
Performance Monitoring of
Database Operations

Master’s Thesis

Christian Zirkelbach

July 26, 2015

Kiel University
Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring

M.Sc. Florian Fittkau

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Kiel,

Abstract

The complexity of software projects and related software systems advances and likewise the
quantity of data increases. Therefore within the area of software development, performance
engineering is a popular topic. This is usually connected to performance tuning of a
software system. Performance problems are often related to database operations, as
complex database queries challenge the software engineer to achieve efficiency.

In order to aid the process of analyzing performance problems, in the context of database
communication, it is useful to conduct a performance analysis focused on database state-
ments, which are executed by the software system. Most tools, which support a perfor-
mance analysis, cover just business operations, e.g., operation calls in Java. So seeking a
suitable tool for this purpose is challenging, as we focus on database communication and
software, which is freely-available.

In this thesis, we present an aspect-oriented approach for performance monitoring of
database operations, in order to support software engineers in conducting a performance
analysis. As we developed our monitoring approach in a generic manner, we allow several
monitoring tools to use our generated monitoring records as input data for posterior
analysis and visualization purposes. We verified the versatility of our monitoring approach
through the integration into Kieker Trace Diagnosis, a graphical user interface for displaying
program traces, followed by another tool, ExplorViz. As proof of concept, we investigated
the first usage of our developed software by evaluating the usability through a first
experiment based on a paper-based questionnaire in combination with our developed tool.
In our experiment, we observed positive feedback from our participants, which correlated
with the high average correctness rates of the results. Therefore, the experiment reveals that
our software has a bearing on conducting a performance analysis of database operations.
As we have validated the usability of our developed tool through our conducted experiment,
our software system is worthwhile to be extended in the future.

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Goals . 2
1.3 Document Structure . 4

2 Foundations and Technologies 5

2.1 Foundations . 5
2.1.1 Dynamic Analysis . 5
2.1.2 Reverse Engineering . 5
2.1.3 Performance Analysis . 7
2.1.4 Aspect-Oriented Programming . 7
2.1.5 Usability . 8
2.1.6 Usability Testing . 8
2.1.7 Usability and User Experience Questionnaires 9

2.2 Technologies and Tools . 9
2.2.1 JDBC . 9
2.2.2 AspectJ . 10
2.2.3 Kieker Monitoring Framework . 11
2.2.4 Instrumentation Record Language . 11
2.2.5 TeeTime . 12
2.2.6 JPetStore . 12
2.2.7 Kieker Trace Diagnosis . 12
2.2.8 ExplorViz . 13

3 Approach for Database Monitoring 15

4 Monitoring of Database Operations 17

4.1 Related SQL Relationships . 17
4.2 Generic Monitoring Approach . 19

4.2.1 Choosing an Instrumentation Technique 19
4.2.2 Concrete Instrumentation Approach . 21

5 Analysis of Database Records 23

5.1 Analysis Approach . 23
5.1.1 Generic Monitoring Record Processing 23
5.1.2 Specific Database Call Handling . 24

i

5.2 Integration into Kieker Trace Diagnosis . 26

6 Visualization of Database Records 27

6.1 Different View Options . 27
6.1.1 Dependency Graphs . 27
6.1.2 3D Software City Metaphor . 27
6.1.3 Call Tree Views . 29

6.2 Our Visualization Approach . 29
6.2.1 Statements . 30
6.2.2 Aggregated Statements . 31
6.2.3 Prepared Statements . 31

6.3 Integration into Kieker Trace Diagnosis . 32

7 Overview of our Implementation 33

7.1 Architecture . 33
7.1.1 Monitoring Component . 33
7.1.2 Analysis Component . 34
7.1.3 Visualization Component . 35

8 Monitoring Implementation 37

8.1 Instrumentation Utilizing AspectJ . 37
8.2 Monitoring Record Processing . 40
8.3 File Writing . 41

9 Analysis Implementation 45

9.1 Monitoring Record Classes . 46
9.1.1 DatabaseOperationCall . 46
9.1.2 AggregatedDatabaseOperationCall . 47
9.1.3 PreparedStatementCall . 48

9.2 DataModel . 49
9.3 Analysis Configuration . 49

9.3.1 Generic Monitoring Record Processing 50
9.3.2 Specific Database Call Handling . 52

10 Visualization Implementation 55

10.1 Architecture . 55
10.2 Statements . 56
10.3 Aggregated Statements . 57
10.4 Prepared Statements . 58

ii

11 Evaluation 61

11.1 Goals . 61
11.2 Methodology . 61
11.3 Usability Experiment . 62

11.3.1 Questionnaire . 62
11.3.2 Experimental Set-up . 65
11.3.3 Execution of the Experiment . 66
11.3.4 Results . 67
11.3.5 Discussion of Results . 69
11.3.6 Threats to Validity . 74

11.4 Summary . 75

12 Related Work 77

13 Conclusions and Future Work 79

13.1 Conclusions . 79
13.2 Future Work . 80

Bibliography 81

A Evaluation Description

B Raw Results

C Questionnaire

iii

List of Figures

1.1 Enriched performance issue detection workflow 2

2.1 Reverse engineering in comparison to forward engineering [Müller et al. 2000] 6
2.2 Example of an aspect weaver for image processing [Kiczales et al. 1997] . . . 8
2.3 Common JDBC driver types . 10
2.4 Overview of the framework components [Project 2013] 11
2.5 ExplorViz: Landscape and application level perspective [Florian Fittkau 2015] 14

3.1 Architecture of our software system as component diagram 16

4.1 Relationships between major classes and interfaces in the java.sql package
[Oracle 2011] . 18

4.2 The Javassist architecture [Chiba 1998] . 20
4.3 Monitoring components . 21

5.1 Analysis: Generic Monitoring Record Processing 24
5.2 Analysis: Specific Database Call Handling . 25

6.1 Generated operation dependency graph [Hasselbring 2011] 28
6.2 Software city metaphor based 3D visualization of JPetStore [Fittkau et al.

2013a] . 28
6.3 Call Tree View featured in Jinsight [De Pauw et al. 2002] 29
6.4 Mock-up View: Statements . 30
6.5 Mock-up View: Aggregated Statements . 31
6.6 Mock-up View: Prepared Statements . 32

7.1 Architecture of our implementation . 34

8.1 Main classes of our monitoring component . 38
8.2 Excerpt of related classes for the instrumentation of our monitoring component 39
8.3 Excerpt of related classes for record processing in our monitoring component 41
8.4 MonitoringAbstractEventRecord attributes . 42

9.1 Main components of our analysis component 45
9.2 Reduced class diagram of DatabaseOperationCall 46
9.3 Reduced class diagram of AggregatedDatabaseOperationCall 47
9.4 Reduced class diagram of PreparedStatementCall 48

v

9.5 Reduced class diagram of DataModel . 49
9.6 Reduced class diagram of DatabaseImportAnalysisConfiguration 50
9.7 Analysis: Generic Monitoring Record Processing 51
9.8 Analysis: Specific database call handling . 53

10.1 MVC architecture of our visualization implementation 56
10.2 Kieker Trace Diagnosis: navigation tree view screenshot 56
10.3 Kieker Trace Diagnosis: statement view screenshot 57
10.4 Kieker Trace Diagnosis: aggregated statement view screenshot 58
10.5 Kieker Trace Diagnosis: prepared statement view screenshot 58

