS Pseudo-F  perms  P(MC)

or 1 3036.3 11.8470 9857 0.0012

te 2 1618.7 0.4603 60 0.6912

sa 2 2120.8 12.9120 60 0.4322

orxte 2 3516.7 13.7220 9940 0.0001

orxsa 2 1642.5 64.0860 9936 0.0033

texsa 4 1601.2 66.1170 9961 0.0449

orxtexsa 4 242.17 0.94493 9943 0.4425

Res 54 256.29                     

Total 71       

Table S3. Fertilisation Experiment (November 2010 and May 2011). PERMANOVA for 
the effect of the factors season (autumn, spring/summer) temperature (5, 15, 25°C) and 
salinity (7, 10, 17 psu) on fertilisation success of F. vesiculosus from Neukirchen. 

Table S4. Fertilisation Experiment (November 2010 and May 2011). PERMANOVA for 
the effect of the factors season (autumn, spring/ summer) temperature (5, 15°C) and salinity 
(7, 10, 17 psu) on fertilisation success of F. vesiculosus from Sierksdorf. 
 

Table S5. Fertilisation Experiment (November 2010). PERMANOVA for the effect of the 
factors origin (Neukirchen, Sierksdorf; random factor), temperature (5, 15, 25°C; fixed factor) 
and salinity (7, 10, 17 psu; fixed factor) on fertilization success of autumn reproducing F. 
vesiculosus. 
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Source df     MS Pseudo-F  perms  P(MC)

or 1 1493,5    14,77 9855 0,0004

te 1 19785 37,457 3 0,1047

sa 2 5255,1 20,215 60 0,0445

orxte 1  528,2 52,238 9850 0,0268

orxsa 2 259,96 25,709 9957 0,0928

texsa 2 3269 58,312 9958 0,1404

orxtexsa 2  560,6 55,442 9953 0,0088

Res 36 101,11               

Total 47               

Table S6. Fertilisation Experiment (May 2011). PERMANOVA for the effect of the 
factors origin (Neukirchen, Sierksdorf; random factor), temperature (5, 15°C; fixed 
factor) and salinity (7, 10, 17 psu; fixed factor) on fertilization success of spring/ summer 
reproducing F. vesiculosus. 
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°C psu Eggs (n) Zygotes (n)

25 17 86 43 Mean SD Mean SD

25 17 187 68 NK, 25°C, 17 psu 138 51 37 24

25 17 176 23 NK, 25°C, 10 psu 150 129 27 13

25 17 104 13 NK, 25°C, 7   psu 466 365 163 86

25 10 43 18

25 10 127 38

25 10 336 39

25 10 94 15

25 7 266 165

25 7 1013 282

25 7 309 127

25 7 278 81

15 17 10997 888 Mean SD Mean SD

15 17 8263 266 NK, 15°C, 17 psu 8641 4499 386 337

15 17 2501 223 NK, 15°C, 10 psu 8000 3913 1012 200

15 17 12803 168 NK, 15°C, 7   psu 6197 2677 1168 458

15 10 7841 1216

15 10 9851 1142

15 10 2623 896

15 10 11685 794

15 7 8392 763

15 7 6742 1244

15 7 7340 1783

15 7 2314 884

5 17 1785 235 Mean SD Mean SD

5 17 3649 1435 NK, 5°C, 17 psu 2177 1090 605 562

5 17 2210 466 NK, 5°C, 10 psu 2891 2212 55 77

5 17 1063 284 NK, 5°C, 7   psu 3507 2659 8 9

5 10 2083 8

5 10 6093 168

5 10 2367 38

5 10 1020 6

5 7 2704 3

5 7 7262 8

5 7 3056 20

5 7 1006 1

Eggs (n) Zygotes (n)

Table S7 a. Fertilisation Experiment, November 2010. Absolute numbers of Neukirchen F. 
vesiculosus eggs/ zygotes and means ± SD. Treatment combination: 5, 15, 25°C × 7, 10, 17 psu). 
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°C psu Eggs (n) Zygotes (n)

