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Abstract 

 

This study is focusing on the diversity and taxonomy of Recent benthic 

foraminifera on the shelf and continental slope of the northeast Atlantic Ocean between 

43° and 58° N. To get an overview about previous foraminiferal studies from this area, 

qualitative and quantitative published data of foraminiferal occurrences and abundances at 

2902 stations were retrieved and analyzed. These investigations revealed a compiled total 

of 1486 species, of which 379 species were synonymous and 241 species had an uncertain 

identity. Therefore, the significant minimum species number of benthic foraminifera in the 

study area was 866. A common distribution of a hyaline test structure and a free mode of 

life, as well as an increase of diversity (Fisher α index) from the shelf to the slope and of 

mean species number on the shelf from N to S, are distinctive for the whole area. In 

addition, two mid-slope diversity maxima were found. One is located on the Basque 

continental margin at 550 – 850 m water depth and the other one is located west of Ireland 

between 700 and 1100 m. Analyses of the latitude-depth-distribution of six dominant 

species showed an oak leaf-shaped distribution pattern for the shelf areas and similar 

patterns for all six species on the continental slope, which suggests that these species have 

the same ecohabitat throughout their depth range. Comparing different datasets and 

recording general biodiversity patterns was difficult because of inconsistencies in 

foraminiferal taxonomy and sample preparation, absence of essential metadata and gaps in 

data coverage. These difficulties influenced the diversity calculations, and in some cases, 

made rough estimates impossible. 

An influence on a benthic faunal composition by the time and methods of sampling 

was detected during analyses of Recent benthic foraminifera from the shelf and slope of 

the Celtic Sea. A total number of 294 species was recorded at 13 stations in a range from 

100 to 500 m water depth. While the distribution pattern of the living species revealed a 

bisection in a distal and proximal fauna on the shelf, the living fauna on the slope changed 

within small depth intervals and geographic position. This structured slope is probably 

caused by along-slope currents of varying strengths, different topography and bottom 

sediments. High population densities were determined along the shelf edge and at one 

slope station, as well as an increasing diversity with water depth. These higher densities 

and diversities were likely promoted by a higher food supply, in response to the timing of 
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the spring bloom. Trifarina angulosa and Gavelinopsis praegeri were the most frequent 

species in the living fauna on the shelf and uppermost slope, whereas Cibicides lobatulus 

and Spiroplectinella sagittula were the most frequent species at almost all stations in the 

dead assemblages. A comparison with corresponding stations from earlier studies in the 

same area yields major differences in diversity, population density and dominant species, 

which is more likely due to the time and method of sampling than forced by 

environmental parameters. 

Analyses of the distribution and ecology of benthic foraminiferal assemblages 

from the Celtic Sea yield 31 taxa of the family Trochamminidae. Eighteen of these 31 taxa 

could be determined at species level, which comprise about 9 % of all species of this 

taxonomic group that were described from Recent sediments. In the frame of this study, 

19 taxa of the Trochamminidae were described and illustrated. Several taxonomic 

concepts exist, which differs from each other in their systematic classification. These 

concepts were assessed with respect to their applicability. All concepts used the 

morphology of the test, internal structures and apertural features for the systematic 

subdivision of the Trochamminidae. Especially the position of the aperture plays an 

important role for genera definition and differentiation. Using apertural features for a 

sound taxonomic designation of species in this study was proven difficult. A combination 

of morphological and molecular phylogenetic studies is required to verify the relevance of 

apertural features.     
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Kurzfassung 

 

Diese Studie beschäftigt sich mit der Diversität und Taxonomie rezenter 

benthischer Foraminiferen vom Schelf und Kontinentalhang des Nordostatlantiks 

zwischen dem 43. und 58. nördlichen Breitengrad. Um sich eine Überblick über bisherige 

Foraminiferenarbeiten aus diesem Gebiet zu verschaffen, wurden bereits veröffentlichte 

qualitative und quantitative Daten über das Vorkommen und die Häufigkeit benthischer 

Foraminiferen von 2902 Stationen zusammengetragen und ausgewertet. Diese Erhebung 

ergab eine Gesamtartenzahl von 1486. Davon wurden 379 Arten als Synonyme 

identifiziert und 241 Arten konnten nicht eindeutig bestimmt werden. Damit liegt die als 

gesichert zu erachtende Mindestartenzahl in diesem Untersuchungsgebiet bei 866. 

Foraminiferen mit einer hyalinen Gehäusestruktur und einer freien Lebensweise sind am 

häufigsten vertreten. Weiterhin ist für das untersuchte Gebiet ein Diversitätsanstieg 

(Fisher α Index) vom Schelf zum Hang, sowie eine Zunahme der durchschnittlichen 

Artenzahl auf dem Schelf von Nord nach Süd charakteristisch. Es wurden zwei 

Diversitätsmaxima im Bereich des mittleren Kontinentalhanges gefunden. Das eine 

befindet sich am baskischen Kontinentalrand in 550 – 850 m Wassertiefe, das andere liegt 

westlich von Irland in 700 – 1100 m Tiefe. Die Ermittlung einer Breiten-Tiefen-

Verteilung von sechs dominanten Arten ergab ein eichenblattartiges Verbreitungsmuster 

für die Schelfgebiete und ein ähnliches Verbreitungsmuster für alle sechs Arten auf dem 

Kontinentalhang. Dies lässt vermuten, dass diese Arten dasselbe Ökohabitat besitzen. Ein 

Vergleich der unterschiedlichen Literaturdaten und die Bestimmung eines generellen 

Diversitätsmusters hat sich aufgrund der Unterschiede in der Foraminiferentaxonomie und 

Probenbearbeitung, dem Fehlen wichtiger Metadaten, sowie größeren Lücken in der 

Datenabdeckung als schwierig erwiesen. Diese Unterschiede beeinflussten die 

Berechnungen und machten in einigen Fällen eine Bewertung unmöglich. 

Untersuchungen an rezenten benthischen Foraminiferen vom Schelf und 

Kontinentalhang der keltischen See zeigten, das der Zeitpunkt und die Art der 

Probennahme die Zusammensetzung der Fauna beeinflusst. An den beprobten 13 

Stationen aus einem Tiefenbereich zwischen 100 und 500 m wurden insgesamt 294 Arten 

ermittelt. Während die Verbreitungsmuster der lebenden Arten auf dem Schelf eine 

Zweiteilung in eine distale und proximale Fauna erkennen ließen, variierte die 
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Lebendfauna am Hang sowohl innerhalb kurzer Tiefenintervalle als auch bezüglich der 

geographischen Entfernung zwischen den Stationen. Gründe für diese starke 

Faunenstrukturierung am oberen Kontinentalhang könnten die unterschiedlichen, an der 

Schelfkante entlang fließenden Strömungen, als auch die differenzierte Hangtopographie 

und Sedimentzusammensetzung sein. Die höchsten Siedlungsdichten wurden entlang der 

Schelfkante und an einer Hangstation ermittelt. Außerdem konnte eine Zunahme der 

Diversität mit zunehmender Wassertiefe festgestellt werden. Diese höheren 

Siedlungsdichten, als auch die Diversitätszunahme wurden wahrscheinlich durch ein 

höheres Nährstoffangebot, aufgrund der Frühjahresblüte begünstigt. Für den Schelf und 

obersten Kontinentalhang wurden Trifarina angulosa und Gavelinopsis praegeri als 

häufigste Arten der Lebendfauna ermittelt, während innerhalb der Totfauna Cibicides 

lobatulus und Spiroplectinella sagittula im gesamten Untersuchungsgebiet am häufigsten 

vertreten waren. Ein Vergleich mit früheren Studien aus demselben Gebiet ergab deutliche 

Unterschiede hinsichtlich der ermittelten Diversitäten, Siedlungsdichten und häufigsten 

Arten. Diese Unterschiede scheinen vor allem mit dem Zeitpunkt und der Art der 

Probennahme zusammenzuhängen, als durch Umwelteinflüsse bedingt zu sein.  

Im Rahmen von Untersuchungen zur Verbreitung und Ökologie benthischer 

Foraminiferenfaunen aus der keltischen See wurden insgesamt 31 Arten ermittelt, die zur 

Familie der Trochamminidae gezählt werden. Von diesen 31 Taxa konnten 18 Arten 

eindeutig bestimmt werden, was einem Anteil von etwa 9 % an allen bisher aus rezenten 

Sedimenten beschriebenen Arten dieser Familie entspricht. In dieser Studie haben wir 19 

Taxa aus der Familie der Trochamminidae ausführlich beschrieben und abgebildet. Zu 

dieser Foraminiferengruppe existieren mehrere taxonomische Konzepte mit 

unterschiedlicher Systematik, welche bezüglich ihrer Anwendbarkeit bewertet wurden. 

Für eine systematische Klassifizierung der Gattungen und Arten innerhalb der 

Trochamminidae, wurden in allen Konzepten die Gehäusemorphologie, innere 

Gehäusestrukturen sowie die verschiedenen Mündungsmerkmale herangezogen. 

Insbesondere die Lage der Mündung scheint eine entscheidende Rolle für die Definition 

und Unterscheidung der Gattungen zu spielen. Die Verwendung der Mündungsmerkmale 

für die Bestimmung der Arten aus der keltischen See erwies sich allerdings als schwierig. 

Eine Kombination von morphologischen und molekular-phylogenetische Untersuchungen 

wird benötigt, um die taxonomische Bedeutung der Mündungsmerkmale belegen zu 

können.     



                                                                                                                             Introduction 

Introduction 

 

Benthic foraminifera are unicellular protistans, mostly covered by a hard-shelled 

test which consists either of secreted calcite (rotaliids and milioliids), agglutinated 

sediment particles (textulariids) or organic material (allogromiids). They are generally 

small (<1 mm), occur in all marine environments, and their tests may be preserved in the 

fossil record (Murray, 2006). Due to these attributes and their ability to respond quickly to 

changing environmental conditions, benthic foraminifera play an important role in Recent 

as well as paleo-oceanographic and paleo-climatic research. There are two features which 

allow a reconstruction of environmental conditions in a benthic foraminiferal habitat. On 

one hand, the chemical composition of calcite tests provides information about the 

surrounding seawater. On the other hand, foraminiferal assemblage compositions, 

diversity, mode of life, test morphology and their adaptation to extreme habitat niches give 

information about Recent and paleo-environmental conditions. For both features, a precise 

determination of foraminiferal species is essential. At present, benthic foraminiferal 

species are defined primarily on wall structure, chamber and test shape, and the position of 

the aperture. Therefore, foraminiferal ecology is based entirely on morphospecies 

(Murray, 2006).  

Benthic foraminifera are distributed everywhere in the ocean, from marginal 

marine environments (marsh, lagoons, estuaries, fjords and deltas) down to the abyssal 

plain (Murray, 2006, 2007). Extensive biogeographic provinces of benthic foraminifera 

have been recognized on various continental shelves and slopes (Sen Gupta, 1999). Many 

studies on the distribution of benthic foraminiferal assemblages on the shelf and slope of 

the Northeast Atlantic Ocean (NE Atlantic) exist. Over 40 benthic foraminiferal studies 

from the western European margin between the Basque shelf and continental slope north 

of Spain and the Hebrides north of Ireland were analyzed in this thesis. Most of these 

studies are located on the shelf. The shelves are broad and irregular; their width varies 

between 10 – 60 km off northern Spain and approximately 500 km in the Celtic Sea 

(Huthnance et al., 2009). The continental slope is steep from the north of Spain to 

northwest Scotland, and characterized by spurs and canyons organized in submarine 

drainage basins (Bourillet et al., 2006; Huthnance et al., 2009).  
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The general hydrography in the studied area is characterized by different 

intermediate and deep water masses as well as surface currents. The two major 

components of the NE Atlantic circulation are the Mediterranean Outflow Water (MOW) 

and the Eastern North Atlantic Water (ENAW). The MOW flows northward along the 

European continental margin through the Porcupine Seabight underlying the ENAW at 

depth between 750 and 1250 m (van Aken and Becker, 1996; van Rooji et al., 2003). 

Eastern North Atlantic Water is found to depths of 600 to 750 m (Huvenne et al., 2002; 

White, 2007) and being formed during the winter month in the Bay of Biscay (Pollard and 

Pu, 1985; van Aken, 2000). A north-flowing surface current (= North Atlantic Current, 

NAC) is present along the continental slope, transports warm subtropical water from the 

Iberian margin to high latitudes (Pingree and Le Cann, 1989; Rice et al., 1991). One 

branch of the NAC flows northwards to the Norwegian Sea, the other branch flows 

southwards into the Bay of Biscay to joins the subtropical gyre (Pingree, 1993; van Aken 

and Becker, 1996). This slope current is also important for physical exchange processes at 

the shelf break and hence cross-shelf fluxes (Huthnance, 1995; White and Bowyer, 1997). 

Intensified currents, either contour, tidal or slope currents, as well as storm induced 

waves, and wind and density driven flows account for sediment transport and therefore 

influence the microhabitats of benthic foraminiferal assemblages (Murray et al., 1982). 

Depending on the substrate and preferred mode of life, benthic foraminifera can live 

epifaunal, on the surface of the substrate, or infaunal, in the sediment. Epifaunal, as well 

as infaunal individuals may live free, attached (= attached immobile of Sturrock and 

Murray, 1981) or opportunistic/free and attached (= attached mobile of Sturrock and 

Murray, 1981). Especially under high current velocities, some attached living species 

preferred elevated substrates such as shell debris, sponges, hydroids, rocks and plants to 

maximize the acquisition of suspended organic matter (Schönfeld, 1997, 2002a, 2002b). 

The hydrographic conditions together with a coarse shell detritus-rich sandy substrate 

were found on the Celtic Sea shelf and the western English Channel. The continental 

slopes of the study area are mostly covered by mud or silt. 

The availability of food supply seems to be the fundamental limiting factor 

controlling benthic foraminiferal distribution patterns. Especially phytoplankton blooms, 

which are patchy in occurrence, may be a prime cause of spatial patchiness in the 

abundance of benthic foraminifera (Lee et al., 1977; Murray, 2006). Spring phytoplankton 

blooms are a prominent seasonal feature of the NE Atlantic, and can be initiated by certain 
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weather conditions and promoted by internal tides (Henson et al., 2006; Ji et al., 2010; 

Van Oostende et al., 2012). The bloom usually starts at the end of March, propagates 

northward following surface warming and stratification (Robinson et al., 1993; Leblanc et 

al., 2009), and involves a rapid diatom growth and their dominance in the phytoplankton 

in April. This “diatom bloom” is followed by a more diverse community bloom of 

prymnesiophytes (mainly composed of coccolithophores, Van Oostende et al., 2012), 

cynobacteria, dinoflagellates and green algae in the later seasons (Sieracki et al., 1993; 

Leblanc et al., 2009).    

The main objective of this thesis is the determination of benthic foraminiferal 

diversity from the northwest European shelf and continental slope, and the generation of a 

standardized foraminiferal taxonomy. The thesis is based on three chapters.  

In Chapter 1, I reviewed the distribution of benthic foraminiferal species in the NE 

Atlantic based on over 40 publications and unpublished information. In this context, a 

synonymy matrix and an associated standardized taxonomy of benthic foraminifera of the 

western European continental margin was proposed. Foraminiferal diversity and 

distribution patterns of dominant species were determined and compared with data from 

the Gulf of Mexico. 

In Chapter 2, samples from a transect perpendicular to the hydrographic front in 

the outer English Channel (South Western Approaches) were analyzed to constrain the 

influencing environmental parameters on a benthic foraminiferal fauna. Analyses 

indicated a greater importance of shelf upwelling and food availability than the impact of 

a hydrographic front for the composition of a foraminiferal assemblage. In addition, dead 

foraminiferal assemblages could demonstrate the influences of a high-energy environment 

on a faunal composition.  

Benthic foraminiferal assemblages from the shelf and upper continental slope of 

the Celtic Sea showed a rich variety of Trochamminidae species. In Chapter 3, I assessed 

the applicability of hitherto proposed systematic concepts on the family Trochamminidae, 

and described and illustrated 19 common species of this family. In addition, emphasis was 

given on how far morphological criteria were suitable for a taxonomic classification. 
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Abstract 

 

The objective of this work was to review the distribution of benthic foraminiferal 

species at the western European continental margin from 43 – 58° N, determine their 

diversity and generate a standardized taxonomy based on 44 publications (1913 – 2010) 

and unpublished information. Qualitative and quantitative data based upon foraminiferal 

occurrences and species abundances were included together with supplementary 

sedimentological and hydrographical data. From the species inventory, as well as from 

differences in morphological, physical and hydrographic conditions in the study area, we 

defined six regions. The investigation of 2902 stations revealed 1486 species, of which 26 

% are synonymous. Most of the species have a hyaline test and live free, on or in the 

sediment. We recorded 608 species whose distributions were confined only to one of the 

six regions. Quantitative faunal data showed a general diversity increase from shelf to 

slope and two mid-slope diversity maxima, one located on the Basque continental margin 

at 550 – 850 m water depth and the other west of Ireland at 700 – 1100 m. In addition, the 

number of living species on the shelf generally increased from N – S. The latitudinal vs. 

depth distribution of six dominant species showed an irregular lobate distribution pattern 

for the shelf regions. These species displayed similar distribution patterns on the 

continental slope, despite different modes of life, and different food and substrate 

preferences. This suggests that they have the same ecohabitat throughout their depth 

range. The faunal distribution pattern revealed close relationships between the different 
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regions despite their varying hydrologic regimes. A delineation of one or two regions 

based on faunal criteria has not been attempted to date. There were no major distinctions 

in diversity among the six regions of the NE Atlantic, but the whole area exhibits an 

interregional diversity (γ-diversity of 16), similar in magnitude to that of the Gulf of 

Mexico. In some parts of the study area, gaps in data coverage and differences in 

foraminiferal taxonomy and hydrographic conditions prevented the calculation of diversity 

indices.  

 

1.1 Introduction 

 

Biodiversity describes the variety of life on all scales (Wilson and Peter, 1988). 

Marine biodiversity accounts for approximately 15 % of global biodiversity (Bouchet, 

2006; Storch and Wehe, 2007). Taxonomy and classification of species are the basis of 

any biodiversity assessment. There is great uncertainty concerning the number of 

described marine species (Murray, 2007; Mora et al., 2011) with numbers ranging from 

200,000 − 500,000 (Heip, 2003; Bouchet, 2006; Jaume and Duarte, 2006). Therefore, the 

“Census of Marine Life” project was initiated to create an oceanic inventory from 2000 – 

2010. In this collaborative project, 250,000 established species of marine organisms were 

registered and made public (Yarincik, 2010). Accompanying projects, like HERMIONE, 

have investigated the species records, as well as the interaction between biota and 

ecological parameters. A precise estimation of the total number of living species requires 

an adequate number of data sources (Murray, 2007). The reliability of these sources in 

accurately recording the number of species and their synonyms turns out to be a major 

concern. Benthic foraminifera have been investigated since the mid-20th century and a 

large number of publications on their ecology and distribution are available. But 

inconsistencies in taxonomy and inadequate sampling in tropical and abyssal regions lead 

to major problems in estimating the total species number (see figs. 1 and 2 in Murray, 

2007). In recording the diversity of benthic foraminifera, as well as all other organisms, it 

is important to generate a standardized taxonomy and to consider all marine environments 

in a balanced way. 

Only a few studies to date have used a regional-synoptic approach to analyze the 

benthic foraminiferal diversity in certain regions (Murray, 1971, 2000; Culver and Buzas, 

1980, 1981, 1985, 1986, 1987; Hayward et al., 1999; Saidova, 2008; Sen Gupta and 
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Smith, 2010). In particular, Murray (1971, 2000) analyzed several sources of previously 

published and his own foraminiferal data from the NE Atlantic and the Barents Sea 

together with multi-regional environmental information. He differentiated between living 

and dead individuals and indicated the mode of life of the common species. However, 

detailed quantitative information about the species at every station was not given in his 

publications.  

Culver and Buzas (cited above) used specific computer programs to compile the 

first comprehensive reports on latitude and depth distribution of foraminifera from the 

North American Atlantic coast. Later, programs with faster converting processes (e.g., 

multivariate analyses) improved handling and examination of huge quantities of data. 

Because distinct and standardized identification of foraminiferal species is essential for 

analysis of species distribution and richness, Culver and Buzas (cited above) revised the 

species lists regarding synonymised taxa in all their five publications. Therefore, they 

limited their foraminiferal interpretations with reference to water depth, distribution, and 

test structure to the most commonly recorded species, due to inconsistencies in taxonomy 

and data recording. Furthermore, new morphological and molecular analyses of different 

species led to other emendations, especially in the last 20 years. For these reasons, Murray 

(2000) published a revised taxonomy of his 1971 report.   

Hayward et al. (1999) used their earlier published data for a census report on 

benthic foraminifera around New Zealand. They determined different faunal associations 

based on diversity indices and cluster analyses, and divided the study area into six 

biogeographical provinces. Sen Gupta and Smith (2010) also divided the Gulf of Mexico 

into different sectors, but their division was based only on geographic coordinates, and not 

justified by faunal composition. Over 30 foraminiferal communities were distinguished by 

Saidova (2008) for the NE Atlantic shelf and slope. She limited the faunal information 

regarding distribution and depth to the dominant species, following an earlier approach in 

the Culver and Buzas papers. She also listed hydrological (temperature, salinity) and 

sedimentological data for all investigated areas, but detailed quantitative information 

about species occurrences at every station was not given.  

In this study, we integrated benthic foraminiferal abundance and distribution data 

from 44 publications and some unpublished data to describe foraminiferal diversity in the 

NE Atlantic. For biodiversity investigations, we attempted to standardize taxonomy and 

identify synonyms. In our taxonomic reference list, we included new morphometric 
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concepts and genetic characteristics for some species (e.g., Ertan et al., 2004; Hayward et 

al., 2004; Schweizer et al., 2011) in addition to earlier morphological descriptions (e.g., 

Cushman, 1936; Buzas, 1966; Feyling-Hanssen, 1972). The aims of the present study are: 

1) to create a synonymy matrix and an associated standardized taxonomy of benthic 

foraminifera of the NE Atlantic, 2) to determine foraminiferal diversity on the shelf and 

continental slope for comparison with Gulf of Mexico studies 3) to constrain the 

distribution patterns of dominant species, and 4) to determine the driving environmental 

parameters. 

 

1.2 Materials and Methods 

 

Within the framework of the EU-HERMIONE Project (Hotspot Ecosystem 

Research and Man’s Impact on European Seas), we compiled all reliable data on the 

taxonomy and distribution of benthic foraminifera at the European continental margin 

between 43 – 58° N, published in 44 papers from 1913 – 2010 (Fig. 1.1; Table 1.1; 

Appendix 1.1). For 2902 sampling stations, the metadata together with qualitative and 

quantitative information regarding occurrence and abundance of foraminiferal species 

were retrieved. Supplementary oceanographic and sedimentological information, such as 

currents, waves and tides, primary production rates, and surface sediment composition, 

was also included.  

During the compilation of the foraminiferal species, definite discrepancies in 

taxonomy and classification of numerous species emerged. Hence, we created a synonymy 

matrix and a standardized reference list (Appendix 1.2) by first generating a species list 

for every publication. Then, we compared all species names through their original 

reference and illustrations, as well as descriptions and illustrations from Ellis and Messina 

(1940), Murray (1971, 2006), Loeblich and Tappan (1987), and Jones (1994). For some 

genera (e.g., Ammonia, Bolivina), morphological and molecular data were taken into 

consideration. Furthermore, the second author of this paper checked his species 

identifications with the foraminiferal collections in the British Museum of Natural 

History, University of Aberystwyth, University of Utrecht and University of Kiel. This 

knowledge was integrated with our standardized taxonomy.  

In order to facilitate regional comparisons, the study area was divided into six 

regions: A, Basque shelf and continental slope north of Spain; B, Bay of Biscay; C, Celtic 
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Sea; D, English Channel; E, Irish Sea; and F, the area west and north of Ireland consisting 

of the Rockall Trough, Porcupine Seabight, Malin Sea, and the Hebrides (Fig. 1.1). The 

regional divisions were based upon benthic foraminiferal assemblages and different 

physical-oceanographic parameters, including annual means of temperature, salinity, and 

dissolved oxygen of the near-bottom water, total species richness, richness of species 

confined to only one region, test structure, mode of life, dominant species, and Fisher α 

diversity index.  

The Fisher α index (Fisher et al., 1943) was first described as a method of 

assessing species diversity. Under the assumption of an underlying logarithmical 

distribution of species vs. individuals, the Fisher α index is calculate from the number of 

species and individuals in a sample, and describes the gradient of the log relationship 

between these two factors (see fig. 8 in Fisher et al., 1943). Another index commonly used 

to measure species diversity is the information function H(S), also called the Shannon-

Wiener index (Buzas and Gibson, 1969; Gibson and Buzas, 1973). This index is based 

upon the number of species and their relative proportions, but does not depend on any 

particular mathematical model (Buzas and Gibson, 1969). However, it is strongly 

influenced by the species frequency, resulting in a higher index value if there is one or a 

few dominant species. We, therefore, used the Fisher α index to avoid the effects of 

incomplete census data on the Shannon-Wiener index. In addition, the Fisher α index has 

been used in many other regional foraminiferal studies, so a comparison of diversity 

between regions is possible.  

Hydrographical and sedimentological parameters from every station were retrieved 

from literature data or from the International Council for the Exploration of the Seas 

online database (ICES, 2009 for temperature, salinity and dissolved oxygen). The 

foraminiferal test structure was identified by our own observations or after Loeblich and 

Tappan (1987) when there was some uncertainty. While previous approaches used 

relational databases, we collected, processed, and stored the data as Microsoft Excel 

spreadsheets (Murray, 2006). This facilitates easier data handling and ensures instant 

visibility in table format. Statistical analyses and calculations of diversity indices were 

made with Microsoft Excel 2003 and PAST (Hammer et al., 2001). Distributional charts 

were created with Microsoft Excel and Ocean Data View (ODV; Schlitzer, 2011).  
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Figure 1.1 European continental margin showing 2902 stations (squares and dashed areas) from 
multiple studies within the context of six different environmental regions: A = Basque shelf and 
slope; B = Bay of Biscay; C = Celtic Sea; D = English Channel; E = Irish Sea; F = Porcupine 
Seabight, Rockall Trough, Malin Sea and the Hebrides. Polygons with dashed lines display areas 
where faunal information was available, but station coordinates were not reported (Rosset-
Moulinier, 1986; Saidova, 2008). 
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Table 1.1 List of all publications from which data are used in this paper. 
 
First author Year Region Range (°N/°W) Depth (m) Assemblage Stations

Heron-Allen 1913 W Ireland (F) 53-54/9-10 0-43 not specified 35
Douvillé 1936 Roscoff (D) 48-49/3-4 0-25 living+dead 7

Le Calvez 1958
Bay of Biscay+Celtic Sea+English 

Channel (B+C+D)
47-50/4-11 15-210 total 19

Le Calvez 1967 English Channel (C+D) 48-50/2-6 max. 200 dead 121
Lees 1969 W Ireland (F) 53-54/10 0-60 living+dead 72
Schnitker 1969 Gulf of Gascogne (B) 46-47/3-4 110-145 dead 42
Caralp 1970 Gulf of Gascogne (B) 45-46/3-4 135-3200 total 21
Murray 1970 Celtic Sea+English Channel (C+D) 48-51/4-11 13-1002 living+dead 38
Pujos 1972 Gulf of Gascogne (B) 45-46/1-2 4-106 not specified 72
Haynes 1973 Cardigan Bay (E) 52-53/4-5 0-80 total 125
Pujos-Lamy 1973 Gulf of Gascogne (B) 45-46/3-5 135-4450 living 57
Pujos 1976 Bay of Biscay (B) 43-47/1-5 8-220 total 216
Murray 1979 Celtic Sea (C) 50-52/8-10 75-135 living+dead 56
Sturrock 1981 Celtic Sea+English Channel (C+D) 48-52/4-9 44-176 living+dead 61
Murray 1982 Celtic Sea+English Channel (C+D) 48-50/3-8 0-152 total 25

Weston 1985
Porcupine Seabight+Western 

Approaches (C+F)
48-52/8-14 255-1600 living+dead 44

Murray 1986 Lyme Bay (D) 50/2-3 max. 50 living+dead 14
Rosset-M. 1986 English Channel (D) 48-51/2°E-6°W 2-89 living 907
Gooday 1989 Porcupine Seabight (F) 51/13 1320-1361 living 8
Lambshead 1990 Porcupine Seabight (F) 51/13 1320-1361 living 8
Giese 1991 Roscoff (D) 49/4 0.5-40 living+dead 77

Murray 1994
Celtic Sea+Porcupine Seabight 

(C+F)
47-52/8-12 160-4262 total 10

Coles 1996 Porcupine Basin (F) 52/12-13 610-800 total 4
Castignetti 1998 Plymouth Sound (D) 50-51/4 2.8-7 living 4
Debenay 2001 Île d'Yeu (B) 47/2 4-8 total 28
Fontanier 2002 Bay of Biscay (B) 43-44/1-3 140-1993 living 5
Fontanier 2003 Bay of Biscay (B) 44/2 550 living 1
Murray 2003a Hebrides (F) 56-57/6-9 134-218 living+dead 6
Murray 2003b Hebrides (F) 56-57/6-9 134-218 living+dead 6
Scott 2003 Celtic Sea (C) 51-52/4-7 41-116 living+dead 53
Ernst 2004 Bay of Biscay (B) 44/2 550 living 1
Sejrup 2004 W Ireland (F) 53-54/10-12 104-336 total 6
Duchemin 2005 Grande Vasiere (B) 47/3-4 100-130 living 4

Schönfeld 2005
Basque Shelf-Rockall Bank 

(A,C,D,F)
43-58/4-17 82-3889 living+dead 41

Panieri 2005 Rockall Trough (F) 54/15 800-1000 dead 7
Langezaal 2006 Bay of Biscay (B) 44/2 140 living 1
Pascual 2006 N Spain (A) 43/3 max. 3.5 total 18
Duchemin 2007 Bay of Biscay (B) 43-44+47/2-4 80-2000 living 11
Rüggeberg 2007 Porcupine Seabight (F) 52/13 704-820 dead 2
Pascual 2008 Basque Shelf+Bay of Biscay (A+B) 43-44/1-3 47-152 total 49
Saidova 2008 N Spain-Malin Sea (A-F) 43-56/0-13 1-4450 total 590

Margreth 2009
Porcupine Seabight+Rockall Bank 

(F)
51-54/11-15 202-982 total 20

Mojtahid 2010 Bay of Biscay (B) 43-46/2-7 320-4800 living 5
Schönfeld 2010 Porcupine Seabight (F) 51-52/11-13 696-982 living+dead 19
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1.3 Results 

 

1.3.1 Geographical subdivision 

 

Changes in faunal assemblages and sedimentary environments (Pujos, 1976; 

Fontanier et al., 2002; Duchemin et al., 2007; Pascual et al., 2008) have been used for 

local differentiation of the Basque shelf (Region A) and the Bay of Biscay (Region B). 

Facies conditions change from an organic-rich sandy silt at 50 m depth in the east to a silty 

sand at 150 m in the west between 2°22’ NW and 2°25’ NW (see fig. 1 in Pascual et al., 

2008). These sediment changes were associated with different foraminiferal assemblages. 

For instance, the most commonly recorded species in the western edge of Region B are 

Uvigerina peregrina, Cassidulina laevigata and Gaudryina rudis. In contrast, Region A 

supports dominant species such as Gyroidina soldanii, Eponides repandus and 

Spiroloculina depressa. 

The Celtic Sea (Region C) adjoins the northern borders of Regions A and B (Fig. 

1.1). Its boundary with the latter region is based on the faunal assemblages of Le Calvez 

(1958) and Duchemin et al. (2007) in the border area of Region B and of Le Calvez 

(1958), Weston (1985) and Murray and Alve (1994) in the border area of Region C. 

Comparing the presence/absence data of benthic foraminifera of Le Calvez’s (1958) six 

stations bordering both regions, the species inventory matched by <50 %, indicating a mix 

of distinct and dissimilar assemblages. Furthermore, the dominant species of Region B 

(Duchemin et al., 2007) were completely different from those of Region C (Weston, 1985; 

Murray and Alve, 1994). The boundary between Regions A + B and C is almost the same 

as the boundary between the “South European Atlantic Shelf” and the “Celtic Sea” 

ecoregions of Spalding et al. (2007); a similar position is given for the line between 

Regions C and D (Fig. 1.1) and between the “Celtic Sea” and the “North Sea” ecoregions 

(see fig. 3 in Spalding et al., 2007). The demarcation based on foraminiferal assemblages 

has apparently led to similar divisions such as biogeographic division based on macro-

organisms (Spalding et al., 2007).   

