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1.1 Summary 
 

The plate boundary at the eastern terminus of the Azores-Gibraltar transform fault between Africa and 

Iberia is poorly defined (Fig. 1.1). The deformation in the area is forced by the slow NW-SE convergence 

of 4 mm/yr between the oceanic domains of Iberia/Eurasia and Africa and is accommodated over a 200-

300 km broad tectonically-active deformation zone. The region, however, is also characterized by large 

earthquakes and tsunamis, such as the 1969 Mw=7.9 Horseshoe Abyssal Plain earthquake and the 

November 1, 1755 Great Lisbon earthquake with an estimated magnitude of Mw~8.5. The exact location 

of the source of the 1755 Lisbon earthquake is still unknown. Recent work may suggest that the event 

occurred in the vicinity of the Horseshoe fault, an oblique thrust fault. In addition, the Gorringe Bank, a 

~180 km-long and ~70 km-wide ridge with a relieve of ~5000 m, has been considered being a potential 

source of the Lisbon earthquake. Deep Sea Drilling (DSDP) and rock samples indicated that the bank is 

mainly composed of serpentinized peridotites with gabbroic intrusions, perhaps being created by 

overthrusting of the Horseshoe Abyssal Plain onto the Tagus Abyssal Plain in NW direction. Further, the 

Horseshoe Abyssal Plain is marked by the presence of compressive structures with a roughly NE-SW 

orientation and E-W trending, segmented, crustal-scale, strike slip faults that extend from the Gorringe 

Bank to the Gibraltar Arc in the eastern Gulf of Cadiz, which were called “South West Iberian Margin” or 

SWIM faults. The fault system may mark a developing Eurasia-Africa plate boundary.  

 

Two local seismic networks were operated in the area to investigate natural seismicity and seismic 

harards. First, a network of 14 ocean-bottom seismometers (OBS) was operated between April and 

October 2012 in the vicinity of the Horseshoe fault between 10°W to 11°W, and 35°50’N to 36°10’N. 

OBS were deployed during RV Poseidon cruise POS430 and recovered during cruise POS440. From 

October 2013 to March 2014 a second network of 15 OBS monitored seismicity at the Gorringe Bank. 

OBS were deployed during RV Poseidon cruise POS460 and recovered during cruise POS467. Both 

networks benefitted from seismic stations operated in Portugal and provided in the order of 50 to 90 locale 

earthquakes occurring within or in the vicinity of each network. Most earthquakes in the Horseshoe 

Abyssal Plain occurred at a depth of 40-50 km, either in oceanic mantle or unroofed continental mantle. 

The large source depth of events observed in the Horseshoe Abyssal Plain supports the idea that large 

catastrophic earthquakes, like the Great Lisbon earthquake of 1755, may indeed occur in the area. At the 

Gorringe Bank seismicity was generally shallower, occurring at <30 km depth. 

 

 

Zusammenfassung 

 

Die Plattengrenze zwischen Eurasien und Afrika ist am östlichen Ende der Azoren-Gibraltar 

Transformverwerfung nicht eindeutig definiert. Der Grund hierfür ist eine verteilte Deformation, welche 

sich über eine ca. 200-300 km breite Region erstreckt und durch die NW-SE Konvergenz von Eurasien 

und Afrika bedingt wird. In dieser Region finden immer wieder große katastrophale Erdbeben statt. 

Jüngstes Beispiel ist das M=7.9 Erdbeben von 1969, welches in der Horseshoe (engl. für Hufeisen) 

Tiefseeebene stattfand. Das wohl prominenteste Erdbeben ist das Große M=8.5 Lissabon Erdbeben von 

1755, dessen genau Quellregion bis heute unbekannt ist. Jüngere Arbeiten vermuten, dass das Lissabon 

Erdbeben an der Horseshoe Verwerfung, einer Überschiebungszone mit Blattverschiebungsanteil, 

stattfand. Als weitere potentiale Quelle wird die ca. 180 km lange und 70 km breite Gorringe Bank 

diskutiert, welche mit ca. 5000 m Relief die größte Struktur in der Region ist. Gesteinsproben von der 

Gorringe Bank deuten darauf hin, dass sie größten Teils aus Mantelgesteinen und gabbroiden Intrusionen 

zusammengesetzt ist und vermutlich durch die Aufschiebung der Horseshoe Tiefseeebene auf die Tagus 

Tiefseeebene gebildet wurde. Darüber hinaus ist die Region durch prominente Blattverschiebungszonen 

durchschnitten (die sog. SWIM Verwerfungen), welche in E-W Richtung verlaufen und von einigen 

Wissenschaftlern mit einer sich entwickelnden Plattengrenze in Verbindung gebracht werden.  
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In dieser durch seismische Naturgefahren bedrohten Region wurden zwei seismische Netzwerke 

ausgelegt, um die natürliche Seismizität und seismische Gefahrenpotential zu untersuchen. Das erste 

Netzwerk, bestehen aus 14 Ozean-Boden-Seismometern (OBS), wurde zwischen April und Oktober 2012 

im Bereich der Horseshoe Verwerfungszone zwischen 10°W und 11°E und 35°50’N und 36°10’N 

ausgelegt. Die OBS wurden auf der Reise POS430 des FS Poseidon ausgelegt und später auf der Reise 

POS440 wieder geborgen. Zwischen Oktober 2013 und März 2014 wurde das zweite Netzwerk an der 

Gorringe Bank betrieben. Insgesamt 15 OBS wurden auf der Reise POS460 mit dem FS Poseidon 

ausgelegt und auf der Expedition POS467 aufgenommen. Beide seismische Netzwerke wurden durch 

seismische Stationen in Portugal und im Gibraltar-Bogen komplettiert. Beide Netze konnten zwischen 50 

und 80 lokale Erdbeben registrieren, wobei die meisten Beben innerhalb bzw. in unmittelbarer der Nähe 

zu den Netzwerken stattfanden. In der Tiefseeebene fanden die Beben in Tiefen von 40-50 km statt. Die 

großen Herdtiefen deuten darauf hin, dass die Beben im Erdmantel stattfanden. Darüber hinaus stützen sie 

die Vorstellung, dass die Region in der Tat große Beben wie das Lissabon Erdbeben von 1755 hervorrufen 

kann. Beben im Bereich der Gorringe Bank waren mit 20-30 km deutlich flacher. 

 

 

 
 
Fig 1.1.: Tectonic setting of the Gorringe Bank and Horseshoe Abyssal Plain to the SW of Portugal, were 
two seismic monitoring networks surveyed the local seismicity in the Horseshoe Abyssal Plain between 
April 2012 to October 2012 and at the Gorringe Bank between October 2013 and March 2014. The Gloria 
Fault, reaching from the Azores to ~14°W, defines a strike slip transform boundary. Farther, east the 
seismicity is distributed over a larger area and a well-defined plate boundary could not be found. 
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2. Scientific Prospectus and Aims 

 
2.1. Introduction 

The plate boundary between Eurasia and Africa is reasonably well defined between the Azores and the 

area to the west of latitude 14°W (Fig. 1.1). However, approaching the Gorringe Back near latitude 12°W 

the plate boundary is poorly defined. Thus, the area to the southwest of Portugal, including the Gulf of 

Cadiz, the Horseshoe Abyssal Plain (HASP) and the Gorringe Bank, is characterized by diffuse seismic 

and tectonic activity and the region lacks a clear plate boundary fault separating Africa from 

Eurasia/Iberia. This area hosted with the Great Lisbon earthquake of 1755 the largest known European 

earthquake. However, the exact location of the source of the 1755 Lisbon earthquake is still unknown. 

