
EXPLORVIZ: VISUAL RUNTIME BEHAVIOR
ANALYSIS OF ENTERPRISE APPLICATION

LANDSCAPES

Complete Research

Fittkau, Florian, Kiel University, Kiel, Germany, ffi@informatik.uni-kiel.de

Roth, Sascha, Technische Universität München, Garching, Germany, roth@tum.de

Hasselbring, Wilhelm, Kiel University, Kiel, Germany, wha@informatik.uni-kiel.de

Abstract
Enterprise application landscapes are complex and hard to manage systems. Enterprise models abstract
from this complexity and seek to capture relevant information to cope with business requirements, i.e.,
increase flexibility while reducing costs of IT. Recent automated approaches focus on utilizing existing
information sources. We identified two issues in current approaches. First, in line with these approaches
we observe that enterprise models often get outdated and, thus, are an unreliable basis for decision
making. Second, these approaches lack detail and after larger transformations commonly the entire
application landscape exhibits an altered load profile.
In this paper, we present how ExplorViz can be utilized to ensure consistency between an enterprise model
and the actual information systems. We exemplify our approach via modeling the application landscape of
the Kiel Data Management Infrastructure at the Helmholtz Centre for Ocean Research Kiel (GEOMAR).
In our scenario, we depict an application landscape and exemplary drill-down to our EPrints productive
installation to the source-code level. We explain the importance of underlying concepts and features, which
help to optimize the responsiveness of an entire application landscape based on runtime information.

Keywords: Software Visualization, Enterprise Application Landscape, Dynamic Analysis, Applica-
tion Monitoring.

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 1



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

1 Introduction

Enterprise IT infrastructures form intrinsically complex enterprise application landscapes. As a reaction

to an increased market pressure, enterprises change their business models, products, and processes that

implement the value chain at an increasingly rapid pace — enterprises transform cf. (Ross, Weill, and

Robertson, 2006). This affects not only organizational structures but also respective information systems.

In particular during turbulent times such enterprises transform at a large-scale, e.g., due to mergers and

acquisitions. At the same time, enterprise models utilized to describe and manage an enterprise in a

holistic manner are quickly outdated and differ considerably from the real-world. Hence, they are no more

a reliable sources for decision making and planning. Even if these models are not outdated, severe runtime

problems often arise after transformation projects due to an altered load profile of the entire application

landscape. We conclude to the following research question: What is an appropriate means for enterprise
application landscape monitoring/planning with respect to performance characteristics?
Enterprise Architecture (EA) researchers propose to derive plans for application landscape transitions

based on information sources that commonly embrace only static data (Farwick et al., 2013; Fischer,

Aier, and Winter, 2007) or probabilistic methods (Lagerström et al., 2009). While EA management does

have an understanding about the relationships among applications (Winter and Fischer, 2007), they do

not provide information about the internal details of an application, e.g., classes, components, and their

communication. In addition, the provided data quality often becomes challenging (Roth et al., 2013b),

due to, e.g., missing information, unstructured data, and wrong or outdated information.

As a consequence, recent approaches seek to gather information in a semi-automated manner from existing

information sources, e.g., (Buschle et al., 2012; Farwick et al., 2013; Hauder, Matthes, and Roth, 2012;

Roth et al., 2013b). These approaches typically focus on information about relationships and aggregated

data which is typical for EA management (Fischer, Aier, and Winter, 2007). Hence, information does

provide only little insights in application details. This especially is the case for runtime information,

system load, and response times (of components). At the same time, IT operations commonly does not

monitor load behavior of transitive relationships between systems. They only monitor single applications

such that interconnected structures of the system of systems is not reflected by their models ignoring the

complexity of an enterprise application landscape.

In line with most EA researchers and practitioners, we claim that during large IT transformations,

interrelationships between applications are an essential means to derive a transition from the current

to an envisioned state of the EA (Buschle et al., 2012). While current EA practices use a black-box

perspective on an application landscape, we argue that application runtime behavior must be identified

when deriving planned states that implement the adaptation of IT to new business demands. In contrast to

related work, we argue that besides a holistic perspective also details matter when planning migrations.