The boundary between Region C (western approaches of Celtic Sea) and F 

(Porcupine Seabight) was based on differing topographical, sedimentological, and 

hydrographic properties (Weston, 1985). The continental slope of the Celtic Sea is 

comparatively steep (average inclination of 5 – 9°) and exhibits several submarine canyon 
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systems, with dendritic patterns imposed by numerous secondary valleys and side gullies 

(Day, 1959; Kenyon et al., 1978). In contrast, the Porcupine Seabight is a very wide valley 

with a significantly lower slope angle of 0.5 – 2° and only at its eastern margin is the slope 

cut by short canyons (Day, 1959; Kenyon et al., 1978). In Region F, brown silty muds 

were deposited predominantly at abyssal depths, whereas the proportion of sand and silt 

increased at shallower water depths (Weston, 1985). Sediments on the continental slope of 

the Celtic Sea (Region C) are composed of unconsolidated fine muds–gravel and 

consolidated clasts of Cenozoic and Mesozoic marl and chalk (Mart et al., 1979). Seasonal 

cascading of shelf water and seasonal upwelling of deep water on the continental slope 

(Cooper and Vaux, 1949; Heaps, 1980), as well as the occurrence of turbidity currents in 

submarine canyons (Shepard et al., 1979), are typical in the Celtic Sea. In Region F, 

northward-flowing boundary currents follow the local topography. Current-meter data 

from NW and S of the Porcupine Seabight showed dominant along-slope transport 

consistent with these currents (Rice et al., 1991). On the other hand, no consistent 

transport was recorded from intermediate depths in the center of the Seabight. In addition, 

nepheloid layers have been found at 700 – 800 m depths along with a permanent, gradual 

thermocline ranging from ~600 – 1400 m (Rice et al., 1991). 

The borders of the Irish Sea (Region E) are based on illustrations from Huthnance 

et al. (2009, fig. 1). The position of the north and south boundaries is defined by the 

stratification and tidal-mixing fronts within the sea. 

Delineating Regions C (Celtic Sea) and D (English Channel) was difficult because 

there was no distinct faunal change. However, the number of species did continuously 

increase from the English Channel to the Celtic Sea (Le Calvez, 1958; Le Calvez and 

Boillot, 1967; Fig. 1.2A). Furthermore, mode-of-life analyses (free or attached) showed 

variations in the border area between SW Cornwall and NNW of Brittany. An increase in 

the minimum abundance of free and attached living species was centered around 5° W 

(Fig. 1.2B and 1.2C). The position of this transition, hereby recognized as our borderline, 

coincides with the hydrographic boundary drawn by other authors based on currents and 

patterns of seasonal stratification (see fig. 1 in Murray et al., 1982; Hardisty, 1990; 

Huthnance et al., 2009). However a corresponding change in substrate properties is not 

recognized from the sediment distribution (Le Calvez and Boillot, 1967; Pingree, 1980).  
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Figure 1.2 A Number of species, B relative abundance of free-living species, and C relative 
abundance of attached-living species in the English Channel at all stations from Le Calvez and 
Boillot (1967); black lines: linear regression line in A, minimum levels in B and C; vertical gray 
bars: longitudinal range of changes. 
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1.3.2 Taxonomy and synonymy 

 

A standardized species list of the shelf and slope areas in the NE Atlantic was 

completed first before proceeding with biodiversity investigations. Our literature 

investigation revealed a compiled total of 1486 species. However, our taxonomic analysis 

concluded that 379 of these species (26 %) were synonymous, which is at the upper limit 

of the range given by Murray (2007) at 10 – 25 %. Thus, the number of benthic 

foraminiferal species at the European continental margin was reduced to 1107 (Appendix 

1.2). To obtain a benthic fauna record as complete as possible, the original species list 

included 241 species of uncertain identity (cf., aff., gr., ex gr., sp.). These taxa are likely to 

include more than one species, reducing the significant minimum species number to 866.  

In this context, the identification of potential synonyms was essential to quantify 

the total number of foraminiferal species. Species of the following genera were found to 

be represented by synonymous names (listed in Appendix 1.2): Ammoglobigerina, 

Asterigerinata, Bolivina, Cassidulina, Cibicides, Cibicidoides, Cribrostomoides, 

Eggerelloides, Elphidium, Fissurina, Labrospira, Lagena, Miliolinella, Mississippina, 

Neoconorbina, Oolina, Polymorphina, Rosalina, Spiroplectinella and Stainforthia. For 

example, many authors relate some species of Bolivina to the genus Brizalina (e.g., 

Murray, 1970, 1971, 1979, 1986; Murray et al., 1982; Weston, 1985; Giese, 1991; 

Debenay et al., 2001; Panieri, 2005; Murray, 2006; Pascual et al., 2006; Pascual et al., 

2008; Saidova, 2008). Morphologic and genetic investigations of both these genera 

revealed that a separation is not justified (e.g., Hofker, 1967; Lutze, 1974; Mehrnusch, 

1993; Ertan et al., 2004).  

For the genus Ammonia, an attempt was made to assign different literature species 

to the molecular types of Hayward et al. (2004). The species distribution was compared to 

the geographical position of the known occurrences of molecular types in the NE Atlantic. 

In many cases an assignment to these types was not possible, so we continued to use the 

morphologically defined taxa (Appendix 1.2).  

Taxa or genera that were listed as “spp.-taxa” in the literature belong mostly to the 

Bolivinidae, Fissurinidae and Miliolidae, although species of Nodosaridae, 

Trochamminidae and Saccamminidae were also often included in such a category (e.g., 

Lees et al., 1969; Caralp et al., 1970; Pujos-Lamy, 1973; Weston, 1985; Murray and Alve, 

1994; Coles et al., 1996; Debenay et al., 2001; Fontanier et al., 2003; Duchemin et al., 
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2007). The occurrences of these “spp.-taxa” were noted at the particular stations, but were 

not included in our taxonomic list and further statistical analyses. These taxa contain a 

number of different species of a particular genus; hence, information about their total 

number in the study area is strongly biased. As a result, both the total number of species 

and the synonymy rate were possibly higher in places.  

 

1.3.3 Species distribution and test composition 

 

Most of the species (31 % of 1107 taxa) occur in the Bay of Biscay (B), with the 

second largest proportion of species richness (26 %) found in Region F (Table 1.2). The 

Celtic Sea (C) and the English Channel (D) were similar with 12 – 13 % of all species 

present. Abundance was lower in Regions A and E, where only 7 % of all species 

occurred. We recorded 608 species that were found in only one region and were termed 

“unique species”. Most of them (46 %) were found in the Bay of Biscay (Table 1.3), while 

Region F showed the second largest abundance of unique species at 36 %. Lower 

percentages of unique species were recorded in Regions D and E (7 – 9 %), and Regions 

A and C (~1 %). The ratio of total to unique species for each region indicates almost 

identical values for Regions A and C and the same ratio for Regions B and F (Table 1.4). 

 

Table 1.2 Percent of 1107 NE Atlantic species by region and test structure. For 62 species (3.1 %) 
an assignment to a region was not possible, because their occurrence was not specified in 
publications belonging to more than one region.  
 

Region Percent of total species represented Hyaline Agglutinated Porcelaneous Unknown

A 7.3 65.5 16.2 17.6 0.7

B 31.0 61.6 23.1 15.0 0.3
C 12.4 58.6 29.1 12.0 0.4

D 12.6 64.7 15.7 19.2 0.4
E 7.1 66.4 18.2 14.0 1.4

F 26.4 62.2 26.0 11.6 0.2
No data 3.1 56.5 22.6 21.0 0.0
Total 100.0 62.2 22.8 14.6 0.4

 
Twenty-three percent of all species have agglutinated tests, 15 % have calcareous 

tests with a porcelaneous structure, and 62 % have a calcareous hyaline test (Table 1.2). 

The latter are most frequent in all regions, except among the unique species in Regions A 
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and C. In the English Channel (D), however, porcelaneous species are more common than 

arenaceous ones in both total and unique species. The same situation is recorded in the 

Irish Sea (E) for unique species and for all species on the Basque shelf (A) and continental 

slope (Tables 1.2 and 1.3). Furthermore, no unique porcelaneous species were found in the 

Celtic Sea (C). 

 

Table 1.3 Percent of 608 unique species for all regions by test structure. 
 

Region Percent unique species Hyaline Agglutinated Porcelaneous

A 0.7 25.0 50.0 25.0

B 45.7 63.3 21.9 14.8
C 1.2 42.9 57.1 0

D 7.1 58.1 18.6 23.3
E 9.1 61.8 14.6 23.6

F 36.4 65.6 24.0 10.4
Total 100.0 63.2 22.4 14.5

 
 
Table 1.4 Ratio of total to unique species by region. 
 
Region Species Total Unique Species Ratio (Rounded)

A 148 4 37:1
B 627 278 2:1

C 251 7 36:1
D 255 43 6:1
E 143 55 3:1

F 534 221 2:1
 

 
 

1.3.4 Diversity 

 

We used the Fisher α index to investigate the diversity of benthic foraminifera in 

the NE Atlantic. Some publications did not provide quantitative data, hence only 18 of 44 

publications could be used to calculate the Fisher α index. We also counted and illustrated 

the number of species from 27 of the publications, where complete species lists but no 

census data were provided. Note that the number of species depends on the sample size, 

which differs at different stations. The separation of living and dead faunas is essential to 

obtain significant results on diversity and the diversity response to changing 
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environments. For this reason, we only could use 13 publications for the Fisher α index 

and 12 papers for species number (Figs. 1.3, 1.4; Table 1.5; Appendix 1.3). 

 

 
Figure 1.3 Distribution of the Fisher α indices of foraminiferal assemblages in the NE Atlantic 
(based on data from Appendix 1.3). A mean value of the Fisher α index was given for the two 
transect lines in the English Channel, as calculated from the data of Rosset-Moulinier (1986). 
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Figure 1.4 Distribution of the number of living species in the NE Atlantic (based on data from 
Appendix 1.3). A mean value of the species number was given for the two transect lines in the 
English Channel, as calculated from the data of Rosset-Moulinier (1986). 
 

Region A showed the highest diversity, even though it only comprises seven 

stations. Highest Fisher α values were found between 550 − 850 m on the Basque 

continental slope (Fig. 1.5, left). Whereas the average number of species encountered is 

almost the same in Regions A, B and C, the average Fisher α index in Regions B and C is 

lower by half as compared to Region A (Table 1.5). An increase in diversity from the shelf 

to the slope was recorded in Regions B, C, and F (Figs. 1.5 and 1.6). The mean indices 

(seven on the shelf, 10 on the slope) were identical between the Bay of Biscay (B) and the 
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Celtic Sea (C), but these regions did not have mid-slope diversity maximum as in Region 

A. Region F showed lower average Fisher α values (four on the shelf, nine on the slope). 

The highest diversity was found at depths ranging from 700 − 1100 m (Fig. 1.6, right). 

Schönfeld et al. (2010) illustrated the Fisher α index of benthic foraminifera at the Irish 

and Armorican margin (parts of Regions C and F in the present paper) and constrained a 

diversity maximum between 500 − 1200 m. In addition they included unpublished data of 

Weston (1982) and Schönfeld (2006). The separation of the two regions and the use of 

other data sources may have led to this discrepancy in the diversity-maximum depth 

range. In region F, the mean species number was lower than in Regions A, B and C (Table 

1.5), but this may result from the depth range of the samples. The uppermost 20 m showed 

only low species numbers. After exclusion of these data, the mean species number rose 

from 13 to 21 (from six to 19 on the shelf), a value closer to those recorded in other areas. 

The mean indices and species numbers would potentially be marginally lower if we had 

suitable data available from the first 20 m of water depth in Regions A, B, and C. The 

diversity of benthic foraminifera was markedly lower in the English Channel. Over the 

entire area, the average number of living species on the shelf increased from north (six 

species in Region F) to south (35 in Region A). However on the slope, no relationship 

between latitude and species number was found. Nevertheless, the highest mean species 

number (37) was recorded on the continental slope of the Celtic Sea. 

 
Table 1.5 Summary of data sources, Fisher α index, and number of living species (based on data 
from Appendix 1.3). 
 

Region Parameter Publications Stations Depth (m) Range (total) Average Ø shelf Ø slope

A 1 7 188-2170 5-34 16 16 16

B 3 20 85-4800 5-17 9 7 10
C 5 134 24-3889 1-34 8 7 10

D 4 55 2-89 0-17 5 5 —
E 2 210 — — — —
F 5 38 1-3653 1-28 7 4 9

A 1 7 188-2170 7-45 27 35 26
B 4 76 85-4800 9-59 25 27 24

C 4 110 49-3889 4-48 26 24 37
D 4 53 2-89 1-21 6 6 —

E 2 210 — — — —
F 5 48 1-3653 1-33 13 6 22

Fisher α 
index

Number of 
species

—

—
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Figure 1.5 Diversity of benthic foraminifera vs. water depth from Regions A (left) and B (right). 
Note the different scales on the axes. 

 
Figure 1.6 Diversity of benthic foraminifera vs. water depth from Regions C (left) and F (right). 
 

1.3.5 Dominant species 

 

The most abundant species were identified in 31 of the 44 publications (Table 1.1). 

The first and second most abundant species at each station were marked in each of the 31 

publications. However, 143 species (13 % of 1107) were dominant and subdominant over 

the whole study area, except in Region E. About 64 % of these 143 species were dominant 

in one region only. The first and second ranked most abundant species in the majority of 

the 31 publications are C. laevigata, Cibicides lobatulus, Bulimina marginata, 

Gavelinopsis praegeri and S. sagittula. They were dominant or subdominant on the shelf 

and slope, except G. praegeri which was dominant only on the shelf. 

The dominant species in most stations was designated as the most frequently 

occurring species in a particular region. Consequently, 51 of the 143 most frequently 

recorded species (5 % of 1107) were the first or the second most frequently recorded in 

one or more publications. Listed in seven publications, the first-ranked species, C. 

laevigata occurred most frequently in Regions B, C, and F. The second-ranked species 
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from five publications were Uvigerina mediterranea, frequent on the slope in Regions B 

and F, and Stainforthia fusiformis, common in the English Channel (D) and the shelf 

adjacent to the Celtic Sea (C). To determine the distribution patterns of the six dominant 

species Cassidulina laevigata, Cibicides lobatulus, Spiroplectinella sagittula, Bulimina 

marginata, Bolivina dilatata, and Trifarina angulosa, which have the largest data 

coverage, we plotted their latitudinal vs. depth distribution for the study area from 

literature data and unpublished information from the localities of Schönfeld and Altenbach 

(2005). Because of the large number of data points, the distribution was plotted separately 

for the shelf (0 – 200 m) and slope (201 – 2500 m). Stations with living individuals were 

highlighted to visualize the distribution patterns (Fig. 1.7A-F).  

Cibicides lobatulus, S.  sagittula and T.  angulosa showed similar distribution 

patterns on the shelf. In contrast to the other five dominant species, C. laevigata was 

found above 80 m with the exception of one station in the English Channel (Murray, 1970; 

Fig. 1.7A left), and B.  dilatata was recorded living north of 55° N in only one station 

(Fig. 1.7E left). Most of the living individuals of all six species were found in the Celtic 

Sea (C) and the English Channel (D), whereas the fewest living individuals were recorded 

in Regions E and F. Examination of both the living and total assemblages showed that all 

six species exhibit a lobate, “oak-leaf” distribution pattern on the shelf (Fig. 1.7, left 

figures).  

On the continental slope, five of the dominant species showed similar distribution 

patterns with the exception of B. dilatata, as no living individuals were recorded north of 

52° N (Fig. 1.7E right). Trifarina angulosa also showed a slightly different pattern, 

because it was living in the Bay of Biscay below 2000 m. In addition, no living specimens 

of C. laevigata and B. marginata were found between 45 − 47°30’ N (Figs. 1.7A, 1.7D, 

both right). The sample coverage was substantially lower in Regions E and F, as well as 

on the shelf. With all six dominant species, we found a surprising correlation between the 

distribution patterns in Regions A and B (shelf) and the mode of life (free or attached). 

The distribution patterns of attached-living species C. lobatulus and S. sagittula were 

similar to each other in lower latitudes. The free-living species (B. dilatata, B. marginata, 

C. laevigata, T. angulosa) also have a similar distribution to each other on the shelf. In the 

other regions (C – F) there is no correlation between the distribution patterns, mode of life, 

and environmental parameters. Although C. lobatulus, B. marginata, and T. angulosa 

prefer to colonize areas influenced by bottom currents, their respective distribution 
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patterns are different. Bulimina marginata and B. dilatata thrive in fine-grained sediments, 

whereas the other four species have a positive correlation to coarse-grained material, but 

none of these “groups” shows a similar distribution within the living fauna on the shelf or 

slope.   
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Figure 1.7 A−F Latitudinal vs. depth distribution of six dominant foraminiferal species on the 
shelf (left) and slope (right) of the NE Atlantic; black dots: living individuals; white squares: dead 
or total fauna; crosses: all other stations without these taxa; vertical lines: boundary between two 
regions (A+B, C+D, and E+F); black dashed lines: distribution of dead/total assemblages; light 
gray polygon: distribution of living assemblages; dark gray patches: abundance maxima of ≥10 % 
in the living fauna. 
 

1.3.6 Mode of life 

 

Sixty percent of the species in this study lived free on or in the sediment (Table 

1.6). The second-ranked mode of life is for species that lived free or attached (20 %). The 

percentages of attached living foraminifera increased from S − N in both shelf and slope 

areas. For Regions D, E, and F, the proportion of species with attached, and free and 

attached modes of life was almost identical.  

The proportions of free and attached living specimens on the shelf and slope were 

compared for Regions B, C, and F (Table 1.7). In the Bay of Biscay (B), about twice as 

many species live free or attached on the slope as compared to the shelf. In the Celtic Sea 

(C), the number of attached species was almost the same on the shelf and slope, whereas 

the number of free-living species was about 10 % higher on the shelf. In Region F, over 

twice as many attached species lived on the continental slope, whereas ~16 % more free-

living species occurred on the shelf (Table 1.7). Note that only 435 of 2902 stations were 
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used for these calculations. In Region B (85 stations), there are three times more slope 

stations than shelf ones. In Regions C (224 stations) and F (126), however, the number of 

shelf stations is three times higher and two times higher than the number of slope stations, 

respectively. This discrepancy could also lead to a higher species number on the slope of 

the Bay of Biscay for both modes of life. 

 
Table 1.6 Percent of living and dead species related to their mode of life. For 62 species (3.1 %) 
an assignment to a region was not possible, because their occurrence was not specified in 
publications belonging to more than one region. 
 
Region Percent total species Free Attached Free and attached Unknown

A 7.3 60.8 12.8 23.7 2.7

B 31.0 62.4 14.4 19.8 3.5
C 12.4 60.2 15.9 20.3 3.6

D 12.6 52.6 21.2 22.0 4.3
E 7.1 55.9 21.0 21.7 1.4

F 26.4 59.6 18.2 18.7 3.6
No data 3.1 59.7 12.9 24.2 3.2
Total 100.0 59.5 16.7 20.4 3.4

 
 

Table 1.7 Relationship of free and attached living species between shelf and slope (relative 
abundances of living fauna). 
 
Region Free Attached Unknown

30.7 3.6 Shelf
53.9 9.0 Slope

46.0 9.0 Shelf
35.0 8.0 Slope
41.7 10.0 Shelf

25.8 21.7 Slope

B

C

F

2.7

2.0

0.8

  
 
 

An increase in species with a free mode of life on the shelf from S to N was 

recognizable. In the Bay of Biscay (B), more species occurred on the slope than on the 

shelf. However, in the Celtic Sea (C) 11 % more species lived on the shelf than on the 

slope, and ~16 % more lived on the shelf than on the slope in Region F. For attached 

living species, no N − S trend was visible. In Regions B and F, more than twice as many 

attached living species occurred on the slope, whereas in Region C 1 % more species lived 

on the shelf than on the slope (Table 1.7). 
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1.4 Discussion 

 

1.4.1 Data and inconsistencies 

 

The analysis of qualitative and quantitative data in this study demonstrated the 

difficulties in comparing different datasets and recording general biodiversity patterns. 

Often, essential metadata, such as station coordinates, water depth, sediment grain-size 

fraction, differentiation between living and dead fauna, complete species lists, and census 

data were not available in the literature we examined. Furthermore, methods and 

instruments for sampling and preparation were not as evolved in earlier studies. For 

example, species now routinely identified from the >63 µm sieve fraction were usually 

overlooked at the beginning of the 20th century, and a reliable means for differentiating 

living and dead individuals was not developed until the 1950s. The preparation and 

identification of benthic foraminifera also differed among scientists, making it difficult to 

compare faunas and determine realistic estimates of biodiversity indices. 

In addition, the six regions within our study area encompass varying 

morphological, physical, hydrographical, and sedimentological conditions, which 

complicate comparison of the foraminiferal assemblages that also change markedly with 

depth. Two of the six regions (D and E) are confined to the shelf, while the others extend 

down to the abyssal plain. Even when comparing similar depositional regimes, 

inconsistencies result from unequal sample coverage, as is the case for shelf areas in 

Regions B, C, and D that were investigated much more extensively than those in Regions 

A, E, and F. Thus, a much smaller database is available for sound comparisons. These 

inconsistencies probably influenced the diversity calculations, and in some cases, made 

rough estimates impossible (e.g., the number of species and diversity in Region E). 

 

1.4.2 Taxonomy, synonymy, and comparison with Gulf of Mexico 

 

The 44 publications included in our analyses provided valuable distribution data, 

but they also demonstrate how data acquisition and species concepts have changed over 

the past century. Most of these publications drew conclusions about ecological and 

environmental conditions from faunal assemblages and overlooked taxonomic 

considerations. We synonymised 26 % of the foraminiferal species on the European 
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continental margin, which is the same rate also found by Culver and Buzas (1980 – 1987) 

for the Atlantic (Newfoundland to the Gulf of Mexico) and Pacific (Alaska to Panama) 

coasts of North and Central America. Recently, Sen Gupta and Smith (2010) merged data 

from the census report of Culver and Buzas (1981) with those from 157 older and newer 

papers from the Gulf of Mexico to generate a comprehensive list of 987 foraminiferal 

species, of which 382 were also found in the NE Atlantic. Comparing these taxa with our 

synonymy matrix, we obtained a synonymy rate of 2 % between our approach and the 

Gulf of Mexico project. Using our species concepts, Cancris oblongus, Cassidulina 

carinata, Chilostomella oolina, Cibicides kullenbergi, Cibicidoides pseudoungerianus, 

Melonis affinis and Neouvigerina ampullacea could be included as synonyms of other 

species, thus reducing the total Gulf of Mexico species number to 980. In the NE Atlantic, 

we positively identified 866 species from the literature we examined, while excluding 241 

species with uncertain designation, thus implying that diversity in the Gulf of Mexico is 

higher. Using the number of stations and positively identified species, we calculated the γ-

diversity for both areas. Although there are many more sampled stations in the Gulf of 

Mexico (8299), both areas have a similar number of species and a γ-diversity of 16, 

expressed as a Fisher α index. This challenges the recognition of the Gulf of Mexico as a 

biodiversity hotspot (Chassignet, 2012), or implies that the NE Atlantic should also be 

regarded as a region of exceptional diversity. 

 

1.4.3 Integration of morphotypes and molecular species 

 

While assessing synonymies, we questioned whether results of recent genetic 

studies could be integrated into our investigation. In particular, the molecular type of 

different Ammonia species (Hayward et al., 2004) demonstrated that some forms assigned 

to “Ammonia beccarii” (Linné) most likely did not belong to this species. In fact, the 

illustrated A. beccarii species of Murray (1970), Pujos (1976), Rosset-Moulinier (1986), 

Giese (1991), Debenay et al. (2001) and Pascual et al. (2008) are more similar to the 

molecular type T3S [Ammonia batavus type] or T3V. Hence, A. beccarii from the Bay of 

Biscay, the Celtic Sea and the English Channel are most likely A. batavus or the T3V 

“Vendeé type”. Also Rosset-Moulinier’s (1986) species Pseudoeponides falsobeccarii 

(Ammonia falsobeccarii herein) was considered to be related to the molecular type T3S. In 

contrast, morphometric and molecular-phylogenetic analyses of A. falsobeccarii classified 
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this species as a new phylotype, different from the T3 molecular types (Schweizer et al., 

2011). There is no clear taxonomic consensus for the species reported by Rosset-

Moulinier (1986). We emphasize that the applicability of molecular types is limited, as our 

assumptions were only based on comparing illustrated specimens. To confirm the above 

species assignments, the original Ammonia material from different regions must be 

analyzed with the same morphological and genetic approaches. 

 

1.4.4 Test composition, diversity, and mode of life 

 

Regions A and E have the lowest number of species (living and dead), while 

Regions B and F have the highest. In contrast, when calculating the mean number of living 

species, Regions D and F have the lowest species number and Regions A and C have the 

highest. These variable results indicate the importance of distinguishing living and dead 

individuals for biodiversity assessment. The transport of empty tests, especially in areas 

with high bottom currents, can lead to a bias in dead assemblage composition (Murray, 

1982; Schönfeld, 2002). Furthermore, total assemblages (living and dead) reveal no 

significant correlation to any environmental parameters (see figs. 4 and 5 in Morvan et al., 

2006). For this reason, we only used the living fauna to calculate diversity, thereby finding 

two mid-slope diversity maxima in the Galicia area of Region A and to the west of Ireland 

in Region F. However, the mid-slope diversity maximum for Region A is based on only 

two data points, because only one publication could be used to calculate Fisher α indices 

for the living fauna. No mid-slope diversity maximum was found in any of the other 

regions. Nevertheless, an increase in shelf to slope diversity was also recorded in the Bay 

of Biscay (B) and the Celtic Sea (C). Despite the identical range of Fisher α indices (Table 

1.5), the mean values in Region A were twice as high as in Region C. This is most likely 

an effect of data coverage. For instance, on the Basque continental slope between 400 − 

2220 m only one station had an index <9, whereas in the Celtic Sea eight stations showed 

such values in that respective depth interval. For some stations in the Celtic Sea, the Fisher 

α index did not correspond with the “real” diversity, because the index could only be 

calculated from dominant species. Thus, we obtained very low values resulting in a lower 

mean Fisher α index for the Celtic Sea.   

The English Channel (D) and the Irish Sea (E) are the only completely shelf 

regions and have different regimes compared to the other four. In both regions, there are 
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more unique porcelaneous species than agglutinated ones and the frequency of attached 

specimens commonly exceeds 20 %. The lower diversity in the English Channel indicates 

that only a few species are adapted to the specific ecological and physical conditions in 

this sea strait. Comparing the biodiversity of both regions was not possible, because no 

data for the living fauna were available. Despite these regional differences, most taxa have 

a hyaline test and a free mode of life throughout the study area. 

 

1.4.5 Dominant species 

 

The latitudinal vs. depth distribution of the six dominant species (Cassidulina 

laevigata, Cibicides lobatulus, Spiroplectinella sagittula, Bulimina marginata, Bolivina 

dilatata and Trifarina angulosa) showed the highest frequency in the living fauna on the 

shelf (C and D) between 40 − 150 m. In the total fauna, these species were more common 

in Regions A and B. Living individuals of these species occurred between 80 − 200 m in 

the south of the study area, whereas in Regions C and D the species shoaled in that they 

were confined to depths <150 m. On the slope, the distribution patterns are quite similar 

for all six species, except B. dilatata. Trifarina angulosa showed a somewhat different 

distribution in the Bay of Biscay (B), where it was also found living at greater depths. One 

reason for this distribution could be the small grain-size fraction that was analyzed in this 

region as Trifarina angulosa was mainly found in the <250 µm fraction. While they have 

different modes of life, as well as different food and substrate preferences, the six species 

occurred in wide latitudinal and depth ranges. We thus conclude that they have the same 

ecohabitat. Especially on the shelf, the individual distribution of these species showed an 

outline similar in shape to an oak leaf. One reason for this pattern could be the species’ 

reaction to a patchy nutrient supply. This irregular, patchy distribution pattern was also 

described off NW Africa as a reaction of the foraminiferal community to higher primary 

production and downward organic flux (Lutze, 1980; Morigi et al., 2001). In some cases, 

stations with living individuals of a particular species were located close to stations where 

this species was not found. Causes for the absence of a species according to our analyses, 

in order of frequency, are: 1) the distribution of the species could not be plotted on the 

diagram, because no coordinates and/or water-depth values exist (or only an interval was 

given) at particular stations; 2) the particular species was ignored in the analyses because 

of its low abundance (e.g., <1 %) or size; 3) the species was not relevant for the aims of 
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the study and thus was not collected; 4) species of the same genus were not differentiated; 

or 5) the species was not properly identified. The incompleteness of published data 

strongly affected the results of the foraminiferal distribution. Hence, the occurrence of our 

six dominant species could not be illustrated from the data by Douvillé (1936), Le Calvez 

and Boillot (1967), Haynes (1973), Sturrock and Murray (1981), Giese (1991) and 

Saidova (2008). Because other workers listed quantitative data only for abundant species, 

the particular species we considered in this paper was unrepresented their stations (e.g., 

Castignetti and Manley, 1998), or some species were recorded only in stations where they 

occurred frequently (e.g., Murray, 1970; Murray, 1979; Coles et al., 1996). The analyzed 

size fraction also greatly affected our results. The benthic fauna was commonly collected 

from grain-size fractions of >100, >125, or >250 µm (e.g., Weston, 1985; Rosset-

Moulinier, 1986; Schönfeld and Altenbach, 2005; Rüggeberg et al., 2007; Schönfeld et al., 

2010). Because of this, several species limited to the <125 µm or smaller grain-size 

fraction were not recorded at some stations. 

 

1.4.6 Latitudinal diversity gradient and comparison with other taxa 

 

An increase in species numbers in the total assemblages on the shelf from N to S 

was first described by Saidova (2008). Our data show the same trend for the living fauna. 

A similar, southward increase in species richness was recognized in the NE Atlantic (20° 

W) down to depths of 2000 m along with fish, ostracods and other crustaceans (Angel, 

1993). The continuous increase in macrofaunal species richness was mainly recognized at 

greater water depths (>800 m). Species diversity analyses of bivalves, gastropods and 

isopods from the E and W Atlantic by Rex et al. (1993) showed clear latitudinal diversity 

gradients in the N Atlantic. A continuous increase in species diversity in the deep-sea 

benthos (500 – 4000 m) was visible from 80 − 10° N. However, no increase in 

foraminiferal species numbers from N to S at the same water-depth range was recognized 

in our study. Possible reasons may be inconsistency in the available data, which hampers 

the comparison of species numbers (e.g., the “nematode example” in Rex et al., 2001). In 

contrast, when comparing the mean Fisher α indices of the different regions, a diversity 

increase was recorded from N to S on the shelf and slope areas. The diversity of 

gastropods on the shelf in the eastern Pacific and western Atlantic from the tropics to the 

Arctic Ocean also revealed an increase in species richness from N to S (Roy et al., 1998). 
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This increase had a steep gradient between 12 − 35° N. Compared with our latitudinal 

range (43 − 58° N), the number of gastropod species increased slightly from N to S. Only 

mean sea-surface temperature showed a significant relationship with gastropod diversity, 

which was higher in warmer temperatures. The bottom-water temperature of the NE 

Atlantic shelf showed an average increase from the N to the S of approximately 3° C 

(ICES, 2009) in our study area. The salinity increased only slightly from 34 to 35.5 psu 

and the concentration of dissolved oxygen decreases from 6.5 ml/l to 5 ml/l (ICES, 2009). 

These latter variations do not influence the living conditions of benthic foraminifera, 

though. 

 

1.4.7 Regional differentiation 

 

Our data analyses have provided new insights into the biodiversity of the NE 

Atlantic. Complex relationships exist between the six regions, depending on test structure, 

mode of life, and diversity of benthic foraminiferal faunas. A distinct differentiation of 

one or two areas based on faunal criteria alone is initially not possible. The six regions in 

our study are not easily comparable due to inconsistent data, variable sample coverage, 

and different hydrographic conditions, particularly in the English Channel and the Irish 

Sea. Although every area is characterized by specific morphological, ecological and 

hydrographical conditions, the faunal data corroborate that benthic foraminiferal 

assemblages from all regions are connected with one another. We could locate neither one 

hot spot area nor large differences in biodiversity between the regions. Hence, there is 

only a low interregional diversity (γ-diversity) of Regions A − F in the NE Atlantic.  

 

1.5 Summary 

 

The data analyses of 44 publications on the distribution of benthic foraminifera 

from the NW European shelf and continental slope revealed an interregional diversity 

pattern. A comparison of faunal assemblages by region showed close linkages between the 

areas despite different hydrographical, sedimentological and morphological boundary 

conditions. The common distribution of a hyaline test structure and of a free mode of life, 

as well as increases of the Fisher α index from the shelf to the slope and of mean species 

number on the shelf from N to S, is distinctive for all six regions.  
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The latitudinal distribution of six dominant species exhibits an oak leaf-shaped 

distribution pattern for the shelf areas. At present, it is difficult to judge whether this 

pattern reflects the real distribution or if it is artificially created by heterogeneous sample 

coverage. For example, the distribution patterns of living individuals on the Regions E and 

F shelves were based only on three publications (20 stations). A more representative 

distribution pattern requires more faunal information from these regions and from adjacent 

boundaries. However, available data display similar distribution patterns for a particular 

species on the continental slope. Especially in the English Channel and the Celtic Sea, the 

dominant species, except Trifarina angulosa, were found nearly throughout the whole 

depth range (0 − 2000 m). This suggests that favorable environmental and substrate 

conditions were the same for most species, supporting the contention that the “oak leaf” 

distribution pattern displays a mega-patchiness, as has already been described for the NW-

African margin. 

