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Abstract

Diatom assemblages and organic carbon records from two sediment cores located within an estuarian bay of the inner Kara Sea trace

changes in Yenisei River runoff and postglacial depositional environments. Paleosalinity and sea-ice reconstructions are based on modern

relationships of local diatom assemblages and summer surface-water salinity. Approximately 15,500 cal yr B.P., rivers and bogs characterized

the study area. When sea level reached the 38- to 40-m paleo-isobath approximately 9300 cal yr B.P., the coring site was flooded. From

9300–9100 cal yr B.P., estuarine conditions occurred proximal to the depocenter of fluvially derived material, and salinity was b7–8.

Paleosalinity increased to 11–13 by 7500 cal yr B.P., following postglacial sea-level rise and the southward shift of the Siberian coast. Sharp

decreases in diatom accumulation rates, total sediment, and organic carbon also occurred, suggesting the presence of brackish conditions and

greater distance between the coast and study site. Maximum paleosalinity (up to 13) was recorded between 7500 and 6000 cal yr B.P., which

was likely caused by the enhanced penetration of Atlantic waters to the Kara Sea. Stepwise decreases to modern salinity levels happened over

the last 6000 cal yr.

D 2004 University of Washington. All rights reserved.

Keywords: Paleosalinity; Paleo-river discharge; Sea-ice reconstructions
Introduction

The Kara Sea constitutes the western portion of the wide

Siberian shelf that borders northern Eurasia (Fig. 1) and is

regarded as a key area for the supply of fresh water and sea

ice to the Arctic Ocean (Gordeev, 2000; Lisitzin and

Vinogradov, 1995; Stein, 2000; Stein et al., 2003, 2004;

Zakharov, 1996). The Ob and Yenisei rivers, which enter the

Kara Sea, contribute approximately 1500 km3 of fresh water

each year and approximately 40% of the total annual

riverine discharge to the Arctic Ocean (Aagaard and

Carmack, 1989; Gordeev, 2000; Rachold et al., 2003).

These two rivers drain an area of 5 � 106 km2 or about half
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of the Russian land mass. The discharge of suspended

matter is smaller on a global scale than the freshwater

outflow. However, they average N30 � 106 tons/yr or

approximately 30% of the suspended matter delivered by

northern Eurasian rivers to the arctic shelves (Gordeev,

2000). Approximately 40% of dissolved and particulate

organic carbon exported from northern Eurasia to the arctic

shelves is contributed by rivers entering the Kara Sea

(Gordeev, 2000; Rachold et al., 2003). Today, 90–95% of

the river sediment load is deposited in the estuaries of the

Ob and Yenisei rivers and on the adjacent inner Kara sea

shelf, where specific conditions occur in the bmarginal

filterQ (i.e., the zone where fresh and marine waters mix;

Lisitzin, 1995, 2002). Here, rapid sedimentation provides

high-quality records of present and past land–ocean

interactions in the Eurasian Arctic.

Changes in the abundances and composition of marine

and freshwater diatom assemblages from river-proximal
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Figure 1. Relative distribution of freshwater diatoms in surface sediments of the Kara Sea and the outer Ob and Yenisei estuaries (after Polyakova, 2003).

Salinity contour lines represent the mean interannual summer surface-water salinity in the Kara Sea based on 50 years of measurements (after Dmitrenko et al.,

1999). The squares indicate the positions of cores BP99-04/7 and BP99-05/1. The inset (B) shows the correlation between the relative abundance of freshwater

diatoms and summer surface-water salinity (salinity range of 5 to 20).
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sediments trace shifts in past shelf environments of the

arctic seas (Cremer, 1999a,b; Polyakova, 1994, 1997, 2003).

Diatoms are important components both of the particulate

organic matter that is transported onto shelves by rivers and

of the phytoplankton production in the Kara Sea (Lisitzin et

al., 1995; Makarevich et al., 2003; Nöthig et al., 2003;

Usachev, 1968; Vedernikov et al., 1995). Like other

micropaleontological (e.g., Matthiessen and Kraus, 2001;

Matthiessen et al., 2000; Kraus et al., 2003) and bio-

geochemical tracers (e.g., Fahl and Stein, 1997, 1999; Stein
and Fahl, 2003), diatom assemblages can identify and

characterize different sources of organic carbon (i.e.,

terrestrial/freshwater vs. marine) in shelf sediments. More-

over, established linkages between hydrographical parame-

ters (e.g., summer surface-water salinity, sea-ice conditions)

and the composition of diatom assemblages extracted from

surface sediments of the Kara Sea shelf (Fig. 1; Polyakova,

2003) help in reconstructing paleoenvironmental conditions.

