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Abstract. Constraints on the Mediterranean Sea’s storage of

anthropogenic CO2 are limited, coming only from data-based

approaches that disagree by more than a factor of two. Here

we simulate this marginal sea’s anthropogenic carbon stor-

age by applying a perturbation approach in a high-resolution

regional model. Our model simulates that, between 1800

and 2001, basin-wide CO2 storage by the Mediterranean

Sea has increased by 1.0 Pg C, a lower limit based on the

model’s weak deep-water ventilation, as revealed by eval-

uation with CFC-12. Furthermore, by testing a data-based

approach (transit time distribution) in our model, compar-

ing simulated anthropogenic CO2 to values computed from

simulated CFC-12 and physical variables, we conclude that

the associated basin-wide storage of 1.7 Pg, published pre-

viously, must be an upper bound. Out of the total simu-

lated storage of 1.0 Pg C, 75 % comes from the air–sea flux

into the Mediterranean Sea and 25 % comes from net trans-

port from the Atlantic across the Strait of Gibraltar. Sensi-

tivity tests indicate that the Mediterranean Sea’s higher total

alkalinity, relative to the global-ocean mean, enhances the

Mediterranean’s total inventory of anthropogenic carbon by

10 %. Yet the corresponding average anthropogenic change

in surface pH does not differ significantly from the global-

ocean average, despite higher total alkalinity. In Mediter-

ranean deep waters, the pH change is estimated to be between

−0.005 and −0.06 pH units.

1 Introduction

The Mediterranean region will be particularly affected by cli-

mate change (Giorgi, 2006; MerMEX group, 2011; Diffen-

baugh and Giorgi, 2012). This region, currently classified as

semiarid to arid, is projected to become warmer and drier

(Gibelin and Déqué, 2003; Giorgi and Lionello, 2008), am-

plifying existing water resource problems. At the same time,

already heightened anthropogenic pressures are expected to

intensify further (Attané and Courbage, 2001, 2004). It has

been proposed that the Mediterranean Sea will experience

amplified acidification relative to the global average surface

ocean (Touratier and Goyet, 2009, 2011). The Mediterranean

Sea is able to absorb relatively more anthropogenic CO2 per

unit area for two reasons: (i) its higher total alkalinity gives

it greater chemical capacity to take up anthropogenic CO2

and neutralize acid and (ii) its deep waters are ventilated

on relatively short timescales, allowing deeper penetration

of this anthropogenic tracer. However the quantity of anthro-

pogenic CO2 that has been absorbed by the Mediterranean

Sea remains uncertain. This quantity cannot be measured di-

rectly because the anthropogenic component cannot be dis-

tinguished from the much larger natural background. Instead

it has been estimated indirectly from observable physical and

biogeochemical quantities.

Several indirect methods have been developed, some of

which have been compared using the same data sets along

basin-wide transects in the Mediterranean Sea. Their first

comparison (El Boukary, 2005) revealed large differences

between methods. With data from a 1995 transect on the
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Figure 1. Anthropogenic carbon (µmolkg−1) estimated with two data-based methods – TTD (Schneider et al., 2010) and TrOCA (Touratier

and Goyet, 2011) – along the Meteor M51/2 section (November 2001). Vertical profiles on the right are for mean anthropogenic CT along

the section estimated by each method. The vertical profile of the TrOCA method does not go below 3500 m depth because it requires

measurements, some of which where not available at that depth.

Meteor (M31/1), El Boukary estimated with two methods

that the Mediterranean Sea had absorbed 3.1 and 5.6 PgC,

but he concluded that even the lower value was an overesti-

mate. Later, data from a transbasin transect in 2001 (Meteor

M51/2) was used by two independent studies to estimate an-

thropogenic CO2. In the first, Schneider et al. (2010) used

those data with the transit time distribution approach (TTD,

from Waugh et al., 2006), a back-calculation method based

on CFC-12 derived mean ages of water masses. For the sec-

ond, Touratier and Goyet (2011) used their TrOCA (Touratier

et al., 2007) approach, which relies on measured O2, dis-

solved inorganic carbon (CT), and total alkalinity (AT). An-

thropogenic carbon estimated with TrOCA is always greater

than that from TTD (Fig. 1), with more than a factor of 2 dif-

ference both in the western basin below 500 m depth and in

the eastern basin between 500 and 1500 m. These large dif-

ferences in estimated concentrations further result in oppos-

ing estimates for the net transport across the Strait of Gibral-

tar. With TrOCA, the Mediterranean Sea appears to export

anthropogenic carbon to the Atlantic Ocean, whereas with

TTD, net calculated exchange is in the opposite direction

(Schneider et al., 2010; Aït-Ameur and Goyet, 2006; Huertas

et al., 2009; Flecha et al., 2011). These large discrepancies

between results from currently used data-based methods fuel

a debate about the quantity of anthropogenic carbon that is

taken up by the Mediterranean Sea.

Here we take another approach by simulating anthro-

pogenic CO2 storage of the Mediterranean Sea. Unlike sim-

ulations for the global ocean, we cannot rely on coarse-

resolution global models because they do not resolve fine-

scale bathymetry and circulation features that are critical for

the Mediterranean Sea. This semi-enclosed marginal sea is

separated into the eastern and the western basins by the Strait

of Sicily (Fig. 2). Each of these basins has critical circula-

tion features that are often heavily influenced by bathymetry.

For example, Atlantic Water (AW) enters the Mediterranean

Sea at the surface via the narrow Strait of Gibraltar and

flows counterclockwise along the coast. Surface-water cir-

culation patterns are influenced by deep- and intermediate-

water formation driven by strong winds, which are them-

selves steered and intensified by surrounding mountainous

topography. Deep and intermediate waters are formed in

four major areas: the Rhodes gyre, where the Levantine In-

termediate Water (LIW) originates; the Gulf of Lions and

the nearby Ligurian Sea in the Liguro-Provençal sub-basin,

which together produce Western Mediterranean Deep Water

(WMDW); and two adjacent regions, the Adriatic and the

Aegean sub-basins, which together produce Eastern Mediter-

ranean Deep Water (EMDW). Also influencing the deep cir-

culation is the Mediterranean Outflow Water (MOW), a com-

plex mixture of different intermediate and deep waters out-

flowing at the Strait of Gibraltar underneath the incoming

AW.

To capture these and other key features, we used a high-

resolution circulation model of the Mediterranean Sea forced

by high-resolution air–sea fluxes, interannually varying At-

lantic Ocean boundary conditions, and realistic land freshwa-

ter inputs. This regional circulation model is combined with
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Figure 2. Map of the MED12 model domain and bathymetry with location of the main Mediterranean sub-basins: Adriatic, Aegean, Alboran,

Algerian, Liguro-Provençal, Ionian, Levantine, and Tyrrhenian. Red circles indicate the mouths of the main Mediterranean rivers (Ebro,

Rhone, Tiber, Po, and Nile) and the input from the Black Sea at the Dardanelles Strait. Black lines indicate the Strait of Sicily, the Crete

Passage, and the trans-Mediterranean section from the Meteor M51/2 cruise (November 2001). The rectangular area in the western part of

the model domain indicates the Atlantic buffer zone (see Sects. 2.1 and 2.2.2). The eastern basin is situated to the east of the Strait of Sicily,

while the western basin is situated between the Strait of Gibraltar and the Strait of Sicily. The entire Mediterranean Sea refers to all waters

east of the Strait of Gibraltar.

a computationally efficient perturbation approach (Sarmiento

et al., 1992) to model anthropogenic CO2 in the Mediter-

ranean Sea. This geochemical approach simulates only the

change in CO2 uptake due to the anthropogenic perturbation,

assuming that the natural carbon cycle is unaffected by the

increase in CO2. For efficiency, it relies on a formulation

that relates surface-water changes in the partial pressure of

carbon dioxide (δpCO2) to those in dissolved inorganic car-

bon (δCT). By focusing only on the CT perturbation, it needs

just one tracer and one simulation that covers only the indus-

trial period. Thus it circumvents the need for the prerequisite

simulation of the natural carbon cycle, which requires many

tracers and a much longer simulation to allow modeled tracer

fields to reach near-steady-state conditions.

Our goal here is to use these simulations to help bracket

the Mediterranean Sea’s uptake of anthropogenic CO2 as

well as its net transport across the Strait of Gibraltar, while

exploring how this marginal sea’s heightened total alka-

linity affects anthropogenic CO2 uptake and corresponding

changes in pH.

2 Methods

Anthropogenic CO2 simulations were performed offline with

circulation fields from the NEMO circulation model. The

same approach was used to perform simulations of CFC-12

in order to evaluate modeled circulation, which heavily influ-

ences penetration of both of these passive transient tracers.