The identification of these details is cumbersome and the derivation of respective enterprise models usually

is time-consuming (Hauder, Matthes, and Roth, 2012) for IT managers and system engineers.

Information on user traces, load profiles, and response times across the entire application landscape can

help to analyze and resolve load issues in an operating enterprise application landscape. We envision

monitoring of the application landscape to cope with these shortcomings. In this paper, we present how

ExplorViz can be used to acquire data from monitoring different information systems that make up the

enterprise application landscape and thus to keep the model of it in line with the actual applications and

their communication.

Application landscapes of large-scale enterprises may embrace many hundreds or even thousands of

applications (Roth and Matthes, 2014). Visualizations are a common means to analyze an application

landscape (Roth, Zec, and Matthes, 2014). They help to identify patterns. Based on these ideas, ExplorViz

provides a highly-specialized visualization to analyze runtime behavior and load profiles based on traces. In

line with Matthes, 2008, ExplorViz provides a live visualization of large enterprise application landscapes

that features different abstraction levels. We choose Design Science (Peffers et al., 2007, 2012) as research

methodology and apply its two main steps Build and Evaluate.

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 2



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

To summarize, ExplorViz

• provides mechanisms to acquire up-to-date (live) information that is consistent with the actual

enterprise application landscape and information systems,

• introspects applications and information systems (Fittkau et al., 2013a) to a fine-grained level, and

• facilitates to improve the resource capacity (Hoorn et al., 2009) in enterprise application landscapes

by means of a control center (Fittkau, Hoorn, and Hasselbring, 2014).

The remainder of the paper is organized as follows. We outline a trend towards support for semi-automated

enterprise application landscape analysis and revisit related work in Section 2. Section 3 describes

ExplorViz and the concept for live visualization of large enterprise application landscapes. Afterwards,

we demonstrate its applicability in Section 4. In Section 5, we reveal implementation details of ExplorViz

and conclude the paper in Section 6 outlining limitations and future prospects.

2 Toward Automated Enterprise Application Landscape Analysis

From a mere feature perspective, contributions published by other researchers are threefold, i.e., enterprise

modeling, information gathering, and visualizing enterprise application landscapes or single applications.

In this section, we provide results of a comprehensive literature study on the different fields and relate the

research communities with contributions made in the aforementioned areas.

The research community around Matthes presents results of a survey on Enterprise Architecture (EA)

tools in (Matthes et al., 2008; Roth, Zec, and Matthes, 2014). Thereby, they underpin the importance of

visual means for the analysis of enterprise models. This community further investigates issues arising

when gathering information for an enterprise model (Hauder, Matthes, and Roth, 2012). They propose

to extract data from existing information sources within an enterprise. Additionally, they provide an

evolutionary approach that requires manual user intervention to extend and maintain an enterprise model

(Roth, Hauder, and Matthes, 2013). Moreover, this community contributes means for ad-hoc analyses of

enterprise models (Hauder et al., 2012; Roth and Matthes, 2014; Roth et al., 2013a; Schaub, Matthes, and

Roth, 2012). In contrast to their approach, we advocate that not only relationships between applications

but also their details matter in the course of a root cause analysis in complex systems of systems.

The research community around Leymann is also concerned about gathering, visualizing, and analyzing

data that describes the infrastructure, cf. (Binz et al., 2013). They present the visual concept of Enterprise

Topology Graph which — as the name suggests — is made up of nodes and edges, cf. (Binz et al., 2012).

While this community has shifted their architecture to plug-in-based monitoring components, they also

considered to read log files (Agrawal, Gunopulos, and Leymann, 1998). However, they do not provide

details on the actual root cause in the event of a potential bottleneck in the application landscape.

Many other researchers provide insights in enterprise modeling. For instance, a multi-perspective view on

enterprise models is provided by Frank (2011). Winter and Fischer (2007) advocate that an enterprise

model captures aggregated information and stakeholders are not particularly interested in element details.

Fischer, Aier, and Winter (2007) detail the process to gather information from different stakeholders.

