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INTRODUCTION

During their first year of life, Baltic cod Gadus
morhua L. undergo a series of life stages, from the egg
to yolk-sac larva, and larva to the pelagic and demer-
sal juvenile stages. During these early life stages, mor-
tality is extremely high in gadoid fish, decimating
numbers by as much as 99.9% (Houde 1987, Rice et al.
1993, Cushing & Horwood 1994). Baltic cod have an
extended spawning period, from March through to
September (Bagge & Thurow 1993, Wieland & Zuzarte
1996). From the Bornholm Basin, Denmark, cod larvae
and pelagic juveniles can be transported into near-
shore areas below the Ekman layer, where they make
the transition to the demersal life stage (Hinrichsen et
al. 1997, 2001, Voss et al. 1999).

During the transport from spawning to juvenile nurs-
ery areas, survival is determined primarily by preda-
tion, the temporal match between larval hatching and
the production of their zooplankton prey, as well as
advection and retention of fish in favourable environ-

ments (e.g. Hjort 1914, Cushing 1972, Lasker 1981,
Sissenwine 1984, Bailey & Houde 1989, Miller 1997).
For Baltic cod, hatching and the early larval stage have
been identified as two of the most critical periods
(Köster et al. 2001), where density-independent pro-
cesses like predation, cannibalism and food avail-
ability control larval survival (Cushing 1983, Fortier
& Villeneuve 1996).

However, variability in the density-independent
component of early life mortality is small (Myers &
Cadigan 1993b), and abundances of eggs and larvae
are seldom a good predictor of recruitment (Sissen-
wine 1984, Smith 1985, Peterman et al. 1988, Campana
1996). While the mechanisms regulating survival of
larvae and pelagic juveniles may be predominantly
density-independent, density-dependent mechanisms
seem to take over during and after settling (Sundby et
al. 1989, Myers & Cadigan 1993a).

In coral reef fishes, as in the demersal stage of a wide
range of species, strong density-dependent competi-
tion for territories with shelter and favourable feeding
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conditions at settling is well known. This competition
either affects survival of newly settled fish directly
(e.g. Sissenwine 1984, Forrester 1990, Tupper & Hunte
1994, Carr & Hixon 1995, Tupper & Boutilier 1995a,b,
Van der Veer et al. 1997), or regulates the size of the
adult population by affecting the time until juveniles
reach maturity (Jones 1987). Survival of pre-recruits is
thus determined by an interaction of predation with
other processes, such as competition for food and suit-
able habitat. A number of studies show that as fish
grow, they pass through prey fields of various preda-
tors (e.g. Folkvord & Hunter 1986, Post & Evans 1989a),
and that both the number of potential predators and
the mortality they cause decrease with increasing fish
size (Zijlstra et al. 1982, Van der Veer et al. 1996, Miller
1997).

The key driving force behind enhanced survival suc-
cess, according to these theories, is growth. Even small
changes in growth rate may affect survival consider-
ably (Houde 1987, Rice et al. 1993, Campana 1996,
Meekan & Fortier 1996). Analyses of growth patterns
may thus provide insight into the mechanisms regulat-
ing survival of fish, as well as the suitability of different
habitats as nursery areas.

In the Baltic, the biomass of the primary copepod
prey species of pelagic cod increases steadily from
<100 mg m–3 in January to ca. 900 mg m–3 in July, and
decreases dramatically during August/September,
down to levels found in winter (Möllmann et al. 2000).
Depending on hatch date, transport conditions and
settling habitat, the individuals experience widely dif-
ferent environmental conditions, providing the foun-
dation for widely varying growth and survival rates.

The main objectives of this study were to examine
growth of juvenile Baltic cod from the pelagic stage
through the transition to the early demersal stages,
using otolith microstructure analysis. Particularly, the
timing of settling in relation to hatch date and growth
during the pelagic stage and the effect of pelagic
growth rate on growth during the demersal stage was
investigated. The effect of settling habitat on growth
was also evaluated by comparison of growth between
a deep locality with a temperature-stratified water col-
umn on the slope of the Bornholm Basin and a shallow,
vertically mixed locality on the Oder bank.