25 17 0 0

25 17 0 0

25 17 0 0

25 17 0 0

25 10 0 0

25 10 0 0

25 10 0 0

25 10 0 0

25 7 0 0

25 7 0 0

25 7 0 0

25 7 0 0

15 17 332 305 Mean SD Mean SD

15 17 368 230 SK, 15°C, 17 psu 387 75 304 52

15 17 497 329 SK, 15°C, 10 psu 256 66 92 37

15 17 350 350 SK, 15°C, 7   psu 261 28 48 6

15 10 213 67

15 10 208 91

15 10 254 65

15 10 350 144

15 7 282 43

15 7 286 43

15 7 226 50

15 7 251 56

5 17 2393 6 Mean SD Mean SD

5 17 2109 99 SK, 5°C, 17 psu 2360 177 30 46

5 17 2414 6 SK, 5°C, 10 psu 2408 837 154 132

5 17 2523 10 SK, 5°C, 7   psu 2418 786 9 14

5 10 1522 53

5 10 2943 203

5 10 3280 40

5 10 1888 318

5 7 1508 0

5 7 3212 7

5 7 2916 1

5 7 2034 29

Eggs (n) Zygotes (n)

Table S7 b. Fertilisation Experiment, November 2010. Absolute numbers of Sierksdorf F. 
vesiculosus eggs/ zygotes and means ± SD. Treatment combination: 5, 15, 25°C × 7, 10, 17 psu). 
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°C psu Eggs (n) Zygotes (n)

25 17 31 8 Mean SD Mean SD

25 17 28 10 NK, 25°C, 17 psu 28 7 8 1

25 17 17 7 NK, 25°C, 10 psu 10 2 3 5

25 17 34 8 NK, 25°C, 7   psu 14 3 8 6

25 10 9 1

25 10 13 11

25 10 8 0

25 10 9 1

25 7 16 3

25 7 12 12

15 17 2310 1678 Mean SD Mean SD

15 17 1756 1528 NK, 15°C, 17 psu 2061 229 1669 314

15 17 2100 2100 NK, 15°C, 10 psu 1247 237 779 269

15 17 2078 1370 NK, 15°C, 7   psu 1130 167 168 32

15 10 1416 1149

15 10 1480 693

15 10 1000 767

15 10 1092 508

15 7 1212 164

15 7 1282 196

15 7 1128 124

15 7 898 187

5 17 2438 249 Mean SD Mean SD

5 17 1436 349 NK, 5°C, 17 psu 2071 520 296 138

5 17 1860 131 NK, 5°C, 10 psu 407 19 10 6

5 17 2548 455 NK, 5°C, 7   psu 327 25 2 1

5 10 410 1

5 10 431 15

5 10 399 14

5 10 386 8

5 7 299 0

5 7 313 3

5 7 346 2

5 7 351 1

Eggs (n) Zygotes (n)

Table S8 a. Fertilisation Experiment, May 2011. Absolute numbers of Neukirchen F. vesiculosus 
eggs/ zygotes and means ± SD. Treatment combination: 5, 15, 25°C × 7, 10, 17 psu). 
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°C psu Eggs (n) Zygotes (n)

25 17 0 0

25 17 0 0

25 17 0 0

25 17 0 0

25 10 0 0

25 10 0 0

25 10 0 0

25 10 0 0

25 7 0 0

25 7 0 0

25 7 0 0

25 7 0 0

15 17 332 305 Mean SD Mean SD

15 17 368 230 SK, 15°C, 17 psu 387 75 304 52

15 17 497 329 SK, 15°C, 10 psu 256 66 92 37

15 17 350 350 SK, 15°C, 7   psu 261 28 48 6

15 10 213 67

15 10 208 91

15 10 254 65

15 10 350 144

15 7 282 43

15 7 286 43

15 7 226 50

15 7 251 56

5 17 2393 6 Mean SD Mean SD

5 17 2109 99 SK, 5°C, 17 psu 2360 177 30 46

5 17 2414 6 SK, 5°C, 10 psu 2408 837 154 132

5 17 2523 10 SK, 5°C, 7   psu 2418 786 9 14

5 10 1522 53

5 10 2943 203

5 10 3280 40

5 10 1888 318

5 7 1508 0

5 7 3212 7

5 7 2916 1

5 7 2034 29

Eggs (n) Zygotes (n)