Recently completed analyses of core-top sediments of

the Ob and Yenisei estuaries and the adjacent inner Kara
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Sea shelf provide additional insights into the regional

relationships of modern diatom assemblages and various

environmental conditions (Polyakova, 2003). This knowl-

edge was applied to two Holocene sedimentary records

from the shallow, southeastern Kara Sea (Fig. 1). This area

was influenced by extensive discharge of the Yenisei

River, large postglacial shifts in sea level, and significant

variation in the Yenisei River outflow (e.g., Stein et al.,

2003). Because of the high sedimentation rates in these

cores and the good-quality postglacial chronologies (Stein,

2001; Stein et al., 2003), we are able to describe for the

first time the short-term variability in riverine discharge,

paleosalinity, and ice conditions in the seas of the Eurasian

arctic shelf.
Figure 2. Lithology and magnetic susceptibility of cores BP99-04/7 and

BP99-05/1, and ELAC sediment echograph profile from the northern

Yenisei estuary. The magnetic susceptibility, measured with a Multi-Sensor

Core Logging System, is defined as the dimensionless proportional factor

of an applied magnetic field in relation to the magnetization in the sample

(here expressed in 10�5 SI units) and is indicative of the sedimentological/

mineralogical composition of the sediments (e.g., Kleiber and Niessen,

2000). Roman numbers indicate lithological units/subunits. Ages are given

in cal yr B.P. (Table 1; Stein et al., 2003).
Material and methods

Cores BP99-04/7 (04/5) and BP99-05/1 (Fig. 1) were

obtained from the northeastern sector of the Yenisei estuary

in 32.3 and 38.5 m of water, respectively, during the 1999

Russian–German expedition to the Kara Sea aboard the

Research Vessel Akademik Boris Petrov. Core BP99-04/7

was collected with a gravity corer, but the upper 30 cm of

sediment was lost. Consequently, a 30-cm-long multicorer

(MUC) was used to collect undisturbed, uppermost sedi-

ments from the same location. This core (BP99-04/5) was

correlated with the sedimentary sequence of core BP99-04/

7, thereby providing the complete recovery of N8 m of

generally homogeneous clayey silt. Core BP99-05/1, which

is approximately 4 m long, consists of clayey silt (0–1.4 m)

and sandy silt (1.4–4.1 m; Fig. 2, Stein et al., 2003).

Diatom samples were taken every 10 cm in cores BP99-

04/7 and BP99-05/1, whereas core BP99-04/5 was sampled

every 5 cm. Total organic carbon (TOC) was determined at

5-cm intervals in both cores. After freeze-drying, bulk

sediments were prepared for diatom analysis by treatment

with 30% H2O2 and 10% HCl. Diatom valves were then

concentrated by decantation using distilled water. Residues

were mounted in Naphrax (refractive index of 1.68) on glass

slides (Battarbee, 1973). Valves were examined with a light

microscope at �1000 magnification. Generally, approx-

imately 300–400 specimens were counted in each sample,

following procedures of Schrader and Gersonde (1978).

Results were calculated as percentages and concentrations

(number of valves/g of dry sediment). After grinding, TOC

was determined with a LECO analyzer (analytical precision

of approximately F0.02% absolute).

To examine temporal patterns of paleoenvironmental

change and to calculate flux (accumulation) rates of bulk

sediment and organic carbon, a precise chronology is

necessary. Our age model is based primarily on bivalves,

with AMS 14C dates done at Leibniz-Labor fqr Alter-

sbestmmungen, Kiel University (Table 1; see Stein et al.,

2003, for additional details). Radiocarbon dates are y13C-
normalized and corrected for a reservoir age of 440 14C yr
(Mangerud and Gulliksen, 1975). In addition to bivalve

dates, one date from shrub wood was obtained for core

BP99-05/1. AMS 14C ages were calibrated with CALIB

4.1.2, Method A (Stuiver and Reimer, 1993; Stuiver et al.,

1998). Ages of sample levels were determined with linear

interpolation between the calibrated 14C dates.