MATERIALS AND METHODS

Field samples. A total of 82 pelagic juvenile Baltic
cod were collected with RV ‘Solea’ on 3 to 5 November,
of which a subsample of 20 fish was selected (see also
Hüssy et al. 2003, this issue). In all, 169 demersal juve-
nile Baltic cod were collected with RV ‘Dana’ on 8
December in a shallow area on Oder bank (density: 0.3

ind. m–2) and 105 juveniles in a deeper area on the
slope of the Bornholm Basin (density: 0.2 ind. m–2) (see
Hüssy et al. 2003). For analysis, a random subsample
of 50 fish was selected from each area.

On the bank, the water column was mixed virtually
throughout the year, with temperatures decreasing
from approximately 14 to 4.5°C in the investigated
time period. Data were not available from Day of Year
334 onward, but were extrapolated linearly to mea-
sured values from the December cruise. On the slope,
a strong thermocline developed around Day of Year
120, with 14°C in the surface and 5°C at the bottom
and persisted approximately until Day 290. After Day
of Year 320, an inverse thermocline, with cold water
above warmer bottom water, developed and persisted
until the day of capture. A detailed description of the
geographical location, water depth and hydrography
on these localities, hereafter called bank and slope, is
given in Hüssy et al. (2003). The same random sub-
sample of 50 fish from that study was also used in the
present work.

After capture, the fish were immediately frozen at
–20°C. Upon thawing, standard length (SL) was mea-
sured to the nearest 0.5 mm, and fish weighed to the
nearest 0.01 g after drying at 60°C for 48 h (dry weight;
DW). Sagittal otoliths, hereafter called otoliths, were
extracted, rinsed in water and stored in labelled plastic
bags.

Otolith treatment. After weighing to the nearest µg
(otolith weight; OW), otoliths were ground and pol-
ished to a thickness of approximately 80 µm following
the method described in Hüssy et al. (2003). Otoliths
were analysed using an image analysis system
(Image Pro, Version 4) with a microscope coupled to a
monitor screen by a CCD camera and a frame grab-
ber. The digitised images were saved as TIFF-files in
black and white. Total length from the nucleus to the
edge (otolith length; OL) was measured along the
longest distance from the nucleus to the tip of the ros-
trum at a magnification corresponding to 6.4 µm
pixel–1. Measurements taken at different positions in
the frontal lobe were scaled to total rostral length.
Increment widths were analysed along a profile of
grey values increasing from 0 (pure black) to 255
(pure white), with the ‘caliper’ tool of Image Pro
using a profile width of 50 µm and a magnification
corresponding to 2.2 µm pixel–1. This tool identifies
recurring patterns based on the residuals from a run-
ning average. The start of an increment was defined
as the point at which the grey values changed at the
fastest rate towards higher values (higher trans-
parency). Increments were measured, and numbered,
from the formation of the accessory primordia
towards the edge (terminology see Campana & Neil-
son 1985). The daily formation periodicity of incre-
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ments obtained using this method
could not be rejected (Hüssy et al.
2003), and increments were therefore
assumed to be daily.

Intervals of similar increment struc-
ture were identified using the method
based on the difference between run-
ning averages of consecutive incre-
ment widths described in Hüssy et al.
(2003, see ‘Increment structure in field
samples’, p 246): average(IWi – 10 to
IWi) – average(IWi to IWi+10). The first
change in increment patterns was
assumed by these authors to be corre-
lated with time of settling, because:
(1) juveniles caught in November
did not have a change in increment
widths, (2) the fish from the December sample that had
settled before the November cruise, and therefore
could not be caught with pelagic trawls, had a change
in increment width (see ‘Results’), (3) the back-
calculated fish size at first pattern change in the
December sample corresponded well with observed
fish sizes at settling (see Hüssy et al. 2003). Increments
between the accessory primordia and this first change
in increment structure were called pelagic increments;
those formed after the change were called demersal
increments. Numbers of increments within the 2 inter-
vals were recorded. OL at formation of accessory pri-
mordia was calculated as OL – ∑(IWi) and OL at incre-
ment pattern change as OL – ∑(IWdemersal).