2.1 Circulation model

The regional circulation model NEMO-MED12 (Beuvier

et al., 2012a) is a Mediterranean configuration of the free-

surface ocean general circulation model NEMO (Madec and

the NEMO team, 2008). Its domain includes the whole

Mediterranean Sea and extends into the Atlantic Ocean to

11◦W; it does not include the Black Sea (Fig. 2). The hor-

izontal model resolution is around 7 km, adequate to re-

solve key mesoscale features. Details of the model and its

parametrizations are given by Beuvier et al. (2012a). NEMO-

MED12 has been used to study the WMDW formation (Beu-

vier et al., 2012a), the response of the mixed layer to high-

resolution air–sea forcings (Lebeaupin Brossier et al., 2011),

and the transport across the Strait of Gibraltar (Soto-Navarro

et al., 2014). NEMO-MED12 is descended from a suite of

Mediterranean regional versions of OPA and NEMO used

by the French modeling community: OPAMED16 (Béranger

et al., 2005), OPAMED8 (Somot et al., 2006), and NEMO-

MED8 (Beuvier et al., 2010).

The physical simulation used here is very close to that

described in Beuvier et al. (2012b). It is initiated in Oc-

tober 1958 with temperature and salinity data representa-

tive of the 1955–1965 period using the MEDATLAS data

set (MEDAR/MEDATLAS-Group, 2002; Rixen et al., 2005).

For the Atlantic buffer, initial conditions are taken from the

2005 World Ocean Atlas for temperature (Locarnini et al.,

2006) and salinity (Antonov et al., 2006). Boundary condi-

tions are also needed to specify physical forcing for the at-

mosphere, freshwater inputs from rivers and the Black Sea,
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and exchange with the adjacent Atlantic Ocean. For the at-

mosphere, NEMO-MED12 is forced with daily evaporation,

precipitation, radiative and turbulent heat fluxes, and mo-

mentum fluxes from the ARPERA data set (Herrmann and

Somot, 2008), all over the period 1958–2008. The ARPERA

forcing constitutes a 56-year, high-resolution forcing (50 km,

daily data) with a good temporal homogeneity (see Herrmann

et al., 2010, for more details about the post-2001 period). The

SST-relaxation and water-flux correction terms are applied as

in Beuvier et al. (2012a). River runoff is derived by Beuvier

et al. (2010, 2012a) from the interannual data set of Ludwig

et al. (2009) and Vörösmarty et al. (1996). Freshwater in-

put from the Black Sea follows runoff estimates from Stanev

and Peneva (2002). Exchange with the Atlantic is modeled

through a buffer zone (see Fig. 2) between 11◦W and the

Strait of Gibraltar, where the model’s 3-D temperature and

salinity fields are relaxed to the observed climatology (Lo-

carnini et al., 2006; Antonov et al., 2006) while superimpos-

ing anomalies of interannual variations from the ENSEM-

BLES reanalysis performed with a global version of NEMO

(Daget et al., 2009). To reproduce the monthly cycle of the

Mediterranean Sea’s water volume, we restore the total sea-

surface height (SSH) in the Atlantic buffer zone toward the

monthly climatological values of the GLORYS1 reanalysis

(Ferry et al., 2010)

The atmospheric forcing used by Beuvier et al. (2012b)

does not include modifications to improve dense water fluxes

through the Cretan Arc, which plays a critical role in deep-

water formation during the Eastern Mediterranean Transient

(EMT). As detailed by Roether et al. (1996, 2007), the EMT

was a temporary change in the EMDW formation that oc-

curred when the source of this deep water switched from the

Adriatic Sea to the Aegean Sea during 1992–1993. Beuvier

et al. (2010) showed that a previous simulation with the cir-

culation model NEMO-MED8 (1/8◦ horizontal resolution)

was able to reproduce a transient in deep-water formation

as observed for the EMT, but the simulated transient pro-

duced less EMDW. Beuvier et al. (2012b) later performed

a simulation with NEMO-MED12 with comparable forcing

between October 1958 and December 2012. To improve the

characteristics of the simulated EMT, namely the density of

newly formed EMDW during 1992–1993, its weak forma-

tion rate, and its shallow spreading at 1200 m, we performed

a sensitivity test with modified forcing. For that, we mod-

ified the ARPERA forcings over the Aegean sub-basin, in-

creasing mean values as done by Herrmann et al. (2008) to

study the Gulf of Lions. More specifically, during Novem-

ber to March in the winters of 1991–1992 and 1992–1993,

we increased daily surface heat loss by 40 W m−2, daily wa-

ter loss by 1.5 mm day−1, and the daily wind stress modulus

by 0.02 Nm−2. That resulted in average wintertime increases

in heat loss (+18 %), water loss (+41 %), and wind inten-

sity (+17 %) over the Aegean sub-basin. The increased heat

and water losses allow NEMO-MED12 to form denser wa-

ter masses in the Aegean Sea during the most intense winters

of the EMT, while increased wind stress drives more intense

mixing via winter convection. Furthermore, enhanced con-

vection accelerates the transfer of surface temperature and

salinity perturbations into intermediate and deep layers of the

Aegean Sea. In summary for this study, the physical model

forcing is identical to that from Beuvier et al. (2012b), except

for the enhanced forcing during the two winters mentioned

above.

2.2 Passive tracer simulations

2.2.1 CFC-12

The trace atmospheric gas CFC-12 has no natural compo-

nent. Being purely anthropogenic, its atmospheric concentra-

tion has increased since the 1930s and has leveled off in re-

cent decades. Although sparingly soluble, it enters that ocean

by gas exchange. There it remains chemically and biolog-

ically inert, tracking ocean circulation and mixing. Precise

measurements of CFC-12 along several trans-Mediterranean

sections make it particularly suited for evaluating these re-

gional model simulations. To model CFC-12, we followed

protocols from phase 2 of the Ocean Carbon-Cycle Model

Intercomparison Project (OCMIP-2) as described by Dutay

et al. (2002). For the air–sea flux of CFC-12 (FCFC), we used

the standard formulation for a passive gaseous tracer,

FCFC = kw(Ceq−Csurf), (1)

where kw is the gas transfer velocity (also known as the pis-

ton velocity), Csurf is the simulated sea-surface concentration

of CFC-12, and Ceq is the atmospheric equilibrium concen-

tration. That is,

Ceq = αpCFC, (2)

where α is the CFC-12 solubility, a function of local seawa-

ter temperature and salinity (Warner and Weiss, 1985), and

pCFC is the atmospheric partial pressure of CFC-12 com-

puted from the atmospheric mole fraction in dry air. Here

we assume atmospheric pressure remains at 1 atm neglecting

spatiotemporal variations. The gas transfer velocity is com-

puted from surface-level wind speeds (u) from the ARPERA

forcing following the Wanninkhof (1992, Eq. 3) formulation:

kw = au
2

(
Sc

660

)−1/2

, (3)

where a = 0.31 and Sc is also the CFC-12 Schmidt number

computed following Wanninkhof (1992, Table A1).

Regarding lateral boundary conditions, for the Atlantic

buffer zone (between 11◦W and the Strait of Gibraltar), we

assume that net exchange at the boundary may be neglected

while relying on atmospheric exchange of this rapidly equi-

librating tracer as the dominant factor.

Biogeosciences, 12, 781–802, 2015 www.biogeosciences.net/12/781/2015/
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2.2.2 Anthropogenic CO2

To model anthropogenic CO2 in the Mediterranean Sea, we

use the perturbation approach (Siegenthaler and Joos, 1992;

Sarmiento et al., 1992). This classic approach uses a sim-

ple relationship between the change in surface-ocean pCO2,

which is needed to compute the air–sea CO2 flux, and the

change in CT. Such a relationship is necessary for carbon

dioxide, unlike for CFC-12, because as CO2 dissolves in the

ocean it does not simply remain as a dissolved gas; it disso-

ciates into two other inorganic species: bicarbonate and car-

bonate ions. When modeling only the change in the total of

the three species (δCT), the simple relationship that is used

allows models to carry only that perturbation tracer.

In the perturbation approach, the geochemical driver is

the atmospheric change in carbon dioxide. As written by

Sarmiento et al. (1992), that change in terms of the partial

pressure of carbon dioxide in moist air is

δpCO2a =
(
pCO2a −pCO2a,0

)
(1− es/pa). (4)

For the model simulation, the two pCO2 terms (in µatm)

on the right side of the equation are identical to xCO2

(in ppm), although units differ, because they both refer

to dry air and because the perturbation approach assumes

a total atmospheric pressure of 1 atm. Of those two terms,

pCO2a,0 is the preindustrial reference value of 280 µatm (i.e.,

xCO2 = 280 ppm) and pCO2a is the prescribed atmospheric

xCO2 obtained from a spline fit to observations from the

Siple ice core data and atmospheric CO2 measurements from

Mauna Loa, which together span 1800.0 to 1990.0 (Enting

et al., 1994), combined with the 12-month-smoothed Mauna

Loa atmospheric measurements between 1990.5 and 2009.0

(GLOBALVIEW-CO2, 2010). The final term in Eq. (4) uses

the saturation water vapor pressure es and the total atmo-

spheric pressure at sea level pa to convert partial pressure

in dry air to that in wet air as needed to compute the air–sea

flux.