Recent evidence indicated that the event may have occurred in the vicinity of the Horseshoe fault, an 

oblique thrust fault. The Horseshoe fault is cut by prominent features in the bathymetry – the South-West-

Iberia-Margin (SWIM) lineaments. The SWIM lineaments are believed to facilitate fluid migration. To 

study seismicity and seismic hazards, we issued the German Science Foundation (DFG) funded project 

GR1964/15-1 with the acronym QED for “The Quest for the source area of the 1755 Lisbon Earthquake - 

revealing the maximum Depth of seismogenic faulting in the Horseshoe abyssal plain”. The project had 

two main aims: (i) surveying the seismogenic potential of the area by yielding the maximum depth of 

seismogenic faulting and (ii) relating fluid seepage to seismically active faults. Due to the fact that seismic 

magnitude scales with the size of a fault zone, the maximum depth of seismogenic faulting is an important 

parameter to assess potential future earthquakes hazards. Thus, a greater depth would cause a potentially 

larger fault plain. The DFG funded project QED supported in 2012 the cruises POS430 and POS440 of the 

RV Poseidon for the deployment and recovery of a network of ocean-bottom-seismometers (OBS) in the 

vicinity of the Horseshoe Fault and the SWIM lineaments. 

 

In 2013 - on short notice - ship time became available as the cruise POS461 in to the Aegean Sea had been 

cancelled due to problems with the research permit in an area where both Greece and Turkey have claims. 

Therefore, the GEOMAR Helmholtz Research Centre funded within the framework of its OCEANS 

programme the operation of a second seismic network at the Gorringe Bank, an area being among the 

potential source areas of the Great Lisbon earthquake of 1755. We called the project QED II; network 

installation occurred during RV Poseidon cruise POS460 in 2013, recovery of seismic stations was 

conducted during the cruise POS467 in 2014. 

 

2.2 Scientific Background 

The study area corresponds to the eastern segment of the Azores-Gibraltar plate boundary between 

Gorringe Bank to the West, the Coral Patch Ridge to the South and the accretionary prism of the Gulf of 

Cadiz to the East (Fig. 2.1 + 2.2). In this area, the plate boundary is poorly defined. The deformation is 

forced by the slow NW-SE convergence (4mm/year; Argus et al., 1989) between the oceanic domains of 

the Eurasia and Africa plates and is accommodated over a 200-300 km broad tectonically-active 

deformation zone (Sartori et al., 1994; Hayward et al., 1999; Buffon et al., 2004). This type of diffuse 

plate boundary is analogous to the intraplate deformation identified in the Indian Ocean (Wiens et al., 

1985). The region is also characterized by large earthquakes and tsunamis, such as the 1969 Mw=7.9 

Horseshoe Abyssal Plain earthquake (Fukao, 1973) and the November 1, 1755 Great Lisbon earthquake 

with an estimated magnitude of Mw~8.5 (Martinez-Solares et al., 1979; Johnston, 1996). However, the 

location of the source area of the Great Lisbon earthquake is still under controversial debate. A number of 

features have been suggested, including the Gorringe Bank (e.g., Johnston, 1996), the Marques de Pombal 

fault (e.g., Zitellini et al., 2001; Garcia et al., 2003), and a proposed subduction megathurst in the Gulf of 

Cadiz (Gutscher et al., 2002). However, tsunami parameters suggest that the source was to the southwest 

of Cape Sao Vincente (Batiza et al., 1998). The Horseshoe Abyssal Plain and the Horseshoe fault are 

therefore considered as being the most likely location of the source of the Great Lisbon earthquake (Stich 

et al., 2007). 
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Fig 2.1. Multi-beam bathymetry (Zitellini et al., 2009) and main tectonic features  of the Gulf of 
Cadiz and the Horseshoe abyssal plain (after Duarte et al., 2009). 

The region is marked by the presence of compressive structures with a roughly NE-SW orientation 

(Sartori et al., 1994; Hayward et al., 1999) and E-W trending, segmented, crustal-scale, strike slip faults 

that extend from Gorringe Bank to the Gibraltar area in the eastern Gulf of Cadiz (“South West Iberian 

Margin - SWIM” faults; Zitellini et al., 2009; Rosas et al., 2009; Duarte et al., 2009). Zitellini et al. 

(2009) suggested that these faults mark a developing Eurasia-Africa plate boundary. The SWIM 

lineaments (Fig. 2.1) correspond to the bathymetric expressions of the reactivation of WNW-ESE-pre-

existing faults (Rosas et al., 2009). In particular, the lineaments passing through the area consist of a 

network of shear structures that evokes the development of an incipient strike-slip fault system. 

 

Fault zones are known to provide fluid migration pathways in convergent settings (Moore and Vrolijk, 

1992). Widespread mud volcanism occurs in the Gulf of Cadiz sedimentary wedge, often located along 

SWIM lineaments (Hensen et al., 2007; Scholz et al., 2009). The geochemical signature of fluids indicate 

that some component originated in the igneous basement (Hensen et al., 2007), suggesting that faults 

reach though the sedimentary sequence down to the basement. To keep those pathways open, faults have 

to be active. 

 

The Mio-Quaternary sedimentary prism of the Gulf of Cadiz was initially emplaced as part of the 

Gibraltar orogenic arc. The sediments are extensively folded and faulted as a consequence of tectonic 

activity in the region, with the central part being an accretionary wedge (Fig. 2.1). It is currently debated 

whether subduction is still active (e.g., Gutscher et al., 2002) or whether the westward motion of the 

wedge is at present related to the transpressive Eurasia-Africa plate boundary (e.g., Zitellini et al., 2009). 

Heat flow data over the accretionary prism of the Gulf of Cadiz, however, support that the interpretation 

that subduction has largely ceased (Grevemeyer et al., 2009). 