11.1 Average correctness per question within the introduction part 71
11.2 Average correctness per question within the statements part 71
11.3 Average correctness per question within the aggregated statements part . . . 72
11.4 Average correctness per question within the prepared statements 73
11.5 Average rating of easy or good per question within the debriefing questions 74

vi

List of Tables

11.1 Description of the questions from the introduction part of our questionnaire 63
11.2 Description of the questions from the statements part of our questionnaire . 64
11.3 Description of the questions from the aggregated statements part of our

questionnaire . 64
11.4 Description of the questions from the prepared statements part of our ques-

tionnaire . 65
11.5 Description of the debriefing questions our questionnaire 65
11.6 Employed hardware configurations within the experiment 66
11.7 Results of the rated experiences within the personal information part 67
11.8 Results of the introduction part . 68
11.9 Results of the statements part . 68
11.10Results of the aggregated statements part . 68
11.11Results of the prepared statements part . 69
11.12Results of the debriefing questions part . 69

vii

Listings

8.1 monitoring-configuration.xml: instrumentation settings configuration 39
8.2 aop.xml: Configurating the monitoring scope 40
8.3 Excerpt of a monitoring log file using the Kieker format 42
8.4 Kieker record mapping definition . 43

ix

Chapter 1

Introduction

1.1 Motivation

The complexity of software projects and related software systems advances and likewise the
quantity of data increases. Therefore, within the area of software development, performance
engineering is a popular topic. This is often connected to performance tuning of a software
system. Ideally this aspect is handled during the development process in order to fix
occurring problems or bottlenecks in an early phase. It is also possible to perform this
work within the final phases or even afterwards of the development process, but it is not
recommended based on the experience of previous projects like Dynamod [van Hoorn et al.
2011]. Therefore, handling performance problems is an important task.

Performance problems are often related to database operations, regardless of whether
an object-relational mapping (ORM) framework, e.g., Hibernate,1 is used or not. When an
ORM framework is employed to handle database operations, it offers the developer an
easy-to-use mapping between program entities, e.g., objects in Java, and the database
layer. Although an object-relational mapping tool handles almost everything automatically,
there are sometimes still certain situations left, at which the developer has to make
important (design) decisions. And precisely this comprises a potential for typical errors,
like generating an unique primary key, even if it is unnecessary [Fowler 2002]. Another
example is the difference between several databases, which are addressed by the ORM.
Despite the fact, that a standard for employing the Structured Query Language [Oracle 2011]
(SQL) exists, database vendors like Oracle and IBM handle the implementation of the
standard quite different. This complicates the mapping process for the ORM and can lead
to performance issues.

In order to aid the process of analyzing performance problems, especially in the context
of database communication, it is useful to conduct a performance analysis focused on
database statements, which are executed by the software system. Most tools, which support
a performance analysis, cover just business operations, e.g., operation calls in Java. So
seeking a suitable tool for this purpose is challenging, because we focus on database
communication and software, which is freely-available. Therefore, we will develop an

1http://hibernate.org

1

appropriate approach and subsequently a tool, which is on the one hand specifically
developed for our purpose, and on the other hand as much generic and versatile as
possible. The latter two properties are important, hence other tools or frameworks may be
able to employ our approach. The following section describes our enriched goals, which are
derived from our intention to develop a performance analysis software regarding database
communication.

1.2 Goals

The main goal of our thesis is to design and implement a performance monitoring tool
for database operations. In this master’s thesis, the observed database communication
is focused on those connections, which use the Java Database Connectivity2 (JDBC) API.
Figure 1.1 is based on the common workflow of performance problem detection. More
precisely, the figure illustrates our enriched workflow towards detecting performance
problems, which are related to database operations. We describe the workflow in detail in
the following paragraph.

Development

Maintenance

Performance Problems
detected

Trace
Diagnosis

Monitoring of Business
Operations

Monitoring of Database
Operations

database suspected?released?

yes

no

yes

no

Figure 1.1. Enriched performance issue detection workflow

We address both common cases within the life-cycle of a software system. Either the
software is still in development, or it has been already released and is being maintained.
In both cases performance problems can occur. Although the detection of performance
problems within the development is possible, these are often recognized or spotted after
the release of the software. Common application performance monitoring (APM) tools
allow in many cases just to investigate business operations. As mentioned previously,
database operations are also a frequent cause for performance issues. Therefore, we will
provide a software system, which allows a developer to check the performance of database
operations within his software, in order to detect potential performance issues.

Our solution is composed of a monitoring component, which logs data of an instrumented
software system during its execution, an analysis component, which processes and filters

2http://www.oracle.com/technetwork/java/javase/jdbc/index.html

2

the recorded data, and a visualization component. The latter component allows the user
to handle the processed data, so he can analyze the database communication regarding
his software for performance issues. The analysis and visualization components will be
integrated into Kieker Trace Diagnosis, a graphical user interface for displaying program
traces. Within the entire illustrated workflow, our concrete contribution is to develop an
approach for Monitoring of Database Operations and to integrate it into Trace Diagnosis, which
are tagged yellow. We split our main goal into four consecutive subgoals. These subgoals
are described in the following.

G1: Identification of Performance Analysis Methods and Tools

The first goal is the identification and discussion of related monitoring approaches within
the research body or industrial context. Furthermore, necessary technologies need to be
identified and compared. Finally, we will choose an existing monitoring technique or
design our own approach based on a sufficient technology or technique. As mentioned
previously, we will focus on database communication, which uses the JDBC API.

G2: Implementation of a Tool for Database Performance Analysis

The second goal covers the implementation of a database performance analysis tool. The
software should allow the developer to instrument database operations within a monitored
application, which are handled through a JDBC driver. Furthermore it is necessary to
capture executed SQL and prepared SQL statements and additionally their call parameters,
as well as their respective execution times. Since the instrumentation is a cross-cutting
concern, we do not want to mix the instrumentation code with the program code. Therefore,
the monitoring component should be isolated from the observed application and designed
as a Java agent.

Once the needed data is collected, the developer is able to analyze the data based on
a graphical user interface. The interface should offer at least abilities to show SQL traces
and their corresponding response times. Prepared SQL statements, which are precompiled
statements with parameters that are substituted during an execution, are important as well,
as they are often used for performance improvements. So we are interested in concrete
bound values for each execution. The first task covers the implementation of a prototype
based on the given requirements. If its creation is successful and applicable for the context,
it will be further developed to a fully functional implementation. This part also includes
the integration of the analysis and visualization components into Kieker Trace Diagnosis
for displaying purposes.

3

G3: Generic Monitoring Approach

The third goal makes sure, that the monitoring approach is generally applicable in the
manner of using the generated monitoring records as input data for several analysis and
visualization tools. We intend to employ two different monitoring approaches, namely
Kieker and ExplorViz, to verify our goal. We want to enable the usage of our generated
monitoring records as input data for both tools, in order to allow further analysis and
visualization of our monitoring data.

G4: Evaluation of the Developed Tool

The fourth and last goal of the thesis is to evaluate the developed software solution. In
any case the software system will be validated by an example application like JPetStore3 to
proof its functionality. Additionally, we plan to perform a survey to verify the usability of
our approach, particularly the graphical user interface. Another capability would be an
evaluation within an industrial context, in order to verify the applicability and especially
the provided user interface. A commercial information system would be a great application
for such tests.

1.3 Document Structure

The remainder of the thesis is structured as follows. In Chapter 2 an overview of founda-
tions of our research subject and the used technologies is given. In chapters 3 and 6, our
approach to accomplish our defined goals is presented. Subsequently, chapters 7 and 10
cover the implementation of our approach. In order to validate our implementation, we
conduct an evaluation and present the results in Chapter 11. We provide a comparison to
related work in Chapter 12. Finally, in Chapter 13, we outline and conclude our work.

3http://blog.mybatis.org/p/products.html

4

Chapter 2

Foundations and Technologies

The following chapter provides an overview of foundations and used technologies within
this thesis and is divided into two same-named sections. We begin with basic defini-
tions, continue to describe relevant technologies and standards, and close with tools and
frameworks, which are necessary for working on the research subject of our thesis.

2.1 Foundations

This section gives an overview of foundations, which are used in this thesis.