Determination of foraminiferal diversity requires a standardized taxonomy as well 

as standard protocols for sampling and preparation. The integration of published data has 

shown significant variation in taxonomy and sampling and preparation methods among 

different working groups. The main obstacles impeding sound diversity analyses of 

existing data are data availability, such as station coordinates, grain size, water depth, and 

incomplete faunal reference lists. Thus, compilation studies, such as ours, that standardize 

data are essential in creating a composite picture of benthic foraminiferal distribution and 

assemblage change over time.  
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Abstract 

 

The faunal composition and diversity pattern of Recent benthic foraminifera from 

the shelf and slope of the South Western Approaches (Celtic Sea) were assessed. The 

sampling stations cover a depth range from 100 to 500 m. A total number of 294 species 

was recorded, of which 89 were found exclusively in the living fauna and 118 only in the 

dead assemblage, whereas 87 species were found in both assemblages. The faunal 

composition revealed a distinct bisection of the living fauna on the shelf. While certain 

distribution patterns of living dominant species were recognized along a NE – SW 

trending transect towards the shelf edge, the living fauna changed within small depth 

intervals and geographic position on the slope. Causes for this structured slope 

assemblages were probably along-slope currents of varying strengths, as well as variations 

in topography and bottom sediments. Analyses of population densities and diversity 

patterns determined high densities along the shelf edge and at one slope station, as well as 

an increasing diversity with water depth. A comparison with literature data from the same 

area yields distinct differences in faunal composition on the shelf and slope. The diversity 

was similar on the shelf, but higher at corresponding stations on the slope. We conclude 

that the faunal composition was highly influenced by the time and methods of sampling. 

In order to obtain consistent results in regional studies, all samples should be taken in a 

short time interval and by using the same sampling device. In addition, we depicted the 
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influences of environmental parameters on dead faunal assemblages and their 

consequences for paleoenvironmental interpretations of fossil foraminiferal assemblages.  

 

2.1 Introduction 

 

2.1.1 Geomorphology 

 

The study area is located at the South Western Approaches, a region of the Celtic 

Sea. This shallow marginal sea is situated to the south of Ireland and southwesterly of 

Great Britain and covers an area of 75000 km² up to 200 m water depth (Hardisty, 1990). 

The outer western English Channel and the southern Celtic Sea are known generally as the 

South Western Approaches (Hamilton, 1979). The sea floor of the Celtic Sea shelf is 

characterized by an extensive field of SW – NE trending linear tidal sand ridges between a 

water depth of 130 m and the shelf break (Bouysse et al., 1979; Pantin and Evans, 1984; 

Scourse et al., 2009). These ridges are 40 – 200 km long and 4 – 15 km wide. They are 

discrete sedimentary bodies resting on a sub-horizontal erosional surface cut across Lower 

Pleistocene to Devonian-Carboniferous marine formations (Pantin and Evans, 1984; 

Scourse et al., 2009). Below the shelf break at about 200 m depth, the 1° - 4° steep 

continental slope leads down to the abyssal plain in water depths ranging from 4200 – 

4400 m (Hamilton, 1979; Bourillet et al., 2003). The western continental slope is 

characterized by terraces with a low gradient (e.g., Goban spur), whereas the southern part 

of the slope consists of more than 30 NE-SW running submarine canyons in a dendritic 

pattern (e.g., Shamrock canyon, Blackmud canyon; Hamilton, 1979; Bourillet et al., 2003; 

van Rooij et al., 2007). 

 

2.1.2 Bottom sediments 

 

Recent sea-floor sediments of the Celtic Sea consist mainly of Pleistocene gravels, 

sands and clays, as well as biogenous components (skeletal and shell fragments) from 

organisms living on the shelf (Banner and Culver, 1979; Hamilton, 1979). In areas 

affected by strong bottom currents, these sediments move over a pavement of immobile 

pebbles and shells (Stride, 1963; Pantin and Evans, 1984). Especially in the South 

Western Approaches, sediments are successively transported towards the shelf edge, 
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where they may travel down submarine canyons as a grain flow (Stride, 1963; Hamilton, 

1979). 

 

2.1.3 Hydrography 

 

Sediment transport on the Celtic shelf is characterized mainly by wind and density 

driven flows, as well as tidal currents and seasonal storm induced waves (Murray et al., 

1982; Pingree and LeCann, 1989; Huthnance, 1995). Because of low water depths, the 

shelf is characterized by a seasonal thermal stratification of the water column (Austin et 

al., 2006). During the winter months the water column is well mixed to a depth of 300 m, 

whereas from April to October it is strongly stratified (Joint et al., 2001). A slope current 

flows in northward direction alongside the shelf edge and the upper slope (< 1000 m; 

Huthnance, 1995; White, 2007). This slope current occurs together with a wind and 

density driven cross current on the shelf (White and Bowyer, 1997). Contour currents, in 

depth ranges of 100 – 450 m and 450 – 1000 m, transport northeastern Atlantic water 

masses to the Norwegian Sea. They reach the highest current velocity in the winter months 

(Pingree et al., 1999; Friocourt et al., 2007). 

 

2.1.4 Productivity 

 

The development of the spring bloom in the Celtic Sea depends strongly on the 

mixing of the water column (Joint et al., 2001). This bloom occurs mainly between the 

middle of April and the beginning of May (Gowen et al., 1999; Rees et al., 1999; Joint et 

al., 2001). Over the shelf, phytoplankton production is influenced by changes in nutrient 

advection at the shelf edge (Pingree et al., 1981, 1982). The phytoplankton species 

composition varies both annually and geographically and it is influenced by dissolved 

nutrient ratios as well as vertical mixing events (Martin-Jézéquel and Videau, 1992; Van 

Oostende et al., 2012). The annual surface ocean phytoplankton production at the South 

Western Approaches is 245 g C m-2 a-1. During spring bloom, it may reach 1.4 g C m-2 d-1 

(= 511 g C m-2 a-1 for bloom times; Joint et al., 2001). Phytodetritus is rapidly deposited 

on the sea floor immediately after the bloom (Rees et al., 1999). On the shelf, it is swept 

by currents, moves towards the shelf break, and forms intermediate and near-bottom 

nepheloid layers. They spread along density interfaces at mid depth, or descend the 
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continental slope, partially funneled in canyons (Heussner et al., 1999; Van Weering et al., 

2001).  

 

2.1.5 Previous work 

 

Early studies of benthic foraminifera from the Celtic Sea and western English 

Channel depicted a correlation between the faunal variations and water depth, sediment 

type, and tidal and current regimes (Le Calvez, 1958; Le Calvez and Boillot, 1967; 

Murray, 1970; Murray, 1979; Sturrock and Murray, 1981; Murray et al., 1982; Weston, 

1985; Scott et al., 2003). Further investigations of suspended sediment samples showed 

that small, dead foraminiferal tests (<200 µm) were suspended and transported from areas 

with powerful vertical turbulences and mixing (e.g., English Channel) to areas with a 

thermally stratified water column (e.g., South Western Approaches; Murray, 1970; 

Murray, 1979). Particularly strong bottom currents in the southern Celtic Sea pass over the 

shelf and lead to deposition of transported tests on the slope (Murray et al., 1982). The 

intensity of the current systems influences the seasonal stratification on the Celtic shelf. 

Environmental parameters such as food supply and oxygen concentrations in pore and 

bottom waters are linked to seasonal stratification and vary from mixed to stratified 

waters. These parameters are the primary controlling factors on the distribution of benthic 

foraminiferal assemblages (Weston, 1985; Scott et al., 2003). 

In a recent compilation study, distribution patterns of common benthic 

foraminiferal species depicted “oak leaf” shaped mega patchiness on the shelf, suggesting 

lateral variations in environmental conditions on a 100 km scale or mirroring non-random 

sample distribution. A transect through the English Channel suggested an indistinct 

increase in species richness towards the Celtic Sea. This trend was blurred by large 

differences in taxonomy, sampling and preparation methods as reported in the literature 

(Dorst and Schönfeld, 2013).  

The aim of our study was to revisit and extend the Channel transect across the shelf 

to the uppermost slope of the South Western Approaches. For this purpose, samples were 

taken on a transect perpendicular to the hydrographic front in the outer Channel separating 

mixed and thermally stratified waters. This will allow us to assess the effect of depth and 

distance from the Channel entrance on benthic fauna, and to constrain which 

environmental parameters influence these changes. Samples from other cruises, lying 
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close to the transect were also considered in order to improve the spatial sample resolution 

of the transect. During the course of the study, it turned out that the influence of the 

hydrographic front was less distinct and that shelf upwelling and food availability were of 

greater importance for the benthic faunal assemblages. Following these results, we 

extended our study and took samples underneath the shelf upwelling zone during the 

spring bloom in May 2008. Integrating both sample sets will allow describing the 

foraminiferal response to multiple environmental influences. Such insights should 

contribute to a better understanding of fossil assemblages and their paleoenvironmental 

implications. Sample preparation, faunal analyses and taxonomy followed current 

concepts, facilitating a higher data consistency as among earlier studies (Schönfeld et al., 

2012, 2013). 

  

2.2 Materials and Methods 

 

2.2.1 Sample and data sources 

 

The study area is located in the South Western Approaches of the Celtic Sea, 

southwest of the English Channel between 47° and 50° N (Fig. 2.1). We investigated 13 

surface samples from the shelf and uppermost continental slope between 115 and 467 m 

water depth. The samples are broadly aligned along a NE – SW transect, with several 

samples situated along the NW – SE directed shelf break. Faunal data of five adjacent 

shelf stations of Sturrock and Murray (1981) and Murray et al. (1982) were also 

considered in our analyses (Fig. 2.1). For these two studies only, the metadata 

(coordinates, water depth, size fraction, discernation of live and dead specimens, complete 

quantitative faunal data) were available, and thus allow a comparison with the results of 

our study. Census data of the living fauna were published as Excel web files (WA-118) by 

Murray (2006). For the continental slope, faunal data from three stations of Schönfeld and 

Altenbach (2005) were considered too. The census data were partially published in 2005 

(living Uvigerina species only). Herein, we used the complete dataset of living and dead 

foraminiferal species. Foraminiferal data from Le Calvez (1958), Le Calvez and Boillot 

(1967), Murray (1970) and Weston (1985) from this area were also considered (Fig. 2.1).  
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Figure 2.1 Geographical position of our stations (circles) and corresponding stations of other 
authors; squares: stations of Sturrock and Murray (1981) and Murray et al. (1982), triangles: 
stations of Schönfeld and Altenbach (2005), diamonds: stations of Le Calvez (1958), Le Calvez 
and Boillot (1967), Murray (1970) and Weston (1985). 
 

2.2.2 Methods of sampling 

 

Samples were taken on three separate cruises in 1995 (FS Thalia), 1997 (R/V 

Victor Hensen) and 2008 (R/V Belgica; Tab. 2.1). During the R/V Victor Hensen cruise, a 

Van Veen grab sampler was used. Samples were preserved and stained in a Rose 

Bengal/ethanol solution in order to recognize foraminifers living at the time of sampling 

(Lutze and Altenbach, 1991; Murray and Bowser, 2000). Samples from the R/V Belgica 

cruise and the FS Thalia cruise were taken with a NIOZ Haja box corer, also preserved, 

and stained in ethanol and Rose Bengal (Tab. 2.1). All samples were taken from the 

uppermost centimeter of the surface sediment. 
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Samples of Sturrock and Murray (1981) and Murray et al. (1982) were taken with a 

Shipek grab sampler (modified to prevent washing of the sample) and preserved in 

methanol. Samples of Schönfeld and Altenbach (2005) were recovered with a USNEL box 

corer. Foraminiferal samples were taken from the 0 to 1 cm interval of the surface 

sediment, and preserved and stained with a methanol/Rose Bengal solution on collection 

(Tab. 2.1). 

 

Table 2.1 Metadata of stations from this study and Sturrock and Murray (1981), Murray et al. 
(1982), and Schönfeld and Altenbach (2005). Bold numbers were used as abbreviations of the 
station numbers in the text and figures. 
 
Studies Cruise Station Sampling date Latitude Longitude Depth (m) Device

VH-97-32D 04.04.1997 49°00.03' N 5°56.55' W 115 Van Veen grab 

VH-97-33D 04.04.1997 48°44.33' N 6°12.33' W 131 Van Veen grab 

VH-97-34 04.04.1997 48°27.05' N 6°26.82' W 116 Van Veen grab 

VH-97-35 04.04.1997 48°09.23' N 6°41.29' W 150 Van Veen grab 

VH-97-36 04.04.1997 47°51.95' N 6°57.05' W 170 Van Veen grab 

VH-97-37 04.04.1997 47°32.94' N 7°14.99' W 467 Van Veen grab 

VH-97-49 05.04.1997 47°33.21' N 7°14.45' W 340 Van Veen grab 

VH-97-50 05.04.1997 47°34.43' N 7°13.10' W 191 Van Veen grab 

BG0812a-02 08.05.2008 47°47.94' N 6°54.48' W 128
NIOZ Haja box 

corer

BG0812a-05 10.05.2008 48°12.06' N 7°35.88' W 177
NIOZ Haja box 

corer

BG0812a-06 09.05.2008 47°53.94' N 7°53.88' W 450
NIOZ Haja box 

corer

BG0812a-08 11.05.2008 48°29.76' N 8°30.18' W 151
NIOZ Haja box 

corer

FS Thalia D78/95 29.10.1995 48°30.97' N 5°57.81' W 119 Van Veen grab 
Murray et 
al. (1982)

unknown 12/97 08.-13.10.1979 49°10' N 6°59' W 122 Shipek grab

3/13 48°41' N 6°56' W 145 Shipek grab

18/166 48°22' N 6°09' W 145 Shipek grab

17/152 48°21' N 6°59' W 176 Shipek grab

1/1 48°20' N 7°32' W 170 Shipek grab

PO201/10-753 04.07.1994 47°47.04' N 7°45.90' W 684
USNEL box 

corer

PO201/10-754 04.07.1994 47°54.18' N 7°39.90' W 398
USNEL box 

corer

PO201/10-755 04.07.1994 47°56.64' N 7°37.92' W 207
USNEL box 

corer

spring/ autumn 
1977-1979

unknown

This study

Schönfeld 
and 
Altenbach 
(2005)

Sturrock 
and 
Murray 
(1981)

R/V Victor 
Hensen

RV Belgica 
2008/12a

FS 
Poseidon 

201
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2.2.3 Sample preparation 

 

Samples were carefully washed through stacked 2000 µm and 63 µm sieves. 

Residues were dried at 60° C. In cases when residues were very rich in foraminifers, 

samples were split with an Otto microsplitter to manageable subsets with a target number 

of 300 to 400 specimens per census. Splits or residues were further subdivided into 

different grain-size fractions (63 – 125 µm, 125 – 250 µm, 250 – 400 µm and 400 – 2000 

µm) to facilitate microscopic work. The >2000 µm fraction, consisting of pebbles, sand, 

and skeletal and shell fragments was examined for attached living foraminifers. Samples 

were routinely picked dry. Some detritus-rich samples were picked wet in order to 

facilitate microscopic work. Living and dead individuals were recorded separately. All 

specimens were collected in Plummer cell-slides, sorted at species level, fixed with glue, 

and counted. The samples and Plummer cells were stored at GEOMAR Helmholtz Centre 

for Ocean Research Kiel. 

Samples of Sturrock and Murray (1981) were reported to have been washed on a 

63 µm sieve, stained with rose Bengal, washed again on a 63 µm sieve and dried at 80° C. 

Afterwards the foraminiferids were floated off in trichloroethylene and over 100 living 

(stained) individuals were counted. All substrates >4 mm were examined for attached 

species. Samples of Murray et al. (1982) were reported to have been stained in a Rose 

Bengal solution of at least 30 minutes and then were washed on a 76 µm sieve. Residues 

were examined wet for all stained foraminifers.  

Samples of Schönfeld and Altenbach (2005) were washed by the second author of 

the present paper through stacked 2000 µm and 63 µm sieves. The >2000 µm fraction was 

examined for attached living foraminifers. Residues were further divided into the 63 – 250 

µm and 250 – 2000 µm grain-size fractions. Both, the living (stained) and dead 

foraminiferal specimens were analyzed from the >250 µm fraction by the second author. 

Their samples and Plummer cells were stored at GEOMAR Helmholtz Centre for Ocean 

Research Kiel, too. 

 

2.2.4 Taxonomic identification of foraminiferal species 

 

Foraminiferal species were determined after Phleger and Parker (1951), Parker 

(1954), Murray (1971), Haynes (1973), and Jones (1994). They were cross-checked with 
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type descriptions of Ellis and Messina (1940) catalogue. Certain arenaceous species were 

determined after Brönnimann and Whittaker (1983), Brönnimann and Zaninetti (1984), 

and Brönnimann and Whittaker (1988, 1990). Ammonia species were assigned to their 

molecular types after Hayward et al. (2004). 

  

2.3 Results 

 

2.3.1 Faunal distribution pattern and abundant species 

 

A total number of 294 species were recorded, of which 89 were found exclusively 

in the living fauna and 118 only in the dead assemblage, whereas 87 species were found in 

both assemblages. These figures are based on an overall census of 4419 living and 5948 

dead specimens. Fifty-nine percent of all species belong to the suborder Rotaliina, 33 % to 

the suborder Textulariina and 9 % to the suborder Miliolina.  

The distribution pattern of living species revealed a bisection in shelf and slope. 

The shelf is also structured by a proximal and a distal fauna (Fig. 2.2). The faunal 

composition was largely consistent within these shelf groups, whereas a strong variation in 

the living faunas between the individual stations was found on the slope. Dead 

assemblages showed differences in composition as compared to the living fauna, but the 

variability in dead assemblages between individual stations was lower. In particular, the 

number of species of the living fauna (28 dominant species) was nearly twice the number 

of the dead assemblage (15 dominant species). A bisection was recorded between a shelf 

assemblage (stations 32 – 36, 02 and 78) and a mainly slope assemblage (stations 37, 49, 

50, 06, and 05 and 08; Fig. 2.3). Trifarina angulosa and Gavelinopsis praegeri were the 

most frequent species in the living fauna (Fig. 2.2, Pl. 1, 2). They were recorded as 

dominant species (one of the five most abundant species in a station) at nine and ten 

stations, respectively, with a frequency of 5 – 28 %. Trifarina angulosa was recorded up 

to 340 m water depth, whereas Gavelinopsis praegeri was found frequently only to the 

shelf edge at 191 m. Bolivina difformis and Cassidulina obtusa showed distinct 

distribution pattern on the shelf (Fig. 2.2, Pl. 1, 2). Bolivina difformis was recorded as a 

frequent species only at stations that were located inside the tidal sand ridges system (Fig. 

2.2). Cassidulina obtusa was recorded as an abundant species at stations situated along the 

shelf edge (Fig. 2.2). In addition, Cibicides lobatulus (Pl. 1, 2) was with 36 % the most 
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abundant species only at one station close to Brittany, and its frequency was markedly low 

(<5 %) at all other stations. Epistominella vitrea was the most abundant species (23 %) at 

the westernmost shelf edge (Fig. 2.2). This species was also found living at other shelf and 

slope stations, but with much lower proportions (≤2 %). 

 

Figure 2.2 Station map with proportions of dominant living species. 
  

The living fauna was different at the slope stations, changing substantially with 

increasing depth and geographical distance between the stations. In particular, Trifarina 
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angulosa and G. praegeri were the first and second ranked species on the shelf edge 

(station 50), whereas Rotaliammina concava, Reophax curtus, Placopsilina sp., 

Valvulineria sp. and Melonis barleeanum were the first and second ranked species at the 

deeper stations (Fig. 2.2, Pl. 1, 2). We used the similarity index of Sanders (1960) to 

identify the similarities between the living faunal assemblages of the slope stations. 

Therefore, we compared the relative abundance of taxa between stations 50 and 49, 49 and 

37, 37 and 06, and 49 and 06. The similarity index decreased from 38 % to 4 %, which 

means that the faunal differences changed significantly with increasing depth and 

geographical distance between the stations. 

We compared the inventory of our most abundant living species at six shelf 

stations (32 – 35, 05 and 78) with those from adjacent stations reported by Sturrock and 

Murray (1981) and Murray et al. (1982). They recorded a total number of 61 living species 

and 587 specimens from five stations. In contrast, the total number of living species at our 

six stations was 98 and based on an overall census of 2371 specimens. The γ-diversity was 

with a Fisher α index of 17 in the literature data and about 21 in our data, not substantially 

different (Schönfeld et al., 2013). Comparing the dominant species inventory of adjacent 

stations, we found a match of the same four dominant species (T. angulosa, G. praegeri, 

C. lobatulus and Spirillina vivipara) for our station 78 and their station 18/166 (Fig. 2.1). 

At all other stations, only two species were the same as in our corresponding samples. 

These species were T. angulosa, G. praegeri, Portatrochammina murrayi or C. obtusa, 

each at respective stations. In addition, S. vivipara was recorded as a frequent species in 

four samples of Sturrock and Murray (1981) and Murray et al. (1982). This species was 

abundant only in the above-mentioned station 78, but less frequent (<2 %) at the other five 

stations.  

The living fauna at the slope stations 37, 49, 50 and 06 were compared with the 

living fauna from three adjacent stations of Schönfeld and Altenbach (2005). They 

analyzed the benthic foraminiferal fauna from the >250 µm fraction. No further 

foraminiferal analyses of the <250 µm fraction was made, in order to preserve the 

authenticity of the reference material of Schönfeld and Altenbach (2005). Therefore, we 

extracted the faunal data of the >250 µm fraction from our census for the four slope 

stations. A total number of 38 living species and 172 specimens were recorded. In 

contrast, 88 living species and 330 specimens were recorded by the other authors. Hence 

their γ-diversity with a Fisher α index of 39 was markedly higher than that of 15 in our 
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samples. A consistent species distribution pattern was not found in either sample set. The 

faunal composition changed significantly with increasing depth. However, species of the 

genus Reophax were recorded dominant at the stations of Schönfeld and Altenbach 

(2005). On the other hand, R. concava was one of the dominant species at our stations. 

Comparing the dominant species from similar water depths, only one living species was 

the same at every station. 

 

Cibicides lobatulus and Spiroplectinella sagittula were the most frequent species 

in the dead assemblages (Fig. 2.3, Pl. 1, 2). They occurred as dominant with a frequency 

of 6 – 39 %. Distinct distribution patterns were distinguished for other dominant species. 

Textularia pseudogramen was recorded as a frequent species only up to 150 m water 

depth, whereas it was less abundant (<5 %) in all other stations (Fig. 2.3, Pl. 1, 2). 

Bolivina difformis and C. obtusa were found in all stations, but were only recorded as a 

dominant species along the shelf edge and at station 06. Globocassidulina subglobosa was 

found to be frequent at all slope stations and at station 05 (Fig. 2.3, Pl. 1). 

The dead assemblage of the >250 µm fraction from slope stations 37, 49, 50 and 

06 was compared with the dead assemblage of Schönfeld and Altenbach (2005). We 

determined a total number of 59 dead species, based on 432 specimens, whereas a total 

number of 73 dead species and 954 specimens were recorded by Schönfeld and Altenbach 

(2005). The γ-diversities were with an index of 18 in each case the same. Cibicides 

lobatulus, Cibicides refulgens and Cibicidoides sp. were recorded as a dominant species at 

our stations 49 and 50 and their stations 754 and 755, respectively. At deeper stations, the 

inventory of the five most abundant species changed completely. Only one dominant 

species from our station 06 matched with one dominant species from their station 753.  
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Figure 2.3 Station map with proportions of dominant dead species.   
 

2.3.2 Population density and faunal diversity (Fisher α index) 

 

In the living fauna, population densities ranged from 12 specimens per 10 cm³ 

(station 37) to 522 specimens per 10 cm³ (station 08). The population density was 

generally highest between 130 – 180 m depth (Fig. 2.4). The number of individuals per 10 

cm³ decreased successively on the slope, with exception of station 06. The number of tests 

per 10 cm³ in the dead assemblage was highest at station 06, and the lowest number was 

found at station 49 (Fig. 2.5). Overall, the number of tests per 10 cm³ was highest along 

the shelf edge and lowest along the transect on the slope. 
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Figure 2.4 Population densities of the living fauna per 10 cm³. 
 

Figure 2.5 Number of individuals per 10 cm³ of the dead assemblages. Please note the different 
scale at the y-axis compared to Fig. 2.4. 
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Population densities of six stations were compared with densities from adjacent 

stations of Sturrock and Murray (1981) and Murray et al. (1982; Fig. 2.1). They found 

population densities between 60 and 80 individuals per 10 cm³ in their samples, whilst we 

recorded population densities between 25 and 300 individuals per 10 cm³. We additionally 

compared the number of living individuals per 10 cm³ (>250 µm) from three stations of 

Schönfeld and Altenbach (2005), with data from stations 37, 49, 50 and 06 in this study. 

Population densities were with 11 and 23 individuals per 10 cm³ higher in the samples of 

Schönfeld and Altenbach (2005) than in samples from this study, where 4 – 12 individuals 

per 10 cm³ were recorded.  

To describe and compare the diversity of benthic foraminifera in the study area, we 

used the Fisher α index, in order to retain consistency with other publications from the NE 

Atlantic (Fisher et al., 1943; Hayek and Buzas, 2013). A distinct bisection of Fisher α 

indices and water depth was found (Fig. 2.6). The index of the living fauna showed values 

between 6 and 15 up to the shelf break. At the deepest stations on the slope, the Fisher α 

index of the living fauna ranged from 17 to 19. Similar indices for the living fauna were 

found at most stations, when comparing our data with diversity measures as reported by 

Sturrock and Murray (1981) and Murray et al. (1982). Therefore, the diversity can be 

considered as being rather uniform in this area (Fig. 2.6). In contrast, the diversity on the 

slope was significantly different between our stations and the stations of Schönfeld and 

Altenbach (2005). With indices between 20 and 40, the diversity of the living fauna was 

much higher in the aforementioned study than in our study (<10).  
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Figure 2.6 Fisher α index of the living fauna (gray circles) and dead assemblages (white circles) as 
a function of water depth; gray squares: Fisher α index of the living fauna of Sturrock and Murray 
(1981) and Murray et al. (1982). 
 

2.3.3 Correspondence analysis 

 

Correspondence analysis (CA) is one of the eigenvector methods for exploring 

large and complex data sets. The analysis produces scatter plots where data with the same 

or similar properties are shown in a cloud of points in an ordination plot (Hennebert and 

Lees, 1991; Hammer et al., 2001). We applied CA for our samples together with the data 

of Sturrock and Murray (1981), Murray et al. (1982), and Schönfeld and Altenbach (2005) 

to identify relationships between samples or faunal assemblages.  

CA was undertaken for the dominant living species, which comprise the five 

ranked species from every station, and which produced the most significant results. 

Because station 06 had a complete different faunal assemblage, we eliminated this station 

from the CA. The analysis extracted 11 axes for 23 dominant species from 12 samples. 

The best discernation of faunal groups was displayed between the two first ranked axes 

representing 44 % of the total data variability. The station scores inferred three clusters, 

where stations 37 and 49 from the slope were separated from the other stations by an axis 

1 score of 1.2, and by each other by axis 2 scores (Fig. 2.7). All other samples derived 

from the shelf and grouped at axis 2 in a score range from 0.6 to -0.7. It is therefore 
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conceivable that axis 1 can be interpreted as reflecting water depth. At axis 2, station 08 

was situated at the positive score end, whereas station 78 was situated at the negative 

score end. Thus, axis 2 can be interpreted as reflecting the proximal and distal distribution 

at the shelf. The species scores inferred to a top left open parabola-like structure (Fig. 2.8). 

One or three species were situated at the endpoint and right edge of the parabola. They 

were dominant in only one station. These species were Epistominella vitrea at station 08, 

Textularia skagerakensis and Placopsilina sp. at station 49, as well as Bolivina variabilis, 

Reophax curtus and Trochammina squamata at station 37 (Pl. 1, 2). All above mentioned 

species occurred with low frequencies in other stations, except Reophax curtus. We also 

carried out CA for all living species and for the living species with a frequency ≥2 % and 

≥5 %, together with the data of Sturrock and Murray (1981), Murray et al. (1982), and 

Schönfeld and Altenbach (2005). No other results were obtained from the CA as 

compared to the analyses described above.  

 

Figure 2.7 Correspondence analysis of the living dominant species without station 06; sample 
distribution. 
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Figure 2.8 Correspondence analysis of the living dominant species without station 06; species 
distribution. 
 

2.4 Discussion 

 

2.4.1 Distribution pattern of abundant species in the living fauna 

 

The species distribution pattern revealed a bisection in shelf and slope, and a 

structured shelf with a proximal and distal faunal assemblage. Trifarina angulosa and 

Gavelinopsis praegeri were the most common species on the shelf and uppermost 

continental slope. Trifarina angulosa is an epifaunal to shallow infaunal (0 – 1.5 cm 

sediment depth) free living species and occurs in coarse to gravelly biogenic sands on the 

shelf and upper slope, where the sediment is under the influence of bottom currents, and 

where oxic conditions prevail (Mackensen et al., 1993, 1995; Harloff and Mackensen, 

1997; De Stigter et al., 1998; Schönfeld, 2001, 2002; Murray, 2006, 2013). Gavelinopsis 

praegeri is an epifaunal opportunistic (free or attached) living species that is most frequent 

in coarse pebbly sands of the inner and middle shelf influenced by tidal currents and storm 
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waves (Sturrock and Murray, 1981; Murray, 2006). In contrast, other abundant species 

showed distinct distribution patterns. Bolivina difformis was recorded as a frequent species 

only on the shelf within the tidal sand ridges (130 – 200 m, Fig. 2.9). Different 

hydrographic conditions inside and outside of the tidal sand ridge field may therefore 

influence the abundance of this species. Cassidulina obtusa was frequent only at stations 

along the shelf edge. Water masses from the Bay of Biscay run alongside the shelf edge in 

a NNW direction. This flow is connected with a higher supply of food particles (New, 

1988; Wollast and Chou, 2001) by enhanced primary production (Joint et al., 2001; Van 

Oostende et al., 2012). This process seems to favor the abundance of C. obtusa. Besides a 

higher food supply, the quality and composition of organic matter could influence the 

faunal assemblages. For example, Epistominella vitrea was only abundant at station 08, 

sampled immediately after the spring bloom (Van Oostende et al., 2012). Epistominella 

vitrea is an infaunal opportunistic species that prefers a muddy to sandy substrate and 

which responds to high food availability (Jorissen et al., 1992; Murray, 2006; Mendes et 

al., 2012). Concentration of surface water chlorophyll a was 15 mg/m² at station 08 at the 

time of sampling, whereas chlorophyll a concentration ranged between 30 and 40 mg/m² 

at stations 02, 05 and 06 (Van Oostende et al., 2012). In addition, the phytoplankton 

community was dominated by coccolithophores and dinoflagellates at station 08, whereas 

diatoms were most abundant at the other three stations (fig. 9 in Van Oostende et al., 

2012). This pattern suggests that Epistominella vitrea being better adapted to feed on 

coccolithophores and dinoflagellates. Different substrates also had an influence on species 

distribution pattern. Most of the shelf stations were dominated by gravel sands, whereas 

larger pebbles and shell fragments were retrieved at station 78. Species like Cibicides 

lobatulus and Spirillina vivipara, which preferred to live epibenthic on different substrates 

(Sturrock and Murray, 1981; Schönfeld, 2002; Murray, 2006), were frequent at this 

station. These two species were also found abundant at the adjacent station 18 /166 of 

Sturrock and Murray (1981). Cassidulina obtusa was found frequently by the 

aforementioned authors inside the tidal sand ridge system at stations 3/13, 17/152 and 1/1, 

although these stations were not situated along the shelf edge (Fig. 2.9). A reason for this 

pattern could be the time of sampling combined with a higher food supply. The growth of 

some species was favored during the summer months, when under a stratified water 

column a higher organic carbon concentration in the sediment prevailed (Scott et al., 

2003). Samples of Sturrock and Murray (1981) were taken before the vertical mixing of 
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the water column in autumn. This would offer an explanation for the higher proportion of 

C. obtusa in their samples from the sand ridges. 

 

Figure 2.9 Location map showing Celtic Sea linear tidal sand ridges; circles: stations of this study, 
squares: stations of Sturrock and Murray (1981) and Murray et al. (1982), triangles: stations of 
Schönfeld and Altenbach (2005); modified from Scourse et al. (2009). 
 

The living faunas on the slope were significantly different to those on the shelf. 

Abundant species changed within small depth intervals. Even though our data set is rather 

sparse in seasonal and spatial coverage, the living fauna evidently showed a high degree of 

partitioning on the uppermost slope in comparison to the shelf. In this context, different 

water masses on the continental slope gain relevance. Whilst the North Atlantic Current 

moves in a SE direction along the shelf edge, underlying water masses of the slope current 

flow in a northward direction (Van Aken, 2001; Friocourt et al., 2007). Nutrient inputs 
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variable by lateral advection, timing, and composition at specific depth intervals are 

therefore important in establishing habitats for different species on the upper slope. As on 

the shelf, different substrates probably also influenced the occurrence of certain species. 

At station 06, the sediment was a very fine quartz-rich sand, whereas a coarser sand with 

abundant shell detritus was found at the other stations. Completely different species were 

abundant at station 06, and were found neither living nor dead at the other stations (e.g. 

Melonis barleeanum). Besides the influence of different slope currents at different depths, 

the time of sampling could influence the faunal assemblages. Samples of Schönfeld and 

Altenbach (2005) were taken in July, whereas our samples were taken at the beginning of 

April and May (Tab. 2.1). Only one positive match of a frequent species >250 µm was 

recognized between the three stations of Schönfeld and Altenbach (2005) and our four 

slope stations. Most of these abundant species lived epifaunal and attached onto hard 

substrates (Cibicides lobatulus, Placopsilina sp. and Trochammina squamata).  