Table S8 b. Fertilisation Experiment, May 2011. Absolute numbers of Sierksdorf F. vesiculosus 
eggs/ zygotes and means ± SD. Treatment combination: 5, 15, 25°C × 7, 10, 17 psu). 
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Groups t perms p(MC)

17, 10 15.234 9854 0.1437

17, 7 32.033 9850 0.0052

10, 7 14.423 9812 0.1624

Groups t perms p(MC)

17, 10 61.385 102 0.0125

17, 7 48.814 102 0.02

10, 7 0.8533 102 0.6737

Table S9: Fertilisation Experiment, May 2011, Neukirchen. Test 
statistics of pairwise tests for the factor salinity (7, 10, 17 psu). 

 

Table S10: Germination Experiment, 2009. Test statistics of pairwise 
tests for the factor salinity (7, 10, 17 psu). 
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Groups       t P(perm) perms P(MC)

1, 2 12,816 0,1733 9954 0,1991

1, 3 0,87137 0,5906 9947 0,5007

1, 4 0,81303 0,4895 9956 0,4817

1, 5 23,252 0,0046 9957 0,0087

1, 6 12,197 0,1981 9942 0,2225

1, 7 13,686 0,1474 9951 0,1633

1, 8 24,676 0,0014 9945 0,0031

1, 9 29,513 0,0007 9940 0,0009

1, 10 32,861 0,0002 9945 0,0001

2, 3 0,80539 0,5678 9961 0,5384

2, 4    1,26 0,1856 9961 0,2071

2, 5 23,393 0,0028 9945 0,0039

2, 6 13,184   0,194 9952 0,1779

2, 7 13,058 0,1647 9944 0,186

2, 8 24,525 0,0011 9951 0,0041

2, 9 2,573 0,0006 9959 0,0026

2, 10 31,428 0,0001 9963 0,0001

3, 4 1,037 0,3871 9935 0,353

3, 5 18,016 0,0239 9949 0,0337

3, 6 0,83222 0,5662 9962 0,5318

3, 7 10,225 0,3894 9938 0,3623

3, 8 19,623 0,0087 9959 0,0166

3, 9 20,086 0,0114 9950 0,0153

3, 10 2,637 0,0005 9938 0,0013

4, 5 21,993 0,0046 9953 0,0096

4, 6 10,951 0,3217 9956 0,2974

4, 7 22,088 0,0077 9951 0,0102

4, 8 23,342 0,0016 9951 0,0042

4, 9 29,313 0,0005 9954 0,0009

4, 10 31,369 0,0001 9965 0,0002

5, 6 11,457 0,2844 9949 0,2658

5, 7 29,526 0,0002 9954 0,0011

5, 8 0,27852 0,9814 9951 0,9771

5, 9 11,437 0,2903 9951 0,278

5, 10 0,9422 0,4626 9952 0,4282

6, 7 18,738 0,0105 9936 0,0301

6, 8 13,308   0,158 9953 0,1643

6, 9 15,718   0,073 9948 0,0827

6, 10 20,494 0,0039 9948 0,0107

7, 8 30,705 0,0003 9941 0,0007

7, 9 34,922 0,0003 9946 0,0004

7, 10 38,927 0,0001 9944 0,0001

8, 9 11,169 0,2988 9943 0,2866

8, 10 0,72614 0,6814 9944 0,6521

9, 10 16,186 0,0603 9952 0,0678

Table S11. Sibling Germination Experiment, May 2009, 
Sierksdorf. Test statistics of pairwise tests for the factor 
sibling group (1-10). 
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Table S12 a. Sibling Germination Experiment, November 2009, Neukirchen. Test statistics of pairwise 
tests for 'temperature × sibling group' for pairs of levels of factor 'temperature'. 

