The evolution of climatically driven weathering inputs into the western Arctic Ocean since the late Miocene: Radiogenic isotope evidence.

Dausmann, Veit , Frank, Martin , Siebert, Christopher, Christl, Marcus and Hein, James R. (2015) The evolution of climatically driven weathering inputs into the western Arctic Ocean since the late Miocene: Radiogenic isotope evidence. Earth and Planetary Science Letters, 419 . pp. 111-124. DOI 10.1016/j.epsl.2015.03.007.

[thumbnail of Dausmann.pdf] Text
Dausmann.pdf - Published Version
Restricted to Registered users only

Download (2MB) | Contact

Supplementary data:

Abstract

Highlights

• Seawater Hf–Nd–Pb isotopic evolution in the deep Arctic Ocean of the past 7 Myr.
• Climatically driven changes in weathering inputs since 4 Ma.
• North American (Laurentide Ice Sheet) runoff controlled the isotopic budget in the Canada Basin.
• More congruent Hf release due to glacial weathering conditions.
• Past Arctic Ocean water masses show larger isotopic differences than today.

Abstract

We present the first continuous records of dissolved radiogenic neodymium, hafnium, and lead isotope compositions of deep waters in the western Arctic Ocean, spanning the time from the late Miocene to the present. The data were obtained from three hydrogenetic ferromanganese (Fe–Mn) crusts recovered from seamounts along the northernmost edge of the Northwind Ridge in the Canada Basin from water depths of 2200, 2400, and 3600 m. Dating the crusts using cosmogenic 10Be documents undisturbed present-day growth surfaces and yields growth rates between 27 and 2.2 mm/Myr. The Nd (Hf) isotope time series of the three crusts show similar evolutions from εNdεNd(εHf)(εHf) of −8.5 (+4) in the oldest parts to −11.5 (−4) at the surfaces and a pronounced trend to less radiogenic values starting at ∼4 Ma. This coincided with a trend of the Pb isotope evolution towards more radiogenic 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb. It is inferred that climatically controlled changes in weathering regime and sediment transport along the North American continent were responsible for the major change of the radiogenic isotope composition of the Arctic Deep Water (ADW) in the Canada Basin. Based on these records we conclude that weathering inputs from the North American continent linked to enhanced glacial conditions started to increase and to influence the radiogenic isotope composition of ADW ∼4 million years ago and were further intensified at ∼1 Ma. These new time series differ markedly from the radiogenic isotope evolution of Arctic Intermediate Water recorded on the Lomonosov Ridge and suggest that much larger isotopic differences between the water masses of the Arctic Ocean than today prevailed in the past.

Document Type: Article
Additional Information: The IGSN numbers of the three sam-ples analyzed and the dredge hauls from which they were col-lected are: DS1-001 (ECS008001; dredge ECS000008), DS2-006G (ECS00006N; dredge ECS000009), and DS4-006B (ECS009064; dredge ECS000011)
Keywords: paleoceanography; paleoclimate; Arctic Deep Water; radiogenic isotopes; glacial weathering; onset of Northern Hemisphere Glaciation
Research affiliation: OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-P-OZ Paleo-Oceanography
Refereed: Yes
Open Access Journal?: No
Publisher: Elsevier
Date Deposited: 30 Mar 2015 08:39
Last Modified: 22 Aug 2019 13:53
URI: https://oceanrep.geomar.de/id/eprint/28380

Actions (login required)

View Item View Item