2.1.1 Dynamic Analysis

Dynamic analysis comprises the process of analyzing a running program with focus to
its deriving properties, which are valid at least for one or more executions of a program
[Ball 1999]. This analysis step is often based on an instrumentation of a software or its
compiled or interpreted program code. Compared to static analysis, it provides advantages
like detecting unused parts of the software, often referred to as dead code, and allows to
make better assumptions about the behavior of the program [Ball 1999]. The gathered
information allows us to understand the software in a detailed way, especially with the
purpose to modify it when performance problems occur.

2.1.2 Reverse Engineering

Reverse engineering contains a wide range of methods and tools with reference to un-
derstand existing software and the ability to modify it [Canfora Harman and Di Penta
2007]. Regarding software engineering, the term was defined by Chikofsky and Cross
[1990] as the process of “analysing a subject system to (i) identify its current component and their
dependencies and (ii) to extract and create system abstractions and design information”. Based on
this definition the main target of our reverse engineering process is to analyze the system
in order to aid the task of program comprehension. Many tools were developed in the past
years to support this task with capabilities to explore, manipulate, analyze, summarize
and visualize software artifacts [Müller et al. 2000]. Figure 2.1 illustrates the differences
between forward engineering and reverse engineering. The common process of forward

5

engineering, within the software engineering domain, describes the process from high-level
abstractions and designs towards a concrete physical implementation of a software system.
In comparison, reverse engineering is quite the opposite, it characterizes the analysis of
a previously engineered software system in order to identify its underlying architecture
and individual software components, which the software is composed of. In this thesis,
we employ reverse engineering to discover related database operations of an observed
software system within our dynamic analysis.

Figure 2.1. Reverse engineering in comparison to forward engineering [Müller et al. 2000]

Furthermore, we want to provide information about reverse engineering using dynamic
analysis in detail. At first sight the process of reverse engineering utilizes the concept
of dynamic analysis in order to get the required information to make abstractions of the
software. At second glance it provides much more. It supplies useful information, especially
the capability to perform architecture reconstructions, for the developer to understand the
program. This allows him to make major changes to the software [Ducasse and Pollet 2009].
If it is possible to create and update this knowledge continuously, upcoming changes would
not need costly reverse engineering efforts. Hence, it is appropriate to integrate this method
into the development process. Additionally, this allows us to identify and instrument

6

executed database operations within the development phase, in order to optimize the
performance. Gathering such useful information is the basis for the upcoming section.

2.1.3 Performance Analysis

If we employ static or dynamic analysis, we can use this information for a performance
analysis. Within our work, we define the overall process of estimating performance as a
“study of the performance of computer systems and networks attempts to understand and predict their
time dependent behavior” [Pooley 2000]. In order to aid the detection of occurring performance
problems we need to use appropriate tools. Such a tool may expose a performance problem
or even a bottleneck, which has a negative impact on the performance of a software system
[Neilson et al. 1995]. Especially in the area of analyzing database communication within a
software there is a lack of good, available tools.

In the context of software engineering, a bottleneck is a single point or part within
a software, that limits the total system performance [Neilson et al. 1995]. Bottlenecks
can occur on the one hand as device bottlenecks, like storage, memory, or CPU, and on
the other hand as bottlenecks within the software that may consist of locking of data or
blocking of processes when working in parallel. Database communication can also be a
potential bottleneck, caused by poor design or increasing workload. Dynamic analysis is
a good technique to find such performance bottlenecks as it is examining a well-defined
use-case combined with a specific request towards the software system. Already observed
suspicious parts of the software or possible problematic components, which may cause
performance problems, can be monitored and analyzed with regard to bottleneck detection
[Xu et al. 2010]. An general introduction in the terminology of performance metrics can be
found in [Sabetta and Koziolek 2008].

2.1.4 Aspect-Oriented Programming

There are many kinds of instrumentation techniques existing. As there are various ap-
proaches, they can mainly be divided into two groups. The first group contains methods
for a manual instrumentation. During a performance analysis, there are monitoring probes
placed within the source code or around interesting parts of the software. As this is a very
extensive and time-consuming strategy, it is not advisable to use this method within larger
projects. The second group includes methods for setting up monitoring probes, without
the need to interfere with the source code. One well-established method is aspect-oriented
programming (AOP). Kiczales et al. [1997] came up with the initial concept of AOP. The
basic idea of AOP is to improve the separation of concerns within software. Therefore,
regarding an instrumentation of a software system, it is recommended to separate the
instrumentation code or probes from the source code. This process is handled through
weaving the monitoring code into the source code.

7

Figure 2.2. Example of an aspect weaver for image processing [Kiczales et al. 1997]

Figure 2.2 illustrates an example of weaving code into an existing software. In this case
the aspect weaver takes the component (blue) and aspect programs (red) as input, and
emits another program as output. Tonella and Ceccato [2004] also used aspect-oriented
programming for an aspect identification in existing code as a supporting technique within
dynamic code analysis.

2.1.5 Usability

The International Organization for Standardization (ISO) defines usability as “The extent to
which a product can be used by specified users to achieve specified goals with effectiveness,
efficiency, and satisfaction in a specified context of use” (EN ISO 9241). In our thesis,
usability describes the ease of use and learnability of our developed software application.

2.1.6 Usability Testing

Usability testing describes a technique, which is used within user-centered design, to
evaluate a software by testing it on users [Karat 1997]. In contrast to other evaluation
methods, which do not involve real users, it allows to get direct feedback from the users, as
they use the software. Although we determined the requirements of our software, we can
not guarantee, that these are under-specified. A real user of a software system might have
different or additional needs. Since we are interested in developing a software solution

8

focused on the requirements of the user, we need to verify, that we meet those needs [Coble
et al. 1997]. This circumstance can be verified by usability testing.

2.1.7 Usability and User Experience Questionnaires

In order to verify the usability of a software, often an evaluation using an evaluation method,
e.g., performing a questionnaire, is used. One of the advantages is being inexpensive,
as no specific testing equipment is needed, and we reveal, what real users think of our
software. One of the most popular web questionnaires is the System Usability Scale (SUS),
as it is a quick and validated test. It is the most widely adopted test for perceived usability
evaluation of software [Tullis and Albert 2008; Sauro and Lewis 2012]. Furthermore it
seems to yield reliable results, across various sample sizes [Tullis and Stetson 2004].

2.2 Technologies and Tools

This section provides an overview of technologies and tools, which are used in this thesis.

2.2.1 JDBC

JDBC stands for Java Database Connectivity, which embodies a Java API for database-
independent communication between Java and several databases. Since its introduction in
1997, the JDBC API has become widely accepted and implemented. Today it constitutes an
industry standard [Oracle 2011] for the aforementioned purpose. The JDBC library offers a
wide range of different possibilities for several tasks, e.g., handling database connections.
This includes defining and executing SQL statements or delivering and displaying result
sets. The ordinary process for using JDBC as a tool of database communication involves a
JDBC driver. The driver enables a Java application to interact with a manufacturer-specific
database. A driver is assigned to one of four categories. These are the JDBC-ODBC Bridge
Driver, the Partial JDBC Driver, the Network-Protocol Driver, which is also known as the
MiddleWare Driver, and the Database-Protocol Driver (Pure Java Driver).

Figure 2.3 illustrates the two most commonly used driver types. On the one hand there
is the MiddleWare Driver, which converts the JDBC calls into the middleware protocol.
Subsequently, the middleware translates it to a vendor specific DBMS protocol. A huge
advantage is the connectivity to several different databases. On the other hand there is the
Partial JDBC Driver. It transforms the JDBC calls into vendor specific calls on the client API
(DB ClientLib) like Oracle or DB2. Afterwards the converted calls are used to communicate
with the DBMS.