 
  

Groups      t P(perm) perms P(MC) Groups      t P(perm) perms P(MC)

25, 15 47,532 0,0306 13 0,0023 25, 15 61,795   0,026 18 0,0003

25, 5 27,198 0,0271 25 0,0296 25, 5 22,384 0,0869 25 0,0511

15, 5 39,005 0,0271 18 0,0079 15, 5 32,535 0,0322 25 0,0144

Groups      t P(perm) perms P(MC) Groups      t P(perm) perms P(MC)

25, 15 32,498 0,0274 35 0,0121 25, 15 55,718 0,0293 35 0,001

25, 5 13,928   0,202 35 0,2063 25, 5 22,594 0,0595 35 0,0628

15, 5 21,346 0,1418 25 0,071 15, 5 24,298 0,0593 35 0,0465

Groups       t P(perm) perms P(MC) Groups      t P(perm) perms P(MC)

25, 15 12,141 0,0579 18 0,2647 25, 15 60,923 0,0287 35 0,0004

25, 5 12,286 0,0271 25 0,2613 25, 5 5,127 0,0288 35 0,0005

15, 5 0,18913 0,9224 35 0,9034 15, 5 3,231 0,0303 35 0,0139

Groups       t P(perm) perms P(MC) Groups       t P(perm) perms P(MC)

25, 15 50,429 0,0288 25 0,0009 25, 15 80,168 0,0288 11 0,0003

25, 5 43,829 0,0304 35 0,0016 25, 5 84,804 0,0262 25 0,0001

15, 5 0,82166 0,4735 15 0,4439 15, 5 0,33494 0,8263 8 0,7607

Groups       t P(perm) perms P(MC) Groups      t P(perm) perms P(MC)

25, 15 21,081 0,1369 25 0,0809 25, 15 21,197 0,0271 11 0,0001

25, 5 0,41855 0,8009 15 0,7346 25, 5 62,832 0,0289 25 0,0003

15, 5 11,515 0,0295 15 0,0001 15, 5 18,051 0,1732 15 0,1194

Within level '1' of factor 'SG' Within level '2' of factor 'SG'

Within level '3' of factor 'SG'

Within level '10' of factor 'SG'Within level '9' of factor 'SG'

Within level '4' of factor 'SG’

Within level '5' of factor 'SG’ Within level '6' of factor 'SG'

Within level '8' of factor 'SG' Within level '7' of factor 'SG'
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Table S12 b. Sibling Germination Experiment, November 2009, Neukirchen. Test statistics of pairwise 
tests for 'temperature × sibling group' for pairs of levels of factor 'sibling group'. 

  

Groups       t P(perm) perms P(MC) Groups        t P(perm) perms P(MC) Groups       t P(perm) perms P(MC)

1, 2 22,508 0,0849 18 0,0622 1, 2 0,83355 0,3994 13 0,4288 1, 2 15,951 0,1375 35 0,1615

1, 3 0,99703 0,3588 18 0,3577 1, 3 0,67642 0,5419 18 0,5249 1, 3 12,386 0,3385 25 0,2599

1, 4 31,535 0,0578 25 0,0168 1, 4 1,911 0,0873 18 0,1043 1, 4 21,615 0,0871 25 0,0731

1, 5 0,96312 0,5444 13 0,375 1, 5 1,372 0,2841 18 0,2192 1, 5 0,14827 0,9709 25 0,9207

1, 6 4,573   0,031 25 0,0007 1, 6 18,104 0,1699 11 0,1165 1, 6 29,761 0,0572 25 0,0231

1, 7 27,621 0,0595 25 0,0306 1, 7   0,2475 0,8875 13 0,8232 1, 7 10,103 0,4078 35 0,3487

1, 8 54,309 0,0258 18 0,0011 1, 8 10,889 0,2275 8 0,3161 1, 8 44,271 0,0296 35 0,0031

1, 9 1,377 0,2602 25 0,2081 1, 9 30,616 0,0263 18 0,0215 1, 9 0,20357 0,8847 6 0,8521