Since all fish were assumed to originate from the
same cohort, samples were pooled to result in a better
model for fish DW:

ln(DW)  =  a + b · ln(OW) + c · ln(OW)2 (1)

where a = –2.025, b = 0.924 and c = 0.094 (df = 119, r2 =
0.96). Correspondingly, fish length was best described
by the model:

ln(SL)  =  d + e · ln(OL) + f · ln(OL)2 (2)

where d = 7.550, e = –1.776, f = 0.182 (df = 119, r2 =
0.97). Fish size at settling (SLsettling) was therefore
back-calculated assuming a proportional relationship
between otolith size and fish size over time:

ln(SLsettling)  =  
ln(SLcatch) × d + e · ln(OLsettling) + f · ln(OLsettling)2

d + e · ln(OLcatch) + f · ln(OLcatch)2 (3)

Statistical analysis. Measurements of fish length
and weight, OL and OW of the field sample were
tested for normality using the Kolmogorov-Smirnov 1-
sample test. Normally distributed data of fish length
and weight and OL and OW were then compared
using 1-way ANOVA, while non-normally distributed

data were analysed using Wilcoxon rank sum test for
equality of means. The frequency distributions of fish
ages were compared using Wilcoxon signed rank test
for paired observations. Regression coefficient and
intercepts of regressions were compared using
ANCOVA. Significance levels were set at p = 0.05.
The number of observations were 20 for the Novem-
ber sample and 50 for both slope and bank of the
December samples.

RESULTS

Differences between localities at catch

The analysis of fish length, DW, OL and OW of the
December samples showed significant differences
between the 2 localities: juveniles from the slope were
larger/heavier (both p < 0.001, df = 98), and had
larger/heavier otoliths than juveniles from the bank
(both p < 0.001, df = 98). Their age distributions (age
from accessory primordia to edge), however, did not
differ (p = 0.72, Table 1). Subtracting the 34 d between
the 2 cruises from the number of juvenile days and the
sum of the outermost 34 increments from OL of fish
from the December samples yielded an age distribu-
tion that did not differ significantly from the November
sample (p = 0.70) (Fig. 1). Juveniles from the 2 cruises
can therefore be assumed to be derived from the same
cohorts of fish.

Between the 2 localities of the December sample,
significant differences were found in the intercept and
regression coefficient of the ln(DW) = a + b × ln(OW)
relationship (p < 0.05, df = 96). Significant differences
were also found between the regression coefficients
of the 2 demersal samples and the pelagic November
sample (both p < 0.001, df = 66) (Fig. 2). This is prob-
ably caused by an ontogenetic change in the otolith
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Table 1. Gadus morhua. Summary of fish and otolith measurements (mean ± SD).
Pelagic days = days from the accessory primordia to the first change in increment
pattern, juvenile days = days from the accessory primordia to the edge. Day of Year
290 = day of thermocline breakdown. Significance levels of comparison between
slope and bank samples: ***p < 0.001, **p < 0.01, *p < 0.05, ns: not significant

Parameter Demersal Pelagic
Slope Bank

Sample number 50 50 20
Fish length (mm) 69.22 ± 21.26 61.64 ± 26.16*** 41.30 ± 8.10
Dry weight (g) 0.71 ± 0.72 0.64 ± 1.36*** 0.09 ± 0.05
Juvenile days 68 ± 22 66 ± 32 ns 31 ± 13
Otolith weight (mg) 3.85 ± 2.78 3.60 ± 5.38*** 0.55 ± 0.36
Otolith total length (µm) 1379 ± 3630 1200 ± 552***0 620 ± 185
Otolith length at settling (µm) 793 ± 160 731 ± 242**0
Pelagic days 28 ± 90 27 ± 11 ns
Otolith length on Day 290 (µm) 793 ± 327 649 ± 242**0
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size–fish size relationship, resulting in higher somatic
growth in relation to otolith growth after settling to the
demersal habitat.