Modern setting

Oceanography

The Kara Sea, as is typical of Eurasian arctic marginal

seas, has an area of which 75% is a flat, submerged plain.

Water depths are mostly b50 m. The Kara Sea’s formation

has been governed mainly by sea-level fluctuations during

the late Pleistocene and Holocene (Aibulatov, 2001; Pavlidis

et al., 1998). Two paleovalleys of the Ob and Yenisei rivers

trend northward across the submarine plain.



Table 1

AMS 14C dates from cores BP99-04/7 and BP99-05/1 (from Stein et al., 2003)

Core BP99-04/7

(sample number)

Material

dated

Depth (cm) 14C age

(14C yr B.P.)

Reservoir

correction

(14C yr)

Corrected 14C age

(14C yr B.P.)

Calibrated age

(cal yr B.P.)

(2-Std.dev.range)

KIA-12781 Bivalve 29 1630 F 20 �440 1190 1159 (1131–1171)

KIA-12782 Bivalve 57 2070 F 25 �440 1630 1586 (1548–1616)

KIA-10239 Bivalve 122.5 2430 F 30 �440 1990 2001 (1974–2050)

KIA-10238 Bivalve 191 3980 F 30 �440 3540 3911 (3870–3962)

KIA-10237 Bivalve 246 4695 F 30 �440 4255 4847 (4828–4868)

KIA-10236 Bivalve 329 5800 F 40 �440 5360 6178 (6158–6218)

KIA-10235 Bivalve 420 6855 F 35 �440 6415 7325 (7295–7377)

KIA-10234 Bivalve 432 6890 F 45 �440 6450 7373 (7315–7413)

KIA-10233 Bivalve 530 7585 F 35 �440 7145 7975 (7947–8022)

KIA-10232 Bivalve 632 8345 F 50 �440 7905 8845 (8766–8906)

KIA-10231 Bivalve 658.5 8310 F 40 �440 7870 8810 (8716–8882)

KIA-10230 Bivalve 700 8725 F 40 �440 8285 9059 (9010–9396)

Core BP99-05/1

(sample number)

Depth (cm) 14C age

(14C yr B.P.)

Reservoir

correction

(14C yr)

Corrected 14C age

(14C yr B.P.)

Calibrated age

(cal yr B.P.)

(2-Std.dev.range)

KIA-10244 Bivalve 55 2840 F 25 �440 2400 2530 (2477–2613)

KIA-10243 Bivalve 65 3085 F 30 �440 2645 2785 (2761–2838)

KIA-10242 Bivalve 72 3370 F 30 �440 2930 3194 (3146–3230)

KIA-10241 Bivalve 73 3540 F 30 �440 3100 3371 (3346–3401)

KIA-10240 Wood 315 12,880 F 90 no 12,880 15,512 (14,993–15,732)
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The Ob and Yenisei rivers, which, respectively, dis-

charge approximately 400 and 580 km3 of water/yr and

provide more than 70% of the total freshwater runoff,

control the freshwater supply to the Kara Sea (Gordeev,

2000; Rachold et al., 2003). Most of this fluvial input

occurs during early summer. Although the extent and

distribution of the freshwater shelf plumes vary depending

on summer winds, riverine waters commonly affect almost

half of the total sea area (Burenkov and Vasil’kov, 1995;

Pivovarov et al., 2003). The offshore spread of the Ob and

Yenisei waters is clearly reflected by the mean, multiannual

pattern of surface-water salinity which gradually decreases

away from the river mouths. Salinity ranges from b5 in the

estuaries to 30 in distant areas of the Kara Sea (Dmitrenko

et al., 1999; Fig. 1).

A recurrent polynya in the Kara Sea is one of the major

source areas for sea ice in the Siberian branch of the

Transpolar Drift (Pfirman et al., 1997; Zakharov, 1996).