9

DB Middleware

DB DB

Driver Manager

Pure Java
JDBC Driver

Partial Java
JDBC Driver

DB ClientLib

Java Application

JDBC API

Figure 2.3. Common JDBC driver types

2.2.2 AspectJ

Based on Aspect-Oriented-Programming, which was mentioned in the previous section,
Kiczales et al. [2001] developed AspectJ1 as an aspect-oriented extension for Java. AspectJ
can be employed to define cross-cutting concerns like security or monitoring requirements,
without interfering with the source code. The necessary code or modification is woven
into the program code. The weaving can be done in three different ways. The first option
is to use Compile-Time-Weaving, which generates already instrumented class files from
the source code. The second option is Binary-Weaving, which is used, if the source files
are not available. The third and last option is Load-Time-Weaving, which modifies the
Binary-Weaving, so that the instrumentation takes not place, until the Java Virtual Machine
(JVM) is applied. The latter option can be applied by Java agents or wrapper scripts.

1http://eclipse.org/aspectj

10

2.2.3 Kieker Monitoring Framework

Kieker is a monitoring framework, which provides dynamic analysis capabilities for
monitoring and profiling the runtime behavior of a software system in order to enable
Application Performance Monitoring (APM) and Architecture Discovery. It collects and an-
alyzes monitoring data on different abstraction levels. Furthermore, it measures operation
response times and traces using dependency graphs [Hasselbring 2011] of a software run
[van Hoorn et al. 2009; 2012].

Figure 2.4. Overview of the framework components [Project 2013]

The Kieker Monitoring Framework is divided into a monitoring part, referred to as
Kieker.Monitoring, and an analysis part, referred to as Kieker.Analysis. Figure 2.4 shows
the components of the framework and their relations. While Kieker.Monitoring provides
capabilities for obtaining and logging measurements from software systems, Kieker.Analysis
supplies an appropriate infrastructure for analyzing this measurements. The exchange
of data between the monitoring and analysis components is handled through monitoring
records, which are generated by the Monitoring Writer and then passed to the Monitoring
Reader via a file system or stream. The framework is extensible for individual purposes.
It also provides for previously analyzed monitoring data several visualizations, such as
Unified Modeling Language (UML) sequence diagrams and dependency graphs.

2.2.4 Instrumentation Record Language

The Instrumentation Record Language (IRL),2 an extension to the Kieker Monitoring Frame-
work, has been developed since 2013 as an approach for a model-driven instrumentation
[Jung et al. 2013]. The language can be used to generate records based on a well-defined

2http://www.oiloftrop.de/code-research/instrumentation-record-language-release-1-0

11

declaration for specific purposes, particularly when none of the existing records is sufficient
for the use case. Furthermore, it provides an abstract data model notation and integrates
well as an plug-in into the Eclipse editor and generates data structures and serialization
code for C, Perl, and Java. Additional generators to support other languages can be
added. It is also possible to use generators without the Eclipse editor, as there is also a
Command-Line-Interface (CLI) in form of a standalone compiler. In our thesis, we use the
IRL to define compatible Kieker records for the integration into Kieker Trace Diagnosis.

2.2.5 TeeTime

TeeTime3 is a Pipe-and-Filter Framework for Java. It allows to define abstract Pipe-and-
Filter architectures, in order to use them for an analysis based upon information in form of
data sources. It also provides ready-to-use primitive and composite stages, which can be
extended by the developer. Although it is compatible to Kieker, it is not limited to it [Wulf
et al. 2014]. We use TeeTime for the analysis of our generated monitoring logs.

2.2.6 JPetStore

JPetStore4 is a web application, based on MyBatis 3, Spring 3, and Stripes. The Kieker
project uses JPetStore as an example application for testing purposes. It uses a straight-
forward architecture for accessing the database, which includes a functional SQL mapping
framework. The default configuration uses the database HSQLDB (HyperSQL DataBase),5

which is also written in Java. In our thesis, we use the JPetStore, as it uses an integrated
database in combination with JDBC, as an example application to verify our approach.

2.2.7 Kieker Trace Diagnosis

Kieker Trace Diagnosis is an additional tool for further analysis and visualization purposes
within the Kieker Monitoring Framework. As it is still under development, it has not been
released yet. Therefore, a development snapshot is the only available version at the moment.
The tool allows the user to interact with analyzed data and offers functions like filtering
and sorting for monitored data. Furthermore, the tool provides a visualization of recorded
program traces in form of tree views. Kieker Trace Diagnosis offers a kind of visualization,
which is sufficient for our purpose of illustrating database calls. As there are currently only
business operations, e.g., called operations within a Java program, supported, we integrate
our analysis and visualization components into Kieker Trace Diagnosis, in order to reach
our defined goals. Furthermore, we enhance the existing tool and extend its functionality.

3http://teetime.sourceforge.net
4http://blog.mybatis.org/p/products.html
5http://hsqldb.org

12

2.2.8 ExplorViz

ExplorViz6 is a live trace visualization tool for large software landscapes [Fittkau et al.
2013b]. The tool focuses on system and program comprehension. It uses dynamic anal-
ysis techniques to monitor traces for large software landscapes and offers two different
visualization perspectives, namely a landscape and an application level perspective. The
landscape perspective, illustrated in Figure 2.5a, employs a notation similar to the UML
and provides an overview of the software landscape. Furthermore, it offers additional
abstraction levels to highlight communication within observed software systems. The ap-
plication level perspective, displayed in Figure 2.5b, utilizes the 3D software city metaphor,
which was introduced by Knight and Munro [2000], and allows the user to interact with a
generated 3D software model for enhanced program comprehension [Fittkau et al. 2013a;
2015, b].

6http://www.explorviz.net/

13

(a) Landscape perspective

(b) Application level perspective

Figure 2.5. ExplorViz: Landscape and application level perspective [Florian Fittkau 2015]

14

Chapter 3

Approach for Database Monitoring

The following chapter covers our approach, based on our previously defined goals, and is
divided into four, consecutive sections. At first we provide an overview of our enriched
approach, followed by presenting the developed architecture of our software. Afterwards,
we describe our designed software system and present the monitoring component, continue
with the analysis component, and close with the visualization component.

We present an overview about the components within our related software system.
Figure 3.1 shows the main components of our developed approach. The software system
is composed of four components, which accomplish different, consecutive tasks. The
components are the Database, the Monitored application, the Monitoring component, and Kieker
Trace Diagnosis, which includes the integrated analysis and visualization components. Our
approach is designed straight-forward, as our communication goes from the Database, over
the Monitored Application, through our Monitoring Component, and finally towards Kieker
Trace Diagnosis. The software system is divided into two separate parts, the Existing Software,
which consists of the Database and the Monitored Application on the one hand, and our
developed Approach, including the Monitoring Component and integrating our components
into Trace Diagnosis, on the other hand. More precisely, our tool instruments the existing
software system through AOP and processes the resulting data.

As we are interested in database communication related to JDBC, we first have to address
the JDBC interface or API, which is provided by Java. The JDBC API offers a wide range of
different Java classes, which are used to communicate with a vendor-specific database, in
order to perform queries. Based on a vendor-specific JDBC driver, we are able to monitor
such database operations. However, we still need a way to set-up our instrumentation code
around these Java classes.

15

Existing Software

<<component>>
Monitored Application

<<component>>
Database

Approach

<<component>>
Trace Diagnosis

<<component>>
Monitoring Component

AOP

Monitoring LogsJDBC

Figure 3.1. Architecture of our software system as component diagram

We employ AspectJ1 for this task. We weave monitoring probes into the monitored
Java software without interfering with the program code. As we develop our monitoring
component as a Java agent, the monitoring data is recorded during each execution of the
software system. Once the database operations within the observed software are recorded,
the monitoring component receives the data. Afterwards it generates monitoring records,
in form of a log file, which is then written down to the file system. In the future we also
plan to offer streams as an option for extracting monitoring logs. The monitoring log can
then be loaded into Kieker Trace Diagnosis to perform an analysis and to visualize the
recorded data. The following chapter describes the monitoring component in detail.