Pelagic life-stage and settling period

The 2 areas did not differ with respect to OL at forma-
tion of accessory primordia (p = 0.55). The number of
days from the accessory primordia to settling and the
corresponding otolith growth rates were analysed in re-
lation to average date of pelagic increment formation.
The pelagic phase duration (number of days in first in-
crement pattern interval) was significantly and positively
correlated with average Day of Year of increment for-
mation, showing that early spawned
juveniles settled at a younger age
than those which were late
spawned. Intercept and slope of these
regressions did not differ significantly
between the 2 localities (both < 0.05,
df = 49) (Fig. 3).

Since the number of days in the
pelagic stage did not differ between
the 2 localities, the corresponding
average increment widths were re-
gressed on average Day of Year of
increment formation. This revealed
a significant, negative correlation
for the bank locality (p < 0.001, df =
49). Excluding the 6 latest settled
individuals, whose increments may
have been affected by an ontogenet-
ically determined decrease in width,
from the analysis did not change the
result (p < 0.001, df = 43). This

means that the earlier in the season that
fish are spawned, the wider their incre-
ments. On the slope locality this correla-
tion was also negative, but not significant
(p = 0.056, df = 49). In the context of this
paper, this presumably temperature-
induced decline in increment width is not
interesting. More importantly, compar-
isons showed that throughout the pelagic
stage, increments of fish caught on the
bank were significantly smaller than fish
caught on the slope (p < 0.01, df = 96)
(Fig. 4).

These results indicate that early
spawned fish settle at a younger age
than fish spawned later in the year. On
the slope, fish settled at the same age as
those on the bank, but had faster otolith
growth rates. The settling pattern of the
2 localities is shown in Fig. 5, re-

presented as proportion of settled individuals in rela-
tion to date, days after formation of accessory primor-
dia, and fish size in mm (Fig. 5a,b and c,
respectively).

Demersal life stage

Average growth rates during the demersal stage
were calculated as (SLcatch – SLsettling)/days in demersal
stage. The proportional distribution of demersal
growth rates shows that during the demersal stage, fish
on the bank experienced slower somatic growth than
those on the slope (Fig. 6). At settling, fish from the
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Fig. 1. Gadus morhua. Frequency distributions of fish age from the accessory
primordia to the edge at capture of the November sample (grey columns), and
the December samples, back-calculated to the date of the November sample 

(black columns: slope; white columns: bank)

Fig. 2. Gadus morhua. Relationship between fish dry weight (g) and otolith
weight (mg). : pelagic stage; e: bank; f: slope; dotted line: pelagic stage,
ln(DW) = –1.91 + 0.78 · ln(OL), r2 = 0.96, p = < 0.001; solid line: slope, ln(DW) =
–2.33 + 1.48 · ln(OL), r2 = 0.91, p < 0.001; broken line: bank, ln(DW) = –2.14 + 

1.09 · ln(OL), r2 = 0.95, p < 0.001
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slope had significantly larger otoliths than fish from the
bank, although they were of similar age. The observed
difference in otolith size between the 2 localities in-
creased from the time of settling (average of 62 µm) to
capture (average of 179 µm).

A significant difference in OL back-calculated to
Day of Year 290 (breakdown of thermocline) was
observed between the 2 localities (average of 144 µm,
p < 0.01, df = 96). However, this difference between
OL at the 2 localities was similar to the one observed
at catch (average of 179 µm, see Table 1). Growth
rates of slope cod otoliths must therefore have been
faster than bank cod otoliths during the time before
the breakdown of the thermocline.