The polynya generally develops during winter in near-shore

regions of the Yamal Peninsula, the outer Ob estuary, and to

the north of the Yenisei estuary (Dmitrenko et al., 2000). Our

sediment cores were obtained near the present day, mean

interannual location of the polynya (Fig. 1).

Sedimentary setting, core site, and stratigraphy

Modern sedimentation on the inner Kara Sea shelf is

strongly affected by the Ob and Yenisei rivers, which deliver

approximately 70% of the total suspended matter discharged

to the Kara Sea (Ob: 16.5 tons/yr; Yenisei: 5.9 tons/yr;

Gordeev, 2000). This material is typically mobilized from

terraces and floodplains found in the lower reaches of these
rivers (Meade et al., 2000). Most of the river load is deposited

in the Ob and Yenisei estuaries and offshore submarine

channels that are submerged paleovalleys (Dittmers et al.,

2003; Stein, 2001; Stein et al., 2003).

Cores BP99-04 and BP99-05/01 were obtained from the

bmarginal filterQ (Fig. 1) of the Kara Sea (Lisitzin, 1995;

Stein, 2001; Stein et al., 2003). This filter is characterized by

rapid precipitation of fine-grained, suspended matter.

According to echograph profiling andmagnetic susceptibility

measurements, the cores represent two lithological units (I

and II) that are correlated with acoustic units I (with Subunits

Ia and Ib) and II (Dittmers et al., 2003; Stein, 2001). Core

BP99-04 is composed mainly of clayey silts representing unit

I (Ia and Ib), whereas core BP99-05/1, located in the outer

part of the marginal filter, penetrates into sediments of

Subunits Ia and Ib and the underlying unit II (Fig. 2).

Based on calibration of AMS 14C dates (Table 1; Figs. 2

and 3), core BP99-04/7 encompasses the last ~10,000 cal yr

B.P. AMS 14C dates of samples from core BP9905/1

indicate that sandy unit II is of pre-Holocene, postglacial

age (approximately 15,500 cal yr B.P.), and that the lower

part of Subunit Ia is probably missing (for details, see Stein

et al., 2003).
Results

Core BP99-04/7

Diatom assemblages are taxonomically diverse (approx-

imately 270 species and varieties) and abundant (0.02–



Figure 3. Radiocarbon dates (see Table 1), derived cal yr B.P. age model (black line), and abundances and percentages of the main ecological diatom groups (note

the different horizontal scales) for core BP99-04/7. Data points from above the hatched line represent samples taken from the multicorer (MUC) core BP99-04/5.
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61.2 � 106 valves/g dry sediment). The total concentration

of diatom valves is variable (Fig. 3). Maximum abundan-

ces (up to 61.2 � 106 valves/g dry sediment) occur

between 750 and 780 cm and consist mainly of freshwater

diatoms (up to 98.9%) dominated by riverine planktonic

species. The lowest concentrations of diatoms, which

average 0.5 � 106 valves/g dry sediment, appear between

330 and 630 cm and correspond to an interval with the

highest percentages of marine diatoms (average approx-

imately 40%). The upper 300 cm of the core is marked by

a steep increase in diatom concentrations (average 2.3 �
106 valves/g dry sediment). Relative abundances of fresh-

water diatoms tend to increase in this period.

Diatom species were combined into two main ecological

groups: freshwater diatoms, and marine and brackish-marine

diatoms. The freshwater diatoms are represented by riverine

and boggy taxa transported by rivers to the shelf zone. Their

relative abundances in the diatom assemblages vary between

40% and 100%, with a substantial number of samples being

well above 70% (Fig. 3), indicating a constant riverine

supply to the study area. Riverine planktonic species

dominated by Aulacoseira islandica, A. italica, A. subarc-

tica, A. granulata, and Asterionella formosa are the most

important freshwater taxa, and their total percentages range

from 12% to 80%. The good correlation between percen-

tages of freshwater diatoms in surface-sediment assemblages

from the Kara Sea shelf and the distributional pattern of

summer surface-water salinity (Fig. 1) indicates that this

group of diatoms can be used to infer fluctuations in

paleosalinity (Polyakova, 2003). A linear regression between
average summer surface-water salinity and relative propor-

tions of freshwater diatoms reveals a correlation coefficient

of r = 0.86 for a salinity range of approximately 5 to 20.