1http://eclipse.org/aspectj

16

Chapter 4

Monitoring of Database Operations

The instrumentation gathers data for further tasks, e.g., analysis and visualization, which
are necessary to conduct an efficient performance analysis on a software system. Therefore,
we present our instrumented database operations in the following sections, which are
based on SQL relationships, and show afterwards our enriched monitoring approach.

4.1 Related SQL Relationships

As we observe database communication, related to SQL database operations calls handled
through JDBC, we provide an overview of relevant classes, interfaces, and relationships
within the java.sql Java package, which is presented in Figure 4.1. The figure, which is
extracted from the JDBC standard, is composed of three different types – classes, interfaces,
and relationships between them [Oracle 2011].

Communication protocols share the requirement for a connection, which is being estab-
lished before data can be exchanged and closed, when the communication is finished. A
Connection or session within our context also needs to be established first, before database
operations can be executed on a specific database. Once the connection is created, SQL state-
ments can be executed and return results within the context of this connection. There are
basically three options, to define and execute a statement, respectively a query, within JDBC,
which are slightly different. These are Statement, PreparedStatement, and CallableStatement.
They are created by the Connection using the operations createStatement, prepareStatement,
and prepareCall.

We start with the Statement, which is the simplest of the three options. The only possibility
to employ a Statement is to create an object, using the constructor. Afterwards one of the
following operations execute, executeQuery, or executeUpdate is performed, which takes a
parameter of the type string. The string contains the related SQL statement, e.g., “SELECT
* FROM users;”, which returns all records of the users relation. This SQL statement cannot
be modified, as it is being directly executed afterwards. The PreparedStatement extends the
Statement, with the purpose to set-up an abstract SQL statement with parameters in order
to precompile it. Afterwards concrete values, which are applied to the PreparedStatement
through several setters, are used as input for those parameters (Data Types), in order

17

Connection

Statement

Data types

CallableStatement

ResultSet

PreparedStatement
subclasses

prepareStatem
ent

prepareCall

cr
ea

te
St

at
em

en
t

executeQuery

ex
ec

ut
eQ

ue
ry

executeQ
uery

Input to

getXXX

Input/Output of

ge
tM

or
eR

es
ul

ts
/ g

et
Re

su
ltS

et

subclasses

PreparedStatement
CallableStatement

Figure 4.1. Relationships between major classes and interfaces in the java.sql package [Oracle 2011]

18

to execute a concrete prepared statement. The advantage over simple statements is an
improvement of the execution time, when handling huge amounts of similar database
queries. The third and last option is the CallableStatement. Again, it extends its predecessor,
in this case the PreparedStatement, to enrich the prior functionality. A CallableStatement
allows to execute Stored Procedures, which are developed functions that are stored within
the database. These are capable to handle multiple results.

All three previously named options have the ResultSet in common, when they are
executed through the operation executeQuery. If the different statements are being executed
via executeQuery, they all return a ResultSet, if possible. This data type can be used to
extract information, e.g., the number of affected database records. As mentioned before,
there exists two other options to execute statements, namely the operation execute and
executeUpdate. The first operation returns just a boolean, which indicates, whether the
first result is a ResultSet object or not. The second operation, which is provided to update
specific database entries, just returns the number of affected records due the given SQL
statement. In our thesis, we focus on the two interfaces Statement and PreparedStatement, as
they are the most commonly used database operations.

4.2 Generic Monitoring Approach

One of our subgoals is to develop our monitoring approach in a generic manner. We want
to allow several monitoring tools to use our generated monitoring records as input data for
posterior analysis and visualization purposes. Furthermore, we describe related monitoring
tools and compare them. Finally, we will choose an existing monitoring tool or design our
own approach based on a sufficient technology or technique. As mentioned previously, we
will focus on database communication, which uses the JDBC API.

4.2.1 Choosing an Instrumentation Technique

First, we performed a literature search within the research body and industrial context. We
focused on existing techniques and tools related to our context of instrumenting database
operations. Furthermore, we filtered our results for approaches, which employ AOP or
similar intercepting techniques. Our findings included a set of tools, which matched our
purpose. Besides AspectJ, which we described in Chapter 2, there exist similar approaches.
Three comparable approaches are presented in the following.

Java Proxy

Since version 1.3, Java provides an implementation of the dynamic proxy concept for
interfaces (java.lang.reflect.Proxy).1 If a method is invoked on the proxy, a registered

1http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/Proxy.html

19

invocation handler is being notified, which method has been executed, including its calling
parameters, and on which object [Froihofer et al. 2007]. A disadvantage of this technique
is, that it is limited towards classes, that implement interfaces.

cglib

Cglib2 is a byte code instrumentation library, that provides a high level API to generate
and transform Java byte code. Furthermore, it is used by AOP, testing, and data access
frameworks to generate dynamic proxy objects and intercept field access. It is employed
by the well-known Java framework Spring3 and former by ORM framework Hibernate4.
However, as there is no research literature available and the overall documentation is sparse
and the future of cglib was quite uncertain, many projects moved away from the library
towards other solutions.

Figure 4.2. The Javassist architecture [Chiba 1998]

Javassist

Javassist,5 which is the short version for JAVA programming ASSISTant, is another byte
code manipulating library. It is still been maintained, although it was introduced in 1998
[Chiba 1998]. It allows to define new classes at runtime and to modify class files, when
loaded by the JVM. Figure 4.2 presents the architecture of Javassist at the time of its initial

2https://github.com/cglib/cglib
3http://projects.spring.io/spring-frameworl
4http://http://hibernate.org
5http://jboss-javassist.github.io/javassist

20

release, which consists of two main components, namely the Javassist compiler and Javassist
engine. The Javassist compiler processes annotations and the Javassist engine compiles these,
in order to access them through the Javassist API. Summarized, the tool can be compared
with the Java proxy, with reference to the inception mechanism.

4.2.2 Concrete Instrumentation Approach

Although we presented three different tools, which are similar to AspectJ, we choose the
latter for our monitoring approach. As we mentioned previously, AspectJ is suitable for our
purpose. Compared to the other three tools, it is easy-to-use and offers a straight-forward
handling for instrumenting Java software, without interfering with the program code.
Developed definitions can be extended or modified for other purposes. Interesting parts
of the software, which are not monitored at the moment, can be covered by additional
monitoring probes. Due its good documentation and publications, combined with our
prior experience using AspectJ in previous projects, we decided to choose it as a basis for
our monitoring approach. Therefore, we present our versatile monitoring approach, in
form of a component diagram, in Figure 4.3.

<<component>>
Monitoring Probe

<<component>>
Monitoring Controller

<<component>>
Monitoring Writer

Monitoring
a

LoggingLogging

Figure 4.3. Monitoring components

Our monitoring component is composed of three components, namely Monitoring Probe,
Monitoring Controller, and Monitoring Writer. The combination of them characterizes a
workflow. The first step within the workflow describes monitoring database operations
within an observed software system via Monitoring Probes. They are integrated into the
program code via AspectJ, which was mentioned before. These probes are injected to
instrument the classes and interfaces, which were shown in Figure 4.1. Relevant database
operations are executed through these junctures, so it is an appropriate position within
the monitored software for interception. This includes executed SQL statements, returned
values, e.g., ResultSets, and related response times.

