5.3.4 Water temperature and hydrometeorological characteristics along the coasts of the New Siberian Islands

Sergey O. Razumov and Mikhail N. Grigoriev

During the expedition "Lena-New Siberian Islands 2002" measurements of water temperature on vertical profiles at 11 stations were conducted. At two sites serial measurements during 1 and 3 days were carried out.

The measurements in the eastern Laptev Sea (west of the Sannikov Strait) have revealed a rather warm water layer (0-0.3 °C) in a water depth of 18-22 m (Fig. 5.3.4-1, Table 5.3.4-1). Apparently this layer was formed as a result of advection of a warmed up (0.1-0.4 °C) salt water mass (30-31 ‰) from the Yana Bay.

East of the Sannikov Strait (near Novoya Sibir Island) the temperature in the water column (0-15 m depth) changed from 2.7-3 °C at the surface to 1.6 °C at the bottom.

The hydrothermal profile along the Sannikov Strait (Fig. 5.3.4-2) shows that according to water temperature distribution cold water (down to -1.1 °C) can be supplied to the Sannikov strait from the Laptev Sea, and warmer water from the East Siberian Sea. During our observations the water temperature varied from -1.1 to 1.8 °C near the bottom and from 1.3 to 3.7 °C near the surface.

The direction of the water currents in the strait mainly depends on the wind regime. During western winds and calm conditions the current is directed from the Laptev to the East Siberian Sea. In this case the near-bottom water temperature decreases down to -0.6 to -1.1 °C (Table 5.3.4-1 and 5.3.4-2; Fig. 5.3.4-3). Under the influence of strong eastern winds a reverse and relatively warm current comes through the strait from the East Siberian Sea. In that case the temperature of the near-bottom water raises up to 1.5 to 1.8 °C.

The temperature measurements along vertical seawater profiles show that sea bottom temperatures below zero are a quite common phenomenon even within the coastal zone. This fact is very important for understanding the development of the off-shore sub-sea permafrost along the shallow shelf. The vast distribution of near bottom low summer temperatures (below zero) indicates that sub-sea permafrost can be preserved in the shallow shelf for a long time.

Figure 5.3.4-1. Water temperature profiles (A - station 2, north of Stolbovoy Island and B - station 7, south-west of Novoya Sibir Island).

Figure 5.3.4-2. Hydrothermal profile along Sannikov Strait (from Stolbovoy Island to Novoya Sibir Island (August, 2002).

5 The New Siberian Islands

Figure 5.3.4-3. Variation of water temperature in the Sannikov strait (stations 8 and 9) from 22.08 to 27.08.02.

Nº	Date	Max.	Horizon, m								
St.	Time	Depth,									
	15.00	m	Temperature, °C								
10K	15.08	9	11.00	5	9						
25	16.08	35	0	5	10	15	20	25	30	35	
	0100	00	2.01	1.85	-0.91	-0.86	0.42	-0.43	-0.86	-1.72	
3b	17.08	-	0								
L	0900		-1.20								
4k	18.08	11	1	6	11						
<u> </u>	9.00		0.04	-0.15	-1.05						
5zb	19.08	10	0	5	10						
605	20.08	7	0.35	5.12	5.30						
013	0900	,	3.10	2.90	2.68						
7ns	21.08	12.8	0	4.3	8.5	12.8					
	09 ¹⁰		2.70	2.65	2.47	1.62					
8zb	22.08	10.2	0.2	5.2	10.2						
	16 ³⁰		3.27	2.68	0.38						
	23.08	10.2	0.2	5.2							
	09	10.2	3.15	1.22	0.70			<u> </u>			
	23.08 1^{50}	10.3	0.3	5.3 0.40	0.05						
	23.08	10.2	0.2	5.2	10.2						
	19 ³⁰	10.2	3.71	2.32	0,14						
	24.08	10.2	0.2	5.2	10.2						
	0900		1.95	1.68	0.25						
	24.08	10.5	0.5	5.5	10.5						
	16 ²⁰	10.0	2.49	2.06	1.75						
	24.08	10.3	0.3	5.3	10.3						
	24.08	10.3	0.3	53	1.52						
	23^{30}	10.0	2.60	2 27	1 45						
	25.08	10,5	0.5	5.5	10.5						
	09 ⁰⁰		1.33	1.18	-0.59						
	25.08	10.4	0.4	5.4	10.5						
	1300	····	2.06	1.80	-0.72						
9k	26.08	10	0	5	10						
	09	10	2.07	1.35	-1.05			· · ·	<u> </u>		
	20.00 14 ⁴⁰	10	2 20	1 40	-0.80						
	26.08	10	0	5	10						
	20 ³⁰		2.65	-0.55	-1.08						
	27.08	10	0	5	10						
	09 ²⁰		2.22	1.54	-0.31					ļ	
10	28.08	9.5	0						1		
mi	20.09	10 5	2.67	25	7 5	10 5				┼	
I	23.00 23 ³⁰	12.0	4 50	2.0 4.57	4.30	4 29					
1	20		-1.00	-1.01	1.00		1	1	1	L	