 

2.4.2 Distribution pattern of abundant species in the dead assemblage 

 

The abundant species of the dead assemblage were significantly different from the 

living fauna, but occurrence patterns were more consistent within the dead assemblages. A 

distinct distribution pattern as seen in the living fauna on the shelf was not recognized. 

However, Bolivina difformis and Cassidulina obtusa were only common on and along the 

shelf edge, as well as at station 06. Total foraminiferal assemblages were analyzed by Le 

Calvez (1958) close to stations 05 and 08 from this study. Bolivina difformis and C. obtusa 

were not observed, but C. crassa and C. laevigata were found in this area. It is 

conceivable that a taxonomic misidentification of C. crassa and C. laevigata accounts for 

this difference. In particular, shape and size of C. crassa and C. obtusa are very similar. 

High percentages of Cibicides lobatulus and Spiroplectinella sagittula were found in 

almost all samples. Both species were also recorded in the living fauna, but with a 

frequency of <10 %. They were also reported from adjacent stations of Le Calvez (1958) 

and Le Calvez and Boillot (1967) from the outer western English Channel, as well as 

along the shelf break in samples of Le Calvez (1958) and Murray (1970). Both species 

were recorded as frequent species (>10 %) in dead assemblages of the English Channel, 

Bristol Channel and the northern Celtic Sea (Murray, 1970; Murray, 1979). The high 

abundance of S. sagittula in the dead assemblage is due to concentration over a long 

 53



                                                                                                                                 Chapter 2 

period of time, as the tests are robust and withstand destruction (Sturrock and Murray, 

1981; Murray et al., 1982). In addition, mixing of assemblages and postmortem transport 

of small foraminiferal tests from the English Channel and Bristol Channel to the W and 

SW of the Western Approaches resulted from near-bottom residual flows of suspended 

sediment (Murray, 1970; Murray, 1979; Sturrock and Murray, 1981; Murray et al., 1982). 

Together with gale-force winds in the late autumn and winter, the sediment suspension 

may pass over the shelf and lead to deposition of transported tests on the slope (Murray et 

al., 1982). These hydrographic processes could explain the distribution of C. lobatulus and 

S. sagittula from the shelf to the slope. Furthermore, a decrease in abundance from the 

shelf to the slope samples was observed for both species. This decrease is maybe linked 

with the test size (generally >125 µm) and thus reflects a decline in transport over long 

distances.  

The dead assemblages from the slope differed less among each other in terms of 

the abundant species. Species of the suborder Textulariina were not frequent on the slope, 

except S. sagittula. Most Textulariina species had a large test size and were maybe too 

heavy to be thrown into suspension and transported over the shelf edge. There were fewer 

differences in frequent species at the slope stations, in comparison to the living fauna. The 

distribution pattern of the dominant slope species in the dead assemblages were similar, 

especially between stations 50 and 06, and 37 and 49. Much more consistency in the dead 

assemblages in comparison to the living one was noted between our dominant species and 

dominant species of Schönfeld and Altenbach (2005). Mainly species of the genera 

Cibicides and Cibicidoides of a size fraction >250 µm were recorded dominant up to 500 

m water depth at our stations and at two stations of the aforementioned authors. At greater 

depths (station 753, 684 m), the dead assemblage changed completely, even though 

frequent species of the dead assemblage were similar to frequent species of the living 

fauna.  

 

2.4.3 Paleoenvironmental implications 

 

In this study, we demonstrated the influences of hydrographic processes on dead 

foraminiferal assemblages. As such, the question about the significance of fossil 

assemblages for sound paleoenvironmental interpretations arises. For instance, analyses of 

Eocene benthic foraminiferal assemblages of the western English Channel showed 
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likewise a homogeneous distribution pattern (Wright and Murray, 1972; Murray and 

Wright, 1974). Species with a porcelaneous and hyaline test structure were most frequent, 

whereas species with an agglutinated test were rare. This assemblage composition 

suggested an environment ranging from a shallow, nearshore hyposaline shelf sea to a 

hypersaline lagoon (Wright and Murray, 1972). In our samples, however, abundances of 

agglutinated species were about 20 % lower in the dead assemblages as compared to the 

living fauna, probably due to destruction during transport processes. In addition, 89 of 294 

species were only found in the living fauna. Most of these species had an agglutinated test, 

and their proportion in a sample was between 4 % and 54 %. Fossil foraminiferal 

assemblages from the western English Channel were generally dominated by robust taxa 

of Rotaliina and Miliolina. A similar spectrum of abundant, robust Rotaliina and Miliolina 

was reported from Oligocene deposits of northern Germany. This faunal composition 

provided evidences for a high-energy costal depositional environment (Nuglisch and 

Spiegler, 1991). Generally, it has been recognized that fossil foraminifera showed no 

significant lateral variability. Homogenization by sediment redistribution and bioturbation 

were considered as main attenuated processes. This view has been challenged by an 

inhomogeneous lateral distribution pattern in fossil foraminiferal assemblages, similar to 

meter-scale patchiness documented from the living fauna (Scott, 1958; Smith and Buzas, 

1986).      

 

2.4.4 Population density and diversity 

 

Analysis of the population density and diversity patterns of the living fauna 

revealed distinct regional differences on the shelf and slope. The outer shelf of the Celtic 

Sea is covered by SW – NE trending linear tidal sand ridges. Most of our shelf stations 

were located in this area and some stations were likely situated on these sand ridges (Fig. 

2.9), as reflected by a lower water depth at stations 34 and 02 (Tab. 2.1). The ridges are 20 

– 50 m high (Bouysse et al., 1976; Belderson et al., 1986) and stations 34 and 02 had a 20 

– 50 m lower water depth as in the vicinity, as inferred from bathymetrical charts. In 

addition, samples 34, 02 and 08 had the same sediment composition with a high 

proportion of rounded quartz grains and pebbles, whereas station 08 was likely situated at 

the fold side of a sand ridge as stations 35 and 36, and not on the top of the ridge (Fig. 

2.9). On the other hand, the sand-fraction of samples 35 and 36 was dominated by shell 
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fragments. Comparing the population density of the living fauna on the shelf, densities 

were highest at stations 33, 05, 08 and 78 with over 100 individuals/10 cm³. Lowest 

population densities on the shelf were observed in the transect samples, with the exception 

of sample 33. Possible reasons appeared to be not the sediment composition or the 

position of the station with reference to water turbulence, but the time and method of 

sampling. Transect samples were collected with a grab sampler at the beginning of April, 

whereas samples 02, 05, 08 and 78 were collected with a box corer at the beginning of 

May and at the end of October, respectively (Tab. 2.1). A box corer is designed to retrieve 

a well-preserved sediment surface, whereas a grab sampler is not intended to maintain the 

integrity of near-surface sediments accurately. Some sediment may be washed out when 

the grab does not close correctly (Schönfeld, 2012). The transect samples were collected 

before the spring bloom, which was constrained for the adjacent Irish Sea to have 

developed in the middle of April (Gowen et al., 1999), and therefore at a time of lower 

food supply. The 2008 samples of the Belgica cruise were collected during times of high 

primary production immediately after the spring bloom, as indicated by satellite data and 

chlorophyll a measurements (Van Oostende et al., 2012). Therefore, population densities 

were higher at the 2008 stations.  

The Fisher α index yields a similar pattern of the living fauna on the shelf. The 

diversity was higher at the 2008 stations than at the 1997 stations, except station 33. 

Possible reasons for higher diversity could be the same as reasons given for population 

densities above. For example, stations 36 and 02 were situated close together at a tidal 

sand ridge near the shelf edge, but diversity was twice as high at station 02 compared to 

station 36. A comparison with samples of Sturrock and Murray (1981) and Murray et al. 

(1982) showed different results for the population density and the Fisher α index. While 

the diversity was almost the same, the population density in our six adjacent stations was 

higher than in the stations of aforementioned authors. In addition, the faunal similarity was 

under 50 % between corresponding samples. The time of sampling could be a reason for 

the lower population densities in the samples of Sturrock and Murray (1981). The samples 

may have been collected at a time of lower food supply. Additionally, the time period 

between their sample collection and the collection of our samples represents 20 – 30 years. 

In this time period, it is probable that long-time changes in faunal assemblage composition 

occurred in this area. The development of trawling at the end of the 1990s could have led 

to a change in benthic faunal composition. High trawling activity affects the oxygen 
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content in surface bottom sediments and disturbs benthic foraminiferal habitats (Trimmer 

et al., 2005). This does not appear to have reduced the species number (similar indices), 

but could have left an impact in the faunal composition.  

The upper slope established various habitats in different depth intervals probably 

induced by different slope currents. Favorable conditions could have led to stronger 

reproduction and a rich benthic foraminiferal fauna at station 06. This case is also 

confirmed by the highest Fisher α index at station 06. Comparing the diversity pattern of 

our four slope stations (37, 49, 50 and 06) and the three stations (753, 754 and 755) of 

Schönfeld and Altenbach (2005) revealed differences in the population densities, as well 

as the Fisher α index. Causes for the higher population densities and Fisher α indices of 

the aforementioned authors could be a higher nutrient supply, due to the station location 

and the time of sampling. Stations of Schönfeld and Altenbach (2005) were located 

between two canyons, where it is possible that food particles from intermediate nepheloid 

layers were trapped. In addition, their samples were taken in beginning of July when a 

higher phytodetritus supply prevailed due to the spring bloom two months previously. 

 

2.5 Conclusion 

 

Analysis and comparison of benthic foraminiferal assemblages from the shelf and 

slope of the Celtic Sea revealed an increase in diversity from the shelf to the continental 

slope. Highest diversities were determined at the slope and at those shelf stations, which 

were sampled in May. Such higher diversities were likely promoted by a higher food 

supply, in response to the timing of the spring bloom. Faunal assemblages on the shelf 

were more consistent than on the slope, indicating extensive sediment redeposition. The 

slope fauna was more structured due to the different topography, bottom sediments and 

specific hydrographical conditions. The faunal composition therefore changed within 

small depth intervals and geographic position. The comparison of our stations with 

corresponding stations from earlier studies in the same area revealed major differences in 

the benthic foraminiferal assemblages, both on the shelf and on the slope. These 

differences were more likely due to the time and method of sampling than forced by 

environmental parameters. This leads to the conclusive recommendation that once 

consistent results in regional studies are required, all samples should be taken within a 

short period and with the same sampling device. In addition, our analyses of Recent dead 
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foraminiferal assemblages could demonstrate the influences of a high-energy environment 

on a faunal composition, e.g., loss of arenaceous species, increase of robust miliolids, and 

a lateral homogenization in assemblage compositions. These constraints may facilitate a 

better interpretation of palaeoenvironments from fossil foraminiferal assemblages.  
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Abstract 

 

Benthic foraminiferal faunas from the shelf and upper continental slope of the 

Celtic Sea (NE Atlantic) show a rich variety of Trochamminidae species. We recognize 31 

taxa, of which 18 could be determined at species level. These 18 species comprise about 9 

% of all species of the family Trochamminidae that are describe from Recent sediments 

worldwide. For species determination and generic classification, we use existing 

taxonomic concepts and assess their applicability. Beside the morphology of the test and 

internal structures, different apertural features are considered playing a fundamental role 

in the systematic subdivision of the Trochamminidae. The position of the aperture controls 

the chamber arrangement and therefore the final shape of the test. However, we found no 

relationship between the apertural features and shape of the chambers as well as between 

apertural features and mode of life. Using apertural features for a sound taxonomic 

designation of our specimens proves difficult, because apertures are often obscured. 

Further, combined morphological and molecular-phylogenetic studies are required to 

constrain the taxonomic relevance of apertural characteristics. 
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3.1 Introduction 

 

Describing benthic foraminiferal diversities in a given area requires a distinct 

taxonomic identification of all species. The determination of many species (usually 

calcareous) is generally deemed an easy task. Agglutinated species, however, in particular 

those of the family Trochamminidae Schwager, 1877 are sometimes very difficult. 

Therefore, these taxa were often listed as “Trochammina sp. or spp.” in foraminiferal 

publications. Different classification concepts on the family Trochamminidae were 

proposed in the past five decades (e.g., Rhumbler, 1938; Loeblich and Tappan, 1964; 

Saidova, 1981; Loeblich and Tappan, 1982; Brönnimann et al., 1983; Brönnimann and 

Zaninetti, 1984; Loeblich and Tappan, 1987; Brönnimann and Whittaker, 1988a; 

Kaminski, 2004; Mikhalevich, 2004). These classifications were based on test 

morphology, internal structures and apertural features (Loeblich and Tappan, 1987; 

Brönnimann et al., 1983). Another concept to study the phylogenetic relationships among 

different taxa is the molecular approach, which uses similarities between DNA, RNA, or 

proteins (Pawlowski, 2000). These different concepts were linked by the theoretical 

morphospace model (Tyszka, 2006). The morphospace model is based on principal 

morphogenetic rules deduced from the geometry of foraminiferal tests. This model 

revealed the fundamental role of apertures controlling the chamber position and hence for 

the development of the final test shape (Labaj et al., 2003; Tyszka et al., 2005).  
Already in the mid 20th century, Rhumbler (1938) developed a diagram formula for 

spiral coiled foraminiferal tests, which allow the description of the chamber arrangement, 

and thus facilitating the designation of species. By this geometric concept, Rhumbler 

(1938) distinguished several species of the family Trochamminidae in sediment samples 

from Helgoland (North Sea). The most comprehensive studies of the Trochamminidae 

were given by Brönnimann and Whittaker (1990, cum lit.). They subdivided this family in 

several subfamilies and genera, as distinguished by the overall apertural features and test 

morphologies.  

The goal of the present paper is to assess the applicability of hitherto proposed 

systematic concepts. Emphasis is given on how far morphological criteria are suitable for 

a taxonomic classification. In order to achieve these goals, a study area was chosen where 

as many Trochamminidae as possible were found. During a previous study on the ecology 

 60



                                                                                                                                 Chapter 3                           

and distribution of Recent benthic foraminifera of the Celtic Sea and Amorican margin, 

we found 31 different species of the Trochamminidae on the shelf and uppermost 

continental slope (Dorst et al., 2014), of which 18 taxa could determined at species level. 

They resemble 9 % of all Recent Trochamminidae as described in the literature (Ellis and 

Messina, 1940). In order to provide a balanced state of information, we re-described and 

illustrated these taxa in the present paper.  

 

3.2 Materials and Methods 

 

We used 13 surface samples from the shelf and uppermost continental slope of the 

Celtic Sea between 100 and 500 m water depth (Table 3.1). The samples were preserved 

and stained in a Rose Bengal/ethanol solution in order to recognize foraminifers living at 

the time of sampling (Lutze and Altenbach, 1991; Murray and Bowser, 2000). Specimens 

were picked from the size fraction of >63 µm and subfractions. Large-sized pebbles, shell 

fragments and other objects from the size fraction >2000 µm were examined for attached 

Trochamminidae specimens, which were isolated if possible. Living and dead individuals 

were recorded separately. All specimens were collected in Plummer cell-slides, sorted at 

species level, fixed with glue, and counted. Illustrations of selected specimens were 

carried out with a CamScan 44/EDX scanning electron microscope and a Keyence VHX – 

700 FD digital camera. The illustrated specimens, samples and Plummer cells were stored 

at GEOMAR Helmholtz Centre for Ocean Research Kiel. 
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Table 3.1 Metadata of sampling stations. 
 

Cruise Station Sampling date Latitude Longitude Depth (m)

VH-97-32D 04.04.1997 49°00.03' N 5°56.55' W 115
VH-97-33D 04.04.1997 48°44.33' N 6°12.33' W 131
VH-97-34 04.04.1997 48°27.05' N 6°26.82' W 116

VH-97-35 04.04.1997 48°09.23' N 6°41.29' W 150
VH-97-36 04.04.1997 47°51.95' N 6°57.05' W 170

VH-97-37 04.04.1997 47°32.94' N 7°14.99' W 467
VH-97-49 05.04.1997 47°33.21' N 7°14.45' W 340
VH-97-50 05.04.1997 47°34.43' N 7°13.10' W 191

BG0812a-02 08.05.2008 47°47.94' N 6°54.48' W 128
BG0812a-05 10.05.2008 48°12.06' N 7°35.88' W 177

BG0812a-06 09.05.2008 47°53.94' N 7°53.88' W 450
BG0812a-08 11.05.2008 48°29.76' N 8°30.18' W 151

FS Thalia D78/95 29.10.1995 48°30.97' N 5°57.81' W 119

R/V Victor 
Hensen

RV Belgica 
2008/12a

 

 

3.3 Systematics 

 

Classification of the investigated species was carried out after Brönnimann and 

Zaninetti (1984), Brönnimann and Whittaker (1988a), and Brönnimann and Whittaker 

(1990).  

 

Family TROCHAMMINIDAE Schwager, 1877 

Subfamily TROCHAMMININAE Schwager, 1877 

Genus Trochammina Parker and Jones, 1859, emend. Brönnimann and Whittaker, 1988a 

 

Description: Test free or attached, trochospiral, spiral side convex, umbilical side 

concave, with four or more chambers in the final whorl. Wall agglutinated and 

imperforate. A single, interiomarginal aperture situated on the ultimate chamber of final 

whorl between the umbilicus and the periphery of the test (umbilical-extraumbilical). 

Trochammina differs from Paratrochammina Brönnimann, 1979 and Trochamminopsis 

Brönnimann, 1976 by its apertural position, which rests completely on the ultimate 

chamber. In Paratrochammina and Trochamminopsis it rests on the ultimate and 

penultimate chamber of the final whorl. It differs from Tritaxis Schubert, 1920 by the 
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number of chambers in the final whorl, which is three in Tritaxis, and by its test shape, 

which is plano-convex in Tritaxis. 

  

Trochammina advena Cushman, 1922 

Pl. 3, Fig. 2a, b; Pl. 11, Fig. 10; Pl. 12, Fig. 1 

Trochammina advena Cushman, 1922, p. 20, pl. 1, figs. 2−4; Phleger and Parker, 1951, p. 

9, pl. 4, fig. 15; Todd and Brönnimann, 1957, p. 30, pl. 4, fig. 16. 

  

Material: Six living specimens, free, from stations VH-97-50 and BG0812a-08, 

size fraction 63 − 125 µm. 

 

Description: Test small (<100 µm) and rounded, moderately convex on the spiral 

side, composed of three volutions. Final whorl with four chambers, moderately inflated. 

Sutures are straight on both sides and slightly depressed. Wall composed of quartz grains 

of equal size. 

   

Remarks: All specimens were probably juvenile individuals, because they were 

four times smaller than the type material of Cushman (1922). Brönnimann (1979) 

examined the holotype of T. advena and recognized an accumulation of secondary 

agglutinate (cyst formation), which covers the apertural feature. Therefore, he suggested to 

consider the name of T. advena as a nomen non conservandum, because the generic 

position of the holotype cannot be determined. Furthermore, Brönnimann (1979) 

examined other foraminiferal slides of Cushman, curated in the U.S. National Museum 

collection, from the Atlantic shelf of N America containing trochamminas referred to T. 

advena by Cushman. These trochamminas were reassigned to Paratrochammina 

simplissima (Cushman and McCulloch, 1948) by Brönnimann (1979). Our specimens 

differ from P. simplissima in the number of chambers in the final whorl (never more than 

four), the number of whorls and the straight sutures on the umbilical side (sinusoid in P. 

simplissima). Therefore, we decided to retain the name T. advena. However, the apertural 

features are not clearly visible, which hampers a clear distinction with P. simplissima. 

 

Trochammina astrifica (Rhumbler, 1938) 

Pl. 4, Fig. 2a, b; Pl. 11, Fig. 7 
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Trochammina squamata Jones and Parker forma astrifica Rhumbler, 1938, p. 188, figs. 

29−31. 

Trochammina astrifica (Rhumbler). Höglund, 1947, p. 206, 208, text-fig. 186, pl. 15, fig. 

2; Haynes, 1973, p. 34, pl. 4, figs. 18−20. 

  

Material: Two specimens from station VH-97-32 and VH-97-35, one free living 

specimen from size fraction 63 − 125 µm, and one dead, attached specimen from size 

fraction >2000 µm. 

 

Description: Test flat to low convex on the spiral side and flat to slightly concave 

on the umbilical side. Chambers arranged in a low, trochoid spiral of about two and a half 

whorls, six chambers in the final whorl, slightly crescent-shaped on the umbilical side. 

Sutures impressed, radial on umbilical side, incised towards the open umbilicus creating a 

regular, star-shaped figure. Attached test was surrounded by a “Puffermasse” in the sense 

of Rhumbler (1938) of agglutinated, white material. Our free specimen more resembles 

the specimens figured by Höglund (1947) than Rhumbler’s type specimens. 

  

Remarks: Brönnimann and Whittaker (1990) suspected that Rhumbler’s (1938) 

“Ternärform” Trochammina squamata astrifica is very similar to their new described 

species Deuterammina (Lepidodeuterammina) plymouthensis Brönnimann and Whittaker, 

1990 and Deuterammina (Lepidodeuterammina)? celtica Brönnimann and Whittaker, 

1990. They also suspected that T. astrifica could also be a junior synonym of 

Deuterammina (Deuterammina) rotaliformis (Heron-Allen and Earland, 1911). A distinct 

classification of Rhumbler’s (1938) species was not possible, because Brönnimann and 

Whittaker (1990) could not photograph the type specimens with a scanning electron 

microscope and the apertures were not visible. Comparing our free specimen with the 

figures of D. (L.) plymouthensis in Brönnimann and Whittaker (1990), we found a high 

morphological similarity with the holotype of D. (L.) plymouthensis (pl. 3, figs. 11−14). 

Therefore, it is possible that our two specimens could be determined as D. (L.) 

plymouthensis. A classification to D. (L.)? celtica or a juvenile D. (D.) rotaliformis could 

be excluded. However, even Brönnimann and Whittaker (1990) could not definitely 

determine Rhumbler’s (1938) T. astrifica; we decided to retain Rhumbler’s (1938) 

designation.    
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Trochammina squamata Jones and Parker, 1860 

Pl. 5, Fig. 4a, b; Pl. 6, Fig. 4a, b; Pl. 10, Fig. 8; Pl. 12, Fig. 2 

Trochammina squamata Jones and Parker, 1860, p. 304, type figure not given; Hedley et 

al., 1964, p. 419, figs. 1, 1a, b; 3, 1a, b, 3a−c. 

?Trochammina squamata Jones and Parker. Heron-Allen and Earland, 1913 p. 50, pl. 3, 

figs. 7−10; Heron-Allen and Earland, 1930, p. 70, 71. 

Trochammina squamata squamata (Jones and Parker). Rhumbler, 1938 p. 181, fig. 18. 

 

Material: 49 specimens from stations VH-97-32, -35, -36, -37, -49, BG0812a-02, -

05, -06, -08, and D78/95, size fraction >63 µm; thereof 20 free living and two free, dead 

specimens, as well as 15 attached living and 12 attached dead specimens. 

  

Description: Tests of juvenile specimens are free and rounded, or adult specimens 

are attached and more oval, with a low trochoid spire, composed of two or sometimes 

three volutions. Attached tests are mostly surrounded by a “Puffermasse” of agglutinated 

whitish material. Eight to nine chambers, with four chambers in the final whorl and a slit-

like aperture at the inner margin of the flat umbilical side of the ultimate chamber. 

Chambers in juvenile specimens inflated, in adult specimens flattened. Last chamber 

occupying about a quarter of the final whorl. Sutures slightly depressed and darker than 

the test shell on the spiral side. Wall finely agglutinated with occasional larger grains, 

smoothly finished. 

 

Remarks: According to Brönnimann and Whittaker (1990), Trochammina 

squamata of Jones and Parker (1860) from the Mediterranean Sea is a Tritaxis. However, 

their morphological description of T. squamata as well as the re-description and 

illustration by Hedley et al. (1964) of the original material of Jones and Parker (1860) 

disagrees with the genotype description of Tritaxis by Brönnimann et al. (1983), 

Brönnimann and Whittaker (1984), Brönnimann and Whittaker (1988a), and Brönnimann 

and Whittaker (1988b). Therefore, we kept the genus Trochammina for this species.  

 

Genus Paratrochammina Brönnimann, 1979 (emend. Brönnimann and Whittaker, 1988a) 
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Description: Test free or attached, axial compression variable, from subglobular 

conical tests to flattened watchglass-like tests. Wall single layered and imperforate. 

Aperture single and interiomarginal, without an umbilical flap, remains open into the 

umbilicus and rests with its border on the wall of the ultimate chamber and on the 

penultimate chamber. Paratrochammina differs from Trochammina, Tritaxis, 

Trochamminopsis, Deuterammina Brönnimann, 1976 and Rotaliammina Cushman, 1924 

by its apertural features. The single aperture of Trochammina and Tritaxis rests only on 

the ultimate chamber of the final whorl. Trochamminopsis has a symmetric aperture with 

respect to the axis of coiling (umbilical position). Deuterammina has a double aperture, 

and in Rotaliammina has an axially directed apertural opening on each chamber. The 

single aperture of Portatrochammina Echols, 1971 is covered by an umbilical flap. 

Brönnimann and Whittaker (1986) divided this genus in two subgenera, based on the 

degree of axial depression: Paratrochammina (Paratrochammina) Brönnimann, 1979 and 

Paratrochammina (Lepidoparatrochammina) Brönnimann and Whittaker, 1986. P. 

(Paratrochammina) has more or less inflated chambers, moderately high to high spires 

and lives mostly free. P. (Lepidoparatrochammina) is characterized by axially strongly 

compressed adult chambers and watchglass-like tests. With its flattened and flexible 

umbilical walls, it is better adapted to fixation and lives mostly attached.  

 

Paratrochammina (Paratrochammina) tricamerata (Earland, 1934) 

Pl. 3, Fig. 1a, b; Pl. 11, Fig. 2; Pl. 12, Fig. 3 

Trochammina tricamerata Earland, 1934, p. 103, pl. 3, figs. 50−52; Echols, 1971, p. 149, 

pl. 8, figs. 3a−c.  

Paratrochammina (Paratrochammina) tricamerata (Earland). Brönnimann and Whittaker, 

1988a, p. 51, figs. 19A−K, p. 53, figs. 20A−D; Brönnimann and Whittaker, 1988b, 

p. 35, pl. 1, figs. 2−3. 

 

Material: Five living specimens from stations VH-97-33, BG0812a-05, and -08, 

thereof four free living specimens of size fraction 63 − 250 µm and one attached living 

specimen from the size fraction 63 − 125 µm. 

 

Description: Test small and probably juvenile, broadly rounded with a moderately 

compressed trochospire, consists of 14 chambers, arranged in two and a half whorls with 
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three chambers in the final whorl. Chambers of final whorl very inflated and rapidly 

increasing in size. Sutures slightly depressed on the spiral side and moderately depressed 

on the umbilical side. Aperture interiomarginal with a small lip, under which the aperture 

opens as a narrow slit. Wall thin, composed of quartz grains. 

 

Remarks: The final whorl of our specimens consists of only three chambers, like 

the type specimen in Earland (1934), but they differ from the genus Tritaxis essentially by 

the apertural features, which are typical for Paratrochammina-, rather than for 

Trochammina. The species name tricamerata is a misnomer, because the final whorl 

consists of four chambers, in which the fourth chamber is sometimes covered (Figs. 19C 

and 20C in Brönnimann and Whittaker, 1988a). 

 

Paratrochammina (Lepidoparatrochammina) haynesi (Atkinson, 1969) 

Pl. 4, Fig. 1a, b; Pl. 11, Fig. 5; Pl. 12, Fig. 4 

?Trochammina squamata Jones and Parker. Heron-Allen and Earland, 1913, p. 50, pl. 3, 

figs. 7−8. 

Trochammina squamata Jones and Parker. Heron-Allen and Earland, 1930, p. 70, 71 

(pars). 

Trochammina haynesi Atkinson, 1969, p. 529, pl. 6, figs. 1a−c; Haynes, 1973, p. 35, text-

fig. 6. 

Paratrochammina (Lepidoparatrochammina) haynesi (Atkinson). Brönnimann and 

Whittaker, 1986, p. 119, pl. 2, figs. A−I; Brönnimann and Whittaker, 1990, p. 129, 

pl. 2, figs. 5−8 (original material of Heron-Allen and Earland, 1930); Murray and 

Alve, 1993, p. 34, figs. 1−3; Alve and Murray, 1994, p. 20, pl. 1, figs. 15, 16; 

Murray and Alve, 2011, p. 26, figs. 15.13, 15.14. 

 

Material: Eight specimens from stations VH-97-32 and BG0812a-02, thereof five 

free living specimens from size fraction 63 − 125 µm, and three attached specimens (one 

living, two dead) from size fraction >2000 µm. 

 

Description: Test probably juvenile, composed of 14 chambers arranged in two 

and a half volutions, six chambers in the final whorl. Chambers tangentially crescentic on 

umbilical side and half-moon shaped on spiral side. Sutures slightly sinuous on the 
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umbilical side. Umbilicus is deep and stellate in outline. Wall surface texture granular on 

the spiral side with some interspersed larger flakes, on the umbilical side slightly smoother 

and more uniform in grain size. Aperture single, interiomarginal, a thin arched slit, which 

extends from the penultimate to the ultimate chamber of the final whorl 

(Paratrochammina type). 

 

Genus Portatrochammina Echols, 1971 

 

Description: Test free and low to moderately high-spired. Wall imperforate and 

single-layered. Aperture as in Paratrochammina – a single interiomarginal arch, which 

rests on the ultimate and penultimate chamber of the final whorl. Portatrochammina 

differs from all other trochamminid genera by the presence of an umbilical septal flap 

covering the axial depression. One flap derived from each chamber and these flaps forms a 

lamellar structure in the axial cavity. 

 

Portatrochammina murrayi Brönnimann and Zaninetti, 1984 

Pl. 5, Fig. 3a, b; Pl. 6, Fig. 3a, b; Pl. 10, Fig. 6; Pl. 12, Fig. 5 

?Trochammina rotaliformis Heron-Allen and Earland. Heron-Allen and Earland, 1913, p. 

52, pl. 3, fig. 12. 

Trochammina globigeriniformis (Parker and Jones) var. pygmaea Höglund. Murray, 1970 

p. 485, pl. 1, figs. 4, 8; Murray, 1971, p. 35, pl. 10, figs. 1, 2; Haynes, 1973, p. 36, 

pl. 4, fig. 14; Rosset-Moulinier, 1986, p. 437, pl. 3, figs. 3, 6; Giese, 1991, p. 31, 

pl. 1, fig. 10. 

Portatrochammina murrayi Brönnimann and Zaninetti, 1984, p. 72−74, pl. 5, figs. 7, 

12−15; Gooday, 1986, p. 1363, figs. 10O, P; Debenay, 2001, p. 86, pl. 1, figs. 

22−24; Murray, 2003, p. 13, figs. 3.6, 3.7. 

   

Material: 148 specimens from almost all stations, size fraction >63 µm, thereof 

144 free specimens (141 living, three dead), and four attached specimens (three living, one 

dead). 

 

Description: Test with subglobular chambers in two whorls, with four chambers in 

the final whorl. The test is virtually flat on the spiral side and very shallow-concave on the 
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umbilical side, chambers increase rapidly in size in the final whorl. Axial depression on 

the umbilical side is covered by a flap. Aperture interiomarginal, an arch-like slit, which 

extends below the umbilical flap. Wall consists of quartz grains of different size 

embedded in a fine agglutinated matrix. 

 

Portatrochammina pacifica (Cushman, 1925) 

Pl. 3, Fig. 3a, b; Pl. 11, Fig. 9 

Trochammina pacifica Cushman, 1925, p. 39, pl. 6, fig. 3a−c; Le Campion, 1968, p. 265, 

pl. 6, fig. 3, pl. 12, fig. 11, pl. 13, fig. 2b; Murray, 2006, p. 123, fig. 5.2.16. 

Portatrochammina pacifica (Cushman). Brönnimann, 1979, p. 12, fig. 10D, H−J. 

 

Material: Six free living specimens from stations BG0812a-02, -05, and -08, size 

fraction 63 − 125 µm. 

 

Description: Test composed of 18 chambers in three and a half volutions, with 

four to five chambers in the final whorl, periphery rounded. Spiral side with a moderately 

elevated trochospire, umbilical side with a flap extending over the axial depression. 

Sutures more depressed on the umbilical side. Wall slightly coarser agglutinated on the 

spiral than on the umbilical side. 

 

Remarks: Brönnimann (1979) examined Cushman’s holotype of Trochammina 

pacifica from British Columbia. This specimen showed apertural features with a large 

umbilical flap covering the axial cavity similar to those found in Portatrochammina 

eltaninae Echols, 1971, type species of the genus Portatrochammina. 

 

Genus Rotaliammina Cushman, 1924 (emend. Brönnimann and Zaninetti, 1984) 

 

Description: Test compressed, watchglass-like, with a low or moderate 

trochospire, with a peripheral flange, attached and often surrounded by a “Puffermasse” in 

the sense of Rhumbler (1938). Generally more than seven chambers per whorl, chambers 

have umbilically a mushroom-like outline. Sutures sigmoid on the umbilical side. 

Aperture single, interiomarginal, at the axial end of each chamber and facing the 

umbilicus. Wall thin, flexible, chamber walls of umbilical side rich in sulphur and 
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magnesium-bearing organic compounds; agglutinant-rich spiral surface contains largely 

calcium carbonate. Rotaliammina differs from Trochammina in its flexible test and the 

apertural features. 