As soon as the instrumentation is injected into the program code and the software system
is executed, the probes send their recored data to the Monitoring Controller. Afterwards, the
Monitoring Controller creates records based on this data. More precisely, it generates one
monitoring record for entering an above-mentioned juncture (before event), e.g., Statement,
and another one for leaving it (after event). The duration between the first and the second

21

record is later used to calculate the response time. Afterwards, the generated monitoring
records are forwarded to the Monitoring Writer. This component allows to structure and
export our previously recorded monitoring data, in form of a monitoring log file, to the file
system. The monitoring log file, which is composed of many monitoring records, is defined
as a self-created, well-structured, and human-readable representation. The structure of our
monitoring records is presented in the following:

Ź record type: differs between before or after event

Ź timestamp: represents date and time of the record

Ź operation name: full Java class name

Ź return type: e.g., ResultSet, boolean or int

Ź return value: e.g., number of affected database records

Ź operation arguments: e.g., SQL statement

This monitoring record structure forms the basis for our following tasks, namely analysis
and visualization. Furthermore, we offer the ability to export our records into at least one
other monitoring representation, namely the Kieker record structure. The latter decision is
necessary for employing our recorded data as input data for Kieker and ExplorViz, which
allows to import Kieker monitoring log files. We choose these two monitoring tools in
order to verify the versatility of our monitoring approach.

22

Chapter 5

Analysis of Database Records

In the following chapter, we describe how we analyze the recorded monitoring data, process
it, and prepare it for the later described visualization.

As mentioned before, our monitoring records are well-structured and contain various
information, regarding monitoring a concrete database operation. As we want to analyze
and later visualize this data, we need to process the recorded data through a defined
workflow. This includes tasks like merging, filtering, and aggregating. Similar monitoring
tools, e.g., ExplorViz, perform different analysis steps in the same manner [Fittkau et al.
2013b; 2015, b]. Although in this paper the analysis is optimized for high-throughput,
it defines an appropriate template, which we can use for our purpose. Additionally, we
employ the Pipe-And-Filter pattern for our analysis. We utilize this pattern, in order to
create a flexible, maintainable, and expendable analysis architecture for processing our
previous recorded data [Gamma et al. 1994]. Therefore, we employ an implementation of
this pattern, namely the Pipe-And-Filter framework TeeTime, and construct our analysis in
a suitable manner [Wulf et al. 2014]. This implies to develop an analysis workflow, which
can be separated into several processing units. These will be connected afterwards, so they
can be executed consecutively. In the following, we present our developed approach and
describe the involved, different processing tasks and their relationships.

5.1 Analysis Approach

Our analysis approach can be divided into two, consecutive abstract workflow processes.
The first process describes the generic processing of our monitoring records. Once the
first process is completed, the second process is executed. The second process handles the
specific database records, which can be extracted from the recorded monitoring data. Both
processes are explained in the upcoming sections.

5.1.1 Generic Monitoring Record Processing

The previously recorded monitoring data needs to be initially processed, such that the
gathered data can be further analyzed. Therefore, we developed a process, which loads this
data and prepares it for subsequent tasks. In Figure 5.1, the architecture is illustrated, in

23

form of a component diagram. The diagram is composed of four components, namely the
Log Reader, the Record Filter, the Record Transformator, and the Record Merger. As mentioned
before, we focus on flexibility and extendibilit. Therefore, an implementation of one of
these four components can be maintained and replaced easily.

<<component>>
Log Reader

<<component>>
Record Filter

<<component>>
Record Transformator

<<component>>
Record Merger

Figure 5.1. Analysis: Generic Monitoring Record Processing

The input data of our generic monitoring processing is the recorded monitoring data.
As our concrete monitoring approach creates a monitoring log file within the file system,
this log file needs to be loaded into the analysis process for further tasks. This task is done
by the Log Reader component. It loads the monitoring log and provides this data for the
next component, the Record Filter. The Record Filter analyzes and matches a monitoring
record type, e.g., a before or after event record (entering or leaving a database operation),
and creates a related database record object. This created record object is then transformed
into a database operation call object through the Record Transformator.

Once the monitoring records have been converted into record objects, they can be used
for the ongoing analysis. As we have basically two record types, before and after event,
for a single executed database operation, we need to merge these two record objects into
one record, in particular a database operation call object. This task is performed by the
Record Merger. The latter task completes the generic monitoring record processing and
allows to continue our analysis with handling specific database operations in the following
subsection.

5.1.2 Specific Database Call Handling

Once we have completed the previously mentioned process chain, we can further process
these database operation call objects. This allows us to extract the contained information
to identify specific database operations, e.g., Statements and Prepared Statements, which we
described in Section 4.1. The involved components are shown in Figure 5.2.

Since we intend to employ a Pipe-And-Filter-Architecture, each task or filter has exactly
one input port and one output port. This characteristic is inconvenient, because at some
places within our enriched process, we need the option to define more than one output
port for a filter. A common solution for this problem is to employ a Distributor, which
allows to define multiple output ports for a filter [Wulf et al. 2014]. We utilize this kind
of filter to extract the results of a filter and to further process the data, in order to pass
it through a pipe to another filter. This technique is similar to the command tee within

24

<<component>>
Distributor (Database Calls)

<<component>>
Distributor (Statements)

<<component>>
Extractor (Statements)

<<component>>
Aggregator (Statements)

<<component>>
Extractor (Prepared Statements)

getAggregatedStatements()

getStatements()

getPreparedStatements()

getDatabaseCalls()

Figure 5.2. Analysis: Specific Database Call Handling

UNIX systems, 1 which can be used to forward data to another process on the one hand
and redirect the data towards a file on the other hand.

With reference to Figure 5.2, the processed monitoring records from the previous section
have been converted to database operations calls. These calls are the foundation for our
ongoing filtering tasks. Based on the information within these calls, e.g., operation name
or call argument, we can identify the type of database operation and the duration. Since
we limited our approach to Statements and Prepared Statements, these are the subordinate
database operations, we are interested in.

The first component within our process system is the Distributor, which handles the
previously mentioned database calls. He distributes the database operation calls to the
following filters, an Extractor for Prepared Statements on the one hand, and another Extractor
for Statements on the other hand. Additionally, we can extract the database calls, if we
need them for analysis purposes through the interface getDataBaseCalls(). The Extractor
for Prepared Statements examines related database operation calls and extracts relevant
information. First we create an abstract prepared statement with variables. As we are
interested in concrete executions of an abstract Prepared Statement, we need to perceive

1http://www.unix.com/man-page/posix/1p/tee

25

related executed setters, in order to reconstruct concrete executions and attach the corre-
sponding concrete prepared statements (with bound variables). This is important, as we
later visualize the hierarchy of related calls. The processed calls are accessible through the
interface getPreparedStatements().

A similar order of events is employed for Statements. The Extractor for Statements merges
statements, namely createStatement() and corresponding executors, into one call. Also the
overall response time for a specific execution is calculated. The processed database calls are
then forwarded towards the Distributor for Statements, which distributes the database call
objects on the one hand towards an interface, to obtain these through getStatements(), and
on the other hand to the next filter, the Aggregator for Statements. As its name implies, this
filter handles the aggregation of statements. It takes the previously processed statements
and performs a matching based on the executed SQL statement. For each SQL statement
a parent call is created. Does a statement call already exist for a parent call, then the
statement call is added as a child to the parent call. This procedure allows a further
analysis, e.g., calculating the average response time. Once again, the results are available
through an interface (getAggregatedStatements()).

5.2 Integration into Kieker Trace Diagnosis

We intent to integrate our analysis component into Kieker Trace Diagnosis. More precisely,
we decide to separate the analysis from our monitoring component, in order to enable a
light-weight monitoring approach, which is generic and versatile. Additionally, Kieker
Trace Diagnosis offers us a read-to-use architecture, on which we can build upon our
visualization. Therefore, we integrate the analysis into Kieker Trace Diagnosis.

26

Chapter 6

Visualization of Database Records

We now present our approach towards the visualization of our monitoring results. In the
following sections, we provide an introduction to visualizing execution traces, present our
visualization approach, and close with our integration of the latter one into Kieker Trace
Diagnosis.