 

Heat flow data from the Iberia margin, the Gulf of Cadiz, Horesshoe Abyssal Plain and the eastern 

Atlantic ocean show an unusual large scatter. Values of 45 mW/m2 have been measured over the NW 

Iberian Margin Ocean Drilling Program (ODP) drilling transect (Louden et al., 1997) and similar values 



Seismic hazards SW of Portugal – cruises POS430, POS440, POS460 & POS467 

 7 

 
 
Fig 2.2. Heat flow anomalies(colored circles) to the west of Portugal and Morocco (for simplicity, 
anomalies are depth coded: red > 58 mW/m

2
; green >58 to >48 mW/m

2
; blue <48 mW/m

2
). Black 

dots are earthquake epicenters. 

would be expected across the Horseshoe Abyssal Plain, because it belongs to the same geological 

province (Rovere et al., 2004; Müller et al., 2008). However, previous work in the Horseshoe Abyssal 

Plain and to the north of Coral Patch Ridge revealed much higher heat flow values of about 60 mW/m2 

(Grevemeyer et al., 2009; unpublished data from SO175). Further west, the values decrease again to much 

lower heat flow (<40 mW/m2) over Mesozoic oceanic crust (Fig. 2.2; red > 58 mW/m2; green >58 to >48 

mW/m2; blue <48 mW/m2) where the age and nature of the crust is well constrained by seafloor 

spreading anomalies (e.g. Müller et al., 2008). One explanation for the high heat flow values measured 

over the eastern Horseshoe Abyssal Plain is that widespread tectonic activity caused the mantle to fracture 

– consistent with the occurrence of numerous earthquakes – facilitating fluid migration to reach mantle 

and hence cause its serpentinization. Serpentinization is supported by low mantle velocities under the 

Horeshoe abyssal plain (Rovere et al., 2004; Martinez-Loriente et al., 2014). Serpentinization, however, is 

an exothermic reaction, and the additional heat (compared to regional values of ~45mW/m2) may explain 

the observed anomaly (Fig. 2.2). This phenomenon is documented at the Central Indian Ocean diffuse 

plate boundary (Delescluse and Chamot-Rooke, 2008). In cooperation with H. Villinger (Univ. Bremen) 

thermal models were calculated to assess the temperature structure of the lithosphere. Temperature versus 

depth for a lithosphere with 45 mW/m2 indicates a temperature of 600°C at a depth of 50 km, while a 

surface heat flow of 60 mW/m2 with serpentinization at mantle depth suggest that 600°C is reached at 35-

40 km (Fig. 2.3). These calculations provide important constraints on the depth distribution of seismicity 

and the maximum depth of the seismogenic layer as earthquakes in the oceanic lithosphere are inherently 

related to temperatures < 600°C (e.g., McKenzie et al., 2005). 

 

Based on global travel time data the best available constraints on the source depth of earthquakes in the 

Horseshoe Abyssal Plain are reported in the EHB catalogue (Engdahl et al., 1998). The EHB catalogue 

(including recent updates) suggest that earthquakes under the Horseshoe abyssal plain occur at 15 to 45 
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Fig. 2.3: Thermal model calculated for the Horseshoe abyssal plain. Note, seismogenic rupture is 
related to temperatures <600°C in the oceanic lithosphere (courtesy H. Villinger, Univ. Bremen).  

km depth. The largest earthquake in the Horseshoe abyssal plain was the Mw=7.9 1969 earthquake, 

occurring at 33 km. 

 

A deployment of 24 ocean bottom seismometers in the Tagus and Horseshoe Abyssal Plain and the Gulf 

of Cadiz (average station separation ~50 km) of the EU-NEAREST project provided events much deeper 

at 40-60 km (Geissler et al., 2010). Geissler et al. (2010) suggested in their paper that this depth in 

consistent with the thermal state of a 140 Myr old lithosphere. However, considering measured data, we 

were able to show that their depth estimates clearly contradicts thermal models for the area (even the 

model calculated for “normal” heat flow without serpentinization – see Fig. 2.3). It is likely that the depth 

reported by Geissel et al. (2010) is strongly biased by the velocity model that has been used by the 

authors. The model is based on seismic refraction data from an onshore/offshore experiment in southern 

Portugal. However, recording of marine shots was facilitated just by land stations without any offshore 

seismometers (Gonzalez et al., 1996). Geissler et al. (2010) used a 16 km thick crust and fast mantle with 

velocities of 8.1-8.5 km/s (see supplementary material of Geissler et al., 2010). Under the Horseshoe 

abyssal plain, however, crust is only 4-5 km thick and mantle is with 7.4 km/s very slow (Rovere et al., 

2004; Martinez-Loriente et al., 2014; Valenti Sallares, pers. communication). Using a too fast mantle 

instead of a slow mantle will cause a too large depth of the hypocenters, even when formal errors are 

small. Unfortunately, it will be difficult to improve the velocity model based on the NEAREST data, as 

only a handful of stations where located in the Horseshoe abyssal plain itself and a station spacing of ~50 

km inherently limits the ability to resolve shallow earthquakes (depth<20-30 km) with small errors. 

 

In all cases the existing seismological data, even though associated with large errors, indicate that most 

events occur in the mantle and hence favour a seismically-driven mantle serpentinization model as 

supported by elevated heat flow. In contrast, most earthquakes reported worldwide occur in crustal rocks. 

The aim of the proposed work is to learn more about the seismic activity in the Horseshoe Abyssal Plain 

and to provide source parameters with small errors. This will be essential in relating centroid depth to the 

thermal structure and providing a more precise assessment of the maximum depth of earthquakes in the 

area. These information are critical to survey the seismic potential of the Horseshoe Abyssal Plain to cause 

large earthquakes, like the Great 1755 Lisbon earthquake. 
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2.3 The 2007 Horseshoe Fault Earthquake 

The largest earthquake observed that occurred since the M~7.9 1969 Horseshoe Abyssal Plain earthquake 

was the Mw=6.0 2007 Horseshoe Fault event (e.g., Stich et al., 2007). Teleseismic data can be used to 

constrain the rupture process and the hypocentral parameters of the event. High quality seismic waves 

were recorded by stations of the global broadband seismograph network, which enables a detailed 

characterization of the nucleating depth and rupture process using waveform inversion. Depth resolution 

results from the time separation between the direct P wave and the pP and sP phases; thus, waveforms are 

very sensitive to the time delay between the first arriving P wave and the later-arriving surface reflected 

phases. In this study, a sampling rate of 1 s is used, suggesting that depth resolution is limited because the 

minimum depth increment to be resolved by depth phases is for pP and sP on the order of 2 to 3 km 

(Kikuchi and Ishida, 1993). 

 

We used an iterative least-squares inversion (e.g., Kikuchi and Kanamori, 1991; Lefeldt and Grevemeyer, 

2007) of azimuthally distributed seismic P and SH body-wave signals from stations at distances of about 

30° to 90°, yielding the rupture mechanism, depth, and source time function. Waveforms are corrected for 

instrument responses to obtain displacement seismograms. The inversion assumes attenuation with a t* 

(travel time divided by average Q) of 1 s for P waves and 4 s for SH waves. The Green functions were 

computed for simple layered source and receiver structures connected by geometric spreading for a deeper 

ak135 Earth model (Kennett et al., 1995). The velocity structure at the source included a water layer 

overlying a half space with Vp=6.0 km/s, Vs=3.55 km/s and =2.67 g/cm3. The source was fixed at the 

epicentre of Stich et al. (2007) (Fig. 2.5).  

 

 
Fig. 2.4: Teleseismic waveform inversion of the Mw=6.0 2007 Horseshoe abyssal plain 
earthquake, indicating a centroid at 38 +/- 4 km. 
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For the inversion, 19 P waves and 5 SH waves that provided waveforms were chosen (Fig. 2.4). The 

mechanism indicated dip-slip motion and a centroid depth (depth where the maximum of seismic moment 

was released) of 38 +/- 4 km (Fig. 2.4) and hence near the lower limit of the thermal estimate for the 

seismogenic layer in the Horseshoe Abyssal Plain, but much shallow than estimated in the NEAREST 

experiment (see 2.2 for more information). 