However, they do not detail how to get the information in an efficient manner. The effort strongly varies

with respect to the level of detail. We refer the interested reader to (Frank et al., 2014) for a comprehensive

overview of aspects relevant model in the context of business information systems. Breu et al. (2011)

present a concept coined ‘living models’. Living models aim to bring together a coherent management,

design, and operations of IT. While practice shows clear dependencies among each other, artifacts created

and maintained by the efforts of these disciplines are viewed separately. We regard this concept ambitious

and agree that — at least to a certain extend — approaches should intent to propagate changes on enterprise

models to the real-world, i.e., influence reality.

With respect to software visualization, e.g., Wettel (2010) applies and evaluates the city metaphor as

a three dimensional visualization. This solution focuses on a single application and aims to foster an

understanding during the maintenance of the application rather then illuminating potential bottlenecks

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 3



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

Figure 1. Overview of our enterprise application landscape meta-model

within the application landscape that may only arise through (re-)combination of applications, i.e., their

identification requires runtime information.

Another class of software visualization are Application Performance Management (APM) tools. They

provide monitoring and management of performance of an application landscape. Examples for APM

tools include AppDynamics, dynaTrace, or CA Wily Introscope. However, to the best of our knowledge,

most APM tools do not provide different abstraction levels at the landscape visualization. Furthermore, if

the APM tool also allows detailed analysis of one application, the used visualization often is a tree-based

viewer, which can hinder the analysis of traces with thousands of events.

3 ExplorViz Approach

ExplorViz is designed for monitoring and providing an overview of large enterprise application land-

scapes (Fittkau et al., 2013a). It provides different abstractions on each perspective and features two of

them, namely the landscape and the application level perspective. The former visualizes the application

landscape utilizing 2D elements. The latter utilizes the 3D city metaphor (Knight and Munro, 2000)

to visualize one application running in the landscape. Therefore, ExplorViz enables to view into each

application while still providing the landscape overview. This exposes details of the application and its

architecture, and also lets the user jump to the concrete underlying source code, if available.

At first, we describe our enterprise application landscape meta-model to introduce our terminology.

Afterwards, visual concepts of both perspectives, i.e., landscape and application perspective, are detailed.

The example for the landscape level perspective is modeled on the basis of the Kiel Data Management

Infrastructure for ocean science. The application perspective is generated from monitoring data which

resulted from the work of Wechselberg (2013).

3.1 Enterprise Application Landscape Meta-Model

Figure 1 provides an overview of our enterprise application landscape meta-model. A landscape consists

of different ������s and contains the ����	
��
���
 between the ������
���
s. A ������, e.g.,

PubFlow (Brauer and Hasselbring, 2012) or OceanRep from Figure 2, includes different �������	�s.

�������	�s are formed of equal ����s who are running the same application configuration. One ����

contains identification attributes, e.g., its IP address and hostname, its current resource utilization, like

CPU, free, and used RAM measured by the JVM, and a list of its applications.

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 4



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

Figure 2. Landscape perspective modeling the Kiel Data Management Infrastructure for ocean science

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 5



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

An ����������	 holds a list of its 
����	�	�s. These may contain a list of child components and a list

of directly belonging 
��

es. Communication between 
��

es is modeled and a 
��

 provides its

current instance count allocated within the running application.

3.2 Landscape Perspective

Figure 2 shows the modeled infrastructure of the Kiel Data Management for ocean science on the

landscape level. The large boxes with, e.g., PubFlow (�), represent the information systems present in

the application landscape. They can also be minimized such that only the information system and its

communication are visible, without their interior. Thus, providing abstraction on the level of information

systems and only visualizing systems currently in focus.

The landscape level perspective utilizes a flow-based layout. Therefore, the information systems are

arranged following their communication direction, i.e., the source is on the left side and the target is on

the right side.

The smaller boxes in one information system represent the contained node groups (�) or nodes (�).

Node groups are labeled with a textual representation of their contained nodes, for example, ‘10.0.0.1

– 10.0.0.7’. We introduced node groups because in cloud computing, for instance, nodes are scaled for

performance reasons, but typically keep their application configuration. For providing an overview, these

nodes are grouped. However, they can be extended with the plus symbol near the node group.