The modeled air–sea flux of anthropogenic carbon FCO2

follows the standard formulation

FCO2
=KCO2

(δpCO2a − δpCO2o), (5)

where KCO2
is a gas transfer coefficient, δpCO2a is de-

scribed above, and δpCO2o is the anthropogenic perturbation

in surface-water pCO2 relative to its reference value in 1800.

For the gas transfer coefficient, KCO2
= αkw, where α is the

CO2 solubility (Weiss, 1974) and kw is as in Eq. (3) except

that Sc is for CO2 (Wanninkhof, 1992, Table A1).

The δpCO2o term is not modeled explicitly but is calcu-

lated from the only tracer that is carried in the model, δCT.

The standard formulation from Sarmiento et al. (1992) is

based on their finding that the relationship between the ratio

δpCO2o/δCT and δpCO2o is linear, for a given temperature

and at constant total alkalinity.

δpCO2o

δCT

= z0+ z1 δpCO2o , (6)

where the intercept z0 and slope z1 terms are each quadratic

functions of temperature. That equation is then rearranged

for the model calculation.

δpCO2o =
z0 δCT

1− z1 δCT

(7)

To allow for a starting value of pCO2a,0 that is different

than 280 ppm, Lachkar et al. (2007) introduced two correc-

tive terms:

δpCO2o =
z0

[
δCT+ δCT ,corr

]
1− z1

[
δCT+ δCT ,corr

] −pCO2a,corr, (8)

where the first correction factor is

pCO2a,corr = pCO2a,0−pCO2a,ref, (9)

determined from the starting xCO2 in the initial year (1800),

i.e., pCO2a,0 = 287.78ppm, and same reference pCO2a,ref =

280ppm. With that result, the second correction factor is

δCT ,corr =
pCO2a,corr

z0+ z1pCO2a,corr

. (10)

These two minor corrections do not change the way z0 and z1

are computed, but they do slightly alter their use in the model

simulations, using Eq. (8) instead of Eq. (7).

Equations for the linear regression coefficients z0 and z1

are computed in four steps: (i) estimate the initial prein-

dustrial CT,0 as a function of temperature from carbonate

system thermodynamics, assuming air–sea equilibrium be-

tween the atmosphere (pCO2a,0 = 280ppm) and the sur-

face ocean, constant global-average surface total alkalin-

ity (2300 µmolkg−1), constant salinity (35 psu), and varying

temperatures across the observed range; (ii) increase incre-

mentally the pCO2a from 280 to 480 ppm, and recompute the

CT as a function of temperature for each increment; (iii) use

those results with Eq. (6) to compute z0 and z1 for each tem-

perature; and (iv) fit each of z0 and z1 to a quadratic function

of temperature. With this approach, Sarmiento et al. (1992)

found that Eq. (6) fitted exactly calculated values to within

1 % when δpCO2o ≤ 200ppm.

The constant value of total alkalinity used in the standard

perturbation approach detailed above is the area-weighted

mean for the global ocean. That approach with Eq. (8),

which we refer to as GLO, will produce biased results for

the Mediterranean Sea whose average surface total alkalin-

ity is 10 % greater. Thus we performed a second simulation

(MED), where z0 and z1 that were used with Eq. (8) were

computed following the same four-step procedure as above,

except that we replaced the area-weighted surface average to-

tal alkalinity for the global ocean (2300 µmolkg−1) with that

for the Mediterranean Sea (2530 µmolkg−1).

Finally, to test how variable total alkalinity may affect sim-

ulated results, we performed a third simulation (VAR). The

perturbation approach was designed for the global, open-

ocean waters where total alkalinity varies relatively little,

www.biogeosciences.net/12/781/2015/ Biogeosciences, 12, 781–802, 2015
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Figure 3. Salinity-derived surface total alkalinity field (µmolkg−1) calculated with the formula of Schneider et al. (2007) (Eq. 11) applied

to the model’s surface salinity field from November 2001.

Table 1. Coefficients ai , bi , and ci (where the index i varies from 0 to 9) used to compute z1, z2, and z3 with Eq. (13).

i ai bi ci

0 1.177825e+1 9.330105e−2 1.350359e−3

1 −1.614090e−1 −1.857070e−3 −2.422081e−5

2 −5.633789e−1 −5.251668e−3 −8.087972e−5

3 1.102070e−3 1.615968e−5 1.558226e−7

4 1.027733e−2 1.028834e−4 1.655765e−6

5 −4.195387e−6 −5.816404e−8 −3.503140e−10

6 −6.677595e−5 −6.915741e−7 −1.151323e−8

7 5.292828e−3 6.857606e−5 9.547726e−7

8 −1.529681e−5 −2.836387e−7 −3.012886e−9

9 −4.737909e−5 −6.551447e−7 −9.651931e−9

e.g., from 2243 to 2349 µmolkg−1 in the zonal mean of the

GLODAP gridded data product (Key et al., 2004). Spatial

variations in surface total alkalinity in the Mediterranean

Sea are more than twice as large, e.g., varying from 2375

to 2625 µmolkg−1 between western and eastern margins. To

account for variability in Mediterranean total alkalinity, we

exploited its tight relationship with salinity derived from the

Meteor M51/2 transbasin section by Schneider et al. (2007):

AT = 73.7S− 285.7, (11)

where S is the model’s surface salinity and AT is its com-

puted surface total alkalinity. This equation thus takes much

of the AT spatial variability into account (Fig. 3), although it

is expected to be inaccurate near river mouths, where fresh-

waters with high total alkalinity are delivered to the Mediter-

ranean Sea. This equation also implies that computed AT

varies temporally with simulated salinity.

For VAR to take into account variable salinity (total al-

kalinity) as well as variable temperature, while maintaining

adequate precision, we made two types of modifications to

the standard equations. First, we replaced Eq. (6) with a di-

rect relationship between δpCO2,o and δCT but with a cubic

formulation instead of a linear formulation, i.e., implying an

additional coefficient.

δpCO2,o = 0+ z1 δCT+ z2 δC
2
T+ z3 δC

3
T (12)

Then for each of three coefficients, we replaced the former

two equations, quadratic in temperature T , with three equa-

tions, cubic in T and S.

z1 = a0+ a1 T + a2 S+ a3 T
2
+ a4 S

2
+ a5 T

3
+ a6 S

3

+ a7 T S+ a8 T
2 S+ a9 T S

2

z2 = b0+ b1 T + b2 S+ b3 T
2
+ b4 S

2
+ b5 T

3
+ b6 S

3

+ b7 T S+ b8 T
2 S+ b9 T S

2

z3 = c0+ c1 T + c2 S+ c3 T
2
+ c4 S

2
+ c5 T

3
+ c6 S

3

+ c7 T S+ c8 T
2 S+ c9 T S

2

(13)

The associated coefficients are listed in Table 1, while the

R program used to make these calculations, which exploits

the seacarb software package for the carbonate system (Lav-

igne and Gattuso, 2011), is given in the Supplement. With the

VAR approach applied to the range of Mediterranean temper-

atures (13 to 30 ◦C), we found that Eq. (12) fitted calculated

values to within 0.6 % when δpCO2a ≤ 280ppm, i.e., up to

a doubling of the preindustrial level of atmospheric CO2.

Biogeosciences, 12, 781–802, 2015 www.biogeosciences.net/12/781/2015/
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Hence the simulated anthropogenic carbon is sensitive to the

spatial and temporal changes in T in the GLO and MED ex-

periments and T and S in the VAR experiment (Eq. 12).

For lateral boundary conditions, we restored simulated

δCT throughout the Atlantic buffer zone toward a time-

varying, spatially co-located section taken from the global-

scale gridded derived product by Khatiwala et al. (2009) for

each year between 1765 and 2011, using their values from

1800 (the start year of our anthropogenic CO2 simulations)

as our zero reference. That damping across the entire buffer

zone was designed to maintain a reasonable time-varying in-

flow of δCT from the Atlantic across the Strait of Gibraltar.

2.3 Looping

For computational efficiency, our geochemical simulations

were performed “offline”. That is, they were driven by cir-

culation fields that were read in from output from a previ-

ous simulation with the NEMO-MED12 circulation model,

thereby avoiding the need for us to recalculate them for each

passive tracer simulation. Thus those circulation fields were

computed by forcing NEMO-MED12 with the ARPERA

forcing during 1958–2008. We then repeatedly looped that

51-year sequence of model-circulation fields in order to

cover the full 200-year industrial period for anthropogenic

carbon simulations. The first 7 years of the circulation model

(1958–1964) are considered as a spin-up and are not used in

the offline simulations of passive tracers. The next 10 years

(ARPERA forcing during 1965–1974) are continuously re-

peated until 1975 to drive offline simulations of both passive

tracers.