 

2.4 Goals 

The largest historic earthquake that ever hit Europe was the Great Lisbon earthquake of 1755, causing a 

great tsunami. Its source location is still under debate. Our monitoring efforts conducted to the SW of 

Portugal will help to improve estimates for the seismogenic potential of both the Gorringe Bank and the 

Horseshoe Abyssal Plain. Both settings are potential source areas of the Lisbon earthquake. The size of an 

earthquake is inherently related to the size of a fault zone. Thus, larger earthquakes require larger fault 

plains. The down-dip limit of faulting in oceanic lithosphere (or in the case of the Horseshoe Abyssal 

Plain perhaps continental mantle) is believed to be related to the temperature structure (e.g., McKenzie et 

al., 2005). Existing estimates suggest that faulting should be restricted to a depth of <35-40 km. However, 

seismic estimates show a large scatter, with different approaches defining different depth intervals (e.g., 

EHB indicates events < 45 km; waveform inversion of the Mw=6.0 Horseshoe earthquake indicates 35-40 

km; in contrast, Geissler et al. (2010) suggests 40-60 km). Unfortunately, the only existing local 

deployment of the NEAREST experiment is limited in its ability to resolve the maximum depth, as the 

station separation of marine deployments was too large and the network provided a too small number of 

stations in the Horseshoe Abyssal Plain itself to jointly invert data for source depth and earthquake 

location. Further, during the NEAREST experiment a large number of OBS lost its time base, required for 

precise estimates of hypocentral parameters. We therefore decided to operate networks of densely spaced 

OBS to supplement the NEAREST network by OBS spaced at <20 km that will provided hypocentres at 

with much smaller location uncertainties. 

 

The two deployments are going to address a number of goals and objectives: 

 

1. Characterization of the minimum and maximum depth of local earthquakes 

Precise estimates of earthquake locations (both in Lon/Lat and depth) will allow us to approximate the 

thickness of the seismogenic layer. In turn, this has important implications for the rheology and 

mechanical behavior of the lithosphere. 

 

2. Defining frequency-magnitude relationship for Horseshoe earthquakes 

The so called b-value can be used to understand and survey the frequency-size distribution of earthquakes. 

In the case of wide-spread serpentinization, a high b-value of 2 or larger might be expected, as found for 

bending-related earthquakes in the trench-outer rise of subduction zones (Lefeldt et al., 2009). A b-value 

of 1 would indicate normal conditions. 

 

2. Characterization of the seismic velocity structure of the Horseshoe Abyssal Plain using P- and S-waves 

A large number of local earthquakes recorded on a local network can be used to invert the travel time data 

jointly for earthquake location and a so called minimum 1-D velocity model. If the number of local events 

is large enough, a 3-D velocity structure can be derived. Right now, existing active source data could not 

penetrate deeper than ~11 to 13 km (Rovere et al., 2004; Martinez-Loriente et al., 2014) and are limited in 

their ability to derive S-wave velocities. However, using P- and S-wave arrival times of local earthquakes 

the velocity structure can be resolved at larger depth, as earthquakes nucleate at least down to 35-40 km, 

as indicated by the Mw=6.0 Horseshoe earthquake. The Vp/Vs ratio is important for assessing the amount 

of serpentinization. 

 

3. Surveying the relationship between maximum depth of seismic activity and thermal structure 
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Previous estimates for oceanic lithosphere suggest that faulting is limited to temperatures of <600°C. It 

has been proposed that the rocks underlying the Horseshoe Abyssal Plain are unroofed continental 

lithosphere. Does this relationship also applies for continental mantle? 

 

4. Estimation of the strength of the lithosphere in the Horseshoe Abyssal Plain to assess the seismic 

hazard of a future large earthquake 

The assessment of the b-value and the Vp/Vs ratio will provide a first assessment for the rheology and of a 

strong or weak mantle. The strength of the host rock is important for the frictional properties of a fault 

zone. In addition to the size (define by the thickness of the seismogenic layer and the length of a fault) the 

frictional behavior will govern the seismic moment of a future earthquake. 

 

5. Using focal mechanism to define fault segments 

Seismic reflection data revealed a number of fault zones in the Horseshoe abyssal plain. Focal 

mechanisms can be used to assess motion of these faults. 

 

6. Earthquake activity and seepage 

In the vicinity of the Horseshoe faults seepage and mud volcanoes were observed. It is likely that seepage 

will occur over active faults. The densely spaced OBS network might be able to located some local 

earthquakes or clusters of events that are related to faults governing fluid migration. 

 

 
 
Fig. 2.5. Location map of the seismic network in the Horseshoe Abyssl Plain. Red dots are 
earthquakes reported in the EHB catalogue and yellow star marks the Mw=6.0 2007 earthquake 
at the USGS epicentre. 
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3. Sea-going programme 
 

3.1 RV Poseidon cruise POS430 

Port calls: La-Seyne-sur-Mer, France (7. April 2012) 

  Portimao, Portugal (14. April 2012) 

Captain: Matthias Günther 

Chief-Ing.: Hans-OttoStange 

Chiefmate: Theo Griese 

 

3.1.1 Narrative of the Cruise POS430 

Poseidon left the harbour of La Seyne sur Mer, France on Easter Saturday the 7
th
 of April 2012 at 18:40 

local time. Due to strong northwesterly winds of 9-10 Bft and waves with a height of up to 7 m Poseidon 

had to face very rough condition during its first day at sea. In the afternoon of Easter Sunday 8
th
 of April 

the condition improved after Poseidon left the area where the Mistral and winds from the Pyrenees 

affected forcefully the sea state. Around noon on April 9 Poseidon passed the Balearic Island of Ibiza. On 

10
th
 of April at about 10 a.m. Poseidon sailed around the Carbo de Gata and entered the Alboran Sea. 

Strong head winds of 7 to 9 Bft and heavy waves slowed down the vessel. After lunch time on 11
th
 of 

April conditions improved and Poseidon passed Gibraltar on 17:00 local time, entering the Atlantic ocean 

at approx. 20:00 local time. In the beginning of Thursday 12
th
 of April weather conditions in the Gulf of 

Cadiz were fine, however, approaching the deployment area wind speed increased again and reached state 

7 to 8 Bft. At Thursday night at 22:58 local time (21:58 UTC) the first ocean-bottom-seismometer (OBS), 

station OBS01, was deployed (Fig. 3.2). Deployment continued for the next 19 hours, deploying in total 

14 OBS in the Horseshoe Abysal Plain. Wind speed slowed down to 5 to 6 Bft. The last station, OBS14, 

was deployed at 6.09 p.m. on Friday 13
th
 of April 2012. Thereafter, Poseidon headed towards Portimao, 

reaching the Portuguese port in the morning of 14
th
 of April 2012. At 9:40 Poseidon was safe at the pier. 