A node can contain different applications (�). The communication between applications is visualized by

lines. In accordance to their call count, the line thickness changes, i.e., higher amount of communication

leads to thicker communication lines (�). Since we are interested in the runtime behavior and do not

monitor data transfers, we only visualize the control flows. The user can navigate to the application level

perspective by choosing one application.

ExplorViz features a time-shift feature to analyze specific situations (see � of Figure 2). To provide a

clue, when large amounts of calls are processed, the call count of the entire landscape is shown on the

y-axis. A configurable time window is shown on the x-axis.

Furthermore, we feature a code viewer as opening dialog where the source code of an application can

be analyzed. This code viewer is linked to different entities in our visualization, i.e., an application, its

components, and its classes. From the logged method signatures, we can correlate components or classes

with the corresponding source code, if available on the server.

3.3 Application Perspective

In the application level perspective, we utilize the city metaphor to visualize its components and classes,

and their interaction derived from the dynamic monitoring data without up-front static information. Our

notion of the city metaphor and its semantics are exemplified in the following.

In Figure 3a, the structure of our EPrints1 installation (see � of Figure 2) is visualized as an example.

The smallest boxes, for instance, on the bottom, represent classes. The height of each class maps to its

currently active instance count in the application and the width of a class is defined as one unit.

The larger boxes represent the components of application. Notably, to be programming language indepen-

dent as far as possible, we only specify components to be an organizing unit, for example, packages can be

used for Java. However, also folders can be components. The height of a component is the maximum height

of its contained classes or components, i.e., the highest instance count. The width property maps roughly

to the amount of classes contained in it. The interaction amount of the components or classes is visualized

by the thickness of the connecting pipes. The layout is inspired by the layout of CodeCity Wettel, 2010.

Contrary to other approaches utilizing the city metaphor, e.g., (Caserta, Zendra, and Bodenes, 2011;

Steinbrückner, 2010; Wettel, 2010), we do not visualize the whole application in class level detail at once.

1 �������������	
����
	��

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 6



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

(a) EPrints with closed component ������

(b) EPrints with opened component ������

Figure 3. Application level perspective visualizing the Perl-based application EPrints

We follow a top down approach, where only top-level components and their relationships are shown, i.e.,

hiding internal details of those components. Our navigation concept bases on focusing the entities and

interactions that are currently of interest. This concept is visualized by the transition from Figure 3a to

Figure 3b. After analyzing the interaction between the top level components, we might want to get more

information by opening the ������ component to find the root cause of high interaction.

Notably, our approach of the application perspective assumes a monitored application written in a language

that provides a class concept and an organization structure of those, e.g., Java packages.

4 Applying ExplorViz

To illustrate the utility of ExplorViz, we apply it in a manual runtime behavior analysis of our application

landscape (cf. Figure 2). Our OceanRep installation (�) of the Perl-based literature repository software

EPrints (http://www.eprints.org, last accessed 2014-11-26) required over 10 seconds to respond in the

web portal, which resulted in low user satisfaction (Wechselberg, 2013).

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 7



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

(a) Visualizing the highest 1% of the product of average response time and the call count

(b) Visualizing the communications of the class

Figure 4. Visualizing method call count and average response times in EPrints

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 8



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

We utilize the gathered monitoring data from Wechselberg (2013), who manually searched for bad

performing calls in log files, and proceed with a performance analysis of EPrints employing ExplorViz.

The entire application landscape has already been shown in Figure 2. Thus, we directly zoom into the

details of EPrints (cf. � in Figure 2). In our scenario, we are currently experiencing performance problems.

Hence, we analyze the method calls between applications and within the EPrints application visually.

Figure 4 illustrates the upper 1% of invocation time, i.e., duration of a method call multiplied with

the average response time. The highest time of 10,678 ms occurs between ��������	
�����
��� and

������
��������� (�) which results from its incoming method calls (�). After analyzing the method

calls to the ���
 class of EPrints, where the high response time originates, we did not find any potential

for optimizations. Therefore, we looked at the class interaction between ��
���
 and ��
���� (�).