 

Remarks: The genera Rotaliammina, Siphotrochammina Saunders, 1957 and 

Tiphotrocha Saunders, 1957 were placed by Loeblich and Tappan (1987) and Kaminski 

(2004) to the subfamily Rotaliammininae Saidova, 1981, and by Mikhalevich (2004) to 

the family Rotaliamminidae. 

 

Rotaliammina concava (Seiglie, 1964) 

Pl. 7, Fig. 2a−c; Pl. 8, Fig. 2a, b; Pl. 10, Fig. 3; Pl. 12, Fig. 6 

Tiphotrocha concava Seiglie, 1964, p. 500, pl. 1, figs. 4a−b, 5a−c. 

Rotaliammina concava (Seiglie). Brönnimann and Zaninetti, 1984, p. 76, pl. 4, figs. 11, 

13−16, figs. U 1−3, V 1−3. 

 

Material: 85 living specimens from stations VH-97-35, -36, -37, -49, and -50, 

BG0812a-02 and -05, and D78/95, thereof 54 attached and 31 free specimens, size 

fraction >63 µm. 

 

Description: Test shape watchglass-like, composed of four volutions with 28 

chambers, seven chambers in the final whorl, chambers strongly compressed on the spiral 

side and mushroom-like on the umbilical side. Sutures slightly curved on the spiral side 

and sinuous on the umbilical side Aperture single, interiomarginal, open at the pointed 

umbilical end of each chamber, umbilicus small with star-shaped outline. Wall thin, 

flexible and smooth. 

 

Remarks: These are the first specimens of R. concava recorded in the Celtic Sea. 

Living and dead specimens of Rotaliammina sp. were found at Lyme Bay, southern 

England (Murray, 1986, listed only). 

 

Rotaliammina siphonata (Seiglie, 1964) 

Pl. 3, Fig. 5a, b; Pl. 12, Fig. 7 
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Polysiphotrocha siphonata Seiglie, 1964, p. 500, pl. 1, figs. 9a−c, pl. 2, figs. 1−6; Hofker, 

1979, p. 3−5, fig. 2. 

Rotaliammina siphonata (Seiglie). Brönnimann et al., 1983, p. 209, pl. 1, figs. 1−3, 6, 12, 

p. 210, pl. 2, figs. 1, 2, 5−7, p. 212, pl. 3, figs. 1, 3−8; Brönnimann and Zaninetti, 

1984, p. 79, pl. 4, figs. 4, 10, 17, figs. Y 1, 2, Z 1, AA 1, 2. 

 

Material: Two free living specimens from station VH-97-33, size fraction 63 − 

125 µm. 

 

Description: Test watchglass-like, outline elongate-oval to subcircular, loosely 

coiled low trochospire. Seven to eight chambers in the final whorl gradually increasing in 

size, mushroom-like with narrow tubular extensions towards the axial depression. A single 

interiomarginal aperture is situated at the end of each extension, directed into the axial 

cavity. Wall thin, flexible and smoothly finished on spiral side. 

 

Genus Tritaxis Schubert, 1920 (emend. Brönnimann and Whittaker, 1988a) 

 

Description: Test free or attached, plano-convex or conical, trochospiral, with 

three crescentic chambers in the final whorl. Ultimate chamber of the final whorl making 

up about one-half of the almost flat umbilical side. Wall imperforate and single layered. 

Aperture single, with a thin lip, interiomarginal, resting completely on the ultimate 

chamber of the final whorl (Trochammina type). Attached specimens surrounded by a 

“Puffermasse” in the sense of Rhumber (1938). Tritaxis differs from Trochammina by the 

number of chambers in the final whorl, which is pluriserial (four or more chambers) in 

Trochammina, and by its test shape, which is concave-convex in Trochammina. It differs 

from the triserial Trochamminella Cushman, 1943 by its apertural features. 

Trochamminella has an areal aperture near and parallel to the base of the ultimate 

chamber. 

 

Tritaxis conica (Parker and Jones, 1865) 

Pl. 9, Fig. 3a, b; Pl. 10, Fig. 1; Pl. 12, Fig. 8 

Valvulina triangularis d’Orbigny var. conica Parker and Jones, 1865, p. 406, pl. 15, figs. 

27a, b. 
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Valvulina conica (Parker and Jones). Höglund, 1947, p. 187, figs. 170−172, pl. 14, figs. 

1a−c. 

Tritaxis conica (Parker and Jones). Gabel, 1971, p. 34, pl. 5, figs. 13, 14; Schiebel, 1992, 

p. 63, pl. 7, fig. 6; Murray and Alve, 2011, p. 32, fig. 18.31. 

Trochamminella conica (Parker and Jones). Jones, 1994, p.54, pl. 49, figs. 15b, 16. 

 

Material: 218 free, dead specimens from stations VH-97-32, -33, -34, -35, -36, -

37, and -49, BG0812a-02, -05, and -08, and D78/95, size fraction >63 µm. 

 

Description: Test attached (living individuals), conical, five volutions with 

triserial arrangement of chambers. Ultimate chamber occupying about one-half of the final 

whorl. Sutures distinct and strongly curved. Wall smooth or rough with much cement. 

Aperture single, interiomarginal, an elongate opening at the inner margin of the ultimate 

chamber.  

 

Genus Trochamminopsis Brönnimann, 1976 (emend. Brönnimann and Whittaker, 1988a) 

 

Description: Test free, conical to subconical with axially slightly compressed 

chambers. Aperture single, interiomarginal, umbilically situated, resting on the wall of the 

ultimate chamber and of the penultimate chamber of the final whorl. Wall thin, 

imperforate and single layered. Trochamminopsis differs from the genus 

Paratrochammina by its apertural position to the axis of enrolment. 

 

Trochamminopsis pusilla (Höglund, 1947) 

Pl. 9, Fig. 4a, b; Pl. 11, Fig. 1 

Trochammina pusilla Höglund, 1947, p. 200, figs. 183, 184, p. 201, pl. 17, figs. 4a−c; 

Gabel, 1971, p. 41, pl. 8, figs. 36−38. 

Trochamminopsis quadriloba (Höglund). Loeblich and Tappan, 1987, p. 33, pl. 129, figs. 

1−3; Murray and Alve, 2011, p. 31, figs. 18.36−18.39. 

 

Material: Two attached living specimens from stations VH-97-37 and D78/95, 

size fraction 250 − 400 µm. 
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Description: Test attached, conical, composed of three and a half volutions. 

Chambers subglobular, inflated, four in the final whorl. Wall coarsely arenaceous, 

consisting of comparatively large quartz grains; therefore sutures indistinct. 

 

Remarks: Höglund (1948) renamed his species T. pusilla Höglund, 1947 as T. 

quadriloba, because it was a junior secondary homonym of the Permian species Serpula 

pusilla Geinitz, 1848 which was thought at the time to be a Trochammina. Because 

Geinitz’s taxon is not a Trochamminacea but a Miliolina, Höglund’s new name was 

unnecessary (Brönnimann and Whittaker, 1988a). As T. quadriloba was proposed before 

1961, the name T. pusilla is permanently invalid (Article 59 (b) of the International 

Commission on Zoological Nomenclature = ICZN) and cannot automatically be reinstated 

(Brönnimann and Whittaker, 1988a; Kaminski, 2004). To this end, an application has been 

made to the ICZN by Brönnimann and Whittaker (1988a) for the conservation of T. 

pusilla Höglund. An opinion of the ICZN to this application was not issued until today. 

Until a decline is made by the ICZN we retain the name pusilla.  

 

Genus Ammoglobigerina Eimer and Fickert, 1899 

 

Description: Test free, trochospiral and subglobose. Chambers subglobular to 

globular, increase rapidly in size as added. Wall thin, imperforate, single layered and 

finely to coarsely agglutinated. Aperture single, an interiomarginal slit on the umbilical 

side, which rests on the ultimate and penultimate chamber of the final whorl. 

Ammoglobigerina differs from Trochamminopsis by its subglobular to globular chambers 

arranged in a low trochospire (conical growth form in Trochamminopsis). The genus 

Globotrochamminopsis Brönnimann and Zaninetti, 1984 was regarded as synonymous 

with Ammoglobigerina by Loeblich and Tappan (1987). 

 

Ammoglobigerina shannoni (Brönnimann and Whittaker, 1988a) 

Pl. 9, Fig. 2a, b; Pl. 10, Fig. 5 

Trochammina globigeriniformis (Parker and Jones). Haake, 1980, p. 8, pl. 1, fig. 18. 

Globotrochamminopsis shannoni Brönnimann and Whittaker, 1988a, p. 38, figs. 15A−H. 

Trochammina shannoni (Brönnimann and Whittaker). Schiebel, 1992, p. 27, pl. 7, fig. 

10a, b. 
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Material: Five free living specimens from station BG0812a-06, size fraction 63 − 

250 µm. 

 

Description: Test free, with a low trochospire, consists of 12 globular chambers 

arranged in two and a half volutions with four chambers in the final whorl. Periphery 

broadly rounded. A tight coiling with a bluntly pointed apex of spire. Umbilical 

depression narrow and deep. Sutures slightly depressed and slightly curved on both sides. 

Wall single layered, imperforate, composed of planar quartz grains, different in size, 

giving a smooth surface mosaic. Aperture single and interiomarginal, a low crescent slit in 

a lateral position.  

 

Subfamily POLYSTOMAMMININAE Brönnimann and Beurlen, 1977 (emend. 

Brönnimann and Whittaker, 1988a) 

Genus Polystomammina Seiglie, 1965 (emend. Brönnimann and Whittaker, 1988a) 

 

Description: Test free or attached, with a low trochospire and a rounded 

periphery. Chambers increase rapidly in size as added. Sutures straight or gently curved. 

Wall thin and fragile, single layered, imperforate. Aperture double, primary opening in 

form of a narrow slit or hook beginning in an interiomarginal position then entering 

deeply onto the umbilical side, secondary arch-like opening at umbilical tip of each 

chamber, opens posteriorly rather than directly into the umbilicus. Polystomammina 

differs from the genus Deuterammina Brönnimann, 1976 (and its subgenera) in the type 

and position of the primary opening, which is “interio-areal” in Polystomammina and 

wholly interiomarginal in Deuterammina. 

 

Polystomammina nitida (Brady, 1881) 

Pl. 9, Fig. 1a, b; Pl. 10, Fig. 2; Pl. 12, Fig. 9 

Trochammina nitida Brady, 1881, p. 52, pl. 41, figs. 5a−c, 6; Cushman and McCulloch, 

1939, p. 105, pl. 11, figs. 7−9. 

Polystomammina nitida (Brady). Loeblich and Tappan, 1987, p. 127, pl. 135, figs. 6−9, pl. 

136, figs. 5−8; Jones, 1994, p. 46, pl. 41, figs. 5, 6 (same figures as in Brady, 

1881). 
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Material: 51 specimens, thereof 48 free living specimens (47 living, one dead) and 

three attached living specimens from stations VH-97-33, - 34, -35, -36, -37, -49, and -50, 

BG0812a-02, -05, - 06, and -08, size fraction 63 − 400 µm and >2000 µm. 

 

Description: Test free or attached, low trochospire, composed of three volutions 

with nine chambers in the final whorl. Chambers increase rapidly in size as added. Sutures 

straight and slightly depressed on spiral and umbilical side. Wall finely agglutinated, 

smooth and appears sometimes as being polished. Aperture double, with an 

interiomarginal arched slit curving slightly upward on the umbilical side, and a secondary 

opening at the inner tips of the chambers.  

 

Genus Deuterammina Brönnimann, 1976 (emend. Brönnimann and Whittaker, 1988a) 

 

Description: Test free or attached, variable axial compression from subglobular to 

watchglass- and scale-like tests. Sutures radial. Wall thin, single layered and imperforate. 

Primary aperture interiomarginal, crescent-like slit, secondary aperture at the umbilical tip 

of the ultimate chamber and opening posteriorly directed or centrally directed into the 

umbilicus. Deuterammina is divided into the subgenera D. (Deuterammina) Brönnimann, 

1976 and D. (Lepidodeuterammina) Brönnimann and Whittaker, 1983a, based on the 

degree of axial depression: species with subglobular chambers are placed in D. 

(Deuterammina), species with strongly compressed watchglass-like tests referred to D. 

(Lepidodeuterammina). D. (Lepidodeuterammina) differs from Rotaliammina in apertural 

characters: D. (Lepidodeuterammina) has a double Deuterammina-type aperture; 

Rotaliammina possesses a single, umbilically directed apertural opening on each chamber. 

 

Remarks: In the classificatory scheme of Brönnimann and Whittaker (1988a), the 

axial compression is considered to be only of subgeneric significance, because it is a 

gradational feature. Both subgenera D. (Deuterammina) and D. (Lepidodeuterammina) 

were elevated to generic status by Loeblich and Tappan (1987), Kaminski (2004), and 

Mikhalevich (2004). An ecological distinction between these two subgenera was assessed 

by Brönnimann and Whittaker (1983a and 1990). Species of the subgenus D. 

(Deuterammina) occur in relatively deeper water and in the deep sea, whereas species of 

the subgenus D. (Lepidodeuterammina) are restricted to inner shelf and marginal marine 
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environments. An opposite situation is given for species of these subgenera in our samples 

from the Celtic Sea. D. (Deuterammina) species were only found on the shelf (up to 177 

m water depth), and living D. (Lepidodeuterammina) species were found on the shelf and 

upper slope (up to 467 m). 

 

Deuterammina (Deuterammina) balkwilli Brönnimann and Whittaker, 1983 

Pl. 4, Figs. 4a, b; Pl. 10, Fig. 7; Pl. 12, Fig. 10 

Trochammina inflata (Montagu) var. Balkwill and Wright, 1885, p. 331, pl. 13, fig. 12a 

only. 

Trochammina rotaliformis Heron-Allen and Earland. Cushman, 1920, p. 77, pl. 16, fig. 1 

(left only). 

?Trochammina rotaliformis Heron-Allen and Earland. Murray, 1971, p. 39, pl. 12, fig. 5 

only. 

Deuterammina (Deuterammina) balkwilli Brönnimann and Whittaker, 1983b, p. 352, figs. 

13−16, 26. 

 

Material: One attached, dead specimen from station VH-97-36, size fraction 

>2000 µm. 

 

Description: Test consists of 13 chambers arranged in two and a half whorls with 

six chambers in the final whorl; low trochospire, slightly oval. Shape of chambers nearly 

triangular on the umbilical side and elongate on the spiral side. Sutures umbilically almost 

straight and curved on the spiral side. Umbilical depression open and deep. Aperture 

double, primary aperture interiomarginal, border resting completely on the ultimate 

chamber of the final whorl. Secondary aperture not visible, because of remains of adhered 

sediment used for attachment (Puffermasse) on the umbilical depression. Wall 

imperforate, smooth and single-layered, finely granular with some larger grain flakes. 

 

Remarks: D. (D.) balkwilli differs from D. (D.) rotaliformis in the apertural 

features, the number of chambers in the final whorl (six instead of five chambers in D. 

(D.) rotaliformis) and the shape of chambers on the spiral side. 

 

Deuterammina (Deuterammina) rotaliformis (Heron-Allen and Earland, 1911) 
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Pl. 7, Fig. 1a, b; Pl. 8, Fig. 1a, b; Pl. 10, Fig. 4; Pl. 12, Fig. 11 

Trochammina inflata (Montagu) var. Balkwill and Wright, 1885, p. 331, pl. 13, figs. 11a, 

12b. 

Trochammina rotaliformis Heron-Allen and Earland, 1911, p. 309; Heron-Allen and 

Earland, 1930, p. 71 (pars); Lévy et al., 1974, p. 128, pl. 1, figs. 4−5. 

Deuterammina (Deuterammina) rotaliformis (Heron-Allen and Earland). Brönnimann and 

Whittaker, 1983b, p. 348-352, figs. 1−12, 25; Murray, 2003, p. 11, figs. 2.7, 2.8. 

 

Material: 35 living specimens from stations VH-97-32, -33, -34, -35 and -36, and 

BG0812a-05 and -08, size fraction >63 µm, thereof two attached specimens. 

 

Description: Test free or attached, moderately high trochospire, composed of 19 

chambers arranged in four volutions with five chambers in the final whorl, periphery 

rounded. Shape of chambers depressed and elongate on the spiral side, broadly triangular 

on the umbilical side. Sutures indistinct, slightly curved spirally and almost straight 

umbilically. Umbilical depression forms a five-arm star, open and deep. Wall single-

layered and imperforate. Two separate openings form the Deuterammina-type aperture: a 

single interiomarginal extra-umbilical, arch-like primary aperture and a secondary opening 

in posteriorly directing position. 

 

Deuterammina (Lepidodeuterammina) mourai Brönnimann and Zaninetti, 1984 

Pl. 3, Fig. 4a, b; Pl. 11, Fig. 6; Pl. 12, Fig. 12 

Deuterammina (Lepidodeuterammina) mourai Brönnimann and Zaninetti, 1984, p. 85−87, 

pl. 4, figs. 5−7, figs. M 1−4, N 1−3, O 1−4; Bender, 1995, p. 43, pl. 5, fig. 11. 

  

Material: Two free living specimens from station BG0812a-05, size fraction 63 − 

125 µm. 

 

Description: Test watchglass-like, shallow-concave umbilically, composed of 17 

compressed, arc-like chambers arranged in three and a half whorls, six chambers in the 

final whorl. Chambers umbilically triangular to slightly mushroom-like in shape. Sutures 

whitish and well defined on both sides, almost straight on the spiral side and slightly 
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incurved on the umbilical side. Small axial depression, star-shaped. Wall thin, single-

layered and imperforate, agglutination uniformly fine-grained. 

 

Deuterammina (Lepidodeuterammina) ochracea (Williamson, 1858) 

Pl. 5, Fig. 2a−c; Pl. 6, Fig. 2a, b; Pl. 11, Fig. 4; Pl. 12, Fig. 13 

Rotalina ochracea Williamson, 1858, p. 55, pl. 4, fig. 112, pl. 5, fig. 113. 

Trochammina ochracea (Williamson). Höglund, 1947, p. 209, text-fig. 190, p. 211, pl. 16, 

figs. 2a−c; Hedley et al., 1964, p. 420, 421, figs. 2, 2A−C, 3, 2; Murray, 1970, p. 

481, pl. 1, figs. 2, 3; Murray, 1971, p. 37, pl. 11, figs. 1−5; Haynes, 1973, p. 40, pl. 

5, figs. 15−18. 

Deuterammina (Lepidodeuterammina) ochracea (Williamson). Brönnimann and 

Whittaker, 1983a, p. 233−235, figs. 1−8, 10; Brönnimann and Whittaker, 1988a, p. 

119, figs. 52A−F; Murray and Alve, 2011, p. 29, figs. 17.10, 17.11.  

Deuterammina (Lepidodeuterammina) ochracea ochracea (Williamson). Brönnimann and 

Zaninetti, 1984, p. 87, pl. 2, figs. 1, 3, fig. AD 2. 

Deuterammina ochracea (Williamson). Rosset-Moulinier. 1986, p. 437, pl. 3, fig. 5. 

Lepidodeuterammina ochracea (Williamson). Debenay, 2001, p. 86, pl. 1, figs. 12, 13, 21. 

 

Material: 94 living specimens from stations VH-97-33, -34, -35, -36, -37, -49, -50, 

BG0812a-02, -05, -08 and D78/95, size fraction >63 µm, thereof 21 attached and 73 free 

specimens. 

 

Description: Test watchglass-shaped, strongly compressed, composed of 32 

chambers arranged in three an a half volutions with nine chambers in the final whorl. 

Attached mostly with “Toga” in the sense of Rhumbler (1938). Chambers compressed, 

arc-like, increase rapidly in size, umbilically chambers overlapping with inflated proximal 

margins. Sutures curved and weakly depressed in the last whorl on the spiral side, on the 

umbilical side sinuous. Axial depression narrow, open and star-shaped. Wall thin, single-

layered, flexible and imperforate, spiral side with mosaic of well-cemented quartz flakes, 

umbilical side more smooth. Aperture double, of Deuterammina-type. 

 

Deuterammina (Lepidodeuterammina) sinuosa (Brönnimann, 1978) 

Pl. 5, Fig. 1a−c; Pl. 6, Fig. 1a, b; Pl. 11, Fig. 3; Pl. 12, Fig. 14 
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Trochammina ochracea (Williamson). Heron-Allen and Earland, 1930, p. 71 (pars). 

Asterotrochammina sinuosa Brönnimann, 1978, p. 6, text-fig. 3, pl. 2, figs. 1, 2, 6−8. 

Deuterammina (Lepidodeuterammina) ochracea (Williamson) sinuosa (Brönnimann). 

Brönnimann and Zaninetti, 1984, p. 87, figs. AD 1, AE 1−3, AF 1−3; Brönnimann 

and Whittaker, 1990, p. 116, pl. 1, figs. 9−12. 

 

Material: Six free living specimens from stations VH-97-33 and BG0812a-05, 

size fraction 63 − 125 µm. 

 

Description: Test watchglass-like, low trochospire, compressed, periphery 

rounded. Made of up to 19 chambers arranged in two and a half volutions, final whorl 

consists of nine chambers. Each chamber overlaps the preceding one on the umbilical side. 

Sutures whitish, distinct and slightly curved on the spiral side, sinuous on the umbilical 

side. Axial depression deep, star-shape with nine branches. Aperture double, of 

Deuterammina-type. Wall single-layered, imperforate, smooth, of uniform quartz grains, 

only a few larger quartz flakes on the umbilical side. 

 

Remarks: Due to the morphological differences between D. (L.) ochracea and D. 

(L.) sinuosa, we decided to keep sinuosa as a separate species. 

 

Deuterammina (Lepidodeuterammina) sp. 2 

Pl. 4, Fig. 3a, b; Pl. 11, Fig. 8; Pl. 12, Fig. 15 

 

Material: 15 attached specimens from station D78/95, size fraction 250 − >2000 

µm, thereof four living and 11 dead specimens. 

 

Description: Test watchglass-like, strongly compressed, attached with 

“Puffermasse” in the sense of Rhumbler (1938), composed of 21 chambers arranged in 

three volutions with nine chambers in the final whorl. Chambers sustained and arc-like on 

the spiral side, umbilically slightly collapsed. Sutures strongly curved on spiral side and 

sinuous on umbilical side. Shallow axial depression, star-shaped. Wall thin, single-layered 

and flexible. 
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Remarks: This species differs from the other D. (Lepidodeuterammina) species in 

the shape of the chambers and the shallow axial depression. Furthermore, it differs from 

D. (L.) mourai and D. (L.) ochracea in the outline of the test (rounded in mourai and 

ochracea, slightly ovate in this species) and the character of the sutures on the spiral side. 

 

3.4 Results 

 

3.4.1 Abundance and diversity pattern of the Trochamminidae 

 

In 13 surface sediment samples from the Celtic Sea, 31 Recent species of the 

family Trochamminidae were found (Table 3.2). They comprise between 5 and 32 % of 

the living fauna, and up to 12 % of the dead assemblages (Table 3.2). Therefore, the 

trochamminid species are a subdominant faunal element of the total living fauna. 

Population densities ranged from two to 40 specimens per 10 cm³. The number of tests per 

10 cm³ in the dead assemblages ranged from 10 to 1758 individuals, except of station 50, 

where no trochamminids were found (Table 3.2). Portatrochammina murrayi was the 

most abundant species in the living fauna (144 specimens), whereas Tritaxis conica was 

the dominant species in the dead assemblages (218 specimens).  

From our 31 trochamminids, 18 taxa could be determined at species level. In order 

to relate this assemblage to the global species number of Recent Trochamminidae, we 

counted all species that were initially described from Recent sediments as listed in the 

Ellis and Messina (1940) catalogue. A total number of 202 species was recorded, of which 

18 species were found in the Celtic Sea. They resemble 9 % of the worldwide species 

number. In addition, analyses of published occurrences of benthic foraminiferal species 

from the NE Atlantic (Dorst and Schönfeld, 2013), and the records of trochamminid 

species in the Ellis and Messina (1940) catalogue showed that the total species number 

(202) could be reduced by synonymous taxa. If we apply a synonymy rate of 26 % (Dorst 

and Schönfeld, 2013), our 18 species would comprise about 12 % of all Recent species of 

the family Trochamminidae. 
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Table 3.2 Distribution table of all species of the family Trochamminidae (absolute frequency) recognized at 13 stations. 

Station 

Living/dead living dead living dead living dead living dead living dead living dead living dead living dead

Species

Ammoglobigerina shannoni 

Deuterammina (Deut.) balkwilli 1

Deuterammina (Deut.) rotaliformis 2 1 1 14 1

Deuterammina (Deut.) sp. 1 1

Deuterammina (Deut.) sp. 2 1

Deuterammina (Lepidodeut.) mourai

Deuterammina (Lepidodeut.) ochracea 2 9 19 9 1 10 1

Deuterammina (Lepidodeut.) sinuosa 5

Deuterammina (Lepidodeut.) sp. 1 1

Deuterammina (Lepidodeut.) sp. 2

Deuterammina (Lepidodeut.) sp. 3

Paratrochammina (Lepidopara.) haynesi 3

Paratrochammina (Para.) tricamerata 1

?Paratrochammina (Para.) wrighti 1

Polystomammina nitida 1 1 1 12 1 3 4

Polystomammina sp. juv.

Portatrochammina murrayi 22 2 30 1 10 14 11 1 3 4

Portatrochammina pacifica juv.

Rotaliammina concava 2 11 5 27 7

Rotaliammina siphonata 2

Tritaxis conica 30 17 19 17 42 1 3

Trochammina advena juv. 1

Trochammina astrifica 1 1

Trochammina squamata 6 1 3 2 4 5

Trochammina sp. 1 1
Trochammina sp. 2 1
Trochammina sp. 3 2 1

Trochammina sp. 4 1 1

Trochammina sp. 5

Trochammina sp. 6 1

Trochamminopsis pusilla juv. 1

Proportion of trochamminids of total fauna (%) 21.4 12.2 16.1 5.4 12.9 4.7 23.5 5.1 31.8 5.4 17.2 4 18.5 2 18.2 0

Population density (Ind./10 cm³) 16 1223 20 1758 4 229 6 467 10 1177 2 10 9 9 3 0

VH-97-36 VH-97-37 VH-97-49 VH-97-50VH-97-32D VH-97-33D VH-97-34 VH-97-35
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Station 

Living/dead living dead living dead living dead living dead living dead

Species

Ammoglobigerina shannoni 5

Deuterammina (Deut.) balkwilli

Deuterammina (Deut.) rotaliformis 10 6

Deuterammina (Deut.) sp. 1

Deuterammina (Deut.) sp. 2 1 1

Deuterammina (Lepidodeut.) mourai 2

Deuterammina (Lepidodeut.) ochracea 10 26 4 3

Deuterammina (Lepidodeut.) sinuosa 1

Deuterammina (Lepidodeut.) sp. 1

Deuterammina (Lepidodeut.) sp. 2 4 11

Deuterammina (Lepidodeut.) sp. 3 1

Paratrochammina (Lepidopara.) haynesi 3 2

Paratrochammina (Para.) tricamerata 1 3

?Paratrochammina (Para.) wrighti

Polystomammina nitida 8 1 14 1 4

Polystomammina sp. juv. 1

Portatrochammina murrayi 5 23 18 4

Portatrochammina pacifica juv. 1 3 2

Rotaliammina concava 2 6 15

Rotaliammina siphonata

Tritaxis conica 7 3 2 77

Trochammina advena juv. 5

Trochammina astrifica

Trochammina squamata 1 2 1 2 4 1 5 11

Trochammina sp. 1

Trochammina sp. 2

Trochammina sp. 3

Trochammina sp. 4

Trochammina sp. 5 2

Trochammina sp. 6 1 1

Trochamminopsis pusilla juv. 1

Proportion of trochamminids of total fauna (%) 19.7 2.2 18.2 0.9 5.2 0.1 5.5 0.7 8.2 12.3

Population density (Ind./10 cm³) 14 824 40 817 5 12 28 633 9 589

D78/95BG0812a-02 BG0812a-05 BG0812a-06 BG0812a-08
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3.4.2 Development of systematics of the Trochamminidae 

 

Our species were assigned to the subfamilies Trochammininae and 

Polystomammininae. According to several classification concepts (Saidova, 1981; 

Loeblich and Tappan, 1982, 1987; Brönnimann and Whittaker, 1990, cum lit.; Kaminski, 

2004; Mikhalevich, 2004), the family Trochamminidae contains five to ten subfamilies. 

The subfamilies Trochammininae and Polystomammininae, which were described in this 

paper, were included in all above mentioned classification concepts, except for the scheme 

of Saidova (1981). This author used as a first-order criterion for the definition of her 

subfamilies the opened or closed umbilical depression, which has only taxonomic 

significance at species level (Brönnimann et al., 1983). Brönnimann and Whittaker (1990, 

cum lit.) proposed the following six subfamilies defined on overall apertural features: 

Trochammininae, Polystomammininae, Trochamminellinae Brönnimann et al., 1983, 

Arenoparrellinae Saidova, 1981, Carterininae Loeblich and Tappan, 1955, and 

Zavodovskininae Brönnimann and Whittaker, 1988a. These subfamilies were also defined 

in the reclassification of agglutinated foraminifera by Kaminski (2004), to which he added 

four more subfamilies. Within the subfamily Polystomammininae, Brönnimann and 

Whittaker (1988a) defined two subgenera (Deuterammina and Lepidodeuterammina) 

under the genus Deuterammina. Both subgenera were elevated to generic status by 

Loeblich and Tappan (1987), Kaminski (2004) and Mikhalevich (2004). Saidova (1981) 

placed the subfamily Polystomammininae as a genus under the subfamily 

Trochammininae. For the genus Paratrochammina (under the subfamily 

Trochammininae), two subgenera were defined by Brönnimann and Whittaker (1986): 

Paratrochammina and Lepidoparatrochammina, which were also elevated to generic 

status by Kaminski (2004) and Mikhalevich (2004). Furthermore, the new introduced 

subfamily Rotaliammininae by Saidova (1981) were placed as genus Rotaliammina under 

the subfamily Trochammininae by Brönnimann et al. (1983).  

In this study we described and illustrated 19 trochamminids (18 species and one 

taxon in open nomenclature), classified in nine genera. Their differential diagnoses are 

partially or exclusively based on six different aperture types (Table 3.3, Fig. 3.1). After 

Brönnimann and Whittaker (1988a), these six apertural types are the Trochammina-type 

(type 1), the Paratrochammina-type (type 2), the Trochamminopsis-type (type 3), the 

Deuterammina-type (type 5), the Polystomammina-type (type 6), and the Rotaliammina-
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type (type 8). The various types were named after genera in which the particular aperture 

has been recognized first (Brönnimann et al., 1983; Brönnimann and Whittaker, 1988a). 

 

 3.5 Discussion 

 

Designation of species of the family Trochamminidae and evaluation of earlier 

taxonomic concepts revealed that a consistent classification of this foraminiferal group 

does not exist. To date, molecular phylogenetic studies on specimens of the family 

Trochamminidae are not available to verify or reject the morphology-based systematics. 

At present, molecular phylogenetic studies could not address this problem, because only 

Trochammina hadai Uchio, 1962 and Trochammina sp. were sequenced to date 

(Pawlowski et al., 2013). Both species indicated a close phylogenetic relationship to 

species of Eggerella Cushman, 1933. Hence, they were assigned to the order Textulariida 

Delage and Herouard, 1896 (Pawlowski et al., 2013). However, according to 

morphological criteria, for instance wall structure, the suborder Trochamminina Saidova, 

1981 was separated from the suborder Textulariina Delage and Herouard, 1896 

(Brönnimann and Whittaker, 1988c), and assigned to the order Lituolida Lankester, 1885 

(Kaminski, 2004; Mikhalevich, 2004). 

To date, the systematics of Brönnimann and Whittaker (1990, cum lit.) exhibits the 

most comprehensive described and illustrated compendium of the Trochamminidae. How 

far their taxonomic concept has priority over other concepts was not considered by 

subsequent studies. In particular, no statements whether the determination of subfamilies, 

genera and species of the Trochamminidae were justified were provided by Saidova 

(1981), Loeblich and Tappan (1987), Kaminski (2004), and Mikhalevich (2004). 

Additional, the morphospace model indicated the fundamental role of apertures in the 

morphogenesis of foraminifera (Tyszka, 2006). After the principal morphogenetic rules 

revealed from the geometry of foraminiferal tests, the position of the aperture controls the 

geometry of chamber arrangement and the final shape of the test (Labaj et al., 2003; 

Tyszka et al., 2005). The position of the apertures is based on minimization of the distance 

between the foramina and aperture (Tyszka et al., 2005; Tyszka and Topa, 2005). 

However, this model could not include some morphological features, such as multiple 

apertures, complex chamber shapes and chamber internal structures (Tyszka, 2006). Even 

the chamber formation in polythalamous foraminifera is not very well known, because the 
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chamber itself does not define an aperture (Tyszka and Topa, 2005). As such, the 

morphospace model corroborates the initial classification concept of Brönnimann and 

Whittaker (1990, cum lit.). 