Coupling between growth rates at
settling and size at catch

The effect of fast growth during the
pelagic stage on fish size at capture was
assessed using the residuals from the
increment width–day of formation re-
gression (Fig. 6), assuming that fish
with positive residuals had experienced
fast otolith growth and fish with nega-
tive residuals slow otolith growth. The
residuals from the 2 localities (residbank

and residslope) were regressed against
fish DW at capture. A significant, posi-
tive correlation was found for the bank
sample: residbank = –0.6955 + 3.6012 ×
DW (p < 0.01, df = 49, r2 = 0.17), while
growth rate before settling had no ef-
fect on fish size at capture on the slope:
residslope = –0.8591 + 1.4176 × DW (p =
0.17, df = 49, r2 = 0.04).

DISCUSSION

In the present study, early spawned Baltic cod were
found to make the transition to the demersal habitat
at a younger age than their late-spawned con-
specifics. Fish with the best match between hatch-
date timing and maximal zooplankton biomass may
thus experience the fastest growth rates, which leads
to early settling and promotes better survival ac-
cording to the ‘match-mismatch’ (Cushing 1972)
and ‘stage duration’ hypotheses (Houde 1987). The
spawning date/age-dependent settling pattern was

the same at both localities. However,
fish settling on the slope had wider
pelagic increment widths throughout
the season, indicating that these
fishes had grown faster. These results
suggest growth-rate-related differ-
ences in settling habitat, mediated by
either preferences in settling habitat,
differential size-specific mortality rates,
or an interaction between growth and
mortality.

Preferences in settling habitat

Baltic juvenile cod have been ob-
served to undertake exploratory mi-
grations into deeper water layers as
early as at the pelagic stage (Böttcher
et al. 1998). The observed segregation
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Fig. 3. Gadus morhua. Number of days spent in the pelagic stage in relation
to average date of increment formation. m: slope; e: bank; solid line: slope,
Pelagic Days = –7.562 + 0.124 × Day of Year, r2 = 0.096, p = 0.026; broken line:
bank, Pelagic Days = –7.441 + 0.132 × Day of Year, r2 = 0.054, p = 0.043. Common

regression: Pelagic Days = –9.755 + 0.136 × Day of Year, r2 = 0.09, p = 0.003

Fig. 4. Gadus morhua. Average increment widths (mm) of the pelagic stage
in relation to average date of formation. f: slope; e: bank; solid line: slope, aver-
age IW = 32.87 – 0.044 × Day of Year, r2 = 0.07, p = 0.0563; broken line: bank, 

average IW = 36.47 – 0.068 × Day of Year, r2 = 0.24, p = 0.00064
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may therefore occur if juveniles with faster growth
rates select different habitat types for settling, in this
case the deeper slope.

Size-specific mortality

In Norwegian Atlantic cod, the relationship between
predation-induced mortality and growth seems to be

one of the driving forces regulating the timing of
and size at settling (Salvanes et al. 1994). Due
to changes in mortality and growth rates, the
mortality:growth ratio increases with time and
fish size, which may induce the juvenile fish
to switch to a habitat with a lower mor-
tality:growth ratio (Salvanes et al. 1994). There-
fore, differential predation-induced mortality
may have caused the observed settling patterns.
In the juveniles examined in this study, no
difference in time spent in the pelagic stage
was observed, and predation-induced differ-
ences in the settling pattern would therefore
have to occur during the demersal stage. How-
ever, the distributions of juvenile and adult cod,
their only predator in the Baltic Sea, are spatially
segregated (Aro 1989, Sparholt et al. 1991), and
cannibalism is therefore limited (Uzars & Pliksh
2000). Predation-related mortality therefore
seems an unlikely explanation for the observed
settling pattern.