Those classes are typically used when returning results from the database and consume 6,780 ms. This

cannot be attributed to a concrete use case directly. Thus, we investigated the communication between

��
���� and ��
��������
 (�) and analyzed the methods of the ��
��������
 class (�) to find

promising optimization options. The source code revealed extensive method calls like ‘has_privilege’ to

DataSet and meta field calls to the ������
�
� class (�). Looking at the call amount and their average

response time, we concluded that the database queries should be reduced. A common means to reduce this

kind of problem is the introduction of a cache which confirms the conclusions of Wechselberg (2013).

5 ExplorViz Implementation

In this section, we detail our implementation, how we achieve to monitor and analyze the large amount

of gathered information, which can be millions of method call events per second in a large enterprise

application landscape.

Our implementation of ExplorViz consists of three steps. The first step is monitoring the applications

and their distributed communication (Section 5.1). Afterwards, the monitoring records, representing one

method call each, are aggregated to traces and compressed in an elastic manner (Section 5.2). Then,

our web application visualizes this created model representation of the enterprise application landscape

(Section 5.3). To setup ExplorViz, one needs to instrument each application in the landscape with our

monitoring component and start the server component (WAR file) in an application server.

On our website2 we provide three out of the box components, i.e., monitoring, analysis worker, and the

web application. To keep the overhead as low as possible, we benchmarked and engineered towards high

throughput and minimal impact on the monitored application (Fittkau et al., 2013b; Waller, Fittkau, and

Hasselbring, 2014). The techniques and concepts of each component are detailed in the following sections.

5.1 Monitoring

The first step is monitoring all information systems. Basically, we distinguish between application level

monitoring and the monitoring of remote procedure calls. The later is often very specific to the utilized

technology.

5.1.1 Application Level Monitoring

For monitoring each application in the application landscape, we developed a specialized, high-throughput

monitoring component. Via an adapter, we still support other inputs such as Kieker (Hoorn, Waller, and

Hasselbring, 2012) monitoring records, which provides the ability of monitoring other programming

languages than Java, for example, C, C++, or Perl.

One concept is the spatial separation of the generation of the monitoring records and its processing. Hence,

we aim for the collection of the minimal data and directly transfer those data in an as small as possible

format onto another server by using a TCP binary writer.

2 ������������	�
��
������

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 9



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

For Java-based programs, we utilize AspectJ to inject monitoring probes into the applications running in

an enterprise application landscape. Those probes generate monitoring records consisting of information

about, for instance, the trace identifier, order index, and logging timestamp. To monitor a Java-based

application, one only needs to include the provided monitoring component as an agent at application start.

Extensive micro-benchmarks revealed a low monitoring overhead of 6 μs in contrast to 59 μs of our

comparison tool. For the measurement technique and details of the low overhead of our monitoring

solution, we refer to (Waller, Fittkau, and Hasselbring, 2014).

5.1.2 Monitoring of Remote Procedure Calls

Since we aim for minimal impact on the monitored application and on high throughput, we utilize the

concept of sending additional information with the remote procedure call, instead of, e.g., global trace

identifier synchronization. For example, extending the HTTP header with information about the trace

identifier from where the remote procedure call happened. The monitoring at the callee site provides the

relation between the caller trace identifier and the own currently used trace identifier.

Notably, this technique also comes with some disadvantages. For instance, the addition of information to a

remote procedure call is often technology dependent. Furthermore, the technology might not be designed

for addition of information. To monitor such technology, often source code changes are required making

the solution also technology version dependent.

5.2 Elastic Trace Analysis

A large enterprise application landscape can generate millions of monitoring records per second which

have to be processed. Since we render a live visualization, this large amount has to be processed rapidly

to guarantee user responsiveness and up-to-date information. Furthermore, typically the application

landscape running, for instance, in a cloud environment, often steadily change due to adaptation to the

workload. This often results in more generated monitoring records. Those challenges led to the design of

a scalable trace analysis solution utilizing cloud computing.

Our analysis worker concept provides the possibility to scale with the workload. Different monitoring

components can write to one analysis worker component, which then processed the received monitoring

records. To consolidate the processed monitoring information, all analysis worker write their results to

one analysis master, which again processes incoming monitoring information.