6.1 Different View Options

In the software engineering domain, visualization is a popular topic, because finding
an appropriate form of representation for a specific purpose is difficult. Therefore, we
performed a search within the literature and present our findings in the following.

6.1.1 Dependency Graphs

There exist several representations of visualizing execution traces. One option to visualize
traces are dependency graphs [Hasselbring 2011]. Based on the hierarchy of a call, these
graphs can be constructed and enriched with other metrics, e.g., response times, to support
tasks like conducting a performance analysis. This representation is used in the Kieker
monitoring framework to visualize the underlying architecture of a software. An example
is presented in Figure 6.1. The shown dependency graph represents the aggregated call
hierarchy of an execution of a Java program and shows the dependencies among them.
Furthermore, the edges are annotated with the number of calls for a specific dependency.
For our purpose, this form of representation is inappropriate because our monitored
database operations have a flat hierarchy, so we would have a bulk of dependency graphs.
This would be confusing and makes it impossible to analyze and compare the recorded data.

6.1.2 3D Software City Metaphor

Another approach is the 3D software city metaphor, which was introduced by Knight
and Munro [2000]. The metaphor provides an overview of a software system and aids
in the process of program comprehension [Wettel and Lanza 2008]. ExplorViz employs
this approach and allows the user to interact with a generated 3D software model for

27

Figure 6.1. Generated operation dependency graph [Hasselbring 2011]

enhanced program comprehension based on execution traces [Fittkau et al. 2013a]. An
example is shown in Figure 6.2. The figure sketches the four main components of the
application JPetStore and their communication in-between. This kind of visualization is
appropriate for the task of program comprehension [Fittkau et al. 2015a] and may be also
suitable for visualizing database operations. However, we focus on performance analysis
and as we intend to integrate our approach into Kieker Trace Diagnosis, the tool is not
customizable for such a kind of 3D visualization. Therefore, in this thesis, we need a
different visualization approach. However, this might be an alternative representation
option in the future.

Figure 6.2. Software city metaphor based 3D visualization of JPetStore [Fittkau et al. 2013a]

28

6.1.3 Call Tree Views

A different, more familiar visualization form for analyzing and sorting data is offered
by Call Tree Views. Jinsight is a tool for exploring a program’s run-time behavior visually
[De Pauw et al. 2002]. A user can explore program execution traces through one or more
views. One of these views is a Call Tree View. Figure 6.3 illustrates this kind of visualization.
The view shows an aggregated call hierarchy and enables to filter for items of interest, e.g.,
the number of calls of a specific operation or the name of an operation. Additionally, the
spent time for an operation, regarding the total response time of the program execution, is
presented. This allows to support the process of a performance analysis. The monitoring
tool InspectIT, which we describe later in Chapter 12, also utilizes this way of representation
for visualizing database calls. Furthermore, Kieker Trace Diagnosis already employs a
similar way of representation for visualizing monitored business operations. For this reason,
we choose this visualization form and adapt it for our approach, visualizing database
operations.

Figure 6.3. Call Tree View featured in Jinsight [De Pauw et al. 2002]

6.2 Our Visualization Approach

In the previous section, we described different visualization concepts and decided to
employ the latter representation, namely the Call Tree Views [De Pauw et al. 2002], for
our approach. This form of visualization allows to represent the hierarchy of a database
operation call and offers an architecture, which is suitable for functions like filtering and
sorting recorded monitoring data. Our visualization should offer, at least, the following
three different representation views.

29

Ź Statements – including the executed SQL statement and the response time.

Ź Aggregated Statements – same as Statements, but aggregated based on their executed SQL
statement.

Ź Prepared Statements – providing the abstract prepared statement and the concrete execu-
tion with bound parameters.

Essential visualization features for manipulating these options, e.g., sorting and filtering
the monitoring data, also need to be covered. In order to give an impression of our concrete
approach, we present in the upcoming three subsections different mock-ups for the already
mentioned views. These mock-ups have been created with the web demo from balsamiq.1

6.2.1 Statements

Statements are a central database operation within our software solution. Therefore, our
first mock-up, which is presented in Figure 6.4, covers this operation. Our mock-up repre-
sents a view, which is based on the concept of the Call Tree Views.

Figure 6.4. Mock-up View: Statements

Our view is divided into four different components, namely the Header, the Filter, the
Data Grid, and the Footer. The Header indicates the kind of database operation, which is
Statements in our case. Below, we see an input box for filtering the presented database
calls, the Filter. A user can type in an expression and the visualization will be filtered
for matching database calls. The next component is the Data Grid. This visualization
component is the most important one within our view. It shows our related statement
calls, including the executed SQL statement string, the returned value, the response time,
displayed in a changeable time unit, and the trace id. The latter one serves as an unique

1http://webdemo.balsamiq.com

30

identification, similar to a primary key in relational databases, and can be used for further
analysis tasks. Since the size of the Data Grid is limited, a scrollbar allows the user to
navigate through the statement items within the list. This keeps the layout structured and
neat, even if the amount of related database calls increases. The fourth and last component
is the Footer, which shows the number of Statements within the view, as an assistance for
the user.

6.2.2 Aggregated Statements

In the previous section, we described our view for Statements. In this section, we present a
mock-up, which shows statements, which have been aggregated based on their executed
SQL statement. The mock-up is shown in Figure 6.5.

Figure 6.5. Mock-up View: Aggregated Statements

The layout is basically the same as in the previous mock-up. The Header and the Footer
are customized for this view, but offer the same functionality. In comparison to the first
view, some columns have been added. For each aggregated statement the SQL statement,
the count, which represents the number of executions, and several response time columns
are displayed. The time-related columns are the following – the total, the average, the
minimum, and the maximum response time. Strong distinctions, between minimum and
maximum response times, may indicate a performance problem, caused by the related
aggregated statement. For this reason, these timings are important, regarding conducting
a performance analysis. We removed the Trace ID as we are interested in the aggregated
statement and not in a single statement within in this view.

6.2.3 Prepared Statements

The third and last view covers our monitored Prepared Statements. The related mock-up is
illustrated in Figure 6.6. This view shows precompiled statements with variables, which are
bound to later set call parameters, before their execution. This technique is often employed

31

to increase the performance for frequently executed database operations, which are based
on the same SQL statement, but differ in their concrete parameter values. This brings
us to a slightly different layout, as we have an abstract statement, a SQL statement with
parameters, and a list of concrete statements, which represent executions of the abstract
one with bond values. The layout is not flat anymore, like in the previous two views.
Each abstract-concrete statement hierarchy defines an own call tree. The abstract statement
embodies the parent element with the tree and the concrete statements are children nodes.
As we offer the functionality to analyze a concrete prepared statement with its executed
parameters and the related response time, we present the real executed SQL statement,
more precisely we integrate the bound values (SQL parameters) into the SQL statement
string. The time-related columns are the same, as for the Aggregated Statement view.

Figure 6.6. Mock-up View: Prepared Statements

6.3 Integration into Kieker Trace Diagnosis

As mentioned before, we want to build our visualization component upon Kieker Trace
Diagnosis because it already offers an appropriate ready-to-use architecture, which is
extendable for our purpose. Furthermore, the tool already provides a visualization of
recorded program traces in form of tree views, which are similar to the previously named
Call Tree Views. On this basis, we can follow our visualization approach and integrate our
developed views, which we presented through three different mock-ups, into Kieker Trace
Diagnosis.

32

Chapter 7

Overview of our Implementation

This chapter covers the implementation of our enriched approach, which was explained
in the previous chapter. Our implementation has the main goal to support a developer
in conducting a performance analysis, regarding database operations. Our monitoring
component is designed to be as light-weight and generic as possible, in order to allow
multiple analysis and visualization tools to use our recorded monitoring data as input
for their processing. Our analysis utilizes a Pipe-and-Filter Framework for an efficient
processing of our monitoring records. Furthermore, we focus on displaying only the
monitored information, relevant for the developer within our visualization.