 

Fig. 3.1. Track chart of cruise POS430, La-Seyne-sur-Mer to Portimao. 
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3.1.2 Cruise participants POS430 

 
Name Discipline Institution 

   
Grevemeyer, Ingo, chief scientist OBS GEOMAR 
Lieser, Kathrin, scientist OBS GEOMAR 
Möller, Stefan, scientist OBS GEOMAR 
   
 
GEOMAR 
 

 
Helmholtz Zentrum für Meeresforschung Kiel, 
Wischhofstraße 1-3,  
24148 Kiel 
Germany 

 

 
 

 
 
Fig. 3.2 . Network of ocean bottom seismometers (OBS) deployed in the Horseshoe Abyssal Plain and 
across the Horseshoe Fault, recording local earthquakes over six month. 
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3.2 RV Poseidon cruise POS440 

Port calls: Lisbon, Portugal (12. October 2012) 

  Faro, Portugal (19. October 2012) 

Captain: Bernhard Windscheid 

Chief-Ing.: Kurre Kröger 

Chiefmate: Theo Griese 

 

 

3.2.1 Narrative of the Cruise POS440 

On Saturday 13
th
 October 2012 Poseidon left the harbour of Lisbon, Portugal at 07:56 local time. Due to 

excellent weather conditions and north-westerly winds of 3-4 Bft the vessel steamed quickly south, 

passing Cabo Sao Vincente in the afternoon, reaching the first OBS location in the early morning of 

Sunday the 14
th
 of October. The station, namely OBS04 deployed during Poseidon cruise POS430 in April 

(Fig. 3.2), was released at 7:00 local time (or 6:00 UTC) at still perfect weather conditions with a 

moderate Atlantic swell. 68 minutes later the OBS surfaced and was recovered 15 minutes later. During 

the first day in total 6 OBS were recovered, the last station, OBS05, was released at 16:46 local time, 

surfaced at 17:57 and was recovered at 18:08. For the night the recovery was suspended. On the night to 

Monday the 15
th
 of October the wind increased to 5-6 Bft, proving relatively rough conditions in the 

morning. However, during the day conditions improved and the wind was just 2-4 Bft during the day. On 

Monday the first instrument, OBS10, was released at 8:06 local time. The instrument surfaced roughly one 

 
Fig. 3.3. Track chart of cruise POS440, Lisbon to Faro. 
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hour later at 9:08 and was recovered at 9:19 local time. Over the next hours in total 5 OBS were 

recovered. The last station, OBS 12, was recovered at 17:17 local time and operations were again 

suspended for the night. During Tuesday the 16
th
 of October weather was well again, but a longwave 

lengths swell occurred. At 8:08 the first instrument, OBS11, was released. Based on its radio signal we 

know that the station surfaced at 9:15 local time. However, we were not able to detect the instrument 

visually. Only after roughly half an hour we were able to catch the OBS by eye. At 9:51 local time the 

OBS was recovered. During the morning some decks work required operation of the large crane. This was 

only possible on a NNW trending course. At 11:30 crane operation was finished and the next instrument, 

OBS13, was released at 2:18 local time. The last seismic monitoring station, OBS14, surfaced at 13:24 

and was recovered at 13:43 local time. Thus, all 14 OBS deployed during the cruise POS430 in April were 

successfully recovered. 

 

Due to the unexpectedly excellent weather conditions we could finish our main program much earlier than 

expected. Poseidon run a number of mapping profiles and started at 10 a.m. on Wednesday the 17th of 

October its transit towards Faro. During the transit a low pressure system over the Bay of Biscay brought 

rough sea and rain, luckily all OBS were safe on deck. Poseidon reached the pilot station in the morning 

hours of Thursday 18
th
 of October, waiting for high tide to reach port. At 10:30 local time Poseidon met 

the pilot and was at 11:35 safe at the pier. A successful cruise ended. 

 

3.2.2 Cruise participants POS440 

Name Discipline Institution 

   

Grevemeyer, Ingo, chief scientist OBS GEOMAR 
Steffen, Kaus-Peter, technician OBS GEOMAR 
Möller, Stefan, scientist OBS GEOMAR 
Corela, Carlos Jorge Caetano  OBS IDL 
   

 
GEOMAR 
 
 
 
 
IDL 
 

 
Helmholtz Zentrum für Meeresforschung Kiel, 
Wischhofstraße 1-3,  
24148 Kiel 
Germany 
 
Instituto D. Luiz  
Campo Grande, Ed. C8, piso 3  
1749-016 Lisboa,  
Portugal 
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3.3 RV Poseidon cruise POS460 

Port calls: Funchal, Madeira, Portugal (5. October 2013) 

  Portimao, Portugal (14. October 2013) 

Captain: Bernhard Windscheid 

Chief-Ing.: Hans-Otto Stange 

Chiefmate: Dirk Thürsam 

 

3.3.1 Narrative of the Cruise POS460 

The research vessel Poseidon left the port of Funchal, Madeira on Saturday 5
th
 of October 2013 at 09:00 

local time. Facing good weather conditions and winds of 3-5 Bft Poseidon steamed northward sailing 

towards the Gorringe Bank to the southwest of Cabo Sao Vincente, the southwesternmost point of 

Portugal. On Monday 7
th
 of October 2013 we reached the working area, deploying the first ocean bottom 

seismometer (OBS) at 8:20 local time (7:20 UTC) to the southwest of Gorringe Bank (Fig. 3.5). Over the 

next five days we deployed in total 15 OBS in the working area, covering the Gorringe Bank and the 

westernmost portion of the Horseshoe Abyssal Plain, recording continuously local earthquake until the 

network will be recovered during the cruise POS467 of Poseidon. The last OBS was deployed on Friday 

the 11
th
 of October at 9:10 local time. Until Sunday morning some mapping was carried out over the 

Gorringe Bank. On Sunday the 13
th
 of October at 8 a.m. local time Poseidon started its transit towards the 

Portuguese port of Portimao. On Monday 14
th
 of October at 9:15 a.m. local time Poseidon met the pilot 

and arrived at the pier at 9:45. 

 

 
 
Figure 3.4. Track chart of cruise POS460, Funchal, Madeira to Portimao. 
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3.3.2 Cruise participants POS460 

 

Name Discipline Institution 

   

Grevemeyer, Ingo, chief scientist OBS GEOMAR 
Lange, Dietrich, scientist OBS GEOMAR 
Schröder, Patrick, technician OBS GEOMAR 
   

 
GEOMAR 
 
 
 

 
Helmholtz Zentrum für Meeresforschung Kiel, 
Wischhofstraße 1-3,  
24148 Kiel 
Germany 
 

 

 

 

 

Fig. 3.5. Network of 15 ocean bottom seismometers (OBS) deployed during Poseidon cruise P460. OBS 
were deployed over the Gorringe Bank and in the Horseshoe Abyssal Plain, recording local earthquakes 
over six month. 
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3.4 RV Poseidon cruise POS467 

Port calls: Funchal, Madeira, Portugal (21. March 2014) 

  Portimao, Portugal (27. March 2014) 

Captain: Matthias Günther 

Chief-Ing.: Hans-Otto Stange 

Chiefmate: Theo Griese 

 

3.4.1 Narrative of the Cruise POS465 

On Friday 21
st
 of March 2014 the research vessel Poseidon left the port of Funchal at 09:00 local time, 

aiming to recover ocean-bottom-seismometers (OBS) deployed during the cruise POS460 in autumn of 