In this setup, one analysis master can become the bottleneck, if high workload is encountered in the

system. Therefore, we will utilize different processing levels of analysis workers, i.e., chaining of analysis

workers. Currently, we are working on guidelines when to use multiple levels and are evaluating this

concept. For details, we refer to (Fittkau et al., 2013b).

5.3 Visualization

After creating or updating the model representing the current enterprise application landscape, the next

step is visualizing the model. As frontend, we utilize web browsers, since live monitoring the landscape

should be accessible on different clients without further software installation. Since our application level

perspective is a 3D visualization, we chose WebGL as the rendering technology. In addition, WebGL

provides the advantage that no additional plug-ins must be installed and mobile devices are also usable.

Since WebGL requires to write extensive JavaScript code, we utilize Google Webkit Tool (GWT). With

GWT we are able to write our source code in Java. Afterwards, GWT generates the JavaScript code from

the Java sources.

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 10



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

6 Conclusions

As a consequence of large-scale enterprise application landscapes transformations, the highly interwoven

applications exhibit an altered load profile. This can lead to potential bottlenecks that are currently

not anticipated by the EA management discipline when deriving planned states of an EA. A particular

challenge addressed by other researchers is consistency between enterprise models and the real world.

However, current approaches that seek to improve the situation do not consider details of applications,

especially when it comes to source code and runtime information.

We presented an approach that utilizes application monitoring to improve consistency between the enter-

prise models and the real information systems. In contrast to related approaches, we not only visualize

relationships among applications but also include details (source code) and incorporate runtime informa-

tion. This way, optimizations can be driven by a visual analysis of load in an interactive visualization.

Thus, it is a means for enterprise application landscape monitoring and planning.

Appropriate visual concepts have been introduced in this paper. We further exemplified our implementation

based on an application landscape and narrowed the root cause of a real-life bottleneck in the productive

EPrints installation to the respective source code. This example served to showcase the utility of our

approach in a minimalistic example.

In some scenarios, the usability of the visualization is currently limited. For instance, in the absence of

organizing units (components), all classes or functions are currently visualized at one level. Depending on

the amount of concepts, the visualization would not scale and may require a clustering into hierarchical

components. Furthermore, we can only visualize the systems which are instrumented and not instrumented

system can only be handled as black boxes.

Future work lies in improving aspects of our visualization like the 3D layout algorithm. In addition, we

are working on guidelines when to use multiple levels of analysis workers and currently are evaluating

this concept. We are currently investigating clustering techniques and heuristics. We are also working on

more advanced filters increasing the analysis such that users are able to visualize runtime information

by specifying a query. Another direction seeks to develop plug-ins for ExplorViz. Those plug-ins allow

to collaborate with other researchers and practitioners which potentially want to enrich the enterprise

model and respective visualization with further details. Furthermore, we will asses the user experiences in

a controlled experiment providing evidence for the improved effectiveness and efficiency of our approach.

Visualization of performance anomalies (Marwede et al., 2009) and faults (Ploski et al., 2007) is also

subject to future work.

Our prototypical implementation of ExplorViz and its source code, available under the Apache 2 license,

can be downloaded at ������������	�
��
������. It comes with three components, i.e., monitoring,

analysis worker, and the web application (visualization).

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 11



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

References

Agrawal, R., D. Gunopulos, and F. Leymann (1998). Mining Process Models From Workflow Logs.

Springer.

Binz, T., C. Fehling, F. Leymann, A. Nowak, and D. Schumm (2012). “Formalizing the Cloud through

Enterprise Topology Graphs.” In: Proc. IEEE 5th International Conference on Cloud Computing
(CLOUD). IEEE, pp. 742–749.

Binz, T., U. Breitenbucher, O. Kopp, and F. Leymann (2013). “Automated Discovery and Maintenance

of Enterprise Topology Graphs.” In: Proc. IEEE 6th International Conference on Service-Oriented
Computing and Applications (SOCA). IEEE, pp. 126–134.