For both passive tracers, up until 1975, we began by re-

peatedly looping the same 10 years of NEMO-MED12 circu-

lation fields, i.e., those forced by the ARPERA atmospheric

forcing during 1965–1974. That forcing period was selected

because it does not include intense events like the EMT or the

Western Mediterranean Transition (Schroeder et al., 2008);

we thus considered this period as best suited to produce rea-

sonable circulation fields for the Mediterranean Sea (Beuvier

et al., 2010, 2012b; Beuvier, 2011). Thus for the complete

CFC-12 simulation, covering 1930 to 2008, the 1965–1974

loop of MED12 circulation fields was repeated 4.5 times to

cover offline years 1930–1975. Then to complete the offline

CFC-12 simulation, we applied the NEMO-MED12 circu-

lation fields corresponding to the remaining 1975–2008 pe-

riod forcing. The same 1965–1974 loop of the circulation

fields from NEMO-MED12 was likewise repeated for the

three anthropogenic CO2 simulations (GLO, MED, VAR) but

instead 17.5 times to cover offline simulation years 1800–

1974. Then, as for CFC-12, the last 34 years of the offline an-

thropogenic CO2 simulations were driven with the NEMO-

MED12 circulation fields from the remaining years (1975–

2008) of the ARPERA forcing.

Figure 4. CFC-12 (pmol kg−1) data–model comparison along the

Meteor M51/2 section. Color-filled contours indicate simulated

CFC-12, whereas color-filled dots show in situ observations. Both

use the same color scale and are taken at the same time (Novem-

ber 2001).

2.4 δpH

The anthropogenic change in surface in situ pH during 1800

to 2001 was computed from δCT and prescribed total alkalin-

ity. The preindustrial CT was computed by assuming it to be

in thermodynamic equilibrium with the prescribed total al-

kalinity and with an atmospheric xCO2 of 280 ppm at 1 atm

total pressure, correcting for humidity. Computations were

performed with seacarb, which takes two carbonate system

variables and computes all others including pH. Then, to this

preindustrial CT we added our simulated δCT and recom-

puted pH. Other input variables, temperature, salinity, and to-

tal alkalinity were identical. Concentrations of phosphate and

silica were assumed to be zero, a good approximation for the

oligotrophic surface waters of the Mediterranean Sea. The

anthropogenic change in pH is then just the difference be-

tween two computations. This exercise yields a surface map

of δpH.

For deep waters, we consider changes only along one

transbasin section, Meteor M51/2. Exploiting total alkalin-

ity, CT, temperature, and salinity measured along from this

section in November 2001 (Schneider et al., 2007, 2010), we

computed corresponding pH for all data points along the sec-

tion and throughout the water column. Then we subsampled

the simulated δCT in 2001 at all station locations and sam-

ple depths. After removing those simulated results from the

measured CT, we recalculated pH. The difference is the δpH

along the same section. For comparison, we repeated this ex-

ercise, but instead of simulated δCT, we used the TTD data-

based estimates of anthropogenic CT from Schneider et al.

(2010), already available along the same section.

www.biogeosciences.net/12/781/2015/ Biogeosciences, 12, 781–802, 2015



788 J. Palmiéri et al.: Simulated anthropogenic carbon in the Mediterranean Sea

Table 2. Cumulative air–sea flux between 1800 and 2001 for the three simulations over the eastern and western basins and the entire

Mediterranean Sea.

Average flux (mol C m−2) Total flux (Pg C)

East West Med. Sea East West Med. Sea

GLO 19.2 24.8 21.0 0.39 0.26 0.65

MED 22.3 31.8 25.5 0.45 0.33 0.78

VAR 23.4 29.4 25.4 0.47 0.31 0.78

Table 3. Budget of anthropogenic carbon accumulated in the Mediterranean Sea (Pg C) between 1800 and 2001. The budget distinguishes

Strait of Gibraltar inflow (G− Sin) via the AW, the corresponding outflow (G− Sout) via the MOW, and the air–sea flux (Air–sea). Critical

combined terms are thus the net inflow–outflow difference (NetG−S), the total input (G−Sin+ air–sea), and the net total (NetG−S+ air–

sea).

Simulation G− Sin G− Sout Net G− S Air–sea Total Input Net Total

GLO 0.71 0.42 0.29 0.65 1.36 0.94

MED 0.72 0.46 0.26 0.78 1.5 1.04

VAR 0.72 0.46 0.26 0.78 1.5 1.04

3 Results

3.1 Evaluation

By comparing modeled to observed CFC-12, we evaluated

the simulated circulation in regard to ventilation of wa-

ter masses (Fig. 4). Whereas modeled CFC-12 generally

matches observations between 150 m (∼ 1.4 pmolkg−1) and

1200 m (∼0.3 pmol kg−1), simulated concentrations do not

show the observed mid-depth minimum. For instance, in the

Levantine sub-basin, observed CFC-12 concentrations are

lowest (∼ 0.3 pmol kg−1) between 600 and 1500 m, but be-

low that depth zone concentrations grow with depth, reach-

ing∼ 0.6 pmolkg−1 in bottom waters. Conversely, simulated

concentrations below 1200 m continue to decline until they

bottom out at ∼ 0.3 pmolkg−1 (Fig. 5).

Generally, the model underestimates the relatively large

CFC-12 concentrations observed in deep waters of the east-

ern and western basins (∼ 0.6 pmolkg−1), which are indica-

tive of recently ventilated water masses (Schneider et al.,

2010; Roether et al., 2007). Although the model simulates

some penetration of CFC-12 south of the Crete Passage with

concentrations reaching up to∼ 0.5 pmol kg−1, those remain

lower than observed. Ventilation of the model’s deep east-

ern basin is particularly weak in the Adriatic and Ionian

sub-basins (Fig. 4). On average below 2000 m, CFC-12 con-

centrations from the model are only half of those observed.

Overall, the CFC-12 evaluation indicates that the model pro-

duces an adequate ventilation of intermediate water masses

but insufficient ventilation of deep waters.

3.2 Air–sea flux

The invasion of anthropogenic carbon into the Mediterranean

Sea is influenced by the δCO2 flux at the surface and by ex-

change with the Atlantic Ocean across the Strait of Gibraltar.

The simulated air–sea flux of anthropogenic carbon is calcu-

lated directly by the model (Eq. 5). When integrated since the

beginning of the simulation (cumulative flux), it is found to

be similar among the three simulations, all of which exhibit

maxima in the same regions (Fig. 6). The highest fluxes oc-

cur in the Gulf of Lions and to the east of Crete, both regions

of deep and intermediate water formation, and in the Alboran

sub-basin, which is highly influenced by the strong Atlantic

inflow and by the presence of two standing anticyclonic ed-

dies (Vargas-Yáñez et al., 2002). Along coastlines there are

not only local minima but also the maximum uptake at the

outflow of the Dardanelles Strait, although that is extremely

localized. In the MED simulation, cumulative fluxes over the

western basin are on average 25 % larger per unit area than

the Mediterranean Sea’s mean, whereas they are 13 % lower

in the eastern basin (Table 2). Conversely, the larger surface

area of the eastern basin means that its total uptake represents

58 % of the total Mediterranean Sea uptake.

The 10 % greater prescribed surface total alkalinity in the

MED simulation relative to GLO means that the latter must

absorb less anthropogenic carbon (Fig. 6b). Indeed, despite

very similar uptake patterns, the basin-wide cumulative up-

take is 17 % less in the GLO simulation than in MED, with

a greater reduction in the western basin (22 %) than in the

eastern basin (14 %). By definition, the salinity-derived total

alkalinity in the VAR simulation is more realistic than with

MED simulation, varying from 2350 µeq kg−1 in the Alboran

sub-basin to 2650 µeq kg−1 in the eastern basin. That lower

western total alkalinity results in an 8 % lower air–sea flux
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Figure 5. Comparison of average vertical profiles along the Meteor

M51/2 section for (a) CFC-12 (pmol kg−1), (b) δCT (µmolkg−1),

and (c) the model–data relative difference (in percent). Model re-

sults are in blue, while red indicates the CFC-12 data and δCT data-

based estimates; the right panel (c) uses blue for δCT and red for

CFC-12. Data-based estimates for δCT are the TTD results from

Schneider et al. (2010).

in the western basin, while the higher eastern total alkalinity

drives 5 % greater uptake in the eastern basin (Fig. 6c). Yet

despite these east–west differences between VAR and MED,

total basin-wide uptake is only 0.3 % less in former than the

latter. Overall the eastern basin always dominates, taking up

60 % of the basin-wide integrated flux in VAR and GLO and

taking up 57 % in MED. However, it is not only the air–sea

flux but also lateral exchange that matters.

3.3 Budget

The Mediterranean Sea’s content of anthropogenic carbon is

affected not only by the air–sea flux but also by exchange

with the Atlantic Ocean through the Strait of Gibraltar. To as-

sess the relative importance of this lateral exchange we con-

structed a budget of δCT in the Mediterranean Sea. In that

budget, the temporal evolution of the cumulative air–sea flux

in the reference simulation MED is compared to the same

simulation’s total mass of carbon that has entered and left

the Mediterranean Sea through the Strait of Gibraltar (Fig. 7).