Interaction between growth and mortality

After settling, the fish size–otolith size rela-
tionship changed. Such changes have previ-
ously been associated with ontogenetic develop-
ment from one life stage to another (Hare &
Cowen 1995, Rogers et al. 2001) and may be
caused by a stage-specific, more cost-effective,
increase in prey size (Mittelbach 1983). At cap-
ture, fish and otoliths were significantly smaller
on the bank, and the difference in otolith size
between the 2 areas increased after settling.
Also, the regression coefficient of the fish
size–otolith size relationship was significantly
smaller in the bank sample, indicating slower
somatic growth compared to the slope (Secor &
Dean 1989). At least 2 mechanisms may have
caused these differences: differential tempera-
ture regimes or prey availability.

Temperaturemm

Below the temperature for optimal growth, otolith
growth rate increases proportionally with somatic
growth rate (Marshall & Parker 1982, Mosegaard &
Titus 1987, Mosegaard et al. 1988); higher tempera-
tures lead to a decoupling between the 2 growth rates
(Mosegaard & Titus 1987). However, a temperature-
mediated decoupling during the demersal stage can be
excluded, since temperatures never exceeded 14°C at
both localities.
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Fig. 5. Gadus morhua. Cumulative proportion of settled juvenile cod
in relation to (a) Day of Year, (b) days after formation of the acces-
sory primordia and (c) fish length. Black line: slope; grey line: bank
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Prey availability

The diversity of potential prey species in the Baltic
Sea is limited, forcing newly settled cod to feed on
the same size-range and species of prey as fish of a
larger size (Hüssy et al. 1997). The major prey items
during the first months of the demersal stage are ben-
thic and semi-benthic invertebrates such as mysids
and amphipods (Hüssy et al. 1997), whose highest
densities are found below 25 m (Aschan 1988, Hans-
son et al. 1990, Rudstam & Hansson 1990). On the
slope, feeding conditions may therefore have been
more favourable than on the shallow bank due to
greater variety and quantity of prey items, as sug-
gested by Hüssy et al. (1997). Since the density of
juvenile cod was also lower on the slope, and mortal-
ity due to predation is negligible (Uzars & Pliksh
2000), density-dependent competition for food may
have been a mechanism responsible for the observed
differences in growth.

Juvenile Atlantic cod become territorial after set-
tling, defending territories in association with shelter
sites (Tupper & Boutilier 1995a,c), which results in size-
selective growth, mediated by strong density-dependent
competition, not just for food resources but also for
shelter sites (Tupper & Boutilier 1995a,c). No knowl-
edge exists of the behaviour in demersal juvenile Baltic
cod, but our results agree with the finding of Tupper
& Boutilier (1995a,c): in Baltic cod, late-spawned fish
experienced a prolonged pelagic stage, and fast
pelagic growth entailed fast demersal growth on the
bank, but not on the slope.

However, no differences in growth occurred
between the 2 localities after the breakdown of the
thermocline on the slope until capture, apparently
linking the better growth conditions on the slope with
the existence of the thermocline. Extensive daily verti-

cal migrations are well known in juvenile
Atlantic (Perry & Neilson 1988, Lough et al.
1989, Lough & Potter 1993) and Baltic cod
(Böttcher et al. 1998). Comparison between
observed otolith growth rates, with growth
rates estimated under different assumptions
of juvenile behaviour, indicated that juvenile
cod from the slope were in fact undertaking
daily vertical migrations (Hüssy et al. 2003).
These migrations are thought to maximise
consumption (Bromley & Kell 1995) and to
regulate the fish’s energy budget (Javaid &
Anderson 1967, Mac 1985, Neverman &
Wurtsbaugh 1994, Sogard & Olla 1996) and
may promote differential growth rates.

Mortality during the first winter is highest
in small fish of a variety of species (Post &
Evans 1989b, Cargnelli & Gross 1996, Got-

ceitas et al. 1999). Attaining as big a size as possible
before the onset of winter is therefore of vital impor-
tance for juvenile cod. The results from this investiga-
tion suggest that the time of hatch, growth during the
pelagic stage and the habitat selected for settling are
some of the key factors for survival of juvenile Baltic
cod.
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