Brauer, P. C. and W. Hasselbring (2012). “Capturing Provenance Information with a Workflow Monitoring

Extension for the Kieker Framework.” In: Proceedings of the 3rd International Workshop on Semantic
Web in Provenance Management. Vol. 856.

Breu, R., B. Agreiter, M. Farwick, M. Felderer, M. Hafner, and F. Innerhofer-Oberperfler (2011). “Living

Models - Ten Principles for Change-Driven Software Engineering.” International Journal of Software
and Informatics 5 (1-2), 267–290.

Buschle, M., M. Ekstedt, S. Grunow, M. Hauder, F. Matthes, and S. Roth (2012). “Automated Enterprise

Architecture Documentation using an Enterprise Service Bus.” In: Proc. America’s Conference on
Information Systems (AMCIS).

Caserta, P., O. Zendra, and D. Bodenes (2011). “3D Hierarchical Edge Bundles to Visualize Relations in

a Software City Metaphor.” In: Proc. 6th IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT). IEEE.

Farwick, M., R. Breu, M. Hauder, S. Roth, and F. Matthes (2013). “Enterprise Architecture Documentation:

Empirical Analysis of Information Sources for Automation.” In: Proc. 46th Hawaii International
Conference on System Sciences (HICSS).

Fischer, R., S. Aier, and R. Winter (2007). “A Federated Approach to Enterprise Architecture Model

Maintenance.” In: Proc. 2nd International Workshop on Enterprise Modelling and Information Systems
Architectures (EMISA), pp. 9–22.

Fittkau, F., A. van Hoorn, and W. Hasselbring (2014). “Towards a Dependability Control Center for Large

Software Landscapes.” In: Proc. 10th European Dependable Computing Conference (EDCC).
Fittkau, F., J. Waller, C. Wulf, and W. Hasselbring (2013a). “Live Trace Visualization for Comprehending

Large Software Landscapes: The ExplorViz Approach.” In: Proc. 1st IEEE International Working
Conference on Software Visualization (VISSOFT). IEEE.

Fittkau, F., J. Waller, P. C. Brauer, and W. Hasselbring (2013b). “Scalable and Live Trace Processing

with Kieker Utilizing Cloud Computing.” In: Proc. Symposium on Software Performance: Joint
Kieker/Palladio Days. Vol. 1083. CEUR Workshop Proc., pp. 89–98.

Frank, U. (2011). The MEMO Meta Modelling Language (MML) and Language Architecture (2nd Edition).
Tech. rep. 24. ICB-Research Report.

Frank, U., S. Strecker, P. Fettke, J. Brocke, J. Becker, and E. Sinz (2014). “The Research Field “Modeling

Business Information Systems”.” Bus. Inf. Syst. Eng. 6 (1), 39–43.

Hauder, M., F. Matthes, and S. Roth (2012). “Challenges for Automated Enterprise Architecture Docu-

mentation.” In: Proc. Trends in Enterprise Architecture Research and Practice-Driven Research on
Enterprise Transformation. Springer, pp. 21–39.

Hauder, M., F. Matthes, S. Roth, and C. Schulz (2012). “Generating Dynamic Cross-Organizational Process

Visualizations through Abstract View Model Pattern Matching.” In: Proc. Architecture Modeling for
Future Internet enabled Enterprise (AMFInE).

Hoorn, A. van, J. Waller, and W. Hasselbring (2012). “Kieker: A Framework for Application Performance

Monitoring and Dynamic Software Analysis.” In: Proc. 3rd ACM/SPEC International Conference on
Performance Engineering (ICPE). ACM, pp. 247–248.

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 12



Fittkau et al. / ExplorViz: Visual Runtime Behavior Analysis

Hoorn, A. van, M. Rohr, I. A. Gul, and W. Hasselbring (2009). “An Adaptation Framework Enabling

Resource-efficient Operation of Software Systems.” In: Proc. of the Warm Up Workshop (WUP 2009)
for ACM/IEEE ICSE. Cape Town, South Africa: ACM, pp. 37–40.