The group of marine and brackish-marine diatoms (Fig.

3) consists largely (up to 20%) of euryhaline species

(Thalassiosira baltica, T. hyperborea, Melosira juergensii,

M. moniliformis) typical of freshened areas of the Arctic

shelf (Polyakova, 1994, 1997). The marine diatoms also

include a specific group of sea-ice species dominated by

Fossula arctica, Fragilariopsis oceanica, and F. cylindrus,

indicating the presence of sea ice in the Eurasian arctic seas

(Polyakova, 1997; Cremer, 1999a,b). A steep increase

(N10–20%) in relative abundances of sea-ice diatoms

corresponds to the mean interannual position of the winter

polynya (Bauch and Polyakova, 2000; Polyakova, 2003;

Polyakova et al., 2000). Although the relative abundances of

sea-ice species vary between 0% and 16%, they mainly are

b10% (Fig. 3), thus indicating a generally more distal and

seaward location of the polynya. Other marine diatoms are

represented mainly by cold-water, arctic-boreal, and bipolar

planktonic types (e.g., Thalassiosira antarctica, T. gravida,

T. nordenskioeldii, Chaetoceros diadema, C. mitra) and by

benthic taxa (e.g., Diploneis smithii, D. interrupta, Trachi-

neis aspera) that are common in arctic seas.

In Subunit Ib of core BP99-04/7, TOC is b1.2% (Fig. 4).

With the change to silty–clayey Subunit Ia, TOC sharply

increases to almost 2%. Between 100 and 675 cm

(approximately 2000 to 9000 cal yr B.P.), TOC varies

between 0.8% and 1.6%, with minimum values between 110

and 480 cm. In the upper 100 cm (i.e., during the last 2000



Figure 4. Radiocarbon dates (see Total organic carbon (TOC) content of

cores BP99-04/7 and BP99-05/1. For Core BP99-04/07, the C/N ratios are

also shown. Numbers next to black arrows are cal ages, �103 (see Stein et

al., 2003). H indicates hiatus.
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cal yr B.P.), samples with TOC of approximately 1.5% are

typical (Fig. 4). Most of the C/N ratios are N10, with

maximum values in the lower part of the sequence where

terrigenous organic matter dominates. The prevalence of

terrigenous organic matter is also supported by the hydrogen

index and the high concentrations of long-chain n-alkanes

(Stein and Fahl, 2003; Stein et al., 2003).

Core BP99-05/01

The approximately 210 species and varieties of diatoms

recognized in core BP99-05/01 represent mainly freshwater

taxa (approximately 90%). Total concentrations of diatom

valves are variable throughout the core (from 0.04 to 9.4 �
106 valves/g dry sediment; Fig. 5). Marine and brackish-
Figure 5. Diatom valve concentrations and percentages of the major diatom gro
marine diatoms are recorded only in the upper 140 cm of the

core and mainly represent euryhaline species (Thalassiosira

baltica, T. hyperborea, Melosira jurgensii). However, cold-

water planktonic and sea-ice types (Thalassiosira antarctica,

T. gravida, Fossula arctica, Fragilariopsis oceanica, F.

cylindrus, Bacterosira bathyomphala) are also present. Only

single valves occur between 70 and 140 cm, and maximum

relative abundances (up to 11.5%) are observed in the upper

70 cm of the core. Freshwater diatom assemblages are largely

comprised of riverine planktonic species (up to 67.1%,

average 44.6%; Fig. 5) with a predominance of Aulacoseira

species (A. italica, A. granulata, A. distans).

Between 140 and 405 cm, only freshwater diatoms occur.

The assemblage is dominated by riverine planktonic diatoms.