Six different apertural types (after Brönnimann and Whittaker, 1988a) were 

distinguished within the species described in this paper. We tried to establish a 

relationship between these apertural types and the mode of life (free, attached, and 

opportunistic). For example, the genera Deuterammina and Rotaliammina exhibit different 

apertural types, although species of these genera preferred an attached mode of life. The 

preferred mode of life seems rather associated with the shape of the test and the chambers 

(flat, conical or globular). However, the position of an aperture has no influence on the 

chamber shape (Tyszka and Topa, 2005). Furthermore, some of the described species had 

an opportunistic mode of life despite having different apertural features. These species 

could live free or attached depending on environmental parameters. Our analyses with 

respect to the relation between the apertural features and the mode of life revealed no 

matches.  

The applicability of the taxonomic concept of Brönnimann and Whittaker (1988a) 

poses another problem. Secure definition of a genus only based on apertural features is 

usually not possible, because the aperture is often covered or damaged. Nonetheless, we 

could designate our species after their concept, due to the fact of the comprehensive 

descriptions and illustrations of many Trochamminidae species. In addition, 

morphological characteristics such as the shape of the tests and chambers were also used 

by Brönnimann and Whittaker (1990, cum lit.) for determination between genera, 

subgenera and species. Finally, and despite the apertural problem, we consider their 

concept as valid and applicable unless forthcoming genetic investigations provide other 

evidence.   
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Table 3.3 Summarized observations of morphological features and mode of life of the 19 described trochamminid species. The numbers in parentheses 
indicate the apertural type after Brönnimann and Whittaker (1988a). p: primary aperture, s: secondary aperture. 
 

Species Test shape
Chambers 
final whorl

Whorls Aperture type Aperture position Mode of life

Ammoglobigerina shannoni 
low trochospire, globular 

chambers
4 2.5

(3) single, symmetric, 
umbilical

rests on ultimate and 
penultimate chamber

free

Deuterammina (Deut.) balkwilli
low trochospire, 

periphery rounded
6 2.5

(5) double, umbilical-
extraumbilical

p: ultimate chamber; s:  
umbilical tip of chamber

attached

Deuterammina (Deut.) rotaliformis
moderate trochospire, 

periphery rounded
5 4

(5) double, umbilical-
extraumbilical

p: ultimate chamber; s:  
umbilical tip of chamber

opportunistic

Deuterammina (Lepidodeut.) mourai
watchglass-like, 

periphery rounded
6 3.5

(5) double, umbilical-
extraumbilical

p: ultimate chamber; s:  
umbilical tip of chamber

attached

Deuterammina (Lepidodeut.) ochracea
watchglass-like, strongly 

compressed
9 3.5

(5) double, umbilical-
extraumbilical

p: ultimate chamber; s:  
umbilical tip of chamber

attached

Deuterammina (Lepidodeut.) sinuosa 
watchglass-like, 

periphery rounded
9 2.5

(5) double, umbilical-
extraumbilical

p: ultimate chamber; s:  
umbilical tip of chamber

attached

Deuterammina (Lepidodeut.) sp. watchglass-like 9 3
(5) double, umbilical-

extraumbilical
p: ultimate chamber; s:  

umbilical tip of chamber
attached

Paratrochammina (Lepidopara.) haynesi
watchglass-like outline 

subcircular
6 2.5

(2a) single, asymmetric, 
umbilical-extraumbil.

rests on ultimate and 
penultimate chamber

opportunistic

Paratrochammina (Para.) tricamerata
moderately compressed 

trochospire
3 2.5

(2a) single, asymmetric, 
umbilical-extraumbil.

rests on ultimate and 
penultimate chamber

mostly free

Polystomammina nitida low trochospire 9 3 (6) double, interio-areal
p: ultimate chamber; s:  

umbilical tip of chamber
opportunistic

Portatrochammina murrayi
spiral flat, umbilical 

shallow-concave 
4 2

(2b) single, asymmetric, 
with umbilical flap

rests on ultimate and 
penultimate chamber

mostly free

Portatrochammina pacifica juv.
moderate trochospire, 

periphery rounded
4-5 3.5

(2b) single, asymmetric, 
with umbilical flap

rests on ultimate and 
penultimate chamber

free

Rotaliammina concava
watchglass-like, 

periphery sharpened
7 4

(8) single, visible at each 
chamber

umbilical, axial end of 
each chamber

attached

Rotaliammina siphonata
watchglass-like, 

periphery subcarinate
7-8 2

(8) single, visible at each 
chamber

umbilical, axial end of 
each chamber

attached
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Species Test shape
Chambers 
final whorl

Whorls Aperture type Aperture posit ion Mode of life

Tritaxis conica conical 3 5
(1) single, umbilical-

extraumbilical
rests completely on 
ultimate chamber

attached

Trochammina advena juv.
low trochospire, 

periphery rounded
4 3

(1) single, umbilical-
extraumbilical

rests completely on 
ultimate chamber

free

Trochammina astrifica
low trochospire, 

periphery rounded
6 2.5

(1) single, umbilical-
extraumbilical

rests completely on 
ultimate chamber

opportunistic

Trochammina squamata
low trochospire, outline 

oval
4 2

(1) single, umbilical-
extraumbilical

rests completely on 
ultimate chamber

opportunistic

Trochamminopsis pusilla juv. conical 4 3.5
(3) single, symmetric, 

umbilical
rests on ultimate and 
penultimate chamber

attached
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Fig. 3.1 Summary illustration of apertural types and test morphologies discussed in this paper. 
Light gray: apertures, dark gray: umbilical area. 1: Trochammina, type 1; 2: Tritaxis, type 1; 3: 
Trochamminopsis, type 3; 4: Paratrochammina (Paratrochammina), type 2; 5: Paratrochammina 
(Lepidoparatrochammina), type 2; 6: Portatrochammina, type 2; 7: Ammoglobigerina, type 3; 8: 
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Deuterammina (Deuterammina), type 5; 9: Deuterammina (Lepidodeuterammina), type 5; 10 and 
11: Polystomammina, type 6; 12: Rotaliammina, type 8. Figure 1, 2, 6, 8, 10 and 11 were redrawn 
from Brönnimann and Whittaker (1988a). Figure 4 and 7 were redrawn and modified from 
Brönnimann and Whittaker (1988a). Figure 5 was redrawn from Brönnimann and Whittaker 
(1986, 1988a). Figure 9 was redrawn from Brönnimann and Zaninetti (1984) and Brönnimann and 
Whittaker (1988a), and figure 12 was redrawn from Brönnimann and Zaninetti (1984). 
 

3.6 Conclusion 

 

Determination of Recent species of the family Trochamminidae from the shelf and 

upper slope of the Celtic Sea was very difficult, because many of these species were not 

found or described and illustrated from this area so far. To date, several taxonomic 

concepts exist, which differ from each other in their systematic classification within the 

Trochamminidae. The best applicable concept was proven that of Brönnimann and 

Whittaker (1990, cum lit.). Molecular phylogenetic studies on specimens of the family 

Trochamminidae are required to verify the existing morphological concepts. In addition, 

the formation of apertures and the causes of multiple apertures are still unknown. 

Clarifying these problems could depict the previously considered relevance of an aperture 

is justified as an important taxonomic criterion.  
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Summary and Conclusions 

 

The objective of this study was to analyze the ecology, diversity, and distribution 

pattern of Recent benthic foraminiferal species from the shelf and slope of the NE Atlantic 

(43 – 58° N). Not less than 44 publications from 1913 – 2010 were analyzed to review the 

distribution and diversity pattern of benthic foraminifera in this area. In addition, a 

synonymy matrix and standardized taxonomy of benthic foraminifera was created. The 

study area was subdivided in six regions due to differences in species inventory, as well as 

morphological, physical and hydrographic conditions. The analyses revealed an 

interregional diversity pattern and close linkages of the faunal assemblages between the 

regions. Most of the species have a hyaline test structure and a free mode of life in all six 

regions. The diversity (Fisher α index) increases from the shelf to the slope and the mean 

species number on the shelf increases from N – S. The latitudinal distribution of six 

dominant species was analyzed and exhibits an “oak leaf” distribution pattern for the shelf 

areas. Heterogeneous sample coverage and inconsistencies in data documentation hamper 

to judge, whether this pattern reflects the real distribution or wether it is an artifact due to 

gaps in data coverage. Foraminiferal diversities as calculated from published data has 

shown, that standardized data as, for instance standard protocols for sampling and 

preparation or a standardized taxonomy are essential for compilation studies. 

Analyses of Recent benthic foraminiferal assemblages from surface sediment 

samples from the shelf and slope of the South Western Approaches (Celtic Sea) revealed 

highest diversities on the slope and at those shelf stations, which were sampled 

immediately after the spring bloom. The living fauna showed a bisection on the shelf. On 

the slope, however, significant changes were recorded within small depth intervals and 

geographic position due to differences in topography, bottom sediments and 

hydrographical conditions. The Recent dead assemblages revealed the influences of a 

high-energy environment by loss of arenaceous species, higher proportions of robust 

miliolids, and a lateral homogenisation in the faunal assemblages. These results may 

facilitate a better interpretation of palaeoenvironments from fossil assemblages. A 

comparison with corresponding stations from earlier studies from the same area yields 

distinct differences in the benthic foraminiferal assemblages on the shelf and slope. These 

differences were presumably highly influenced by the time and methods of sampling than 
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by environmental changes. Therefore, and to obtain consistent results in regional studies, 

samples should be taken within a short period and by using the same sampling device. 

Recent benthic foraminiferal assemblages from the Celtic Sea showed a rich 

variety of species of the family Trochamminidae. Many of these species were not 

described and illustrated from this area so far. Thirty-one taxa of this family were 

recorded, of which 19 taxa were described in detail. Several taxonomic concepts for a 

systematic classification within the Trochamminidae exist. All concepts were based on 

test morphology, internal structures and apertural features. A detailed assessment of the 

classification schemes revealed that the concept of Brönnimann and Whittaker (1990, cum 

lit.) is the best for application in comparative taxonomic studies. However, the formation 

of an aperture and the cause of multiple apertures are not yet sufficiently constrained. 

Hence, combined morphological and molecular phylogenetic analyses are required to 

verify the existing taxonomic concepts and to justify the fundamental role of apertural 

features in the systematic subdivision of the Trochamminidae. 
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Appendix 1 (Chapter 1) 

 

1.1 Publication data 

 

This appendix contains 42 tables as MS Excel spreadsheets, which can be found on 

the Cushman Foundation website in the JFR Article Data Repository 

(http://www.cushmanfoundation.org/jfr/index.html) as item number JFR_DR2013006 and 

at OceanRep (GEOMAR_Publications Database; http://oceanrep.geomar.de/14216/).  

 

1.2 Taxonomic list of benthic foraminiferal species 

  

This appendix contains list of 1107 foraminiferal species, which can be found on 

the Cushman Foundation website in the JFR Article Data Repository 

(http://www.cushmanfoundation.org/jfr/index.html) as item number JFR_DR2013006 and 

at OceanRep (GEOMAR_Publications Database; http://oceanrep.geomar.de/14216/). 

 

1.3 Diversity and species numbers 

 

This table contains the Fisher α indices of 13 publications and the species numbers 

of 12 publications, which were used to investigate the diversity of benthic foraminifera in 

the NE Atlantic. Numbers with an asterisk are mean values. Longitude “A” and “B” of 

Rosset-Moulinier (1986) are transects. 
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Publication Region Station Latitude (°N) Longitude (°W) Depth (m) Fisher α index Species number

3 48.667 3.933 15 21

1 48.717 3.817 1 5
C493 53.363 10.091 1 4.94 8

C494 53.363 10.091 2 3

C492 53.385 10.091 1 3.00 7

C446 53.397 10.093 11 1.59 4

C453 53.407 10.092 20 1.06 3

C434 53.418 10.092 20 1.81 5

C433 53.419 10.093 15 1

C502 53.425 10.090 2 2.13 7

C561 53.429 10.089 1 1

C454 53.429 10.092 16 1

C455 53.435 10.092 14 1

C457 53.439 10.090 4 2

C456 53.450 10.092 4 1

C470 53.463 10.092 9 1.41 6

C408 53.469 10.088 9 3.54 7

C520 53.470 10.098 5 2

C414 53.479 10.091 9 1

C522 53.481 10.095 6 1

C523 53.483 10.095 5 2

C479 53.486 10.093 11 3

C501 53.497 10.091 2 1

C458 53.503 10.086 17 1

1437 48.867 10.50 420 7

1438 48.867 10.017 1002 7

1440 49.967 9.183 138 5.5*

1441 50.033 9.133 135 5.5*

1442 50.083 9.05 128 5.5*

1443 50.10 8.97 128 5.5*

1454 51.183 4.667 24 4*
1453 51.25 5.00 57 4*

1448 51.25 5.45 77 4*

1447 51.25 5.533 80 4*

1446 51.25 5.667 84 4*

1444 51.25 5.883 91 4*

1445 51.25 5.80 95 4*

1452 51.267 5.133 67 4*

1451 51.267 5.20 77 4*

1450 51.283 5.30 77 4*

1449 51.283 5.35 77 4*

C6940 45.041 2.98 2270 26

C6941 45.052 2.973 1920 26

C6944 45.063 2.963 2100 24

C6945 45.074 2.955 1700 21

C6950 45.078 2.955 1700 34

C6406 45.083 3.233 1300 11

C6305 45.133 3.40 4000 23

C6931 45.305 5.14 4130 24

C6302 45.317 3.133 185 20

C6926 45.320 5.388 4280 12

C6924 45.337 5.447 4230 25

C6927 45.338 5.35 4058 26

C6929 45.352 5.465 4100 20

B
Pujos-Lamy 

(1973)

Murray 
(1970)

C

Douvillé 
(1936)

Lees et al. 
(1969)

D

F
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Publication Region Station Latitude (°N) Longitude (°W) Depth (m) Fisher α index Species number
C6928 45.368 5.347 3920 27

C6932 45.407 5.163 4300 14

C6403 45.433 3.283 100 9

C6922 45.453 5.497 4260 11

C6933 45.453 4.983 4450 13

C6707 45.467 5.35 4175 17

C6714 45.477 4.425 4220 18

D65119 45.733 3.50 160 12

C6719 45.735 3.934 1800 28

D6718 45.767 4.10 2480 23

D65108 45.80 3.667 180 14

D6723 45.822 3.883 1400 11

C6717 45.834 3.867 1540 23

D6720 45.853 3.817 700 20

D6595 45.883 4.00 1100 21

D6722 45.90 3.783 315 24

C6711 45.900 3.833 1420 22

D6721 45.903 3.592 135 14

D6719 45.913 3.88 430 23

D6592 45.942 3.883 560 24

D6591 45.967 3.867 190 20

C6914 45.967 4.673 3275 27

C6913 46.013 4.675 3050 30

C6912 46.017 4.686 2850 23

C6906 46.025 4.867 3800 28

C6917 46.057 4.497 2470 28

C6935 46.062 4.483 2250 16

C6904 46.067 4.85 3375 19

D6709 46.083 4.483 1480 13

C6934 46.087 4.498 2278 25

C6938 46.087 4.492 2300 23
C6903 46.09 4.853 3190 25

C6902 46.10 4.87 2870 22

D6642 46.117 4.00 200 29

C6901 46.117 4.947 3450 23

D6712 46.151 4.495 2500 15

C6709 46.268 4.601 1975 21

D6706 46.283 4.367 850 20

D6707 46.283 4.467 1150 21

D6716 46.285 4.35 900 21

D6704 46.317 4.40 290 27

D6710 46.342 4.301 230 19

D6702 46.358 4.433 580 17

2217 50.00 9.333 132 5.40 11

2207 50.00 9.50 135 11.85 33

2216 50.083 9.333 131 4.14 11

2215 50.167 9.333 130 4.73 12

2208 50.167 9.50 131 5.01 12

2209 50.250 9.50 117 8.56 30

2214 50.250 9.333 122 9.94 26

2210 50.333 9.50 119 7.42 26

2213 50.333 9.333 123 7.10 25

2574 50.350 8.167 110 9.00 23

2575 50.417 8.167 110 10.84 27

Pujos-Lamy 
(1973)

B

Murray 
(1979)

C
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Publication Region Station Latitude (°N) Longitude (°W) Depth (m) Fisher α index Species number
2212 50.417 9.333 115 6.66 24

2211 50.50 9.333 80 5.93 24

2090 50.583 9.083 75 6.59 21

2077 50.583 8.333 106 7.83 23

2078 50.583 8.583 110 6.87 21

2079 50.583 8.833 111 9.97 30

2091 50.667 9.083 113 6.25 18

2076 50.683 8.333 104 11.72 32

2577 50.683 8.167 106 8.65 23

2570 50.733 8.00 106 8.72 22

2075 50.750 8.333 99 8.19 22

2080 50.750 8.833 104 5.41 17

2571 50.767 8.017 102 10.71 16

2081 50.833 8.833 80 3.77 12

2074 50.833 8.333 99 6.29 23

2073 50.917 8.333 95 11.44 23

2572 50.917 8.00 100 11.79 34

2082 50.917 8.833 100 9.94 33

2573 50.950 7.983 103 9.82 34

2072 51.00 8.333 95 6.09 18

2089 51.00 9.083 97 8.83 33

2567 51.017 8.00 91 8.21 27

2084 51.083 8.833 95 8.58 28

2088 51.083 9.083 99 8.88 26

2071 51.10 8.333 95 7.31 25

2085 51.167 8.833 95 7.77 24

2070 51.183 8.333 92 9.51 27

2086 51.250 8.833 91 4.73 15

2069 51.267 8.333 88 5.74 22

2568 51.283 8.00 91 3.90 22

2068 51.550 8.350 95 7.90 22
107 47.675 8.017 1260 8.64

49 47.887 8.00 725 3.02

111 47.948 8.012 765 6.46

52 48.475 10.328 1310 2.50

48 48.633 9.957 620 3.19

106 48.652 9.90 370 3.47

46 48.682 9.807 255 3.21

29 51.267 12.00 1600 3.54

26 51.308 11.750 950 3.15

28 51.350 11.583 510 3.83

27 51.350 11.717 780 6.97

30 51.708 11.975 422 5.90

3147 50.367 3.425 54 12

3359 50.383 2.967 49 4

3360 50.383 2.90 51 4

3150 50.383 2.90 55 17

3358 50.392 3.042 48 4.5

3357 50.40 3.10 50 5

3151 50.40 3.10 53 5

3355 50.467 3.217 35 6

3354 50.50 3.275 30 7

3353 50.533 3.333 20 8

3149 50.567 2.70 35 8

Weston 
(1985)

C

F

Murray 
(1979)

C

Murray 
(1986)

D
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Publication Region Station Latitude (°N) Longitude (°W) Depth (m) Fisher α index Species number
3148 50.575 3.383 20 4.5

3352 50.575 3.383 20 7

B618 14 3.85 9

G390 19 8.54 4

B605 26 1.55 4

G401 27 3.31 7

B596 41 1.04 5

G371 43 13.90 4

B583 47 2.49 7

B572 51 2.14 7

B659 58 1.79 9

1120 58 8.51 7

1113 59 4.35 6

B668 60 10.36 3

B974 61 2.77 8

B957 62 2.63 8

1091 65 1.36 8

G404 65 3.68 9

G513 65 3.92 6

1114 65 5.52 9

1097 66 3.84 10

1118 66 4.32 15

B970 68 3.38 6

1090 89 3.71 10

F120 2 0.43 2

F111 6 2.06 6

B902 9 3.98 5

F142 9 1

F122 13 1.87 4

F154 18 1

F133 18 1.22 5
B910 23 2

F203 23 6.73 10

B907 28 2

F200 31 2.72 7

F345 33 1.45 3

F382 37 4.45 7

F336 38 1

F381 42 6.92 11

B854 43 5

B832 43 1

B810 43 3.65 8

F379 46 1.55 4

B812 47 1.97 5

F376 47 2.43 7

B804 48 3.99 10

F373 48 4

F375 48 5.90 8

F377 53 8.29 7

B946 56 3.98 6

B870 57 3

D 43.699 1.568 140 5.32 36

B 43.833 2.384 553 10.09 46

A 44.151 2.338 1012 9.18 40

Murray 
(1986)

D

Fontanier et 
al. (2002)

B

B

A

Rosset-
Moulinier 

(1986)
D
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Publication Region Station Latitude (°N) Longitude (°W) Depth (m) Fisher α index Species number
F 44.285 2.749 1264 6.19 25

H 44.533 2.617 1993 7.74 27

SN6b 56.563 8.383 167 6.72* 20*
MD7a+b 56.813 6.503 218 7.18* 29*
MD6a+b 56.815 6.675 170 6.35* 28*

T8S20 51.51 4.75 49 8.11 23

T1S01 51.68 5.49 64 11.90 40

T8S16 51.44 5.08 64 1.91 9

T1S02 51.65 5.56 67 14.18 47

T1S03 51.61 5.61 68 14.10 42

T6S08 51.77 6.32 71 10.17 34

T6S10 51.66 6.37 71 6.73 28

T8S13 51.39 5.32 71 2.42 11

T6S02 52.11 6.20 75 2.89 9

T8S10 51.33 5.56 76 1.31 6

T8S09 51.31 5.63 79 2.40 7

T6S12 51.42 6.47 81 4.70 18

T6S06 51.86 6.28 82 6.64 14

T8S08 51.29 5.69 82 1.65 4

T1S07 51.46 5.82 86 8.69 24

T1S06 51.50 5.77 87 7.93 29

T3S19 51.36 6.51 88 8.39 32

T8S05 51.24 5.90 90 4.89 17

T1S09 51.39 5.92 91 6.34 26

T3S23 51.23 6.66 92 11.75 40

T2S22 51.97 5.87 93 13.93 39

T6S14 51.53 6.42 93 4.06 17

T6S16 51.33 6.50 93 5.28 22

T2S23 52.00 5.85 95 14.40 46

T3S13 51.57 6.29 96 7.96 25

T3S15 51.50 6.37 96 8.82 30
T3S17 51.43 6.44 96 6.64 26

T2S01 51.05 6.44 98 10.90 37

T3S01 51.97 5.86 98 14.46 41

T3S11 51.63 6.22 99 5.40 22

T1S19 51.04 6.41 101 8.36 29

T3S16 51.46 6.40 101 5.54 23

T1S17 51.11 6.31 102 5.87 23

T2S20 51.88 5.93 102 14.97 47

T1S14 51.22 6.16 103 2.71 13

T2S03 51.14 6.38 104 7.99 29

T8S02 51.19 6.11 104 2.92 12

T2S19 51.84 5.96 105 7.44 27

T2S21 51.93 5.90 105 17.16 41

T8S01 51.17 6.17 106 3.87 17

T3S05 51.84 6.01 108 16.94 46

T3S03 51.91 5.93 109 11.07 37

T3S10 51.67 6.19 109 5.09 22

T7S10 51.50 6.03 110 4.35 18

T2S16 51.71 6.04 111 12.36 33

T7S02 51.84 5.74 111 2.03 6

T7S16 51.22 6.29 114 2.32 11

T2S07 51.32 6.27 115 4.96 21

T2S11 51.49 6.18 115 3.83 17

Murray 
(2003b)

F

B
Fontanier 

(2002)

Scott C
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Publication Region Station Latitude (°N) Longitude (°W) Depth (m) Fisher α index Species number
T2S14 51.63 6.10 115 9.05 16

T3S07 51.77 6.08 115 6.30 29

T7S06 51.66 5.89 116 8.12 32

M39070-1 43.618 9.392 1220 9.52 25

M39074-1 43.625 9.097 837 33.82 11

PO201/10-701 43.700 8.617 188 16.14 35

M39072-1 43.787 9.435 2170 11.49 30

PO201/10-702 43.844 8.689 402 15.77 37

PO201/10-703 43.967 8.737 583 19.00 45

PO201/10-704 44.187 8.858 929 5.11 7

PO201/10-747 47.590 8.000 2410 17.97 41

PO201/10-749 47.609 7.915 2011 11.65 40

PO201/10-750 47.647 7.876 1387 12.99 48

PO201/10-752 47.691 7.833 1050 9.87 39

PO201/10-753 47.784 7.765 684 20.49 39

PO201/10-754 47.903 7.665 398 34.19 48

PO201/10-755 47.944 7.632 207 17.07 34

GIK16906 49.010 13.567 3889 9.51 28

M30/1 428 49.150 13.093 2260 12.39 39

GIK16900 49.182 11.088 182 7.85 29

M30/1 430 49.185 12.848 1529 10.02 34

GIK16904 49.222 13.010 2084 14.35 36

M30/1 433 49.237 12.493 1158 7.09 25

GIK16902 49.257 11.953 1013 9.85 36

GIK16901 49.285 11.416 410 9.07 31

OMEX P2 49.948 12.396 2213 9.10 29

D35/94 48.793 4.155 82 4.20 8

D37/94 48.815 4.170 83 4.77 10

GIK16222 51.430 14.695 576 8.43 28

GIK16221 51.469 15.088 1398 5.91 19

GIK17045 52.431 16.671 3653 10.63 25
GIK16220 52.699 14.868 709 12.86 32

GIK16219 52.704 15.050 1114 14.64 31

GIK16218 53.148 10.646 126 6.97 15

GIK16217 53.887 12.920 393 7.00 23

GIK16216 56.404 11.974 2590 10.15 27

GIK16215 57.094 13.177 825 28.23 10

GIK16214 57.105 13.200 638 9.88 30

GIK16213 57.158 13.019 1207 7.57 24

GIK16212 57.301 13.733 158 4.31 11

GIK16210 57.571 10.595 2220 8.94 24

GIK16209 57.675 9.541 407 4.62 14

2FP-D 43.70 1.717 140 5.83 31

2FP-B 43.833 2.050 550 11.39 59

2FP-A 44.167 2.333 1000 9.02 42

2FP-11 44.467 2.667 1600 13.40 45

2FP-H 44.533 2.617 2000 10.64 39

GP-D 46.867 3.70 130 7.91 42

GP-E 46.917 4.50 140 7.36 40

GP-B 46.933 3.467 100 7.10 39

GP-C 47.150 3.917 130 6.76 36

GP-A 47.217 3.667 100 8.92 34

GP-G 47.583 4.183 85* 5.40 30

C

A

Duchemin et 
al. (2007)

B

Schönfeld 
and 

Altenbach 
(2005)

F

D

CScott
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Publication Region Station Latitude (°N) Longitude (°W) Depth (m) Fisher α index Species number
FP13 43.70 1.983 320 13.20 35

FP12 44.00 2.25 800 8.98 24

FP11 44.45 2.65 1600 5.52 21

FP1 46.33 5.00 2400 17.08 38

FP2 45.50 6.50 4800 7.87 20

GeoB9220-2 51.445 11.751 893 4.9 8

PO316-525 51.448 11.760 957 12.3 25

GeoB9209-2 51.448 11.764 982 9.6 11

GeoB9204-1 51.449 11.753 837 12

GeoB9205-1 51.451 11.752 810 11.9 33

GeoB9219-1 51.451 11.757 921 10.2 22

M61/1-259 51.455 11.754 858 2.5 9

GeoB9206-1 51.455 11.752 857 10.9 22

GeoB9218-1 51.458 11.756 889 15.7 21

Schönfeld et 
al. (2010)

F

Mojtahid et 
al. (2010)

B
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Appendix 2 (Chapter 2) 

 

2.1 Taxonomic list of benthic foraminiferal species 

 

Taxonomic references of Recent benthic foraminiferal species from the Celtic Sea reported in Dorst et al. (2014), as well as those of 

Sturrock and Murray (1981), Murray et al. (1982), and Schönfeld and Altenbach (2005). 

 

A 
Acervulina inhaerens Schultze, 1854  
Adercotryma glomerata (Brady) = Lituola glomerata Brady, 1878  
Adercotryma wrighti Brönnimann and Whittaker, 1987  
Ammobaculites agglutinans (d’Orbigny) = Spirolina agglutinans d’Orbigny, 
1846  
Ammodiscus catinus Höglund, 1947 
Ammodiscus planorbis Höglund, 1947 
Ammodiscus sp.  
Ammoglobigerina shannoni (Brönnimann and Whittaker) = 
Globotrochamminopsis shannoni Brönnimann and Whittaker, 1988  
Ammolagena clavata (Jones and Parker) = Trochammina irregularis 
(d’Orbigny) var. clavata Jones and Parker, 1860  
Ammomassilina alveoliniformis (Milett) = Massilina alveoliniformis Milett, 
1898 
Ammonia batavus (Hofker) = Streblus batavus Hofker, 1951 = T3S of Hayward 
et al. (2004)  
Ammonia falsobeccarii (Rouvillois) = Pseudoeponides falsobeccarii Rouvillois, 
1974 = T3 of Hayward et al. (2004) 
Ammoscalaria pseudospiralis (Williamson) = Proteonina pseudospiralis 
Williamson, 1858 
Ammoscalaria tenuimargo (Brady) = Haplophragmium tenuimargo Brady, 1884 

Ammosphaeroidina sphaeroidiniformis (Brady) = Haplophragmium 
sphaeroidiniforme Brady, 1884  
Amphicoryna scalaris (Batsch) = Nautilus (Orthoceras) scalaris Batsch, 1791  
Anomalina ammonoides (Reuss) = Rosalina ammonoides Reuss, 1844  
Astacolus crepidulus (Fichtel and Moll) = Nautilus crepidula Fichtel and Moll, 
1798  
Asterigerinata mamilla (Williamson) = Rotalina mamilla Williamson, 1858  
Astrononion stelligerum (d’Orbigny) = Nonionina stelligera d’Orbigny, 1839 
 
B 
Bathysiphon capillare De Folin, 1886  
Bigenerina nodosaria d’Orbigny, 1826  
Biloculinella irregularis (d’Orbigny) = Biloculina irregularis d’Orbigny, 1839  
Bolivina difformis (Williamson) = Textularia variabilis Williamson var. 
difformis Williamson, 1858  

Note: Brizalina difformis of Sturrock and Murray (1981) and Murray (2006)  
Bolivina dilatata Reuss, 1850  
Bolivina ordinaria Phleger and Parker, 1952  
Bolivina pseudoplicata Heron-Allen and Earland, 1930  
Bolivina pseudopunctata Höglund, 1947 
Bolivina subaenariensis Cushman, 1922  
Bolivina tongi Cushman, 1929 
Bolivina variabilis (Williamson) = Textularia variabilis Williamson, 1858  
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Bolivina spp.   
Note: there are seven different species under these spp.-taxa, but with  
uncertain designation 

Bulimina gibba Fornasini, 1902  
Bulimina marginata d’Orbigny, 1826  
Bulimina striata mexicana (Cushman) = Bulimina striata d’Orbigny var. 
mexicana Cushman, 1922  
Bulimina striata striata d’Orbigny, 1826  
Buliminella elegantissima (d’Orbigny) = Bulimina elegantissima d’Orbigny, 
1839  
Buliminella minutissima (Wright) = Bulimina minutissima Wright, 1902  

Note: Bulimina minutissima of Sturrock and Murray (1981) and Murray 
(2006) 

Buzasina ringens (Brady) = Trochammina ringens Brady, 1879 
 
C  
Cancris auriculus (Fichtel and Moll) = Nautilus auricula Fichtel and Moll, 1798  
Cassidulina crassa d’Orbigny, 1839  
Cassidulina laevigata d’Orbigny, 1826  

Note: Cassidulina carinata (Silvestri, 1896) of Sturrock and Murray (1981), 
Murray et al. (1982) and Murray (2006) 

Cassidulina minuta Cushman, 1933  
Cassidulina neoteretis Seidenkrantz, 1995  
Cassidulina obtusa Williamson, 1858  
Cassidulina reniforme (Norvang) = Cassidulina crassa d’Orbigny var. 
reniforme Norvang, 1945  
Cassidulina sp.   
Cassidulinoides bradyi (Norman) = Cassidulina bradyi Norman, 1881  
Cassidulinoides sp.  
Chilostomella ovoidea Reuss, 1850  
Cibicidella variabilis (d’Orbigny) = Truncatulina variabilis d’Orbigny, 1826  
Cibicides lobatulus (Walker and Jacob) = Nautilus lobatulus Walker and Jacob, 
1798  
Cibicides refulgens Montfort, 1808  
Cibicides spp.  

Note: there are two different species under these spp.-taxa, but with uncertain 
designation 

Cibicidoides mollis (Phleger and Parker) = Cibicides mollis Phleger and Pa
1951  
Cibicidoides pachyderma (Rzehak) = Truncatulina pachyderma Rzehak, 1886  
Cibicidoides sp. 
Clavulina mexicana (Cushman) = Clavulina humilis Brady var. mexicana 
Cushman, 1922  
Clavulina obscura Chaster, 1892  
Cornuspira involvens (Reuss) = Operculina involvens Reuss, 1850  
Cribrostomoides nitidus (Goes) = Haplophragmium nitidum Goes, 1896  
Cristellaria acutauricularis (Fichtel and Moll) = Nautilus acutauricularis 
Fichtel and Moll, 1798 
Crithionina albida (Schulze) = Storthosphaera albida Schulze, 1875  
Crithionina goesi Höglund, 1947  
Crithionina mamilla Goes, 1894  
Crithionina sp. 
Cuneata arctica (Brady) = Reophax arctica Brady, 1881 
Cyclammina cancellata Brady, 1879 
 
D  
Dentalina communis (d’Orbigny) = Nodosaria (Dentalina) communis 
d’Orbigny, 1826  
Dentalina sp.  
Deuterammina (Deuterammina) balkwilli Brönnimann and Whittaker, 1983 
Deuterammina (Deuterammina) rotaliformis (Heron-Allen and Earland) = 
Trochammina rotaliformis Heron-Allen and Earland, 1911 
Deuterammina (Deuterammina) spp. 