Knight, C. and M. Munro (2000). “Virtual but Visible Software.” In: Proc. IEEE International Conference
on Information Visualization 2000. IEEE, pp. 198–205.

Lagerström, R., U. Franke, P. Johnson, and J. Ullberg (2009). “A Method for Creating Enterprise

Architecture Meta-models – Applied to Systems Modifiability Analysis.” International Journal of
Computer Science and Applications 6 (5), 89–120.

Marwede, N., M. Rohr, A. van Hoorn, and W. Hasselbring (2009). “Automatic Failure Diagnosis Support

in Distributed Large-Scale Software Systems Based on Timing Behavior Anomaly Correlation.”

European Conference on Software Maintenance and Reengineering 0, 47–58.

Matthes, F. (2008). “Softwarekartographie.” Informatik Spektrum 31 (6), 527–536.

Matthes, F., S. Buckl, J. Leitel, and C. Schweda (2008). Enterprise Architecture Management Tool Survey
2008. Tech. rep. TUM.

Peffers, K., T. Tuunanen, M. Rothenberger, and S. Chatterjee (2007). “A Design Science Research

Methodology for Information Systems Research.” Journal of Management Information Systems 24 (3).

Peffers, K., M. Rothenberger, T. Tuunanen, and R. Vaezi (2012). “Design Science Research Evaluation.”

In: Design Science Research in Information Systems. Ed. by K. Peffers, M. Rothenberger, and B.

Kuechler. Vol. 7286. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 398–410.

Ploski, J., M. Rohr, P. Schwenkenberg, and W. Hasselbring (2007). “Research Issues in Software Fault

Categorization.” SIGSOFT Software Engineering Notes 32 (6), 1–8.

Ross, J. W., P. Weill, and D. Robertson (2006). Enterprise Architecture as Strategy: Creating a Foundation
for Business Execution. Harvard Business Press.

Roth, S., M. Hauder, and F. Matthes (2013). “Collaborative Evolution of Enterprise Architecture Models.”

In: Proc. 8th International Workshop on Models at Runtime (Models@run.time).
Roth, S. and F. Matthes (2014). “Visualizing Differences of Enterprise Architecture Models.” In: Proc.

International Workshop on Comparison and Versioning of Software Models (CVSM) at Software
Engineering (SE). Kiel, Germany.

Roth, S., M. Zec, and F. Matthes (2014). Enterprise Architecture Visualization Tool Survey 2014. Tech. rep.

Technische Universität München.

Roth, S., M. Hauder, M. Zec, A. Utz, and F. Matthes (2013a). “Empowering Business Users to Analyze

Enterprise Architectures: Structural Model Matching to Configure Visualizations.” In: Proc. 7th
Workshop on Trends in Enterprise Architecture Research (TEAR).

Roth, S., M. Hauder, M. Farwick, R. Breu, and F. Matthes (2013b). “Enterprise Architecture Docu-

mentation: Current Practices and Future Directions.” In: Proc. 11th International Conference on
Wirtschaftsinformatik (WI).

Schaub, M., F. Matthes, and S. Roth (2012). “Towards a Conceptual Framework for Interactive Enterprise

Architecture Management Visualizations.” In: Proc. Modellierung. Bamberg, Germany.

Steinbrückner, F. (2010). “Coherent Software Cities.” In: Proc. IEEE International Conference on Software
Maintenance (ICSM). IEEE.

Waller, J., F. Fittkau, and W. Hasselbring (2014). “Application Performance Monitoring: Trade-Off

between Overhead Reduction and Maintainability.” In: Proceedings of the Symposium on Software
Performance 2014. University of Stuttgart, pp. 46–69.

Wechselberg, N. B. (2013). “Monitoring von Perl-basierten Webanwendungen mittels Kieker.” Bachelor

thesis. Kiel University.

Wettel, R. (2010). “Software Systems as Cities.” PhD thesis. University of Lugano.

Winter, R. and R. Fischer (2007). “Essential Layers, Artifacts, and Dependencies of Enterprise Architec-

ture.” Journal of Enterprise Architecture 3 (2), 7–18.

Twenty-Third European Conference on Information Systems, Münster, Germany, 2015 13