Other commonly encountered diatoms include the taxonomi-

cally diverse, small, benthic species of Fragilaria, Eunotia,

and Gomphonema (F. construens, F. pinnata, G. acumina-

tum, G. parvulum, E. lunaris, E. pectinalis), which today

occupy depressions in flooded surfaces of the lower Yenisei

River. Essential components of these assemblages are

rheophilic species (e.g., Didymosphenia geminata,Meridion

circulare) that inhabit flowing waters and aerophilic species

(e.g., Luticola mutica, Hantzschia amphioxys) that are

frequently reported in subaerial and dry habitats (Campeau

et al., 1999). Such a heterogeneous composition of diatom

assemblages is typical for low-lying lands episodically

covered by river waters during spring and early summer

floods (Polyakova, unpublished data). A general decrease in

the percentages of planktonic species and an increase in the

quantitative abundance of diatom valves (mainly Fragilaria

species) occur between 210 and 400 cm. This trend indicates

possible temporal changes in riverine sedimentation at the

study site.

In core BP99-05/01, TOC below 130 cm displays high-

amplitude variations between 0.2% and 2.5% (Fig. 4). In a

peat horizon of a few centimeter thickness, a maximum
ups in core BP99-05/1. Calibrated ages (see Table 1) are also indicated.
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TOC of 11.9% was measured near 275 cm. In the overlying

laminated subunit, high TOC (approximately 1.7%) domi-

nates. In the upper 70 cm of silty clay (i.e., during the last

~3000 cal yr B.P.), TOC is between 0.6% and 1%.

Hydrological and depositional environments over the last

15,500 cal yr

The environment of the Kara Sea shelf is strongly

influenced by a huge riverine discharge, primarily from the

Ob and Yenisei rivers. Intermixing of fresh and marine

waters determines the major spatial characteristics of the

hydrological and sedimentation processes on the present

day, inner shelf of the Kara Sea. During postglacial times,

the shallow arctic shelves were dramatically affected by

rising sea levels that stabilized by 5000 cal yr B.P. (Bauch et

al., 1999, 2001b; Kaplin, 1973; Stein and Fahl, 2000, 2003).

The southward retreat of the coastline had a profound

influence on depositional environments of the shelf

(Dittmers et al., 2003; Stein et al., 2003).

The study sites, BP99-04 and BP99-05/1, currently are

situated in the northern position of the marginal filter that

underlies the Yenisei River discharge (Fig. 2). Diatom

records from lithological unit II of core BP99-05/1 indicate

the presence of riverine and boggy depositional environ-

ments within the flooded lowlands approximately 15,500

cal yr B.P. (Fig. 5). Because this core was taken from a

water depth of 38.5 m, we assume that, during the late

glaciation, sea level in the Kara Sea was more than 40 m

below its present position.

With higher sea levels, the shoreline migrated landwards

causing a retreat of the Yenisei River mouth. Diatom
Figure 6. Accumulation rates of total diatom valves, freshwater taxa
assemblages from lithological unit I in both cores indicate

the development of brackish water conditions. This change

of depositional environment is marked by the first occur-

rence of marine diatoms in core BP99-05/1 (Subunit Ib;

Figs. 2 and 5). Additional evidence for a change in

hydrology and sedimentation approximately 9100–9300

cal yr B.P. is recorded near the base of core BP99-04

(Subunit Ib; Figs. 2 and 3). Diatom assemblages from this

part of the core are characterized by maximum concen-

trations (up to 61.2 � 106 valves/g dry sediment) and

percentages of the freshwater group (N90%). Comparable

concentrations of diatom valves are observed in surface

sediments of the outer Ob and Yenisei estuaries, which also

are dominated by freshwater groups (92–98%; Fig. 1,

Polyakova, 2003). This zone of intermixing of fresh and

sea waters (sea-surface salinity between 2 and 7) is

characterized by an bavalanche-likeQ precipitation of river-

loaded organic matter, consisting primarily of planktonic

diatoms, which is caused by coagulation and flocculation

(Lisitzin, 1995, 2002). Thus, extremely high accumulation

rates of diatom valves and maximum accumulation rates of

total sediment and TOC (Figs. 6a and 7) in core BP99-04

prove that the Yenisei River mouth was located close to the

study site between 9100 and 9300 cal yr B.P. This

interpretation is supported by the absence of marine diatoms

(Fig. 3) and any other marine organisms (Kraus et al., 2003)

in the underlying sediments (N9300 cal yr B.P.). Diatom

assemblages from the lowermost part of the core are

comprised mainly of riverine planktonic species of Aulaco-

seira (up to 80%) and indicate fluvial depositional environ-

ments during a time of lowered (b38–40 m) sea levels.