Note: there are two different species under these spp.-taxa, but with uncertain 
designation 

Deuterammina (Lepidodeuterammina) mourai Brönnimann and Zaninetti, 1984  
Deuterammina (Lepidodeuterammina) ochracea (Williamson) = Rotalina 
ochracea Williamson, 1858  
Deuterammina (Lepidodeuterammina) sinuosa (Brönnimann) = 
Asterotrochammina sinuosa Brönnimann, 1978  
Deuterammina (Lepidodeuterammina) spp. 

Note: there are three different species under these spp.-taxa, but with 
uncertain designation 

rker, 
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Discanomalina coronata (Parker and Jones) = Anomalina coronata Parker and 
Jones, 1857  
Discanomalina semipunctata (Bailey) = Rotalina semipunctata Bailey, 1851  
Discorbina polyrraphes (Reuss) = Rotalina polyrraphes Reuss, 1845 

Note: Rosalina polyrraphes of Sturrock and Murray (1981) and Murray 
(2006) 

Discorbina sp. juv. 
Discorbinella bertheloti (d’Orbigny) = Rosalina bertheloti d’Orbigny, 1839  
Dorothia bradyana Cushman, 1936 
 
E  
Eggerella europea (Christiansen) = Verneuilina europeum Christiansen, 1958  
Eggerelloides medius (Höglund) = Verneuilina media Höglund, 1947  
Eggerelloides scaber (Williamson) = Bulimina scabra Williamson, 1858  
Elphidium complanatum (d’Orbigny) = Polystomella complanata d’Orbigny, 
1839  
Elphidium crispum (Linné) = Nautilus crispus Linné, 1758  
Elphidium discoidale (d’Orbigny) = Polystomella discoidalis d’Orbigny, 1839  
Elphidium earlandi Cushman, 1936  
Elphidium excavatum (Terquem) = Polystomella excavata Terquem, 1875  
Elphidium incertum (Williamson) = Polystomella umbilicatula (Walker) var. 
incerta Williamson, 1858  
Elphidium sp.  
Epistominella exigua (Brady) = Pulvinulina exigua Brady, 1884  
Epistominella rugosa (Phleger and Parker) = ?Pseudoparella rugosa Phleger 
and Parker, 1951  
Epistominella vitrea Parker, 1953  
Eponides repandus (Fichtel and Moll) = Nautilus repandus Fichtel and Moll, 
1798  
Eponides repandus var. concameratus (Montagu) = Serpula concamerata 
Montagu, 1808 
 
F  
Fissurina clathrata (Brady) = Lagena clathrata Brady, 1884  
Fissurina laevigata Reuss, 1850 
Fissurina lagenoides (Williamson) = Lagena lagenoides Williamson, 1848  
Fissurina marginata (Montagu) = Vermiculum marginatum Montagu, 1803  

Fissurina orbignyana Seguenza, 1862  
Fissurina piriformis (Buchner) = Lagena piriformis Buchner, 1940  
Fissurina quadrata (Williamson) = Entosolenia marginata (Montagu) var. 
quadrata Williamson, 1858  
Fissurina sp.  
 
G  
Gaudryina rudis Wright, 1900  
Gavelinopsis caledonia Murray and Whittaker, 2001  
Gavelinopsis praegeri (Heron-Allen and Earland) = Discorbina praegeri Heron-
Allen and Earland, 1913  
Glabratella chasteri (Heron-Allen and Earland) = Discorbina chasteri Heron-
Allen and Earland, 1913  
Globobulimina affinis (d’Orbigny) = Bulimina affinis d’Orbigny, 1839 
Globobulimina sp. 324 after Schiebel (1992), plate 2, fig. 7 
Globocassidulina subglobosa (Brady) = Cassidulina subglobosa Brady, 1881  
Guttulina problema (d’Orbigny) = Polymorphina (Guttulina) problema 
d’Orbigny, 1826 
Gyroidina neosoldanii Brotzen, 1936  
Gyroidina umbonata (Silvestri) = Rotalia soldanii d’Orbigny var. umbonata 
Silvestri, 1898  
Gyroidina sp. juv. 
 
H  
Hanzawaia boueana (d’Orbigny) = Truncatulina boueana d’Orbigny, 1846  
Hanzawaia concentrica (Cushman) = Truncatulina concentrica Cushman, 1918 
Hanzawaia nitidula (Bandy) = Cibicidina basiloba (Cushman) var. nitidula 
Bandy, 1953  
Hanzawaia sp.   
Haplophragmoides bradyi (Robertson) = Trochammina bradyi Robertson, 1891 
Haplophragmoides fragile Höglund, 1947  
Hoeglundina elegans (d’Orbigny) = Rotalia (Turbinulina) elegans d’Orbigny, 
1826  
Hormosinella guttifera (Brady) = Lituola (Reophax) guttifera Brady, 1881 
Hyalinea balthica (Schröter) = Nautilus balthicus Schröter, 1783 
Hyperammina fragilis Höglund, 1947 
Hyperammina friabilis Brady, 1844  
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Hyperammina laevigata (Wright) = Hyperammina elongata Brady var. 
laevigata Wright, 1891 
 
J 
Jaculella obtusa Brady, 1882 
 
L  
Labrospira jeffreysii (Williamson) = Nonionina jeffreysii Williamson, 1858  

Note: Cribrostomoides jeffreysii of Sturrock and Murray (1981), Murray et al. 
(1982) and Murray (2006) 

Lagena hexagona (Williamson) = Entosolenia squamosa (Montagu) var. 
hexagona Williamson, 1848 

Note: Oolina hexagona of Sturrock and Murray (1981), Murray et al. (1982) 
and Murray (2006) 

Lagena substriata Williamson, 1848  
Lagena sulcata (Walker and Jacob) = Serpula sulcata Walker and Jacob, 1798  
Lamarckina haliotidea (Heron-Allen and Earland) = Pulvinulina haliotidea 
Heron-Allen and Earland, 1911  
Laryngosigma williamsoni (Terquem) = Polymorphina williamsoni Terquem, 
1878  
Lenticulina atlantica (Barker) = Robulus atlanticus Barker, 1960  
Lenticulina gibba (d’Orbigny) = Cristellaria gibba d’Orbigny, 1839  
Lenticulina rotulata (Lamarck) = Lenticulites rotulata Lamarck, 1804  
Lenticulina spp.    

Note: there are two different juvenile species under these spp.-taxa, but with 
uncertain designation 

Leptohalysis scottii (Chaster) = Reophax scottii Chaster, 1892  
Liebusella cf. goesi (Höglund) = Liebusella goesi Höglund, 1947 
 
M  
Marsipella cylindrica Brady, 1882 
Marsipella elongata Norman, 1878 
Marsipella spiralis Heron-Allen and Earland, 1912 
Massilina secans (d’Orbigny) var. tenuistriata Earland, 1905  
Melonis barleeanum (Williamson) = Nonionina barleeana Williamson, 1858  
Melonis sp.   

linella circularis (Bornemann) var. 
elongata Kruit, 1955  

Note: Miliolinella circularis var. elongata of Sturrock and Murray (1981), 
Murray et al. (1982) and Murray (2006) 

Miliolinella oblonga (Montagu) = Vermiculum oblongum Montagu, 1803 
Note: Quinqueloculina oblonga of Sturrock and Murray (1981) and Murray 
(2006) 

Miliolinella subrotunda (Montagu) = Vermiculum subrotundum Montagu, 1803  
Miliolinella valvularis (Reuss) = Triloculina valvularis Reuss, 1851  
Miliolinella sp. juv.   
Miniacina miniacea (Pallas) = Millepora miniacea Pallas, 1766  
Mississippina concentrica (Parker and Jones) = Pulvinulina concentrica Parker 
and Jones, 1864 
 
N  
Neoconorbina millettii (Wright) = Discorbina millettii Wright, 1911  

Note: Discorbinoides millettii of Sturrock and Murray (1981), Murray et al. 
(1982) and Murray (2006) 

Neoconorbina terquemi (Rzehak) = Discorbina terquemi Rzehak, 1888  
Neoconorbina williamsoni (Chapman and Parr) = Discorbis williamsoni 
Chapman and Parr, 1932  

Note: Rosalina williamsoni of Sturrock and Murray (1981), Murray et al. 
(1982) and Murray (2006)  

Neolenticulina peregrina (Schwager) = Cristellaria peregrina Schwager, 1866  
Nonion pauperatus (Balkwill and Wright) = Nonionina pauperata Balkwill and 
Wright, 1885  
Nonionella atlantica Cushman, 1947  
Nonionella auricula Heron-Allen and Earland, 1930  
Nonionella iridea Heron-Allen and Earland, 1932  
Nonionella turgida (Williamson) = Rotalina turgida Williamson, 1858  
Nonionella sp. juv.  
Nonionellina labradorica (Dawson) = Nonionina labradorica Dawson, 1860  
Nouria sp. after Mendes (2010), plate 1, fig. 2 
Nuttallides pusillus (Parr) = Eponides pusillus Parr, 1950 
 
O  
Ophthalmidium balkwilli Macfadyen, 1939  

Miliolinella elongata (Kruit) = Milio
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Note: Cornuloculina balkwilli of Sturrock an
(1982) and Murray (2006) 

Ophthalmidium sp. 

d Murray (1981), Murray et al. 

sangularia sp. juv. 

rochammina haynesi Atkinson, 1969  
Paratrochammina (Paratrochammina) tricamerata (Earland) = Trochammina 
tricamer

atellina corrugata Williamson, 1858  
Placopsilina confusa Cushman, 1920  

copsilina sp. 
= Miliolina bucculenta Brady, 1884 

lla nitidula (Chaster) = Pulvinulina nitidula Chaster, 1892  
rrock and Murray (1981), Murray et al. 

846 

urray 

Pyrgo fornasinii Chapman and Parr, 1935 
Pyrgo lucernula (Schwager) = Biloculina lucernula Schwager, 1866 
Pyrgo oblonga (d’Orbigny) = Biloculina oblonga d’Orbigny, 1839  
Pyrgo sp. 
 
Q 
Quinqueloculina angulata (Williamson) = Miliolina bicornis (Walker and 
Jacob) var. angulata Williamson, 1858  
Quinqueloculina bicornis (Walker and Jacob) = Serpula bicornis Walker and 
Jacob, 1798  

 Earland, 1930  
a dunkerquiana (Heron-Allen and Earland) = Miliolina 

dunkerquiana Heron-Allen and Earland, 1930  
Quinqueloculina lamarckiana d’Orbigny, 1839  

, 1850  

rtain designation 

glund, 1947 
8 

R

niliforme Siddall, 1886  

ulum globosum Montagu, 1803  
 1869  

O
 
P  
Parafissurina lateralis (Cushman) = Lagena lateralis Cushman, 1913  
Paratrochammina (Lepidoparatrochammina) haynesi (Atkinson) = 
T

ata Earland, 1934  
Paratrochammina (Paratrochammina) wrighti Brönnimann and Whittaker, 
1983  

Quinqueloculina cliarensis (Heron-Allen and Earland) = Miliolina cliarensis 
Heron-Allen and
Quinqueloculin

P

Pla
Planispirinoides bucculentus (Brady) 
Planorbulina distoma Terquem, 1876  
Planorbulina mediterranensis d’Orbigny, 1826  
Planulina ariminensis d’Orbigny, 1826  
Pninae

Note: Eoeponidella nitidula of Stu
(1982) and Murray (2006) 

mpressa d’Orbigny, 1Polymorphina co
Polymorphinindae spp. 

Note: the number of species under these spp.-taxa from Sturrock and M
(1981) is unknown 

Polystomammina nitida (Brady) = Trochammina nitida Brady, 1881 
Polystomammina sp. juv. 
Portatrochammina murrayi Brönnimann and Zaninetti, 1984  

Note: Trochammina globigeriniformis var. pygmaea of Sturrock and Murray 
(1981) 

Portatrochammina pacifica (Cushman) = Trochammina pacifica Cushman, 
1925  
Procerolagena clavata (d’Orbigny) = Oolina clavata d’Orbigny, 1846  
Psammosphaera fusca Schultze, 1875 
Pyrgo depressa (d’Orbigny) = Biloculina depressa d’Orbigny, 1826 

Quinqueloculina lata Terquem, 1876  
Quinqueloculina pygmaea Reuss
Quinqueloculina seminulum (Linné) = Serpula seminulum Linné, 1758  
Quinqueloculina spp.   

Note: there are three different species under these spp.-taxa, but with 
unce

 
R 

ecurvoides trochamminiformis (Höglund) = Recurvoides trochamminiforme R
Hö
Remaneica helgolandica Rhumbler, 193
Reophax bilocularis Flint, 1899 
Reophax calcareous (Cushman) = Proteonina difflugiformis (Brady) var. 
calcarea Cushman, 1947  
Reophax curtus Cushman, 1920 

eophax difflugiformis Brady, 1879  
34 Reophax micaceus Earland, 19

Reophax moniliformis (Siddall) = Reophax mo
Reophax scorpiurus Montfort, 1808  
Reophax sp.   
Reussoolina globosa (Montagu) = Vermic
Rhabdammina abyssorum Sars,

 124



                                                                                                                                                                                                                  Appendix2                            

Rhizammina algaefor
Ro

mis Brady, 1879  

R
nd Parker) = Robertina bradyi Chushman and 

a 
C

 var. bradyi 
shman, 1915  

 

cha concava Seiglie, 1964 
hotrocha siphonata Seiglie, 1964 

ady, 1871   

) = Sigmoilina schlumbergeri Silvestri, 

an) = Textularia flintii (Cushman) var. 

an

ni, 

, 1824  
roplectammina wrightii of Sturrock and 

1982) and Murray (2006) 
lund, 1947  
d’Orbigny var. 

rker, 1952  

y, 1879  

T

ulosa 

T

bertina arctica d’Orbigny, 1846  
obertina subcylindrica (Brady) = Bulimina subcylindrica Brady, 1881  

Robertinoides bradyi (Cushman a
Parker, 1936 
Robertinoides normani (Goes) = Bulimina normani Goes, 1894  
Robertinoides suecicum Höglund, 1947  
Robertinoides spp. 

Note: there are two different juvenile species from our samples and an 
unknown number of species from a sample of Sturrock and Murray (1981) 
under these spp.-taxa, but with uncertain designation 

Rosalina anglica (Cushman) = Discorbis globularis (d’Orbigny) var. anglic
ushman, 1931  

Rosalina anomala Terquem, 1875  
Rosalina bradyi (Cushman) = Discorbis globularis (d’Orbigny)
Cu
Rosalina globularis d’Orbigny, 1826 

conorbina neapolitana Hofker, 1951 Rosalina neapolitana (Hofker) = Neo
Rosalina obtusa d’Orbigny, 1846  
Rosalina spp. 

Note: there are two different species under these spp.-taxa, but with uncertain
designation 

Rotaliammina concava (Seiglie) = Tiphotro
lysipRotaliammina siphonata (Seiglie) = Po

 
S 

aerica BrSaccammina sph
Saccorhiza ramosa (Brady) = Hyperammina ramosa Brady, 1879  

Wright, 1891 Seabrookia earlandi 
Sigmoilopsis schlumbergeri (Silvestri
1904 
Siphonina bradyana Cushman, 1927  
Siphotextularia bermudezi Mikhalevich, 1978  
Siphotextularia caroliniana (Cushm

, 1922 caroliniana Cushman
Siphotextularia cf. occidentalis (Cushman) = Textularia foliacea Heron-Allen 

d Earland var. occidentalis Cushman, 1922  

Siphotextularia concava (Karrer) = Plecanium concavum Karrer, 1868  
Siphotextularia curta (Cushman) = Textularia flintii Cushman var. curta 
Cushman, 1922  

lintii (Cushman) = Textularia flintii Cushman, 1911  Siphotextularia f
Siphotextularia heterostoma (Fornasini) = Textularia heterostoma Fornasi
1896  
Siphotextularia sp.   
Sphaeroidina bulloides d’Orbigny, 1826  
Spirillina vivipara Ehrenberg, 1843  
Spirillina wrightii Heron-Allen and Earland, 1930  
Spiroloculina depressa d’Orbigny, 1826  
Spiroloculina excavata d’Orbigny, 1846  

e) = Textularia sagittula DefranceSpiroplectinella sagittula (Defranc
SpiNote: Textularia sagittula and 

), Murray et al. (Murray (1981
Stainforthia concava (Höglund) = Virgulina concava Hög

= Bulimina pupoides Stainforthia fusiformis (Williamson) 
usiformis Williamson, 1858 f

 
T 
Textularia bigenerinoides Lacroix, 1932 
Textularia earlandi Pa
Textularia pseudogramen Chapman and Parr, 1937  
Textularia skagerakensis Höglund, 1947 
Textularia sp.   

psilina vesicularis BradTholosina vesicularis (Brady) = Placo
Tolypammina vagans (Brady) = Hyperammina vagans Brady, 1879 

olypammina sp.  
Trifarina angulosa (Williamson) = Uvigerina angulosa Williamson, 1858  
Trifarina bradyi Cushman, 1923  
Trifarina fornasinii (Selli) = Angulogerina fornasinii Selli, 1948  
Trifarina pauperata (Heron-Allen and Earland) = Uvigerina ang
(Williamson) var. pauperata Heron-Allen and Earland, 1932  
Triloculina tricarinata d’Orbigny, 1826 
Triloculina williamsoni Terquem, 1878  

riloculina sp.   

 125



                                                                                                                                                                                                                  Appendix2                            

 126

 and 
E

ata Jones and Parker, 1860  

nd Murray (1981) and Murray et al. (1982) 
nder these spp.-taxa, but with uncertain designation  

  

uvenile species under these spp.-taxa, but with 

 

Tritaxis conica (Parker and Jones) = Valvulina triangularis d’Orbigny var. 
conica Parker and Jones, 1865 
Tritaxis fusca (Williamson) = Rotalina fusca Williamson, 1858 
Trochammina advena Cushman, 1922 
Trochammina astrifica (Rhumbler) = Trochammina squamata Heron-Allen

arland var. astrifica Rhumbler, 1938  
Trochammina squam
Trochammina spp. 

es from our samples and four different Note: there are six different speci
species from samples of Sturrock a
u

Trochamminopsis pusilla (Höglund) = Trochammina pusilla Höglund, 1947 
Tumidotubus albus Gooday and Haynes, 1983 
 

U  
Uvigerina auberiana d’Orbigny, 1839 
Uvigerina cf. bifurcata (d’Orbigny) = Uvigerina bifurcata d’Orbigny, 1839
Uvigerina mediterranea Hofker, 1932 
 
V  
Vaginulina spp. 

Note: there are two different j
uncertain designation 

Valvulineria spp. 
Note: there are two different species under these spp.-taxa, but with uncertain 
designation 

Vulvulina pennatula (Batsch) = Nautilus (Orthoceras) pennatula Batsch, 1791
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2.2 Cens  a of nthic aminifer

cen data e   (2014),  as those of 

r  (  Murr a 2 n önfeld a A bach (2005). 

o a a pplie l t ode free, a = 

c ,  n ched (opportunistic), ts = test structure, h = hyaline, a = 

l a = s, oth i t c h u d n. 

b r e nsus d  e  ; > p. 1 – 

)

r nsus rr ay l. 

 eb (2  an 6 

 

 2  Fo ta nfeld and Altenbach (2005). Partially 

published data (living Uvigerina species only); grain size >250 µm. 
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St

L

living dead living dead livi living dead living dead living dead living dead
mol ts

5.0 2.0 4.6 6.1 0.3

0.4
f a

3.3 1

ation number

atitude  (°N)
Longitude (°W)
Depth in m

Living/Dead ng dead
Species

Acervulina inhaerens a h 1.0
Adercotryma glomerata f a 1.3
Adercotryma wrightii f a

Ammobaculites agglutinans f a 0.7
Ammodiscus planorbis a a 0.7
Ammoglobigerina shannoni juv.

Ammolagena clavata a a
Ammonia batavus (T3S) f/a h

f h 0.8

f a 0.3
is f h

h 0.7 10.7 0.3 9.6
f h 0.1

0.3 0.6
B 5.4 9. 2.0 24.9 1 13.4 2.3 3.9 2.9 1.3 0.9

a h 1.2
f h

0.4

B 0.

f h 1.3 0.7 0.4 6.5

B
B arginata f h

0.

a striata striata f h 0.3 0.3

VH-97-49VH-97-373D

6.206

131

5.943

115

VH-97-36VH-97-35VH-97-34VH-97-3

48.739

VH-97-32D

49.001 47.55447.54947.86648.15448.451
7.241

340

7.250

467

6.951

170

6.688

150

6.447

116

0.6
Ammonia falsobeccarii (T3)

Ammoscalaria tenuimargo 0.4
Amphicoryna scalar
Anomalina ammonoides f h 0.7

f h 0.2Astacolus crepidulus 0.3
5Asterigerinata mamilla f/a 10.8 3.

Astrononion stelligerum

Bigenerina nodosaria f a
Biloculinella irregularis f p

olivina difformis f h 2.0 2.2 3.8
0.4

1

Bolivina dilatata f/
Bolivina ordinaria

0.1 0.2 0.3 0.3

0.4Bolivina pseudoplicata f/a h 0.7 0.2

olivina pseudopunctata f/a h 0.2
olivina subaenariensis 

3
B f h

Bolivina tongi f h
Bolivina variabilis
Bolivina spp. f h

ulimina gibba f/a h
ulimina m

Bulimina striata mexicana f h

Bulimin

3 0.4 1.3 1.8 0.7

Buliminella elegantissima f h 0.7
f aBuzasina ringens

Cancris auriculus f/a h 0.2  
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead livi

003 2.6 1.8 0.4 8.1
f a
f a

A
A
A

ng dead living dead living dead living dead
Species mol ts

Acervulina inhaerens a h 0.
Adercotryma glomerata
Adercotryma wrightii 7.4 0.2

mmobaculites agglutinans f a
mmodiscus planorbis a a
mmoglobigerina shannoni juv. f a

0.2
1.2

Ammolagena clavata a a
Ammonia batavus (T3S) f/a h 0.4

f h

s f h
f h

0.3 4.6
f h 0.7 0.3

Bi 0.3
18.5 2.8 23. 0.6

olivina pseudoplicata f/a h 0.6

f/a h

f h 1.3 0.
0.3 0.2

na gibba f/a h
f h

h 1 0.3 0.

VH-97-50

47.574

BG0812a-02

47.799
6.908

BG0812a-05 BG0812a-06 BG0812a-08 D78/95

48.201
7.598

47.899
7.898

48.496
8.503

48.516
5.9647.218

191 128 177 450 151 119

Ammonia falsobeccarii (T3)

Ammoscalaria tenuimargo f a 0.6
Amphicoryna scalari

0.5 0.4
0.3 0.2

Anomalina ammonoides

Astacolus crepidulus f h
f/a hAsterigerinata mamilla

igerumAstrononion stell

Bigenerina nodosaria f a
loculinella irregularis f p

0.1
0.6

Bolivina difformis f h 4.2 10 5 8.1 2 22.5 7.2 9

Bolivina dilatata f/a h
Bolivina ordinaria f h

0.5 0.8 0.1 1.7
0.5

B

B

0.3 0.3 0.4 0.2

1.5 0.3 0.4 0.3olivina pseudopunctata
Bolivina subaenariensis f h

Bolivina tongi f h

0.3 0.7

1.7
Bolivina variabilis 2 0.5 0.2
Bolivina spp. f h

Bulimi

0.6 0.3

0.1
Bulimina marginata 0.3 0.1 0.7

2 0.1 0.1Bulimina striata mexicana f

Bulimina striata striata f h 0.4
Buliminella elegantissima f h

0.1 0.1 1.4

Buzasina ringens f a

Cancris auriculus f/a h

8.6
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Station number

Latitude  (°N)

VH-97-32D VH-

49.001 48
Longitude (°W)

115

5.943
Depth in m

Living/Dead living dead living de
Cassidulina crassa f h 0.3

Cassidulina laevigata

ad livi d living dead living dead
0.7 0.7 4.6 0.8 13.8 0.288 2.6 1.5 2.6 0.3

f/a h 0.3 0.4 0.3 0.6

f h

C 2 1.3 8.8 3.4 3.5 0.7 2.8
C
C

h
Chilostomella ovoidea f h

Cibicidella variabilis a h 0.4
Cibicides lobatulus a h 1.3 13.3 2.0 23.9 1.6 31.9 0.8 38.5 0.9 10.7 2.6 17.4 0.7 12.6
Cibicides refulgens a h 0.1 3.4 8.5 22.6
Cibicides spp. a h
Cibicidoides pachyderma f/a h 0.5 0.4 0.3 0.2 0.6 2.7 0.3
Cibicidoides sp. f/a h 4.1 8.4

Cornuspira involvens f/a p
Cribrostomoides nitidus f a 1.1
Cristellaria acutauricularis f h

Crithionina goesi a a 0.004
Crithionina mamilla a a 0.3
Cuneata arctica f a
Dentalina communis  juv. f h
Dentalina sp. juv. f h

Deuterammina (Deut.) balkwilli a a 0.002
Deuterammina (Deut.) rotaliformis a a 1.3 0.2 0.3 5.9 0.5
Deuterammina (Deut.) spp. a a 0.2 0.2

Deuterammina (Lepidodeut.) mourai a a
Deuterammina (Lepidodeut.) ochracea a a 0.3 2.9 8 4.2 1.3 6.5
Deuterammina (Lepidodeut.) sinuosa a a 0.8
Deuterammina (Lepidodeut.) spp. a a 0.5
Discanomalina coronata a h 0.7 0.2 4.3
Discanomalina semipunctata a h 0.5 0.2 0.7 0.3 0.02

Discorbina polyrraphes a h 2.5 2.6 0.7

131

97-33D V 7-34 VH-97-35 VH-97-36 VH-97-37 VH-97-49

.739 47.549 47.554
6.206

H-9

48.451 48.154 47.866

ng dead living dead living dea
116 150 170

6.951 7.250 7.241

467 340

6.447 6.688

Cassidulina minuta f h 0.2 2.9
0.3

3.9 3.8 1

Cassidulina neoteretis

assidulina obtusa f h 0.7 3.6 1.2 1.
assidulina reniforme f h
assidulina sp. f h

Cassidulinoides bradyi f h
Cassidulinoides sp. f 0.7
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Station number VH-97-50 BG08

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead li dea d living ad
Cassidulina crassa f h 7.3 2.4 3.8 0.9 0.6 6 0.2 4

Cassidulina laevigata f/a h 0.4 0.9 5 1.1 6
Cassidulina minuta f h 0.6 0.00 6 1.9 1
Cassidulina neoteretis f h 0.8 0.3 3

Cassidulina obtusa f h 5.2 25.7 24.2 5.3 21. .2 22.1 .5
Cassidulina reniforme f h 1.8 0.1
Cassidulina sp. f h 2

Cassidulinoides bradyi f h
Cassidulinoides sp. f h
Chilostomella ovoidea f h 0.1

Cibicidella variabilis a h 0.001
Cibicides lobatulus a h 4.7 7.3 1.3 37.2 23.1 1 2.4 .8
Cibicides refulgens a h 0.5 4 0.3 0.002
Cibicides spp. a h 0.3 0.1
Cibicidoides pachyderma f/a h 0.6 7
Cibicidoides sp. f/a h 4.8

Cornuspira involvens f/a p
Cribrostomoides nitidus f a
Cristellaria acutauricularis f h

Crithionina goesi a a
Crithionina mamilla a a
Cuneata arctica f a 1.3
Dentalina communis  juv. f h 0.2
Dentalina sp. juv. f h 0.5

Deuterammina (Deut.) balkwilli a a
Deuterammina (Deut.) rotaliformis a a 0.7
Deuterammina (Deut.) spp. a a

Deuterammina (Lepidodeut.) mourai a a
Deuterammina (Lepidodeut.) ochracea a a 0.5 6.4 0.5
Deuterammina (Lepidodeut.) sinuosa a a
Deuterammina (Lepidodeut.) spp. a a
Discanomalina coronata a h 0.4
Discanomalina semipunctata a h 2.6

Discorbina polyrraphes a h 1.6 1.3 0.3 2 2.7 0.7

1

7.218 6.908

191 128 77 4

598
47.574 47.799 201

ving
8.1

0.5

12.3

1.9
2.8
0.5

2.4

0.5
6.2
0.2

1.7

1

7.
48.

BG0812a-02

d living dea
1.

3.
1 0.5 2.

0.5 1

9 0.5 16

0.

1.2

6.

1

0.3

0.

50

7.898
47.899

5 BG0812a-012a-0 6

de
1.

8.

0.

15

12

0.