The key terms are thus the flux, the net transfer at the Strait

of Gibraltar (inflow− outflow of δCT), and the actual accu-

mulation of δCT in the Mediterranean Sea (inventory).

In the MED simulation between 1800 and 2001, there

is 1.50 Pg C that enters the Mediterranean Sea via the air–

sea flux (0.78 Pg C) and via the Strait of Gibraltar inflow

(0.72 Pg C) (Table 3). Yet 64 % of the δCT inflow (by AW

near the surface) is balanced by δCT outflow at depth (by the

Mediterranean outflow). That leaves 1.04 PgC that remains

Table 4. Average δCT inventories in the eastern and western basins

and for the entire Mediterranean Sea.

Average inventory (mol C m−2)

Simulation East West Med. Sea

GLO 28.6 33.4 30.2

MED 31.8 36.9 33.5

VAR 32.0 36.6 33.6

in the Mediterranean as the total δCT inventory. Thus 25 %

of the Mediterranean’s total δCT inventory is due to net ex-

change at the Strait of Gibraltar, while the remaining 75 %

is from the air–sea flux. The budget of the VAR simulation

is quite similar to that for MED, but both of those differ

substantially from the budget for GLO (Table 3). In GLO,

the Mediterranean Sea’s δCT inventory in 2001 (0.94 Pg C)

is 10 % less, with 69 % of the total input coming from the

air–sea flux and 31 % from net exchange across the Strait

of Gibraltar. The evolution of the MED simulation’s carbon

budget (Fig. 8) demonstrates that anthropogenic carbon en-

ters the Mediterranean entirely via the air–sea flux at the be-

ginning of the simulation, but that the fraction entering by

lateral exchange across the Strait of Gibraltar grows until sta-

bilizing in the 1960s to one-fourth of the total.

3.4 Simulated δCT inventory

Having examined how anthropogenic carbon enters the

Mediterranean Sea, we now turn to where it is stored, the

patterns of which differ from those of the input fluxes due

to water mass transport. The vertical integral of the δCT

concentration is termed the inventory. In the Mediterranean

Sea, the inventory patterns tend to follow the distribution of

bathymetry (Fig. 9). Thus, unlike the global ocean, substan-

tial levels of anthropogenic carbon have already penetrated

into deep waters of the Mediterranean Sea, as deduced pre-

viously by observational studies (Lee et al., 2011; Schneider

et al., 2010; Touratier and Goyet, 2011). Specific invento-

ries (mass per unit area) in the reference simulation (MED)

are 10 % higher in the western basin and 6 % lower in the

eastern basin relative to the 33.5 mol C m−2 average for the

Mediterranean Sea (Table 4). For the two other simulations,

the basin-wide inventory is 10 % lower in GLO and 0.1 %

higher in VAR. Those east–west differences are smaller than

those for the air–sea flux (Table 2). There is a strong cor-

relation between latitudinal variations in the inventory and

the bathymetry, both along the Meteor M51/2 section and in

terms of meridional means (Fig. 10). In both cases, the cor-

relation is striking, except in isolated regions such as in the

Ionian sub-basin (∼ 15–20◦E in Fig. 10), where poorly ven-

tilated deep waters have relatively low δCT concentrations.
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Figure 6. Cumulative air–sea flux of anthropogenic carbon (mol m−2) from 1800 to November 2001 shown as the total flux for the MED

reference simulation (top) and for the other two simulations as differences: GLO−MED (bottom left) and VAR−MED (bottom right).

Table 5. Total δCT inventory (Pg C) for the entire Mediterranean

Sea and for the eastern basin as simulated and as estimated by the

TTD data-based method (Schneider et al., 2010).

Approach Med. Sea East

GLO model 0.93 0.58

MED model 1.03 0.65

VAR model 1.03 0.65

TTD data 1.7 (1.3–2.1) 1.0 (0.7–1.2)

3.5 Comparison with TTD data-based results

To go beyond model comparison of simulated uptake of an-

thropogenic CO2, we also compare model results to data-

based estimates. In particular, we focused on data-based

estimates of anthropogenic carbon deduced with TTD be-

cause that method requires only measurements of temper-

ature, salinity, and CFC-12, all of which were simulated,

thereby allowing us to test the approach (see Sect. 4.1). For

now though, let us simply compare model results to the

TTD estimates of δCT based on observations collected on

the Meteor M51/2 section in 2001 (Schneider et al., 2010).

A first comparison reveals that the modeled δCT is lower

everywhere than the TTD estimates of the inventory along

the Meteor M51/2 section (Fig. 9). While the TTD inven-

tory along this section averages 83 molm−2 (ranging from

21 to 153 molm−2), the model average is 50 molm−2, 40 %

less. Expanding the comparison vertically, the model δCT is

seen to underestimate the TTD results throughout the wa-

ter column, even at the surface (Fig. 11). Surface concen-

trations are naturally largest, both for the TTD estimates

(∼ 68 µmolkg−1) and for the model (e.g., ∼ 58 µmolkg−1

in the MED simulation). Whereas the TTD estimates are

lowest (20 to 25 µmolkg−1) in the Levantine sub-basin be-

tween 800 and 1500 m and increase below (e.g., reach-

ing up to 35 µmolkg−1 in the EMDW), simulated δCT de-

creases with depth everywhere, as already seen for simulated
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Figure 7. Cumulative increase in anthropogenic carbon (Pg C) in

the Mediterranean Sea from 1800 to 2008 due to the Gibraltar in-

flow (dashed purple line) and outflow (dashed-dotted purple line),

i.e., their difference (inflow – outflow, solid purple line) and the air–

sea flux (solid green line). Also shown is the total buildup in storage

(solid light-blue line). Gibraltar fluxes have been calculated from

model monthly mean outputs by multiplying the anthropogenic car-

bon concentration (gm−3) of water in a section crossing the Strait

of Gibraltar by water fluxes (m3 month−1) flowing across this sec-

tion. The sign of the water flux indicates its direction, and hence

provides an inflow or an outflow of anthropogenic carbon. The total

storage is the sum of the net δCT flux at the Strait of Gibraltar and

of the δCT air–sea flux, and is consistent with the sum of all the

δCT store in the Mediterranean Sea.

  

Figure 8. Evolution of the Mediterranean’s annual uptake in δCT

(solid light-blue line), shown as a 10-year running average to focus

on decadal-scale changes. Also shown is the percentage of that an-

nual δCT that entered the Mediterranean Sea through the Strait of

Gibraltar (solid orange line) and via the air–sea fluxes (solid green

line).

CFC-12 (Fig. 4). The lowest simulated δCT concentrations

are found in the bottom waters of the Ionian sub-basin (<

5 µmolkg−1). However, higher deep-water δCT is simulated

in the EMDW near the Crete Passage (up to 15 µmolkg−1),

where there is dense-water outflow from the Aegean sub-

basin through the Crete Passage during the EMT. In terms

of basin totals, Schneider et al. (2010) relied on TTD to

help estimate a basin-wide anthropogenic carbon inventory

of 1.7 Pg C for the Mediterranean Sea, with 1.0 Pg C of that

in the eastern basin (Table 5). Relative to the data-based TTD

results, the modeled basin-wide Mediterranean inventory is

40 % less in the MED and VAR and 46 % less in GLO. For

the eastern inventory basin, the MED and VAR simulations

are 35 % lower than the TTD estimates, whereas GLO is

42 % lower.

3.6 δpH

Anthropogenic changes in surface pH between 1800 and

2001 are remarkably uniform, both between simulations and

across the basin. Away from the coast, the change in sur-

face pH between 1800 and 2001 varies between −0.082 and

−0.086 in the GLO simulation (Fig. 12). Exceptions include

the northern Levantine sub-basin, where the δpH is slightly

less (−0.080), and the greater changes seen in the Gulf of

Gabes, the Adriatic and Aegean sub-basins, and near the

mouths of large rivers such as the Nile and the Rhone. The

MED simulation exhibits almost identical patterns and inten-

sities for the change in pH except in Alboran sub-basin and

the western portion of the western basin, where pH changes

are less intense (−0.076 and −0.074, i.e., a difference of up

to ∼0.012 pH units). Conversely, the VAR simulation with

its spatially varying total alkalinity produces a more con-

trasted pattern of pH change. Although VAR’s spatial vari-

ability in δpH in the western basin is intermediate between

that seen for GLO and MED, the eastern basin contrast in

VAR is much greater. In particular, VAR ’s pH changes are

smallest where the salinity derived total alkalinity is highest

(Levantine sub-basin), and they are largest where the salinity-

derived total alkalinity is smallest (e.g., near the Po, Nile,

and Dardanelles outflows). Despite differences in spatial pat-

terns between simulations, their basin-wide average change

in surface pH is almost identical:−0.084±0.001 units (total

scale).