Stable oxygen isotope and micropalaeontological data from
, and marine taxa; and reconstructed surface-water salinities.



Figure 8. Comparison of the reconstructed surface-water salinity in the

southeastern Kara Sea from core BP99-04/7 and precipitation changes in

the Lake Baikal region (after Vorobyeva, 1994) during the past 10,000

cal yr B.P.
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a sediment core located approximately 60 km north of core

BP99-04 (Polyak et al., 2002) also suggest a strong riverine

influence until approximately 9000 cal yr B.P. caused by

lowered sea level. A similar estuarine system and deposi-

tional environment have been described for the early

Holocene (9000 and 8600 cal yr B.P.) in the southeastern

Laptev Sea from a sediment core taken from a paleowater

depth (32 m) similar to that of the Kara Sea cores (Bauch

and Polyakova, 2003).

A further landward migration of the river depocenter can

be inferred from changes in the composition of diatom

assemblages and accumulation rates of total sediment and

organic carbon in Subunit Ia of both cores. Percentages of

marine diatoms in sediment assemblages (up to 11.5%)

from the upper part of core BP99-05/1 (b3400 cal yr B.P.;

Fig. 5) indicate near-estuarine conditions (Polyakova,

2003). The gradual transition from estuarine to brackish-

marine conditions caused by rising sea levels and temporal

variations in riverine discharge are recorded in detail for the

past 9100 cal yr B.P. in core BP99-04 (Figs. 3, 6, and 7). A

sharp decrease in the accumulation rates of diatom valves

and the gradual decline in accumulation rates of total

sediment and organic carbon indicate a landward migration

of the center of the marginal filter. Changes in freshwater

diatoms suggest that, from 9100 to 8500 cal yr B.P.,

surface-water salinity increased up to 8.5–9.0 at the study

site (Fig. 6).

Salinity increased to 12–13 by 7500 cal yr B.P.,

indicating the presence of marine conditions and consequent

environmental changes associated with the southward

migration of the coast to the core site. Sea level in the

shallow Eurasian arctic seas was already close to its modern

position by approximately 7500 cal yr B.P. (Bauch et al.,

1999, 2001a,b; Stein et al., 2003, 2004). Thus, the diatom

records for the past 9300–7500 cal yr B.P. from the

southeastern Kara Sea shelf primarily reflect the history of

river-mouth retreat southward, away from the core site,
Figure 7. Accumulation rates of total sediment and total organic carbon

(TOC). The global sea-level curve is from Fairbanks (1989).
resulting in rising paleosalinities. This scenario is in good

agreement with the stepwise decrease in diatom accumu-

lation rates, total sediment, and TOC (Figs. 6 and 7) that is

evident today along the outer part of the marginal filter of

the Kara Sea (Lisitzin, 1995, 2002). Superimposed on the

general decrease in diatom accumulation rates is an interval

of maximum rates between 7500 and 8000 cal yr B.P. (Figs.

6 and 7). Relatively high accumulation rates of marine

diatoms indicate an increase in productivity of both

planktonic and sea-ice communities. This maximum coin-

cides with the northernmost expansion of the boreal forest to

the arctic coast, a time characterized by Siberian climates

that were warmer and wetter than present (e.g., Andreev and

Klimanov, 2000; Andreev et al., 2002; MacDonald et al.,

2000; Wolfe et al., 2000). Such conditions probably resulted

in high Yenisei River runoff rates (Stein et al., 2003). The

rise in accumulation rates of riverine freshwater diatoms

(Fig. 6) suggests that the high marine-productivity event

may be due to an increase in nutrient supply to the inner

Kara Sea shelf.