2013 at the Gorringe Bank to the SW of Portugal (Fig. 3.5). During the transit to the Gorrigne Back we 

had very good conditions, sunny weather and winds of 3-5 Bft. After a transit of about two days Poseidon 

reach the first OBS location. At 7:05 a.m. local time (UTC) on the 23
rd

 of March we sent the first release 

command, calling OBS01 back to the surface. About one hour later, the OBS surfaced at 8:07 and only 11 

minutes later the OBS was recovered and on deck. During the 23
rd

 we recovered four OBS (OBS01 to 

OBS04). During night times, the recovery was suspended. Weather conditions during the recovery were 

fair, with winds of up to 7 Bft and waves of up to 5.5 m. However, deck’s operations were hardly affected 

by the weather. On the 24
th
 of March the same procedure followed, recovering OBS05 at 8:18, and three 

additional stations over the next hours until darkness approached. On the 25
th
 of March OBS09 to OBS12 

were recovered. OBS12 was safely back on deck at 5:36 p.m. The last three remaining OBS were planned 

to be recovered on the 26
th
 of March. At 9:47 OBS13 was on deck and OBS 14 was recovered at 13:16. At 

3:24 p.m. we tried releasing OBS15. Unfortunately, we neither received any answer from it nor did the 

OBS surface. We remained at the site for about 3 hours and tried to release it a number of times. At 18:30 

we had to stop the recovery operation and began our transit towards Portimao. On Thursday the 27
th
 of 

March 2015 Poseidon reached the port of Portimao on the Algarve coast. 

 
3.4.2 Cruise participants POS467 

 

Name Discipline Institution 

   

Grevemeyer, Ingo, chief scientist OBS GEOMAR 
Lange, Dietrich, scientist OBS GEOMAR 
Schröder, Patrick, technician OBS GEOMAR 
Schippkus, Sven, student OBS CAU 
   

 
GEOMAR 
 
 
 
 
CAU 

 
Helmholtz Zentrum für Meeresforschung Kiel, 
Wischhofstraße 1-3,  
24148 Kiel 
Germany 
 
Institut für Geowissenschaften, Christian-Albrechts Universität Kiel, 
Otto Hahn Platz, 24108 Kiel, Germany 
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Figure 3.6. Track chart of cruise POS467, Funchal, Madeira to Portimao. 
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4. Scientific equipment – Ocean Bottom Seismometers 

 
GEOMAR operates Ocean Bottom Hydrophones (OBH) since January 1992. This type of instrument has 

proved to have a high reliability; more than 4500 successful deployments were conducted since 1992. For 

both deployments, 14 to 15 short period OBS were available. Thus, in total 29 stations provided long-

term earthquake monitoring data for about 6 month from the Horseshoe Abyssal Plain and the Gorringe 

Bank. 

 

The OBS are a joint GEOMAR and KUM GmbH design for long-term seismological observations. 

Syntactic foam is used as floatation body (Fig. 4.1). The release transponder is a model K/MT562 made 

by KUM GmbH. The recording unit is hosted in a titanium pressure tube. Seismic sleuth are recorded by a 

hydrophone and a seismometer. The hydrophone is either an E-2PD hydrophone from OAS Inc. or a HTI-

01-PCA hydrophone from HIGH TECH Inc. The sensitive seismometer is deployed between the anchor 

and the OBS frame, which allows good coupling with the seafloor. Geophones used for the OBS (Figure 

4.1) had a natural frequency of 4.5 Hz. The three component seismometers from KUM GmbH are housed 

in a titanium tube, modified from a package built by Tim Owen (Cambridge). The signal of the sensors is 

recorded using Marine Longtime Seismocorder (MLS) or Marine Tsunameter Seismocorder (MTS), which 

were manufactured by SEND GmbH and specially designed for long-time recordings of low frequency 

bands. 

 

During the deployment on the seafloor the entire system rests horizontally on the anchor frame (Fig. 4.1). 

After releasing its anchor weight, however, the instrument turns 90° into the vertical and ascends to the 

surface with the floatation on top (Fig. 4.2). This ensures a maximally reduced system height and water 

current sensibility during deployment. Further, the sensors are well protected against damage during 

recovery and the transponder is kept under water, allowing permanent ranging, while the instrument floats 

at the surface.  

 

 
 

Figure 4.1 Short period OBS with 4.5 Hz seismometer before deployment from RV Poseidon 
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Table 4.1. Performance of seismic recorders. 

 

 

 
 
Figure 4.2 OBS floating at the sea-surface before recovery 
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5. Data quality and first results 
 

5.1 Horesshoe Abyssal Plain (HASP) deployment 

5.1.1 Local earthquakes in the HASP 

The seismological network in the Horseshoe Abyssal Plain was operated between 14
th
 of April 2012 and 

the 16
th
 of October 2012 and hence over a period of about 6 month. The network was installed in the 

vicinity of the Horseshoe fault and cross cutting SWIM faults (Fig. 5.1.). Raw data stored on the recorders 

were converted to Pseudo-segy or PASSCAL-Segy format of IRIS using SEND software. To generate 

more manageable files sizes and for applying time corrections, the files were cut into 25 hours records 

with one hour overlap between adjacent records, such that each record generally begins at 0:00:01. For all 

stations timing errors of the internal clock against GPS time were corrected. 

 

 

Figure 5.1. Main structural features identified in the Gulf of Cadiz (Zitellini et al., 2009). 

 

To detect automatically seismic events in the daily records a short-term-average versus a long-term-

average (STA/LTA) trigger algorithm was applied. The code used was REFTRIG from the IRIS 

PASSCAL program library. The trigger parameters include the length of the short term (s) and long term 

(l) time window, the mean removal window length (m), the trigger (t) and detrigger ratio (d), minimum 

number of stations (S) and the network trigger time window length (M). The trigger parameters were 

applied to unfiltered vertical component data. To test the trigger parameters a continuous 24 hours data 

stream of all stations is visually checked. Moreover, we tested the parameters for a number of days and 

transferred the data into the SEISAN package used to analyse and locate the local earthquakes. Applying 
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these trigger parameters we obtain less than ~10% false triggers and lose only those events that were 

recorded only on very few stations, while all major events are triggered. 

 

 
Fig. 5.2.Waveform example of a Ml=3.3 event recorded in the Horseshoe Abyssal Plain on 5

th
 of July 

2012, occurring at 56 km depth. 

 

After finding event triggers, the events were cut from the 25 hours files and stored into subdirectories, one 

per event. Because we are investigating local earthquakes the appropriate time window length for the 

events is 3 minutes, starting 30 s prior to trigger time. The SEGY traces in the event directories are 

converted first into SAC, and then into MSEED waveform format, which makes it possible to store all 

traces associated with an event into a single waveform file. After conversion the data are registered into a 
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SEISAN database (Havskov and Ottemöller, 2005). P-wave and S-wave arrival times are picked and 

events are located using the non-linear probabilistic location procedure NonLinLoc of Lomax et al. 

 

 
Fig. 5.3. Waveform example of a Ml=2.2 event recorded in the Horseshoe Abyssal Plain on 9th of July 
2012, rupturing at 46 km. 