51

BG0812a-0

48.496
8.503

8

living dead

0.2

0.3 0.6

36 16.5
0.3 0.2

0.2
0.2

0.2

0.2 0.2

0.5

0.9 0.05

1.9 0.2

119

D78/95

48.516
5.964
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead living dead
Discorbina sp.  juv. f/a h 0.2

Discorbinella bertheloti a h
Dorothia bradyana f/a a 3.2 1.4 0.6 0.3
Eggerella europea f a 0.2

Eggerelloides medius f a
Eggerelloides scaber f a 0.2 1.3
Elphidium complanatum f h 0.3

Elphidium crispum f/a h 0.5 2.9 2.8
Elphidium discoidale f h 0.4
Elphidium earlandi f h

Elphidium excavatum f/a h 0.6 0.3
Elphidium incertum a h 0.3
Elphidium sp. f h 0.6

Epistominella ex igua f/a h 0.2
Epistominella rugosa f/a h 0.2 2.6
Epistominella vitrea f/a h 0.2 0.2 0.4 0.4 0.001

Eponides repandus f/a h 6.3 2.7 2.1 2 12.6
Eponides repandus var. concameratus f/a h 2.2
Fissurina clathrata f h

Fissurina laevigata f h 0.2
Fissurina marginata f/a h 0.3
Fissurina orbignyana f h 0.4 0.3 0.3

Fissurina piriformis f h
Fissurina quadrata f h 0.2
Fissurina sp. f h
Gaudryina rudis a a 1.0 0.1 1.2 2.9 1.6
Gavelinopsis caledonia a h 2.0 1.5 1.6 0.1 2.1 0.3

Gavelinopsis praegeri f/a h 7.3 3.6 19.5 0.4 27.6 2.1 9.3 0.4 13.4 2 2.6 1.2 2 0.3
Glabratella chasteri juv. f/a h 0.3
Globobulimina sp. 324 f h

Globocassidulina subglobosa f/a h 3.9 1.2 0.8 1.3 0.8 4.6 1.2 3.2 2.3 3.9 5.3 7.7
Guttulina problema f h 0.2
Gyroidina umbonata f h
Gyroidina umbonata juv. f/a h 4.0 1.2 7.4 2.3 2.0 0.5 5.1 0.2 1.4 0.3 6.5 3.3 0.3
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead
Discorbina sp. juv. f/a h 0.3

Discorbinella bertheloti a h 0.1 0.01
Dorothia bradyana f/a a
Eggerella europea f a 0.5 0.2

Eggerelloides medius f a 0.3
Eggerelloides scaber f a 0.2
Elphidium complanatum f h 0.3

Elphidium crispum f/a h 0.4
Elphidium discoidale f h
Elphidium earlandi f h 0.1

Elphidium excavatum f/a h 0.003 0.3 1.7
Elphidium incertum a h 0.2
Elphidium sp. f h

Epistominella ex igua f/a h
Epistominella rugosa f/a h 0.5 0.3 0.4
Epistominella vitrea f/a h 0.6 1.4 0.6 2 0.7 22.7

Eponides repandus f/a h 0.3 0.001 6.1
Eponides repandus var. concameratus f/a h 0.8
Fissurina clathrata f h 0.3 0.1

Fissurina laevigata f h
Fissurina marginata f/a h 1 0.2 0.3
Fissurina orbignyana f h 0.2

Fissurina piriformis f h 0.3
Fissurina quadrata f h
Fissurina sp. f h 0.3
Gaudryina rudis a a 0.4 0.6 2.7
Gavelinopsis caledonia a h 1.3 0.3 0.2 0.9 0.1 1.5 0.3

Gavelinopsis praegeri f/a h 9.9 2 8.3 1.3 5.5 5.4 0.5 4 12.1 6.2 7.9 0.5
Glabratella chasteri juv. f/a h 0.1
Globobulimina sp. 324 f h 0.5

Globocassidulina subglobosa f/a h 1.6 18.9 1.3 0.6 1.7 9 1 20.5 4.8 4.5 1.5
Guttulina problema f h
Gyroidina umbonata f h 8.9
Gyroidina umbonata juv. f/a h 5.7 0.9 3.3 1.2 2.8 1.2 0.3 0.3
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48.496 48.516
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VH-97-50 BG0812a-02 BG0812a-05 BG0812a-06
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead living dead
Gyroidina sp. juv. f h 0.2

Hanzawaia boueana a h
Hanzawaia concentrica a h
Hanzawaia nitidula a h 0.3
Hanzawaia sp. a h
Haplophragmoides brady i f a
Hoeglundina e legans f h 2.6 0.6 3.3 0.9

Hyalinea balthica f h
Jaculella obtusa f a
Labrospira jeffreysii f/a a 6.0 3.6 1.3 0.4 0.2 2.6 0.7

Lagena substriata f/a h 0.7
Lagena sulcata f h 0.3
Lamarckina haliotidea f/a h 0.5 0.2 0.4 0.7 0.4 1.4

Laryngosigma williamsoni f h 0.4
Lenticulina atlantica juv. f h
Lenticulina gibba f h 0.1 0.3 0.6

Lenticulina rotulata f h 0.2 0.1 0.3 2.6 3.5 4.3
Lenticulina spp.  f h
Leptohalysis scottii f a 0.7
Liebusella cf.  goesi f a 0.2 1.4
Marsipella cylindrica f a
Marsipella spiralis f a
Massilina secans var. tenuistriata f p 0.2
Melonis barleeanum f h
Melonis sp. f h
Miliolinella elongata f/a p
Miliolinella subrotunda f/a p 0.2 0.5 0.4 0.3 0.4 0.3 0.3

Miliolinella valvularis f/a p 0.3
Miliolinella sp. juv. f/a p
Miniacina miniacea a h 1.005 2.9

Mississippina concentrica f/a h 0.9 0.3
Neoconorbina millettii a h 0.2 0.3 1.0 0.4
Neoconorbina terquemi a h 0.4

Neoconorbina williamsoni a h 2.0 0.5 0.4 1.6 0.4 0.4 0.9 0.3
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead
Gyroidina sp. juv. f h

Hanzawaia boueana a h 0.2 1.4
Hanzawaia concentrica a h 0.1
Hanzawaia nitidula a h 0.8 0.6
Hanzawaia sp. a h 0.3
Haplophragmoides brady i f a 1
Hoeglundina e legans f h

Hyalinea balthica f h 0.6 0.1
Jaculella obtusa f a 0.003 0.2 0.3
Labrospira jeffreysii f/a a 6.3 0.4 1.3 4.7 0.6 1.5

Lagena substriata f/a h 0.3
Lagena sulcata f h
Lamarckina haliotidea f/a h 0.2 0.3 0.1

Laryngosigma williamsoni f h 0.2
Lenticulina atlantica juv. f h 0.6
Lenticulina gibba f h 0.4 0.2

Lenticulina rotulata f h 0.5 0.1 0.2
Lenticulina spp.  f h 0.2 0.3
Leptohalysis scottii f a
Liebusella cf. goesi f a 0.5
Marsipella cylindrica f a 4.7
Marsipella spiralis f a 0.5
Massilina secans var. tenuistriata f p
Melonis barleeanum f h 12.1 0.1
Melonis sp. f h 0.3
Miliolinella elongata f/a p 0.3
Miliolinella subrotunda f/a p 0.3 0.3 0.7 1

Miliolinella valvularis f/a p 0.3 0.2 0.1 0.3
Miliolinella sp. juv. f/a p 0.3
Miniacina miniacea a h 0.7 0.003 0.02

Mississippina concentrica f/a h 0.6
Neoconorbina millettii a h 0.2 0.1
Neoconorbina terquemi a h

Neoconorbina williamsoni a h 0.4 0.6 0.7 0.3 0.1 0.2

151 119

7.218 6.908

191 128 177 450

7.598 7.898

BG0812a-08 D78/95

48.496 48.516
8.503 5.964

47.574 47.799 48.201 47.899

VH-97-50 BG0812a-02 BG0812a-05 BG0812a-06
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead living dead
Neolenticulina peregrina juv. f h 0.2

Nonion pauperatus f/a h 1.3 0.5 0.2 0.4 0.3 0.4
Nonionella atlantica f h
Nonionella auricula f h 0.2 0.5 0.8

Nonionella iridea f h
Nonionella turgida f h
Nonionella sp. juv. f h

Nonionellina labradorica f h
Nouria sp. f a
Nuttalides pusillus f/a h

Ophthalmidium balkwilli f/a p 0.2 0.3 0.7
Ophthalmidium sp. f/a p
Osangularia sp. juv. f h

Parafissurina lateralis f h 0.2

Paratrochammina (Lepidopara.) haynesi a a 2.0
Paratrochammina (Paratroch.) tricamerata f/a a 0.2
Paratrochammina (Paratroch.) wrighti f/a a 0.7

Patellina corrugata a h 2.0 0.2 0.9 0.7 0.1 2.1
Placopsilina confusa a a 0.006 0.02 0.03 0.7 0.4
Placopsilina sp. a a 18.2 1.5

Planorbulina distoma a h 0.2
Planorbulina mediterranensis a h 0.2 0.006
Planulina ariminensis a h 1.2

Pninaella nitidula f h 0.6 1.0 0.4
Polymorphina compressa f h
Polystomammina nitida f/a a 0.2 0.3 0.4 5.5 1.3 2
Polystomammina sp. juv. a a
Portatrochammina murrayi f/a a 14.6 0.5 4.5 0.4 3.2 5.9 5.1 0.3 2
Portatrochammina pacifica juv. f/a a
Procerolagena c lavata f h
Psammosphaera fusca f/a a 1.9

Pyrgo oblonga f p 0.3
Quinqueloculina angulata f p 0.2 0.1
Quinqueloculina bicornis f p 0.3 0.3
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead
Neolenticulina peregrina juv. f h

Nonion pauperatus f/a h 1.3 0.2 0.3 1.2 0.4 0.7
Nonionella atlantica f h 1.7 0.1
Nonionella auricula f h

Nonionella iridea f h 2.7 0.1
Nonionella turgida f h 0.5
Nonionella sp. juv. f h 0.1

Nonionellina labradorica f h 0.1
Nouria sp. f a 0.5 0.1
Nuttalides pusillus f/a h 0.9

Ophthalmidium balkwilli f/a p 1.2 0.4
Ophthalmidium sp. f/a p 0.5
Osangularia sp. juv. f h 0.1

Parafissurina lateralis f h

Paratrochammina (Lepidopara.) haynesi a a 1.9 0.003
Paratrochammina (Paratroch.) tricamerata f/a a 0.2 0.4
Paratrochammina (Paratroch.) wrighti f/a a

Patellina corrugata a h 0.5 0.1
Placopsilina confusa a a 0.5 0.04 0.6 0.04 0.3 0.003 0.5 0.1
Placopsilina sp. a a 0.5 0.04 0.006 0.001 0.005

Planorbulina distoma a h
Planorbulina mediterranensis a h 1 0.001 0.7 0.2 0.2
Planulina ariminensis a h 0.5

Pninaella nitidula f h
Polymorphina compressa f h 0.3
Polystomammina nitida f/a a 2.1 5.1 0.2 3.5 0.1 0.5
Polystomammina sp. juv. a a 0.2
Portatrochammina murrayi f/a a 2.1 3.2 5.5 2.1 0.7
Portatrochammina pacifica juv. f/a a 0.6 0.7 0.2
Procerolagena c lavata f h 0.3
Psammosphaera fusca f/a a 0.02

Pyrgo oblonga f p
Quinqueloculina angulata f p 0.2
Quinqueloculina bicornis f p 0.3 0.2
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48.496 48.516
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead living dead
Quinqueloculina cliarensis f p 0.3

Quinqueloculina dunkerquiana f/a p 0.3
Quinqueloculina lamarckiana f p
Quinqueloculina lata f/a p 1.5 1.5 0.4 0.2 1.5 1.6

Quinqueloculina pygmaea f p
Quinqueloculina seminulum f/a p 4.6 2.7 1.3 1.7 1 0.9 2.4 0.9
Quinqueloculina spp. f p

Recurvoides trochamminiformis f a
Reophax curtus f a 24.7 1.2
Reophax micaceus f a

Reophax scorpiurus f/a a 1.3
Reophax sp. f a 0.02
Reussoolina globosa f h

Rhabdammina abyssorum f/a a 0.2
Rhizammina algaeformis f a
Robertina arctica f h 0.3

Robertina subcylindrica f h 0.4 0.2 0.5
Robertinoides normani f h
Robertinoides suecicum f h 0.3
Robertinoides spp. f h
Rosalina anglica a h 0.7 0.4
Rosalina anomala f/a h 2.4 0.5 5.0 3.7 1.3 2.8 0.6 0.3

Rosalina bradyi a h 0.3 0.4 1.2 0.6 1.3 1.2
Rosalina globularis a h 0.8 0.1 1.4 0.6

Rosalina obtusa a h 0.4
Rosalina spp. a h
Rotaliammina concava a a 0.8 5.1 6.5 17.5

Rotaliammina siphonata a a 0.3
Saccorhiza ramosa f/a a
Seabrookia earlandi f h

Siphotextularia bermudezi f/a a 0.02
Siphotextularia caroliniana f a 0.3
Siphotextularia concava f a

Siphotextularia curta f a
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead
Quinqueloculina cliarensis f p

Quinqueloculina dunkerquiana f/a p
Quinqueloculina lamarckiana f p 0.2
Quinqueloculina lata f/a p 0.4 4.4

Quinqueloculina pygmaea f p 0.1
Quinqueloculina seminulum f/a p 0.6 0.3 0.1 0.7 6
Quinqueloculina spp. f p 0.4 0.3 0.1 0.1 0.2

Recurvoides trochamminiformis f a 0.8
Reophax curtus f a
Reophax micaceus f a 0.3

Reophax scorpiurus f/a a 0.3
Reophax sp. f a
Reussoolina globosa f h 0.5

Rhabdammina abyssorum f/a a
Rhizammina algaeformis f a 0.3
Robertina arctica f h

Robertina subcylindrica f h 0.2
Robertinoides normani f h 0.3
Robertinoides suecicum f h 0.2
Robertinoides spp. f h 0.3 0.1
Rosalina anglica a h
Rosalina anomala f/a h 3.5 0.6 0.7 0.9

Rosalina brady i a h 1.6 0.6 1 0.9 0.7 0.3 0.1 1 4.6 0.5
Rosalina globularis a h 1.3 0.3 0.7 0.7 0.3

Rosalina obtusa a h
Rosalina spp. a h 0.1 0.2
Rotaliammina concava a a 3.7 1.3 1.4 4.2

Rotaliammina siphonata a a
Saccorhiza ramosa f/a a 1
Seabrookia earlandi f h 0.5 0.1

Siphotextularia bermudezi f/a a 0.2
Siphotextularia caroliniana f a 0.3
Siphotextularia concava f a 0.6 0.1 0.001

Siphotextularia curta f a 0.2
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead living dead
Siphotextularia flintii f a 1.3 0.3 4.6

Siphotextularia heterostoma f a 1.5 0.3 0.2
Siphotextularia sp. f a
Sphaeroidina bulloides f/a h

Spirillina vivipara a h 1.3 0.3 0.4 0.7 1.3 3.2 1.3 4.6 0.08
Spirillina wrightii a h 1.2 0.4 0.3
Spiroloculina depressa f/a p 0.1

Spiroloculina excavata f/a p
Spiroplectinella sagittula a a 6.0 13.6 0.9 15.8 2.0 21.3 1.3 23 3.2 28 1.3 9.7 2.6 5.9
Stainforthia concava f h

Stainforthia fusiformis f h 0.2 0.3
Textularia pseudogramen f/a a 20.5 12.1 18.3 6.2 8.8 4.2 5.9 3.4 1.2 1.9
Textularia skagerakensis f a 9.7
Textularia sp. f a 0.3
Tholosina vesicularis a a 0.001
Tolypammina vagans a a 1.3 0.8

Trifarina angulosa f h 15.9 1.5 21.0 1.5 26.0 3.4 7.6 1.6 12.4 0.6 2.6 12.7 5.2 3.7
Trifarina bradyi f h
Trifarina fornasinii f h 0.3 0.9

Trifarina pauperata f h 0.5 0.5
Triloculina williamsoni f p 0.1
Triloculina sp. f p 0.3

Tritaxis conica a a 6.8 5.4 2.5 3.3 12 0.3 0.9
Trochammina advena juv. f a

Trochammina astrifica f/a a 0.7 0.001
Trochammina squamata f/a a 4.0 0.2 1.3 0.9 5.2 3.3

Trochammina spp. f/a a 0.5 0.2 0.1 0.8 1.3
Trochamminopsis pusilla juv. f/a a 1.3

Tumidotubus albus a a 0.06
Uvigerina auberiana f h 3.9 0.6 2
Uvigerina mediterranea f h 0.6
Vaginulina spp. f h 0.2
Valvulineria spp. f h
others 0.4 0.004 1.8
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead
Siphotextularia flintii f a 6.3 0.4

Siphotextularia heterostoma f a 0.2 0.2 0.7 0.7
Siphotextularia sp. f a 0.4 0.1
Sphaeroidina bulloides f/a h 0.2

Spirillina vivipara a h 3.1 0.02 1.3 1 0.2 9.3 0.8
Spirillina wrightii a h 0.2 1.1
Spiroloculina depressa f/a p

Spiroloculina excavata f/a p 0.3
Spiroplectinella sagittula a a 6.3 12.9 0.6 27.7 1.4 11.4 0.3 1.5 0.6 8.3 2.9 22.4
Stainforthia concava f h 0.3

Stainforthia fusiformis f h 0.1
Textularia pseudogramen f/a a 0.4 2.5 0.5 3.6 0.1 0.2 4.5 10.6 8.6
Textularia skagerakensis f a 2.1
Textularia sp. f a
Tholosina vesicularis a a
Tolypammina vagans a a 0.008

Trifarina angulosa f h 20.8 2 2.6 1.6 5.5 2.1 0.5 1.1 3.5 9.7 10.6 0.2
Trifarina bradyi f h 7.9 0.2
Trifarina fornasinii f h 0.3

Trifarina pauperata f h 0.2
Triloculina williamsoni f p 0.7
Triloculina sp. f p

Tritaxis conica a a 2.2 0.9 0.7 11.8
Trochammina advena juv. f a 0.5 0.6

Trochammina astrifica f/a a
Trochammina squamata f/a a 0.6 0.003 0.2 0.5 0.5 0.001 1 0.2

Trochammina spp. f/a a 0.5 0.6 0.7 0.3
Trochamminopsis pusilla juv. f/a a 0.2

Tumidotubus albus a a 0.003
Uvigerina auberiana f h 1.6 1 0.1 0.3
Uvigerina mediterranea f h 4.9
Vaginulina spp. f h 0.3
Valvulineria spp. f h 9.9
others 0.84 0.6 0.006 0.2 0.3 1 1 0.7 0.6 0.8
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Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead living dead

number of individuals 151 412 661 260 308 763 237 510 217 350 77 340 154 323

population density (ind./10 cm3) 71 12379 303 30462 55 8751 25 13994 48 9803 12 1719 28 930

number of species 28 41 56 37 31 43 34 39 22 37 29 50 27 50
species number per 100 individuals 24 25 30 26 22 24 25 28 17 26 34 33 23 33
Fisher α index 10.12 11.32 14.61 11.79 8.60 9.86 10.87 9.83 6.12 10.45 16.92 16.17 9.48 16.55

6.951 7.250 7.241

115 131 116 150 170 467 340

5.943 6.206 6.447 6.688

VH-97-36 VH-97-37 VH-97-49

49.001 48.739 48.451 48.154 47.866 47.549 47.554

VH-97-32D VH-97-33D VH-97-34 VH-97-35

 

 
 
Station number

Latitude  (°N)
Longitude (°W)
Depth in m

Living/Dead living dead living dead living dead living dead living dead living dead

number of individuals 192 249 157 318 422 334 405 1161 846 290 592 638

population density (ind./10 cm3) 34 5641 84 37343 225 90962 95 139211 522 91654 140 4841

number of species 33 39 32 39 48 43 58 83 57 46 37 43
species number per 100 individuals 26 28 27 26 30 29 35 37 29 31 22 25
Fisher α index 11.48 12.98 12.15 11.67 13.94 13.13 18.54 20.46 13.79 15.4 8.75 10.41
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Table 2.2.2 Foraminiferal census data of Sturrock and Murray (1981) and Murray et al. (1982).  
 
Station number 12/97 3/13 18/166 17/152 1/1
Latitude (°N) 49.15 48.68 48.37 48.35 48.33
Longitude (°W) 5.75 6.93 6.15 6.98 7.53
Depth in m 122 145 145 176 170

Species mol ts
Acervulina inhaerens a h 0.9 1.2
Ammodiscus  sp. a a 1.3

Ammoscalaria pseudospiralis f a 1.6
Bolivina difformis f h 3.5 3.6 2.0
Bolivina pseudoplicata f/a h 1.6 0.4
Buliminella elegantissima f h 0.4
Buliminella minutissima f h 0.6
Cassidulina laevigata f/a h 4.0

Cassidulina obtusa f h 17.7 5.2 20.2 10.0
Cassidulina sp. f h 1.6 1.3 10.7 18.0
Cibicides lobatulus a h 2.6 12.1 1.2
Clavulina obscura f a 9.2 1.6 7.4 1.2
Dentalina  sp. f h 2.0
Deuterammina (Deuterammina) rotaliformis a a 3.0

Deuterammina (Lepidodeut.) ochracea a a 1.3 1.2
Discorbina polyrraphes a h 0.9 2.0
Epistominella vitrea f/a h 1.3 1.7 0.6
Fissurina lagenoides f h 1.6
Fissurina orbignyana f h 2.6
Gavelinopsis praegeri f/a h 1.6 7.8 4.8 2.0
Glabratella chasteri f/a h 2.0

Globocassidulinasubglobosa f/a h 3.2 3.0 10.7 4.0
Haplophragmoides fragile f a 0.4
Labrospira jeffreysii f/a a 3.9 4.8 1.7 0.6 4.0
Lagena hexagona f h 0.4
Lamarckina haliotidea f/a h 2.0
Miliolinella  elongata f/a p 1.3

Miliolinella  oblonga f/a p 1.6
Neoconorbina millettii a h 1.3
Neoconorbina williamsoni a h 1.7 1.2
Nonion pauperatus f/a h 1.6 0.9
Ophthalmidium balkwilli f/a p 3.9 1.6 1.7
Patellina corrugata a h 3.2 1.3 1.8 8.0

Planorbulina mediterranensis a h 1.3 0.4
Pninaella nitidula f h 1.3
Polymorphinidae spp. f h 1.6 0.4
Polystomammina nitida f/a a 1.6 0.6
Portatrochammina murrayi f/a a 7.9 8.1 5.6 0.6
Quinqueloculina seminulum f/a p 0.6
Remaneica helgolandica a a 1.3 0.4 4.8 4.0

Reophax moniliformis f a 3.9 1.6 0.4
Reophax sp. f a 7.9 3.2 1.3 4.2 4.0
Robertinoides  spp. f h 2.0
Rosalina anomala f/a h 1.3 1.6 1.7 0.6
Rosalina bradyi a h 0.6
Rosalina neapolitana a h 0.4

Spirillina vivipara a h 13.2 11.3 6.5 3.6 12.0
Spiroplectinella sagittula a a 3.9 1.3 1.8
Stainforthia fusiformis f h 1.3 0.9  
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Station number 12/97 3/13 18/166 17/152 1/1
Latitude (°N) 49.15 48.68 48.37 48.35 48.33
Longitude (°W) 5.75 6.93 6.15 6.98 7.53
Depth in m 122 145 145 176 170

Textularia bigenerinoides f a 0.4 0.6
Textularia earlandi f a 1.6
Trifarina angulosa f h 22.4 12.9 18.2 14.3 8.0

Tritaxis fusca a a 1.3
Trochammina spp. f/a a 3.9 6.5 3.0 1.8 6.0
Valvulineria  sp. f h 2.6 4.8 2.2 3.0 4.0
Unidentified flat Trochammina a a 1.3
Unidentified Miliolina f/a p 0.4
Unidentified Textulariina f/a a 0.9

number of individuals 76 62 231 168 50
number of species 24 24 39 29 21
species number per 100 individuals 27 30 28 25 28
Fisher alpha 12.08 14.36 13.45 10.11 13.63

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 144



                                                                                                                               Appendix 2                           

Table 2.2.3 Foraminiferal census data of Schönfeld and Altenbach (2005). 
 
Station number
Latitude (°N)
Longitude (°W)

Depth in m
Living/Dead living dead living dead living dead

Species mol ts
Acervulina inhaerens a h 1 0.4

Ammodiscus catinus a a 1.9 0.2 0.9
Ammolagena clavata a a 0.9 1
Ammomassilina alveoliniformis a a 0.7
Ammosphaeroidina sphaeroidiniformis f a 0.9
Amphicoryna scalaris f h 0.9 0.4 0.2
Astacolus crepidulus f h 1 0.5 0.9 0.8

Bathysiphon capillare a a 1
Bigenerina nodosaria f a 5.1 8.7
Biloculinella irregularis f p 1.9 0.4
Bolivina dila tata f/a h 0.2
Bolivina pseudopunctata f/a h 0.9
Bolivina subaenariensis f h 2.6

Bulimina striata striata f h 1 1.2 0.4
Cancris auriculus f/a h 0.2
Cassidulina laevigata f/a h 2.5 0.7 0.4
Cibicides lobatulus a h 2.3 1.5 1 22.4 6.5 21.3
Cibicides refulgens a h 0.4 1.5 1 9.9 7.5 22.4
Cibicides sp. a h 0.4
Cibicidoides mollis f/a h 2.2

Cibicidoides pachyderma f/a h 2.6
Cibicidoides sp. f/a h 9.2 10.6
Clavulina mexicana f a 0.4
Cristellaria acutauricularis f h 1
Crithionina albida a a 0.9
Crithionina sp. a a 2.1 2 2.8

Cyclammina cancellata f a 0.9
Deuterammina (Lepidodeut.) ochracea a a 1
Discanomalina coronata a h 2.6
Discanomalina semipunctata a h 1.1 4 1.4 3.5
Eggerello ides scaber f a 0.9
Elphidium excavatum f/a h 0.5

Epistominella rugosa f/a h 0.9 0.4
Eponides repandus f/a h 1.9 0.9
Eponides repandus var. concameratus f/a h 0.7 3.2
Gaudryina rudis a a 1.9 2.1 0.9 3.9
Gavelinopsis praegeri f/a h 0.2 1.9
Globobulimina affinis f h 0.2
Globobulimina sp. 324 f h 0.2

Globocassidulina subglobosa f/a h 0.9
Gyroidina neosoldanii f h 0.4
Hanzawaia concentrica a h 0.4 0.4
Hoeglundina elegans f h 2.5 0.7 2.9 0.2 0.9 0.4
Hormosinella guttifera f a 1.7
Hyalinea balthica f h 11.6

Hyperammina fragilis f a 2.9
Hyperammina friabilis f a 0.4
Hyperammina laevigata f a 0.9
Jaculella obtusa f a 1.7 4.9 0.2 7.4

7.458 7.399 7.379
684 398 207

PO201/10-753 PO201/10-754 PO201/10-755
47.470 47.542 47.566
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Station number
Latitude (°N)
Longitude (°W)

Depth in m
Living/Dead living dead living dead living dead

Labrospira jeffreysii f/a a 5.8 2.8
Lagena sulcata f h 1.9

Lenticulina atlantica f h 1.1 1.9 0.9
Lenticulina gibba f h 0.4
Lenticulina rotulata f h 0.9 1.9 4.7 1.9 4.7
Marsipella cylindrica f a 0.9
Marsipella elongata f a 1.1
Melonis barleeanum f h 1.7 1.8 1 0.2

Miliolinella  elongata f/a p 0.2
Miliolinella  subrotunda f/a p 0.2 0.9
Mississippina concentrica f/a h 0.1 0.5 0.9 0.4
Nonionella auricula f h 0.9
Placopsilina sp. a a 4 6.6 3.125
Planispirinoides bucculentus f/a p 1

Planorbulina mediterranensis a h 0.5
Planulina ariminensis a h 3.2 6.9 0.1 1.4
Polystomammina nitida f/a a 1 0.9
Pyrgo depressa f p 0.4
Pygro fornasinii f p 0.2 3.7 0.8
Pyrgo lucernula f p 0.9 0.7
Pygro oblonga f p 0.9 1.9 0.2

Pyrgo sp. f p 0.9

Quinqueloculina lata f/a p 0.2
Quinqueloculina seminulum f/a p 1.5 1 0.7 0.9 0.4
Reophax bilocularis f a 5.1
Reophax calcareus f a 17.3 0.2 14.8
Reophax difflugiformis f a 1 0.9
Reophax scorpiurus f/a a 4.2 0.7 4.8
Reophax sp. f a 0
Rhabdammina abyssorum f/a a 3.4 1.9
Robertinoides bradyi f/a h 0.9 1.5
Robertinoides suecicum f h 0.7
Rosalina anomala f/a h 3.8
Rosalina globularis a h 1.6

Rotaliammina concava a a 1
Saccammina sphaerica f/a a 0.2 2.9 1.9
Saccorhiza ramosa f/a a 0.2
Sigmoilopsis schlumbergeri f a 1.5
Siphonina bradyana f/a h 0.9 0.7
Siphotextularia bermudezi f/a a 0.9 1 0.2
Siphotextularia caroliniana f a 0.9 0.7 4.7 3.2
Siphotextularia cf. occidentalis 

.9

f a 2
Sphaeroidina bulloides f/a h 4.2 0.7
Spirillina vivipara a h 0.4
Spiroplectinella  sagittula a a 0.7 1 8.2 4.6 4.3
Textularia pseudogramen f/a a 3.9 5.9 9.3 9.8
Tolypammina vagans a a 1
Tolypammina sp. a a 1.9
Trifarina angulosa f h 3.9 12.9 2.8 2.8
Trifarina bradyi f h 2.5 0.4 1.9 0.2
Trifarina fornasinii f h 0.5 0.9

7.458 7.399 7.379
684 398 207

PO201/10-753 PO201/10-754 PO201/10-755
47.470 47.542 47.566

.8 1.6
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Station number PO201/10-753 PO201/10-754 PO201/10-755
Latitude (°N)
Longitude (°W)

Depth in m
Living/Dead living dead living dead living dead

Triloculina tricarinata f/a p 0.4
Tritaxis conica a a 1.1 0.1 1.6

Tritaxis fusca a a 1.1 0.1
Trochammina squamata f/a a 10.8 2.4
Tumidotubus albus a a 4.9 1 0.9
Uvigerina auberiana f h 0.9 0.4 1 0.7
Uvigerina cf. bifurcata f h 7.6 4.4
Uvigerina mediterranea f h 9.3 38.9

Vulvulina pennatula a a 0.4 0.4
others 1.8 0.8 2 0.2 2.8

number of individuals 118 275 104 425 108 254

population density (ind./10 cm3) 11 1660 23 24044 23 6899
number of species 45 36 51 41 38 26
species number per 100 individuals 43 26 51 26 37 19
Fisher α  index 26.56 11.07 39.58 11.19 20.88 7.26

7.458 7.399 7.379
684 398 207

47.470 47.542 47.566
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Plate 1 

 

Scanning electron micrographs of abundant species from the Celtic Sea (chapter 2). All 

micrographs were taken with a CamScan 44/EDX scanning electron microscope. 

 

Fig. 1 Trifarina angulosa 

Fig. 2 Gavelinopsis praegeri, a dorsal view, b ventral view 

Fig. 3 Bolivina difformis 

Fig. 4 Spiroplectinella sagittula 

Fig. 5 Cassidulina obtusa 

Fig. 6 Cibicides lobatulus, a ventral view, b dorsal view 

Fig. 7 Trochammina squamata juv., a ventral view, b dorsal view 

Fig. 8 Rotaliammina concave, a ventral view, b dorsal view 

Fig. 9 Textularia pseudogramen 

Fig. 10 Portatrochammina murrayi, a ventral view, b dorsal view 

Fig. 11 Globocassidulina subglobose, a dorsal view, b ventral view 

Fig. 12 Reophax curtus 
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Plate 1 
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Plate 2 

 

Optical microscope photographs of abundant species from the Celtic Sea (chapter 2). All 

photographs were taken with a Keyence VHX – 700 FD camera. 

 

Fig. 1 Reophax curtus 

Fig. 2 Textularia pseudogramen 

Fig. 3 Cassidulina obtusa, a ventral view, b dorsal view 

Fig. 4 Rotaliammina concave, a dorsal view, b ventral view 

Fig. 5 Trifarina angulosa 

Fig. 6 Bolivina difformis 

Fig. 7 Trochammina squamata, a ventral view, b dorsal view 

Fig. 8 Cibicides lobatulus, a dorsal view, b ventral view 

Fig. 9 Portatrochammina murrayi, a dorsal view, b ventral view 

Fig. 10 Epistominella vitrea, a dorsal view, b ventral view 

Fig. 11 Spiroplectinella sagittula 

Fig. 12 Gavelinopsis praegeri, a dorsal view, b ventral view 
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Plate 2 
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Plate 3 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3).  

 

Fig. 1 Paratrochammina (Paratrochammina) tricamerata, a spiral view, b umbilical view  

Fig. 2 Trochammina advena, a spiral view, b umbilical view  

Fig. 3 Portatrochammina pacifica, a spiral view, b umbilical view  

Fig. 4 Deuterammina (Lepidodeuterammina) mourai, a spiral view, b umbilical view  

Fig. 5 Rotaliammina siphonata, a spiral view, b umbilical view 
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Plate 3 
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Plate 4 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3).  

 

Fig. 1 Paratrochammina (Lepidoparatrochammina) haynesi, a spiral view, b umbilical 

view  

Fig. 2 Trochammina astrifica, a umbilical view, b spiral view  

Fig. 3 Deuterammina (Lepidodeuterammina) sp., a spiral view, b umbilical view  

Fig. 4 Deuterammina (Deuterammina) balkwilli, a spiral view, b umbilical view 
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Plate 4 
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Plate 5 

 

Scanning electron micrographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3).  

 

Fig. 1 Deuterammina (Lepidodeuterammina) sinuosa, a umbilical view, b spiral view, c 

edge view  

Fig. 2 Deuterammina (Lepidodeuterammina) ochracea, a umbilical view, b spiral view, c 

edge view  

Fig. 3 Portatrochammina murrayi, a spiral view, b umbilical view 

Fig. 4 Trochammina squamata juv., a umbilical view, b spiral view 
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Plate 5 
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Plate 6 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3).  

 

Fig. 1 Deuterammina (Lepidodeuterammina) sinuosa, a umbilical view, b spiral view  

Fig. 2 Deuterammina (Lepidodeuterammina) ochracea, a umbilical view, b spiral view 

Fig. 3 Portatrochammina murrayi, a spiral view, b umbilical view  

Fig. 4 Trochammina squamata, a umbilical view, b spiral view 
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Plate 6 
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Plate 7 

 

Scanning electron micrographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3).  

 

Fig. 1 Deuterammina (Deuterammina) rotaliformis, a umbilical view, b spiral view  

Fig. 2 Rotaliammina concava, a spiral view, b umbilical view, c edge view 
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Plate 7 
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Plate 8 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3).  

 

Fig. 1 Deuterammina (Deuterammina) rotaliformis, a umbilical view, b spiral view  

Fig. 2 Rotaliammina concava, a spiral view, b umbilical view 
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Plate 8 
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Plate 9 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3).  

 

Fig. 1 Polystomammina nitida, a spiral view, b umbilical view  

Fig. 2 Ammoglobigerina shannoni, a spiral view, b umbilical view  

Fig. 3 Tritaxis conica, a umbilical view, b spiral view   

Fig. 4 Trochamminopsis pusilla, a spiral view, b umbilical view 
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Plate 9 
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Plate 10 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3). All specimens are illustrated in edge view.  

 

Fig. 1 Tritaxis conica  

Fig. 2 Polystomammina nitida  

Fig. 3 Rotaliammina concava.  

Fig. 4 Deuterammina (Deuterammina) rotaliformis  

Fig. 5 Ammoglobigerina shannoni  

Fig. 6 Portatrochammina murrayi  

Fig. 7 Deuterammina (Deuterammina) balkwilli  

Fig. 8 Trochammina squamata 
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Plate 10 
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Plate 11 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3). All specimens are illustrated in edge view.  

 

Fig. 1 Trochamminopsis pusilla 

Fig. 2 Paratrochammina (Paratrochammina) tricamerata  

Fig. 3 Deuterammina (Lepidodeuterammina) sinuosa  

Fig. 4 Deuterammina (Lepidodeuterammina) ochracea  

Fig. 5 Paratrochammina (Lepidoparatrochammina) haynesi  

Fig. 6 Deuterammina (Lepidodeuterammina) mourai  

Fig. 7 Trochammina astrifica  

Fig. 8 Deuterammina (Lepidodeuterammina) sp.  

Fig. 9 Portatrochammina pacifica  

Fig. 10 Trochammina advena 
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Plate 11 
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Plate 12 

 

Optical microscope photographs of species of the family Trochamminidae from the Celtic 

Sea (chapter 3) showing close-ups of axial depression and apertural features.  

 

Fig. 1 Trochammina advena  

Fig. 2 Trochammina squamata  

Fig. 3 Paratrochammina (Paratrochammina) tricamerata  

Fig. 4 Paratrochammina (Lepidoparatrochammina) haynesi  

Fig. 5 Portatrochammina murrayi  

Fig. 6 Rotaliammina concava  

Fig. 7 Rotaliammina siphonata  

Fig. 8 Tritaxis conica  

Fig. 9 Polystomammina nitida  

Fig. 10 Deuterammina (Deuterammina) balkwilli  

Fig. 11 Deuterammina (Deuterammina) rotaliformis  

Fig. 12 Deuterammina (Lepidodeuterammina) mourai  

Fig. 13 Deuterammina (Lepidodeuterammina) ochracea  

Fig. 14 Deuterammina (Lepidodeuterammina) sinuosa  

Fig. 15 Deuterammina (Lepidodeuterammina) sp. 
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Plate 12 
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