4 Discussion

4.1 δCT in the Mediterranean Sea

Our comparison of modeled to measured CFC-12 indicates

that the model adequately represents ventilation of near-

surface and intermediate waters but underestimates venti-

lation of deep waters. This CFC-12 evaluation alone im-

plies that our simulated δCT is likewise too low in Mediter-

ranean Sea deep waters and hence that our simulated to-

tal anthropogenic carbon inventory of 1.03 Pg C is a lower

limit. Yet even in the top 400 m, where there is tight agree-

ment between simulated and observed CFC-12, the data-

based estimates of δCT from the TTD method are 20 %

larger than those simulated (Fig. 5). Hence it is unlikely

that the modeled circulation is the primary cause. Simplifi-

cations with the perturbation approach, e.g., its steady-state

assumption, could be partly to blame, although errors due

to circulation-induced changes in biological productivity ap-

pear small for the global ocean (Siegenthaler and Sarmiento,

1993; Sarmiento et al., 1998). The treatment of total al-

kalinity in the perturbation approach also does not appear
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Figure 9. Inventory of δCT (mol m−2) in November 2001 from the MED simulation (color-filled contours) and from Schneider et al. (2010)

data-based estimates (color-filled dots). The Mediterranean bathymetry is shown as white isobaths every 1000 m.

  

Figure 10. δCT inventory (mol C m−2) along the Meteor M51/2

section (dashed lines) and given as the meridional mean (solid lines)

for the MED simulation (purple) along with corresponding model

bathymetry (green).

a significant factor, considering that our three treatments with

different mean states and spatial variability give results that

are quite similar (see Sect. 4.3). Besides these potential sim-

ulation biases, it is also possible that the data-based method-

ology, namely the TTD approach, is biased.

Hence we tested the TTD approach in the model world

(MW) by (1) using exactly the same version and parametriza-

tions of the TTD approach described in Schneider et al.

(2010) for consistency; (2) using it to estimate δCT from

simulated CFC-12, temperature, and salinity; and (3) com-

Figure 11. Comparison of δCT (µmolkg−1) along the Meteor

M51/2 section for the model (color-filled contours) and the TTD

data-based estimates (color-filled dots) in November 2001.

paring those results to the δCT simulated directly by the

model. That comparison reveals that the TTDMW estimates

always overestimate the simulated δCT. Those overestimates

start at+10 % in surface waters but reach more than+100 %

in Mediterranean Sea bottom waters (Fig. 13). Relative dif-

ferences are highest where simulated CFC-12 is lowest, i.e.,

where the ventilation age of water masses is oldest, namely
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Figure 12. Anthropogenic change in surface pH between 1800 and 2001 for the GLO (top), MED (bottom left), and VAR (bottom right)

simulations.
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Figure 13. δCT (µmolkg−1) along the Meteor M51/2 section, estimated with the MED reference simulation (top left) and the TTD method

in the model world (bottom left). Also shown are the same results but as area-weighted vertical profiles for the whole Mediterranean Sea

(right).

in bottom waters, particularly those in the Ionian sub-basin.

Whereas the TTDMW estimate of the total anthropogenic car-

bon inventory in the Mediterranean Sea is 1.4 Pg C, the sim-

ulated value in the reference simulation (MED) is 1.0 Pg C.

That 40 % overestimate with the TTD approach in the model

world could be less in the real Mediterranean Sea, because

the model underestimates CFC-12 concentrations in the deep

water, which accentuates the discrepancy. Nonetheless, the

TTD-based inventory of anthropogenic carbon remains an

upper limit.

www.biogeosciences.net/12/781/2015/ Biogeosciences, 12, 781–802, 2015



794 J. Palmiéri et al.: Simulated anthropogenic carbon in the Mediterranean Sea

One reason for this overestimate is that data-based meth-

ods such as TTD assume that the change in oceanic pCO2 is

identical to the change in the atmospheric pCO2.

This convenient assumption, that 1δpCO2 = 0, has been

motivated by measured pCO2 at three time series (BATS,

HOT, and ESTOC) where calculated atmospheric and

oceanic trends are not significantly different (Bindoff et al.,

2007). However, these stations are all located in subtropi-

cal gyres where both the air–sea flux of anthropogenic CO2

and the corresponding air–sea disequilibrium are the lowest

Sarmiento et al. (Fig. 2 in 1992), i.e., where the detection of

an air–sea disequilibrium in temporal changes of pCO2 (i.e.,

1δpCO2) is the most difficult. Our model estimates of this

disequilibrium in the Mediterranean Sea (Fig. 14) indicate

that it is not negligible. It slowly increases from 14 µatm in

1800 up to 20 µatm in 2001, corresponding to a lag of ocean’s

δpCO2 compared to the atmosphere’s by 15 to 20 % since

∼ 1850. These1δpCO2 values are similar to those simulated

by global-ocean models (Sarmiento et al., 1992; Orr et al.,

2001; Yool et al., 2010). Assuming that this disequilibrium

is zero, as done in TTD, implies a systematic overestimate of

anthropogenic carbon uptake.

Other data-based methods that estimate greater anthro-

pogenic carbon inventories than TTD in the Mediterranean

Sea, e.g., the TrOCA approach (Fig. 1), must overestimate

the true inventory by even more. Although even the upper

limit of our range (1.0 to 1.7 Pg C) is small when compared

to the global-ocean inventory of anthropogenic carbon of

134 Pg C (Sabine et al., 2004, for year 1994), the Mediter-

ranean Sea contains 2.4 to 4 times as much anthropogenic

carbon per unit volume as does the global ocean.

4.2 Transfer across the Strait of Gibraltar

Unlike the global ocean, where outside input of anthro-

pogenic carbon comes only from the atmosphere, in the

Mediterranean Sea there is also lateral input and output

of anthropogenic carbon via the Strait of Gibraltar. Unfor-

tunately, data-based estimates of that net transport do not

agree even in terms of its direction, much less its magnitude.

That is, estimates of transport based on data-based estimates

of δCT with the TrOCA method suggest that the Mediter-

ranean Sea is a source of anthropogenic carbon to the At-

lantic Ocean (Aït-Ameur and Goyet, 2006; Huertas et al.,

2009); conversely, with two other data-based methods – TTD

and the 1C∗ approach (Gruber et al., 1996) – there is a net

transport of anthropogenic carbon from the Atlantic to the

Mediterranean Sea (Huertas et al., 2009; Schneider et al.,

2010). The two latter back-calculation data-based methods

give similar net fluxes of δCT:∼ 4.2 Tg C yr−1 with1C∗ and

3.5 Tg C yr−1 with TTD. Both rely on the estimates of water

fluxes from Huertas et al. (2009) (Table 6). Both methods

also produce similar estimates for the δCT concentrations in

inflowing and outflowing waters:∼ 60 µmolkg−1 in the near-

surface inflowing water and ∼ 52 µmolkg−1 in the deeper

Mediterranean Outflow Water (MOW). However, these δCT

estimates are based on data collected from different peri-

ods, i.e., May 2005 to July 2007 for Huertas et al. (2009)

and November 2001 for Schneider et al. (2010). Moreover,

the transfer deduced from TTD-derived δCT estimates from

(Schneider et al., 2010) are estimated to have a large un-

certainty (−1.8 to 9.2 Tg C yr−1). The net δCT transfer es-

timated with the TrOCA method is−3 Tg C yr−1. That much

stronger net export from the Mediterranean Sea to the At-

lantic is due to TrOCA’s assessment that the outflowing

MOW has higher δCT (∼ 80 µmolkg−1) than the inflowing

AW (∼ 65 µmolkg−1) (Huertas et al., 2009; Schneider et al.,

2010; Flecha et al., 2011). Yet that vertical distribution is op-

posite to that expected from an anthropogenic transient tracer

in the ocean with an atmospheric origin.

All three of our model simulations indicate a net transfer

of anthropogenic carbon from the Atlantic to the Mediter-

ranean across the Strait of Gibraltar (Sect. 3.3). In the refer-

ence simulation (MED), 0.26 Pg C enters the Mediterranean

Sea via the Strait of Gibraltar between 1800 and 2001, simi-

lar to the TTD- and1C∗-based estimates (Table 6). Observa-

tional estimates of water transfer across the Strait of Gibraltar

are between 0.72 and 1.01 Sv (1 sverdrup (Sv)= 106 m3 s−1)

for surface inflow and between 0.68 and 0.97 Sv for deep out-

flow, resulting in a net transfer of+0.04 to+0.13 Sv (Bryden

and Kinder, 1991; Bryden et al., 1994; Tsimplis and Bryden,

2000; Candela, 2001; Baschek et al., 2001; Lafuente et al.,

2002; Soto-Navarro et al., 2010). The model falls near the

lower limit of these estimates, having an inflow of 0.71 Sv,

an outflow of 0.67 Sv, and a net water transfer of +0.04 Sv,

when averaged between 1992 and 2008 (Beuvier, 2011). For

2005–2007, the simulated transfer is 0.15 Sv weaker than ob-

servational estimates from Huertas et al. (2009) in 2001 both

for inflow and outflow, while net transfer is not significantly

different: +0.04 vs. 0.05 Sv (Table 6).