 

(2000). Travel times are calculated using a 1-D velocity model base on the work of Martinez-Loriente et 

al. (2014). The velocity model consists of a number of layers, including sedimentary layers with velocities 

of 1.6 km/s to 3.8 km/s and a total thickness of 4 km. Below, velocities increase gradually from 5 km/s to 

7.4 km/s over 4 km. Below 10 km a half space with upper mantle velocities of 8.0 km/s occurs. We used 

different parametrizations of the Martinez-Loriente et al. (2014) model to test its impact on hypocentre 

determination. However, re-locations were robust.  
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Figure 5.4. Earthquakes recorded with the offshore network in the vicinity of the Horseshoe Abyssal Plain. 
Earthquake magnitude scales with the size of the symbols (magnitude ~3.3 to 1.0); depth is coded by 
colour: blue < 10 km; green 10 km < z < 20 km, yellow 20 km < z < 30 km; orange 30 km < z < 40 km, red 
> 40 km. Light grey mark earthquakes were the gap was too large for a precise estimate of both epicentre 
and depth. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.5: Waditi Diagram, revealing a Vp/Vs 
ratio of 1.72 and hence indicating rather 
normal mantle conditions. 
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We detected 82 local earthquakes with good station coverage and at close distance to the network. The 

largest event with Ml=3.3 occurred on 5th of July 2012 at ~50 km depth. Waveform examples are given in 

Figure 5.2. Another example of a Ml=2.2 earthquake is given in Figure 5.3. To increase the coverage we 

did include permanent landstations from Portugal. Figure 5.3 shows all located earthquakes and onshore 

station included in the analysis. Additional stations at larger offsets are show as squares in Figure 1.1. 

 

 

 
Figure 5.6. Waveform example of an Ml=3.6 event at the Gorringe Bank recorded on 25

th
 of March 2014, 

while recovering the seismic network. 
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Earthquake epicentres correlate very weakly with any fault traces detected either in bathymetric data (like 

the SWIM faults) or in seismic reflection data. Thus, neither the NE-SW striking Horseshoe fault is 

outlines by increased levels of seismicity nor is the NNW-SSE striking SWIM 1 fault highlighted as a 

band of significant seismicity. However, some earthquakes occurring outside of the network in the vicinity 

of the Coral Patch Ridge may indicate activity of the SWIM faults. Due to the fact that the events occurred 

outside of the network any robust assessment is jeopardised by trade-offs between epicentral distances and 

source depth. 

 

Source depth for events within the network is well-defined. Most events occurred at a depth of 30 to 50 

km and hence within the mantle as the crust in the area occurs at <10 km below sea level (Martinez-

Loriente et al., 2014). Therefore, depth estimates are generally 10-15 km shallower then events reported 

by Geissler et al. (2010) for the same area. As discussed above (see chapter 2.2), the differences might be 

cause by the velocity model used by Geissler et al. (2010), which used a continental type velocity 

structure and thicker crust. Therefore, the maximum depth of seismic rupture occurs at ~50 km depth. 

Heat flow anomalies, however, would suggest that earthquakes in oceanic lithosphere should occur at 

temperature of <600°C and hence at <40 km. Earthquakes occurring at 50 km depth would suggest either 

that seismogenic rupture may occur at temperatures of >600°C or that heat flow anomalies are not caused 

in the mantle but at shallower level. For example, high values of radiogenic heat production of sediments 

flooring the Horseshoe Abyssal Plain could cause a higher surface heat flow. In this case lithospheric heat 

flow would be lower and hence could support faulting down to greater depth. In our initial models heat 

production has basically been neglected. Thus, if sediments accumulated in the Horseshoe Abyssal Plain 

would have a rather high heat production, for example reaching the highest values reported for some 

coastal provinces of Iberia (Fermandez et al., 1998), lithospheric heat flow could indeed be much lower 

and consequently earthquakes could occur at greater depth. This issue needs to be studied in much more 

detail.  

 

The Horseshoe Abyssal Plain belongs to the same province forming today the Iberia Abyssal Plain 

(Rovere et al., 2004) and thus might be composed of unroofed continental mantle. Based on seismic 

velocities it has been discussed that the mantle might be serpentinized (Rovere et al., 2004; Martinez-

Loriente et al., 2014). However, Wadati-diagrams indicate that Vp/Vs ratio is in the order of 1.72 (Fig. 

5.5) and hence support normal mantle conditions; serpentinized mantle should have high Vp/Vs ratios of 

1.9 to 2.2. Therefore, reduced P-wave velocity of the mantle might be caused by fracturing and faulting 

rather than alteration of peridotites.  

 

 

5.2 Gorringe Bank depolyment 

5.2.1 Local earthquakes at the Gorringe Bank 

The seismological network at the Gorringe Bank was operated between 8
th
 of October 2013and 25

th
 of 

March 2014, monitoring seismicity in an area that has been discussed being the source of the Great Lisbon 

earthquake (Johnston, 1996). The data were analyses as described in 5.1.1. Surprisingly, only about 50 

local earthquakes could be detected and only four additional events have been recorded that were not 

detected by the Portuguese seismic network. The largest event recorded had a magnitude of 3.6 and 

occurred while the seismic network was recovered (Fig. 5.6). For the location procedure we used two 

different velocity-depth models based on the seismic P-wave velocity model of Martinez-Loriente et al. 

(2014). One model characterized the Horseshoe Abyssal Plain and the other the top of the Gorringe Bank. 

Overall, source locations show only shall changes both in the and epicentral location, indicating that most 

earthquakes occurred at a depth of 20 to 30 km and hence shallower than in the Horseshoe Abyssal plain.  

 

In map view the local earthquakes did not highlight any clear fault structures or preferred orientations 

(Fig. 5.7). Projected along the seismic profile and velocity model of Martinez-Loriente et al. (2014), we 
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could not identify any dipping fault or trend of faulting (Fig. 5.8). A very clear feature, however, is the 

fact that earthquakes at Gorringe Bank occurred at shallower depth compared to seismicity of the 

Horseshoe Abyssal Plain. However, both clusters of activity did not support a common feature, like a 

developing subduction thrust that has been previously discussed (Duarte et al., 2013). 

 

 

 

 

Figure 5.7. Earthquakes recorded with the network deployed at the Gorringe Bank. The dataset has been 
complemented by data from the onshore stations. Earthquake magnitude scales with the size of the 
symbols (magnitude ~3.6 to 1.5); depth is coded by colour: blue < 10 km; green 10 km < z < 20 km, yellow 
20 km < z < 30 km; orange 30 km < z < 40 km, red > 40 km. Light grey mark earthquakes were the gap 
was too large for a precise estimate of both epicentre and depth. Yellow star is the epicenter of the 
Mw=6.0 Horseshoe earthquake. 

 

 

5.3 Discussion – Assessment of goals 

The data and data analyses presented in this report are based on a first assessment of the data, which are 

currently analyzed in much more detail. However, based on the results present we like to briefly discuss 

the results and observed features with respect to the goals of the study introduced in chapter 2.4.  
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1. Characterization of the minimum and maximum depth of local earthquakes 

Precise estimates of earthquake locations (both in Lon/Lat and depth) will allow us to approximate the 

thickness of the seismogenic layer. In turn, this has important implications for the rheology and 

mechanical behavior of the lithosphere. 