Table 5.3.4-1. Water temperature profiles along New Siberian Island coasts

Indexes: **bk** – Buor-Khaya Peninsula, **s** – Stolbovoy Island, **b** – Belkovsky Island, **k** – Kotelny Island, **zb** – Zemlya Bunge, **ns** – Novaya Sibir Island, **ml** – Maly Lyakhovskiy Island, **dl** – Dmitry Laptev Strait.

N⁰	Date	Lat	Long	Wind	Wind	Wave	Wave	Ta,	Depth,	Tb,
St.	Time	N	E	direc-	velocity,	height,	length,	°C	m	°C
				tion	m/s	m	m			
1bk	15.08	71	133	WSW	3-6	0.5	10	6.40	9	8.80
	0030	58.080	06.154							
2s	16.08	74	135	SE	3-5	0.4	9	3.82	35	-1.72
	0100	13.468	21.778							
3b	17.08	75	135	SEE	1-2	0.2	1	2.70	-	-
	0900	21.660	49.845							
4k	18.08	74	138		0	Swell	swell	4.18	11	-1.05
	9 ³⁰	41.993	21.780							
5zb	19.08	74	142	NE	4-6	0.3	6	6.55	10	5.36
	0930	51.903	00.243							
6ns	20.08	74	146	E	2-3	swell	swell	3.85	7	2.68
	0900	59.823	56.852			0.4	10			
7ns	21.08	75	146	SW	5-7	0.4	5	1.05	12.8	1.62
	0910	05.862	25.455							
8zb	22.08	74	140	wsw	1-3	0.2	2	4.60	10.2	0.38
	16**	49.690	30.405							
	23.08	-"-	- " -	wsw	5-7	0.8	9	6.55	10.2	0.70
	09		"				45	0.05	10.0	0.05
	23.08	- " -	- " -	wsw	3-5	1.0	15	6.65	10.3	0.05
	14			NON	0.1			0.40	10.0	0.4.4
	23.08			VV SVV	0-1	swell	swell	0.12	10.2	0.14
	19	- "			0.40	0.3	10	4 5 0	10.0	0.05
	24.08			E	8-10	0.8		4.52	10.2	0.25
	24.09	"	"	<u> </u>	7.10	0.7	7	1 22	10.5	1 75
	24.00 16 ²⁰				7-10	0.7		4.55	10.5	1.75
	24.08		"	F	7-10	0.7	8	3 30	10.3	1.52
	19 ³⁰			L	1-10	0.7		0.00	10.0	1.02
	24.08	"			7_9	0.7	7	3.60	10.3	1.45
	23^{30}		-	–	1.0	0.7		0.00	10.0	1.40
	25.08	_ " _	_ " _	SE	5-7	0.6	6	3 70	10.5	-0.59
	0900			02		0.0		0.10	10.0	0.00
ŀ	25.08	-"-	_ " _	SSE	4-6	0.4	5	6.49	10.4	-0.72
	1300			001					1	
9k	26.08	74	139	SW	5-7	0.8	10	8.25	10	-1.05
	09 ²⁰	38.363	20.806							
Ì	26.08	- " -	- " -	SSW	5-8	1.0	12	7.40	10	-0.80
	14 ⁴⁰				_					
ļ	26.08	- " -	- " -	SW	3-5	swell	swell	6.07	10	-1.08
	20 ³⁰					1.3	18-20			
	27.08	- " -	÷"-	SE	2-5	0.4	5	9.79	10	-0.31
	09 ²⁰									
10	28.08	74	140	SE	8-12	1.3	15	5.48	9.5	-
ml	09 ⁰⁰	15.500	08.833							
11d	29.08	72	142	SW	4-5	0.5	6	5.27	12.5	4.29
	23 ³⁰	48.653	23.202							

Table 5.3.4-2.Hydrological-meteorological characteristics along New Siberian Island
coasts (bottom water temperature – Tb, air temperature – Ta).

334