Simulated δCT concentrations in the model’s AW are

largely determined by damping to data-based estimates from

Khatiwala et al. (2009) at the western boundary of the model

domain. In the MED simulation, the δCT in the inflowing AW

is 12 to 24 % lower than data-based estimates from Huertas

et al. (2009), who used both 1C∗ and TrOCA approaches

(Table 6). But the largest discrepancy occurs in the outflow-

ing deeper waters (MOW), for which the simulated δCT un-

derestimates the data-based 1C∗ for 2005–2007 by 31 %.

That underestimate is expected given that simulated CFC-12

in the model’s WMDW is only half that observed and that

this deep water contributes to the MOW.

The model’s underestimate of δCT in the MOW is the de-

termining factor which results in less outflow and thus more

net inflow of anthropogenic carbon to the Mediterranean Sea.

It follows that the model must provide an upper limit for the

true net inflow of anthropogenic carbon, given that modeled

water exchange falls within the observed range and that mod-

eled and data-based estimates of δCT are more similar in

the inflowing water than in the outflowing water. Likewise,
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Table 6. Lateral fluxes of water and anthropogenic carbon across the Strait of Gibraltar.

Approach Year(s) Net fluxes7 Qin δCT;in Qout δCT;out

(Tg C yr−1) (Sv) (µmolkg−1) (Sv) (µmolkg−1)

(1C∗)1,2 2005–2007 +4.20± 0.04 0.89 60 0.85 51

(1C∗)1,3 2005–2007 0.85 61 0.81 52

(TrOCA)1,2 2005–2007 −3.00± 0.04 0.89 64 0.85 78

(TrOCA)1,3 2005–2007 0.85 69 0.81 81

(TTD)4 2001 +3.5 (−1.8 to 9.2) 0.895 62.46 0.855 54.8

Model MED 2001 +4.7 0.70 47.6 0.66 32.1

Model MED 2005–2007 +5.5 0.74 52.6 0.69 35.7

1 Huertas et al. (2009) estimates based on data near the Strait of Gibraltar during 2005–2007.
2 Method applied to observations on the Atlantic side of the Strait of Gibraltar.
3 Method applied to observations on the Mediterranean side of the Strait of Gibraltar during May 2005 to July 2007.
4 Schneider et al. (2010) estimates using the TTD approach with observations from 2001.
5 Schneider et al. (2010) water fluxes across the Strait of Gibraltar are from Huertas et al. (2009).
6 Schneider et al. (2010) δCT concentration in inflowing AW is from Aït-Ameur and Goyet (2006).
7 Positive values indicate transfer from the Atlantic to the Mediterranean Sea.

Table 7. Average changes in pH and [H+] between 1800 and 2001 for the three simulations over western and eastern basins and the entire

Mediterranean Sea.

δpH δ[H+] (nmol kg−1)

West East Med. Sea West East Med. Sea

GLO −0.0851 −0.0849 −0.0850 1.45 1.46 1.46

MED −0.0823 −0.0848 −0.0840 1.29 1.35 1.33

VAR −0.0833 −0.0837 −0.0836 1.33 1.32 1.32

a lower limit for net transport of anthropogenic is offered

by the computations that use data-based TTD estimates of

δCT. That follows because (1) TTD overestimates deep δCT

by more than surface values and (2) near-surface inflow and

deep outflow are similar in magnitude. Hence the TTD-based

approach must underestimate net input of anthropogenic car-

bon to the Mediterranean. Therefore the net input of anthro-

pogenic carbon across the Strait of Gibraltar must be between

+3.5 and +4.7 Tg C yr−1 based on observations collected

in 2001. To compare that range to results of Huertas et al.

(2009) for 2005–2007, we relied on the simulated δCT evolu-

tion between 2001 and 2005–2007. In that 5±1-year period,

simulated δCT increased by +10.5 % in the inflowing AW

and by+11.2 % in the MOW. For the 2005–2007 lower limit,

we applied those trends to the lower limit δCT estimates for

2001 (TTD estimates of Schneider et al., 2010, in the AW and

MOW) combined with the 2005–2007 water transfer rates

(Huertas et al., 2009); for the upper limit we again used the

model result. Hence, for 2005–2007, we consider that the

true net input of anthropogenic carbon across the Strait of

Gibraltar must fall between +3.7 and +5.5 Tg C yr−1.

4.3 Sensitivity to total alkalinity

To test the sensitivity of results to total alkalinity, we com-

pared three simulations: GLO with a basin-wide total alka-

linity equal to the global-ocean average, MED where the

basin-wide inventory is increased by 10 % (equivalent to the

Mediterranean Sea’s surface average), and VAR where sur-

face total alkalinity varies as a linear function of salinity.

The 10 % greater total alkalinity in MED and VAR relative

to GLO results in a 10 % greater simulated inventory of an-

thropogenic carbon (Table 5), but the basin-integrated air–

sea flux of anthropogenic in MED and VAR is 20 % greater

than in GLO (Table 2). The 10 % difference must be made

up by proportionally less input of anthropogenic carbon to

the Mediterranean from the Atlantic in MED and VAR rela-

tive to GLO.

The MED simulation has greater total alkalinity in the

western basin than either GLO or VAR and hence absorbs

more anthropogenic carbon there than do the other two sim-

ulations (Fig. 6). Yet MED’s western basin total alkalinity

is too high compared to what actually comes in from the

Atlantic and even in terms of the δCT also coming in with

the same water. The latter is determined in all three model

runs by restoring to data-based estimates of Khatiwala et al.

(2009) in the Atlantic buffer zone. Thus it is less accurate

to impose a mean Mediterranean Sea total alkalinity in this

area, which artificially increases the surface-water buffer ca-

pacity and hence its ability to absorb CO2. The same artifact

results in a lower local change in pH (Fig. 12). Thus the con-

stant Mediterranean surface total alkalinity as used in MED

is suboptimal for simulating δCT near the Strait of Gibraltar.
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Figure 14. Temporal evolution from 1800 to 2001 of spatially averaged δpCO2 (in ppm) in the atmosphere (dashed orange line), the ocean

(dashed-dotted green line), and their difference 1δpCO2 (solid light-blue line). Also shown is the corresponding percent undersaturation of

oceanic δpCO2 (purple line), defined as 100
(

1−
δpCO2 oc
δpCO2 atm

)
.

In contrast, the VAR simulation generally has more realis-

tic total alkalinity that increases from west to east (Fig. 3).

That avoids an over-buffered carbonate system near the

Strait of Gibraltar, particularly in the Alboran sub-basin, and

an under-buffered system in the far eastern Mediterranean.

However, VAR is generally less realistic near river mouths

than either GLO or MED. By imposing a total alkalinity that

is a function of salinity in a model that considers only fresh-

water riverine input (no total alkalinity delivery), the model-

imposed total alkalinity near river mouths is too low. That ar-

tifact results in lower air–sea fluxes of anthropogenic carbon

when close to river mouths (Fig. 6) and locally more intense

reductions in pH near the Nile, Po, and Rhone river mouths

and near the outflow of the Dardanelles Strait (Fig. 12); at

the latter site, the air–sea flux of anthropogenic carbon even

changes sign from ocean uptake to loss, although that is ex-

tremely localized.

Despite these local differences, the three approaches yield

similar results when integrated across the entire Mediter-

ranean Sea, with spatial variability in total alkalinity leading

to differences in global inventory of only 0.1 % and differ-

ences between east–west partitioning of less than 1 %.

4.4 Change in pH

Two recent studies have attempted to quantify the decline in

the pH of the Mediterranean Sea due to the increase in an-

thropogenic carbon (Touratier and Goyet, 2009, 2011). Both

concluded that the pH reduction in the Mediterranean Sea
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Figure 15. (a) Acidification rate (∂[H+] / ∂pCO2, in pmol kg−1 µatm−1), (b) rate of change of total carbon (∂CT / ∂pCO2, in

µmol kg−1 ppm−1), (c) surface H+ ion concentration (pmol kg−1), and (d) CT (µmol kg−1), as a function of the Mediterranean’s range

of total alkalinity (2380 to 2650 µmolkg−1) for three different atmospheric pCO2 levels in 1765 (280 ppm, solid green line), 2008 (385 ppm,

solid light-blue line), and 2100 (850 ppm, solid purple line). Also shown for year 2008 are effects from varying temperature (dashed blue

line) and temperature and salinity (dotted blue line) over the observed west–east range.

(acidification) is larger than that experienced by typical wa-

ters of the global ocean. The higher total alkalinity of the

Mediterranean Sea was evoked to justify a larger uptake of

anthropogenic carbon. Our results support that finding, i.e.,

with the MED−GLO showing a 10 % increase in anthro-

pogenic carbon inventory that occurs when average surface

total alkalinity is increased by 10 % (Mediterranean minus

global-ocean average).