1, 10 22,783 0,1423 13 0,0653 1, 10 28,267 0,0853 8 0,0333 1, 10 13,297 0,2876 25 0,2291

2, 3 0,77724   0,489 25 0,4757 2, 3 11,657 0,2876 15 0,2845 2, 3 0,28606 0,7989 35 0,8108

2, 4 0,90168 0,4028 15 0,4041 2, 4 2,308   0,057 25 0,0625 2, 4 0,57942 0,6255 35 0,5953

2, 5 10,006 0,4508 18 0,3636 2, 5 16,502 0,1656 25 0,1501 2, 5 13,819 0,2273 25 0,2083

2, 6 2,903 0,0291 25 0,0138 2, 6 22,124 0,0857 25 0,0677 2, 6 0,21548 0,9691 35 0,8877

2, 7 0,88779 0,3936 25 0,4124 2, 7 0,31859 0,7998 18 0,7668 2, 7 19,181 0,1177 35 0,0919

2, 8 33,858 0,0584 18 0,0118 2, 8 0,44798 0,6533 11 0,673 2, 8 33,562 0,0293 35 0,0103

2, 9 28,984 0,0296 25 0,0145 2, 9 12,983 0,3163 15 0,2419 2, 9 17,251 0,1402 15 0,1356

2, 10 11,583 0,4308 8 0,2856 2, 10 1,403 0,1953 8 0,2068 2, 10 21,268 0,0896 35 0,0716

3, 4 14,929 0,1999 25 0,1787 3, 4 0,91705 0,4573 35 0,3954 3, 4 0,84914 0,4601 25 0,4353

3, 5 0,8492   0,884 25 0,4515 3, 5 0,88854 0,4625 35 0,4108 3, 5 10,664 0,2857 35 0,3331

3, 6 30,781 0,0284 35 0,0104 3, 6 0,85762 0,4551 18 0,4315 3, 6 0,4578 0,6867 35 0,6697

3, 7 14,125   0,222 25 0,1948 3, 7 0,61535   0,627 25   0,56 3, 7 16,286 0,1713 25 0,1473

3, 8 34,725 0,0613 18 0,0089 3, 8 1,349 0,1737 15 0,2297 3, 8 30,482 0,0296 35 0,0208

3, 9 18,266 0,1416 35 0,0911 3, 9 22,374   0,109 25 0,069 3, 9 1,359 0,4323 8 0,2214

3, 10 0,41376 0,9113 18 0,7527 3, 10 2,288 0,0535 15 0,0607 3, 10 18,368 0,1725 35 0,1065

4, 5 11,539 0,2029 25 0,2923 4, 5 0,34172 0,7958 25 0,7711 4, 5 19,176 0,1516 25 0,0956

4, 6 22,081   0,058 25 0,0505 4, 6 5.12E+01 1 35 0,9889 4, 6 0,74125   0,573 35 0,4938

4, 7 0,14622   0,848 25 0,9459 4, 7 14,359 0,2287 25 0,2005 4, 7 23,773 0,0567 35 0,0429

4, 8 25,765 0,0862 18 0,0353 4, 8 22,965 0,1186 11 0,0555 4, 8 36,821 0,0281 35 0,0085

4, 9 35,413 0,0291 35 0,0067 4, 9 36,542 0,0287 35 0,0105 4, 9 22,873 0,0601 11 0,0557

4, 10 23,451 0,1381 15 0,0564 4, 10 36,119 0,0293 15 0,0097 4, 10 25,694 0,0548 25 0,0309

5, 6 16,325 0,1162 25 0,114 5, 6 0,36514 0,7714 35 0,7585 5, 6 2,091 0,0848 25 0,0721

5, 7 11,182 0,2826 25 0,3126 5, 7 12,551 0,2853 15 0,2596 5, 7 0,77966 0,4549 35 0,4727

5, 8 17,293 0,0553 18 0,0896 5, 8 17,669 0,2582 6 0,1211 5, 8 25,954 0,0863 25 0,0421

5, 9 11,107   0,167 15 0,3043 5, 9 22,141 0,1458 25 0,0678 5, 9 0,20092 1 11 0,8846