Both deployments provided a number of well-located earthquakes that will allow us to characterize with 

high precision hypocentral parameters. We believe, however, that features found so far are robust enough 

to indicate that faulting in the Horseshoe Abyssal Plain extends far down into the mantle and that the 

mantle is strong enough to support a large single fault plain that could produce a 1755 Lisbon-like 

earthquake.  

 

 
Figure 5.8. Earthquakes (+/- 30 km off the profile) projected onto the seismic profile of Martinez-Loriente 
et al. (2014).For location see profile AA’ in Figs. 5.4 + 5.7. Events plotted in blue are from the Gorringe 
Bank deployment, red indicates events from the Horseshoe Abyssal Plain deployment and yellow star is 
the hypocentre of the Mw=6.0 2007 Horseshoe Earthquake. 
 

2. Defining frequency-magnitude relationship for Horseshoe earthquakes 

The so called b-value can be used to understand and survey the frequency-size distribution of 

earthquakes. In the case of wide-spread serpentinization, a high b-value of >~2 might be expected, as 

found for bending-related earthquakes in the trench-outer rise of subduction zones (Lefeldt et al., 2009). A 

b-value of ~1 would indicate normal conditions. 

Robust statistical parameters have not been defined yet. However, even the relatively small number of 

earthquakes can be used to provide an initial assessment of the b-values. Preliminary calculations indicate 

low b-values in the order of 0.5 to 0.6 for both networks. 

 

3. Characterization of the seismic velocity structure of the Horseshoe Abyssal Plain using P- and S-waves 

A large number of local earthquakes recorded on a local network can be used to invert the travel time 

data jointly for earthquake location and a so called minimum 1-D velocity model. If the number of local 

events is large enough, a 3-D velocity structure can be derived. Right now, existing active source data 

could not penetrate deeper than ~11 to 13 km and are limited in their ability to derive S-wave velocities. 

However, using P- and S-wave arrival times of local earthquakes the velocity structure can be resolved at 
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larger depth, as earthquakes nucleate at least down to 35-40 km, as indicated by the Mw=6.0 Horseshoe 

earthquake. The Vp/Vs ratio is important for assessing the amount of serpentinization. 

The number of earthquakes detected during both deployments was much smaller than expected. It might 

therefore be difficult to derive a robust and well-resolved reference or minimum 1D model. However, 

Wadati-diagrams can be used to provide an initial assessment of Vp/Vs ratios (see Fig. 5.5). 

  

4. Surveying the relationship between maximum depth of seismic activity and thermal structure 

Previous estimates for oceanic lithosphere suggest that faulting is limited to temperatures of <600°C. It 

has been proposed that the rocks underlying the Horseshoe Abyssal Plain are unroofed continental 

lithosphere. Does this relationship also apply for continental mantle? 

We briefly discussed this issue in section 5.1.1. The source depth of earthquakes down to 50 km would 

correspond to a surface heat flow of 45 mW/m2. However, surface heat flow was in the order of 60 

mW/m2 and hence would suggest that earthquakes either occur at temperatures >600 °C or that thermal 

models are inaccurate. Therefore, we need to survey realistic thermal parameters more carefully as some 

sediments derived from Iberia were reported having rather high heat production values, which could 

explain the observe d bias.  

  

5. Estimation of the strength of the lithosphere in the Horseshoe Abyssal Plain  to assess the seismic 

hazard of a future large earthquake 

The assessment of the b-value and the Vp/Vs ratio will provide a first assessment for the rheology and of a 

strong or weak mantle. The strength of the host rock is important for the frictional properties of a fault 

zone. In addition to the size (define by the thickness of the seismogenic layer and the length of a fault) the 

frictional behavior will govern the seismic moment of a future earthquake. 

Indeed, the mantle in the Horseshoe Abyssal Plain seems to be strong enough to support earthquakes 

down to 50 km, supporting a strong mantle and the potential for large (M~7) to great (M~8) future 

earthquakes. 

 

6. Using focal mechanism to define fault segments 

Seismic reflection data revealed a number of fault zones in the Horseshoe abyssal plain. Focal 

mechanisms can be used to assess motion of these faults. 

Initial focal mechanisms were calculated using first motions polarities of the OBS data (Fig. 5.4 + 5.7). 

However, additional polarities from land seismometers have to be included to support focal mechanisms. 

 

7. Earthquake activity and seepage 

In the vicinity of the Horseshoe faults seepage and mud volcanoes were observed. It is likely that seepage 

will occur over active faults. The densely spaced OBS network might be able to located some local 

earthquakes or clusters of events that are related to faults governing fluid migration. 

Unfortunately, the number of earthquake along SWIM faults is much too small and events did not cluster 

at locations of seepage to support a relationship been seismicity and fluid migration. However, the 

monitoring period might have been too short considering the small b-values of <1 to study such a 

relationships. 
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Appendix I 

 

8.1 – Station List Horesshoe Abyssal Plain deployment 
 

Station name  Latitude  Longitude  Water depth [m] 

OBS01  35° 53,31' N  10° 48,68' W   4815 

OBS02  35° 59,90' N  10° 42,25' W   4828 

OBS03  36° 5,78' N  10° 35,84' W   4799 

OBS04  36° 11,99' N  10° 29,34' W   4796 

OBS05  36° 0,56' N  10° 28,21' W   4794 

OBS06  35° 54,40' N  10° 34,64' W   4790 

OBS07  35° 42,99' N  10° 33,45' W   4804 

OBS08  35° 49,20' N  10° 26,95' W   4804 

OBS09  35° 55,42' N  10° 20,55' W   4802 

OBS10  36° 1,56' N  10° 14,13' W   4837 

OBS11  35° 50,16' N  10° 12,88' W   4643 

OBS12  35° 43,96' N  10° 19,33' W   4524 

OBS13  35° 52,07' N  10° 2,99' W   4570 

OBS14  35° 55,77' N  9° 54,11' W   4500 
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Appendix II 

 

8.2 – Station List Gorringe Bank deployment 

 
Station  Latitude  Longitude Water depth [m] comment 

OBS01 36° 19.14' N  12° 19,20' W  3876 

OBS02 36° 30.00' N  12° 00.00' W  2970 

OBS03 36° 40.81' N  11° 40.70' W  3258 

OBS04 36° 51.55' N  11° 21.36' W  3555 

OBS05 36° 50.20' N  10° 34.90' W  3083 

OBS06 36° 39.50' N  10° 54.40' W  2655 

OBS07 36° 28.80' N  11° 13.78 ' W  2848 

OBS08 36° 18.03' N  11° 33.10' W  2233 

OBS09 36° 07.16' N  11° 52.14' W  3491 

OBS10 35° 59.99' N  11° 29.98' W  4766 

OBS11 36° 10.81' N  11° 10.85' W  4561 

OBS12 36° 21.55' N  10° 51.62' W  4692 

OBS13 36° 32.27' N  10° 32.25' W  4349 

OBS14 36° 12.01' N  10° 30.01' W  4794 

OBS15 35° 48.99’ N  10° 40.02’ W  4757  lost at sea 
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