The same two studies further suggest that higher levels of

δCT in the Mediterranean Sea also imply greater changes

in pH. Yet our sensitivity tests demonstrate that the higher

total alkalinity of the Mediterranean Sea does not result in

a greater anthropogenic reduction in surface pH. Differences

between simulations GLO and MED are negligible (Fig. 12).

In both simulations, the simulated decline in surface pH is

−0.084 ±0.001 units when averaged across Mediterranean

Sea (Table 7). Hence the decline in pH is quite similar be-

tween typical surface waters in the Mediterranean Sea and

those in the global ocean. Furthermore, because it is on a log

scale, absolute differences in pH actually represent relative

changes in [H+]. To avoid such confusion, we prefer to dis-

cuss acidification of the Mediterranean Sea in terms of [H+].

For a quantitative understanding of how total alkalin-

ity affects surface acidification, we made additional equi-

librium calculations to assess rates of change in terms of

∂CT/∂pCO2 and ∂[H+] / ∂pCO2 (Fig. 15). Those were com-

puted from analytical expressions for buffer factors (Egleston

et al., 2010), corrected by Orr (2011). Both quantities change

over the observed west–east gradient of the Mediterranean’s

surface alkalinity (2380 to 2650 µmol kg−1) when tempera-

ture and salinity are each held at their western minimum val-

ues.

Our equilibrium thermodynamic equilibrium calculations

of the rate of change of the Mediterranean’s surface CT

confirm results from our sensitivity tests: the west–east in-

crease in alkalinity, by itself, increases ∂CT/∂pCO2 by 12 %

(Fig 15b), corresponding to the equivalent west–east change

in anthropogenic CT (Fig 15d).

For the corresponding rate of acidification, the west–east

increase in alkalinity, by itself, reduces ∂[H+] / ∂pCO2 by

8 % (Fig 15a), similar to what was found byAlvarez et al.

(2014). Adding in the effect of the west–east temperature in-

crease (6◦C during summer) reduces the ∂[H+] / ∂pCO2 by

another 0.5 % (i.e., for the east relative to the west). But the

temperature reduction in ∂[H+] / ∂pCO2 is compensated for

by the west–east increase in salinity (3 units on the prac-

tical salinity scale) during summer. For comparison, there

is a 2 % decrease in ∂[H+] / ∂pCO2 as atmospheric xCO2

increases from 280 to 385 ppm and another 4 % decrease

when atmospheric xCO2 increases further to 850 ppm. The
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Figure 16. Meridional mean of the simulated surface acidification rate ∂[H+] / ∂pCO2 (pmol kg−1 µatm−1) in 1800 (dashed orange line)

and in 2001 (dashed-dotted green line) across the Mediterranean Sea. Also shown is the corresponding simulated [H+] change between 1800

and 2001 in nmol kg−1 (solid light-blue line). Meridional means are computed using grid cells with salinities above 32 to avoid biases near

river mouths.

resulting west–east difference in [H+] decreases by 10.5 %

between 1765 and 2008 (Fig 15c). These equilibrium calcu-

lations highlight the alkalinity effect on Mediterranean an-

thropogenic acidification. They confirm the Mediterranean

Sea’s higher δCT uptake and its lower [H+] increase, relative

to the global ocean average, both due to its higher alkalinity.

The model’s surface acidification rates (Fig. 16) are

slightly less intense, because it does not make the simpli-

fication that atmospheric and oceanic pCO2 are identical,

as in the equilibrium calculations. The acidification rate is

8 % lower in MED (∼ 17.5 pmol kg−1µatm−1 in 2001) than

it is in GLO (∼ 19.1 pmol kg−1 µatm−1 in 2001). In VAR, the

∂[H+] / ∂pCO2 decreases by 8 % in 2001 when moving from

west to east (from ∼18.5 to ∼17 pmol kg−1µatm−1). That

modeled west–east gradient is much like that found with the

thermodynamic calculations, but curves are displaced down-

wards by 0.3 units.

Anthropogenic carbon is already present in substantial

quantities throughout the deep Mediterranean Sea (Fig. 11).

Hence the anthropogenic decline in pH also affects the en-

tire water column. Touratier and Goyet (2011) found that

the anthropogenic pH change in some Mediterranean bot-

tom waters has already reached values of up to−0.12, higher

even than at the surface. However, they deduce those high

values from data-based estimates of δCT using the TrOCA

approach, which overestimates actual values, particularly at

depth (see Sects. 1 and 4.1). To estimate subsurface anthro-

pogenic changes in pH, we used a simple three-step method:

(1) we used discrete measurements of CT, total alkalinity,

and phosphate and silicate concentrations on the 2001 Me-

teor M51/2 cruise to compute a modern reference pH us-

ing seacarb; (2) we subsampled the MED model at the same

time, positions, and depths to get corresponding simulated

δCT; and (3) we subtracted the latter from the modern mea-

surements of CT to get preindustrial CT, using that along
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with the measured values of other input variables (assum-

ing they had not changed) to compute a preindustrial pH. We

then compared that model-derived change in pH (δpHmodel)

to the data-based TTD estimates (δpHTTD) calculated in the

same fashion, i.e., using TTD δCT instead of modeled δCT

in the computation sequence (Fig. 17). The resulting anthro-

pogenic change in surface pH ranges from −0.08 to −0.10

units. Below the surface, δpHmodel gradually becomes less in-

tense until reaching the bottom, where it ranges from−0.005

pH units in the Ionian sub-basin to −0.03 in the Crete Pas-

sage. Yet those changes must be underestimates given the

model’s poor ventilation of deep waters based on the CFC-

12 evaluation (Sect. 3.1). The data-based change in δpHTTD

exhibits its weakest magnitude (−0.035 pH units) between

1000 and 1500 m in the Levantine sub-basin, where the TTD

data-based δCT is at a minimum. Deeper down, δpHTTD in-

creases in magnitude, reaching up to −0.06 pH units in the

bottom waters of the Ionian sub-basin.

As the model results and the TTD data-based approach

provide lower and upper limits for the actual changes in

deep-water δCT, it follows that they also provide bounds for

the anthropogenic change in pH. The actual change in bot-

tom water pH in the eastern basin thus lies between −0.005

and −0.06 units.

5 Conclusions

A first simulation of anthropogenic carbon in the Mediter-

ranean Sea suggests that it accumulated 1.0 Pg C between

1800 and 2001. That estimate provides a lower limit based on

comparison of observed vs. simulated CFC-12 in the same

model, which reveals that modeled deep waters are poorly

ventilated. Furthermore, we demonstrate that a previous data-

based estimate of 1.7 Pg C (Schneider et al., 2010) is an up-

per limit after testing the associated TTD approach in our

model. In 2001 in the reference model, a total of 1.5 Pg C

of anthropogenic carbon had entered the Mediterranean Sea

with 52 % from the air–sea flux and 48 % from Atlantic Wa-

ter inflow; however, 31 % of that total had also left via the

deep Mediterranean Outflow Water. Out of the net accumula-

tion of 1.0 Pg C, 75 % comes from the air–sea flux and 25 %

from net transfer across the Strait of Gibraltar. The rate of

net exchange across that strait to the Mediterranean is from

3.5 to 4.7 Tg C yr−1 in 2001 and from 3.7 to 5.5 Tg C yr−1 in

2005–2007, based on the model and TTD results.

Our estimates of anthropogenic carbon also allow us to as-

sess anthropogenic changes in pH. Although the 10 % higher

mean total alkalinity of the Mediterranean Sea is responsible

for a 10 % increase in anthropogenic carbon inventory, that

does not significantly affect the anthropogenic change in sur-

face pH. The average surface pH change is −0.08 units for

both the Mediterranean Sea and the global ocean. Deep wa-

ters of the Mediterranean Sea exhibit a larger anthropogenic

change in pH than typical global ocean deep waters because

ventilation times are faster. In 2001, the δpH in Mediter-

ranean Sea bottom waters is estimated to lie between−0.005

and−0.06 units based on our limits from simulated and TTD

data-based δCT. These findings do not support previous con-

clusions that the anthropogenic change in the pH of Mediter-

ranean deep waters is as high as −0.12 units, which is more
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intense even than the surface change (Touratier and Goyet,

2009, 2011). Furthermore, those previous findings rely on the

TrOCA data-based estimates of δCT, which are much larger

than the TTD data-based estimates, shown in Sect. 4.1 to be

already an upper limit.

Future studies that include the full natural carbon cycle

and the effects of climate change are needed to confirm these

results and predict future changes while weighing geochemi-

cal vs. climate factors. Improved assessment of local changes

along coastlines will require improved boundary conditions,

particularly for riverine and groundwater discharge of nu-

trients, carbon, and total alkalinity, combined with develop-

ments to improve coastal aspects of the physical and biogeo-

chemical models.

The Supplement related to this article is available online

at doi:10.5194/bg-12-781-2015-supplement.
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