5, 10 10,014 0,3536 18 0,3644 5, 10 22,688 0,1494 8 0,0553 5, 10 10,251 0,3145 25 0,3468

6, 7 19,111   0,084 25 0,0745 6, 7 13,794 0,2292 25 0,2135 6, 7 27,621 0,0544 35 0,029

6, 8 0,14666 1 25 0,9598 6, 8 22,215 0,0569 15 0,0693 6, 8 62,868 0,0293 35 0,0007

6, 9 45,621 0,0278 35 0,0009 6, 9 3,504 0,0289 35 0,0128 6, 9 3,528 0,0291 15 0,0125

6, 10 42,764   0,027 25 0,002 6, 10 34,759 0,0571 15 0,0131 6, 10 31,087 0,0278 35 0,019

7, 8 21,827 0,0852 18 0,0615 7, 8 0,58949 0,7177 4 0,5755 7, 8 13,579 0,2335 25 0,2222

7, 9 32,143 0,0268 35 0,0106 7, 9 10,602 0,4313 15 0,3382 7, 9 0,99681 0,3956 15 0,3538

7, 10 20,015 0,1499 25 0,0862 7, 10 11,628 0,4326 4 0,2909 7, 10 0,21007 0,9172 35 0,8621

8, 9 51,612 0,0287 25 0,001 8, 9 0,38852 1 8 0,7172 8, 9 55,065 0,0272 15 0,0011

8, 10 53,588 0,0304 18 0,0012 8, 10 0,53186 1 2 0,6123 8, 10 11,352 0,3153 35 0,2915

9, 10 29,702 0,0291 25 0,0231 9, 10 0,40181 0,8284 8 0,701 9, 10 13,378 0,4139 11 0,2332

Within level '25' of factor 'temperature' Within level '15' of factor 'temperature' Within level '5' of factor 'temperature'
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Groups       t  perms  P(MC)

1, 2    2,93 9952 0,0011

1, 3 28,026 9949 0,0023

1, 4 30,587 9947 0,0002

1, 5 29,109 9939 0,0003

1, 6 12,817 9955 0,1923

1, 7 30,875 9944  0,001

1, 8 49,088 9937 0,0001

1, 9 17,158 9958 0,0609

1, 10 24,204 9946 0,0019

2, 3 0,66091 9925 0,5598

2, 4 18,306 9934 0,0694

2, 5 13,807 9965 0,1593

2, 6 19,871 9935 0,0421

2, 7 10,892 9941 0,2878

2, 8 16,339 9919 0,1069

2, 9 10,833 9930 0,2959

2, 10 1,559 9942 0,0884

3, 4 20,449 9940 0,0326

3, 5 15,541 9941 0,1037

3, 6 17,314 9936 0,0739

3, 7 0,64697 9932  0,575

3, 8 18,495 9923 0,0717

3, 9 0,97138 9923 0,3747

3, 10 14,412 9959 0,1272

4, 5 0,81084 9940 0,4823

4, 6 21,003 9948 0,0179

4, 7 28,958 9944 0,0021

4, 8 88,799 9930 0,0001

4, 9 1,495 9954 0,1072

4, 10 1,245 9950 0,2095

5, 6 19,013 9946  0,023

5, 7 2,336 9959 0,0071

5, 8 48,282 9928 0,0001

5, 9 13,563 9963  0,145

5, 10 0,80667 9956 0,5237

6, 7 20,772 9943 0,0302

6, 8 40,431 9937 0,0002

6, 9 0,83223 9955 0,4699

6, 10 1,295 9953 0,1739

7, 8 16,563 9948  0,103

7, 9 11,972 9955 0,2398

7, 10 21,398 9944 0,0139

8, 9 23,043 9941 0,0133

8, 10 45,344 9931 0,0001

9, 10    1,12 9945 0,2858

Table S13. Sibling Germination Experiment, 
November 2009, Sierksdorf. Test statistics of pairwise 
tests for the factor sibling group (1-10). 
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