Between 7500 and 6000 cal yr B.P., paleosalinities were

well above modern levels (up to 12–13). This period

encompasses an interval of enhanced Atlantic water inflow

to the Franz Victoria and St. Anna troughs of the north-

western Kara Sea, with maximum inflow occurring approx-

imately 7000 cal yr B.P. (Lubinski et al., 2001). Given the

modern distributional pattern of Atlantic waters in the Kara

Sea (Dmitrenko et al., 1999; Hanzlick and Aagaard, 1980;

Karcher et al., 2003) and the documented eastward

incursion of Atlantic waters during the mid-Holocene, the

unusual paleosalinity values within the southeastern Kara

Sea likely were caused by the influx of Atlantic waters that

perhaps entered this region through submerged paleoriver

channels.
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From approximately 6000 cal yr B.P. to present,

paleosalinity gradually decreased to the modern level. Two

major phases (approximately 5000 and 2000 cal yr B.P.) of

relatively low paleosalinities (approximately 8–9; Fig. 6)

coincided with increasing diatom accumulation rates,

probably indicating relatively high productivity of riverine

plankton or increase in riverine discharge. The later phase

(approximately 1800–2000 cal yr B.P.) was accompanied by

a notable increase in accumulation rates of total sediments

and TOC (Stein et al., 2003; Fig. 7) that provide evidence

for increase in riverine supply during this interval. Since

1800 cal yr B.P., surface-water salinity has varied between 8

and 10. This period is also marked by a pronounced

decrease in diatom accumulation rates, mainly of marine

species, and in TOC, suggesting low sea-water productivity

(Figs. 6 and 7). Particle-size analysis and magnetic

susceptibility indicate that the Yenisei River discharge/

current velocity lessened during the last ~2500 cal yr (Stein

et al., 2003, 2004). This decrease seems to correlate with a

decline in precipitation in the Lake Baikal region (Fig. 8),

which via the Angara River is one of the major water

sources to the Yensei River (see below). This trend is likely

related to bsub-Atlantic coolingQ in sub-Arctic regions and

the development of modern vegetation zones in coastal and

near coastal areas of the Kara Sea (e.g., Andreev and

Klimanov, 2000; Hahne and Melles, 1999; Kraus et al.,

2003; Velichko et al., 1997). Thus, the relatively low

abundances of marine diatoms may have been caused by

decreased productivity of marine diatom biocoenoses.

Sedimentological proxies indicate that a reduction in

Yenisei discharge occurred over the last ~2000 cal yr B.P

(Stein et al., 2003, 2004). However, the diatom record

shows a decrease in salinity, suggesting an increase in

discharge. This discrepancy may relate to the greater

effectiveness of the marginal filter as a sediment trap,

implied by the greater accumulation of fine-grained, TOC-

rich materials (Stein et al., 2003, 2004). In the same way, the

amount of freshwater diatoms accumulating in the estuary

may have increased at this time without a necessary increase

in absolute discharge. Thus, absolute paleosalinity values

should be interpreted with caution.

Past centennial to millennial scale variability in riverine

discharge from the vast Yenisei drainage basin ultimately

results from paleoclimatic fluctuations in the continental

interior. Moreover, the inflow of the modern Angara River,

which comprises N20% of the total annual water discharge

of the Yenisei River (Meade et al., 2000), is of key

importance for understanding the history of riverine inflow

to the Kara Sea shelf. The discharge of the Angara River

(the major tributary of the Yenisei River), having Lake

Baikal as its source, is controlled by the hydrological regime

of this great Eurasian basin. The available data indicate that

variations in Holocene hydrological environments at Lake

Baikal can be linked to shifts in regional climatic patterns

(Bradbury et al., 1994; Karabanov et al., 2000). However,

the Yenisei River discharge inferred from diatom assemb-
lages partly displays an opposite trend to the precipitation

record from the Lake Baikal region (Fig. 8; Bezrukova,

1999; Bezrukova et al., 2002; Vorobyeva, 1994). Diatom

salinity records are controlled by changes in river discharge,

sea level, and the effectiveness of the marginal filter as a

sediment trap. All these factors must be considered when

inferring past trends, and they are likely responsible for the

partial discrepancy between the above precipitation and

discharge trends.

The relative abundances of sea-ice diatoms within the

total marine diatom group steeply increase above 10–20% in

surface-sediment samples seaward of the mean interannual

location of the winter polynya (Polyakova, 2003). Because

such abundances remained b10% (average b2%) between

9100 and 7900 cal yr B.P. (Fig. 3), the study area must have

been located beyond the influence of pack ice. Since 7500

cal yr B.P., the polynya was close to its modern location,

with a short time of landward migration between 6400 and

5200 cal yr B.P.
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