eDNA and species-specific primer for early detection. A case study on the bivalve Rangia cuneata, currently spreading in Europe.

Alba Ardura^{1,2}, Anastasija Zaiko², Jose L. Martinez³, Aurelija Samulioviene^{2,4}, Anna Semenova⁵, Eva Garcia-Vazquez¹

- 1: Department of Functional Biology, University of Oviedo. C/Julian Claveria s/n. 33006 Oviedo, Spain.
- 2: Marine Science and Technology Centre, Klaipeda University. H. Manto 84, LT 92294, Klaipeda, Lithuania.
- 3: Unit of DNA Analysis, Scientific-Technical Services, University of Oviedo. Edificio Severo Ochoa, Campus del Cristo, 33006 Oviedo, Spain.
 - 4: Department of Biology and Ecology, Klaipeda University. H. Manto 84, LT 92294, Klaipeda, Lithuania. 5: Atlantic Research Institute of Marine Fisheries and Oceanography, Kaliningrad, Russia

DNA-based methods for monitoring biological invasions in aquatic environments: eDNA

- Native range: Gulf of Mexico and introduced to the NW Atlantic, where it is predominantly found in estuaries.
- Known introduced range, 2006: lower portion of the Hudson River, New York and harbor of Antwerp, Belgium, Europe (Verween et al, 2006).
- Extremely rapid spread of the species in Europe (Rudinskaya and Gusev, 2012).

• 2010: R. cuneata in Vistula Lagoon of the Baltic Sea

• **2011** : 4,040 ind/m² in Kaliningrad Sea channel.

■ 2014: ¿?

- Is recognized as highly invasive species by Invasive Species Specialist Group (www.issg.org/).
- Guilty of the dramatic transformations of the local benthic communities (Rudinskaya and Gusev, 2012).
- □ Traditional sampling tools → insufficient to detect new invasions, especially in aquatic environments, where organisms are not apparent and are hidden underwater.
- Several studies demonstrate the efficacy of eDNA as a tool for species detection in aquatic environments (Ficetola et al., 2008; Dejean et al., 2011; Taberlet et al., 2012; Thomsen et al., 2012).

Detection threshold

- If we have many other bivalve species with high density????
 - Macoma balthica
 - Mya arenaria
 - Mytilus trossulus
 - Cerastoderma glaucum
 - Dreissena polymorpha

¿Rangia cuneata?

■ **SOLUTION**: Species-specific primers to detect the presence of a target organism.

- **OBJECTIVE**: to develop and validate species-specific molecular markers for early detection and distribution assessment of *R. cuneαtα*, using eDNA.
- APPLICATIONS: biosecurity and monitoring.
- 6 different mollusks were sampled from the Lithuanian coast of the Baltic Sea and the Curonian Lagoon.
 - Cerastoderma glaucum (N)
 - Macoma balthica (N)
 - Mytilus trossulus (N)
 - Dreissena polymorpha (EI)
 - Mya arenaria (C)

Water samples from:

- 2 locations within the Baltic Sea coastal zone
- 5 within the Vistula Lagoon

Location	R. cuneata larvae density, ind/m³
Juodkrante	Not detected
Nida	Not detected
-01	6791
3.50	3058
7-0-10	1168
9	1946
4	20262

Material and Methods

- 1. DNA extraction.
 - QIAamp® DNA Mini Kit, Quiagen, based on silica gel gel columns.
- 2. PCR amplification.
 - 16S rDNA (Palumbi et al., 1996)
 - 3. Designing new primer.
 - Alignment with BioEdit (Hall, 1999)

Specificity and sensitivity of the designed primer

RC-16Sar: 5'- AAATTTCTTCTAATGATGTGAGG -3'

16Sbr (Palumbi et al., 1996)

Cross-amplification?
Testing the new marker specificity

Experimental DNA mixtures to test the marker's sensitivity.

Marker validation

In vitro experiment.

Simulated communities

Validating the designed primers with the **field samples**

In conclusion, we recommend the application of species-specific markers for screening environmental samples as complimentary routine monitoring tool.

Thank you very much for your attention