This chapter is organized as follows. First we provide an overview of our implementation
by presenting the developed architecture of our software. Afterwards, we reveal our
designed software system in detail, and present the monitoring component, continuing
with the analysis component, and close with the visualization component.

7.1 Architecture

Our implementation is based on our enriched approach, in order to met our previously
defined requirements of our software solution. As mentioned before, we divide our
software into into three parts. A monitoring part, an analysis part, and a visualization part.
We enrich these parts with concrete technologies and explain the resulting architecture for
our implementation. The architecture of our software solution is shown in Figure 7.1.

7.1.1 Monitoring Component

The figure is based on components, described in Chapter 3. The first difference consists of a
distinction, between our Monitoring and Analysis & Visualization fragmentation. The system
boundary of these fragments is illustrated as dashed lines. These two partitions can operate
independently on different nodes or machines, as they are two separate applications. The
Monitoring software contains our Monitoring component and performs the instrumentation
of a Monitored Application through AspectJ. As the observed application employs the JDBC
API for database communication, we intercept these operations to monitor related database
calls. For each monitored database operation, there are two monitoring records created, one

33

<<component>>
Database

MONITORING ANALYSIS & VISUALIZATION

<<component>>
Monitored Application

<<component>>
Monitoring component

<<component>>
Analysis component

<<component>>
Visualization component

(Kieker Trace Diagnosis)

Monitoring Logs

AspectJ

JDBC

Figure 7.1. Architecture of our implementation

when the operation is started, and one, when the operation is completed. Afterwards, the
previously created monitoring records are written to the file system in form of a monitoring
log. The Monitoring component needs to be located within the execution container or
environment of the application, as our instrumentation is woven into the program code by
a Java agent.

7.1.2 Analysis Component

Once the Monitoring component has created a monitoring log file, it can be further processed
within the Analysis & Visualization software, our second software part within our whole
software system. As these parts have been integrated into Kieker Trace Diagnosis, we
further refer to Kieker Trace Diagnosis, when we describe this second software fragment.
The relevant components within Kieker Trace Diagnosis are the Analysis component and the
Visualization component. The first one follows our enriched approach for analyzing database
operations. Our Analysis component loads the previously created monitoring records from a
monitoring log file and processes them for our Visualization component. As Kieker Trace

34

Diagnosis uses Kieker records for the analysis process of business operations, we want to
integrate our database operation records into this existing structure. Therefore, we employ
the IRL and generate Kieker database monitoring records, based on our requirements,
and extended an existing record type. The analysis utilizes the TeeTime framework, an
implementation of the Pipes & Filter Pattern. Therefore, we define different consecutive
analysis tasks within the framework.

7.1.3 Visualization Component

The second component within our software fragment is the Visualization component. We
apply the already existing Model-View-Controller (MVC) architecture within Kieker Trace
Diagnosis for our visualization purposes. Generally speaking, we offer three different
views, based on the MVC architecture, for our three observed database operations –
statements, aggregated statements, and prepared statements. We employ Tree Call Views
as a visualization form and visualize our monitored and processed information for the
user. Furthermore, we provide capabilities to filter and sort the recorded data, in order to
support the user in conducting a performance analysis on database operations.

35

Chapter 8

Monitoring Implementation

The general workflow of our developed monitoring component was explained in Sec-
tion 4.2.2. In this section, we present our related implementation, which is based on our
previous developed monitoring approach.

Figure 8.1 shows a class diagram of our implementation. It is structured into three
packages, namely monitoring, record, and utils. Additionally, we have two configuration
files: aop.xml and monitoring-configuration.xml, which are used to configure the instru-
mentation process dynamically, without the need to change the source code. The latter
configuration file is loaded by the class XMLConfigurationloader. The monitoring package
includes all necessary classes for the instrumentation through AspectJ. These are the classes
AspectConfiguration and MonitoringController, which handle the instrumentation and related
settings. In order to generate monitoring records of the instrumented software, we utilize
our defined MonitoringAbstractEventRecord, more precisely its concrete derivatives Monitor-
ingBeforeEventRecord and MonitoringBeforeAfterRecord. As we want to write our monitoring
records to the file system in form of a monitoring log file, we use the class FileLogWriter,
within in the utils package, for this task.

Our implementation of the monitoring component is structured into three parts, i.e.,
the instrumentation of an observed software system through AspectJ, the creating and
processing of monitoring records, and writing these monitoring records into a monitoring
log to the file system. These three tasks are described in the following.

8.1 Instrumentation Utilizing AspectJ

Our instrumentation through AspectJ and general configuration of our monitoring com-
ponent is presented in Figure 8.2, which is an excerpt of the previously illustrated class
diagram. We employ our two previously mentioned configuration files within our mon-
itoring component to configure our instrumentation. The configuration file monitoring-
configuration.xml allows to set general monitoring parameters, e.g., enabling or disabling
the monitoring. The MonitoringController is a central class within our component, as it
controls our monitoring. There are several options, which can be configured due the
monitoring-configuration.xml document, which is shown in Listing 8.1. This file is loaded

37

m
onitoring

M
onitoringC

ontroller

A
spectC

onfiguration

utils

XM
LC
onfigurationLoader

StringR
egistry

record

M
onitoringA

bstractEventR
ecord

M
onitoringB

eforeEventR
ecord

M
onitoringA

fterEventR
ecord

FileLogW
riter

0..1

1

0..*

1

1

0..1

1

0..1

0..*
1..*

facilitates

utilizes

applies

uses

em
ploys

Figure 8.1. Main classes of our monitoring component

38

1 <?xml version="1.0" encoding="UTF-8"?>

2 <!-- configuration for the monitoring controller -->

3 <monitoring-configuration>

4 <!-- permitted values: true, false -->

5 <monitoring-enabled value="true" />

6 <debugging-enabled value="true" />

7 <filewriting-enabled value="false" />

8 <format-kieker-enabled value="true"/>

9 <!-- permitted values: .dat, .log -->

10 <logfile-extension value=".dat" />

11 </monitoring-configuration>

Listing 8.1. monitoring-configuration.xml: instrumentation settings configuration

and parsed through the XMLConfigurationLoader, which sets the values of the controller
afterwards.

monitoring

MonitoringController

AspectConfiguration
utils

XMLConfigurationLoader1

0..1

uses

Figure 8.2. Excerpt of related classes for the instrumentation of our monitoring component

The monitoring configuration allows to toggle the monitoring on or off (true or false),
also the debug mode. Furthermore, it enables or disables writing the monitoring log file
to the file system, activates the conversion to the Kieker monitoring record format, and
defines the extension of the monitoring log file. If one or more configuration settings are
invalid, then the MonitoringController uses default values.

39

The class AspectConfiguration includes all definitions, which are necessary for an instru-
mentation through AspectJ. As we want to observe JDBC operations, we define them as
pointcuts, related to our remarks in Section 4.1. Each time one of these operations is passed
by, during an execution of the observed software system, we employ an around advice and
create a corresponding monitoring record. Additionally, we have to distinguish between
database operation calls, which are created when an operation has started on the one side,
and when it is completed on the other side. This is a necessary step, as we are interested in
the returned value. Furthermore, we enrich this record with information, e.g., the executed
class name, the concrete operation, its arguments, and the returned value.

1 <!DOCTYPE aspectj PUBLIC "-//AspectJ//DTD//EN" "http://www.aspectj.org/dtd/aspectj_1_5_0.dtd

">

2 <aspectj>

3 <weaver options="-Xset:weaveJavaPackages=true,weaveJavaxPackages=true">

4 <include within="*" />

5 </weaver>

6 <aspects>

7 <aspect name="dabamo.monitoring.AspectConfiguration" />

8 </aspects>

9 </aspectj>

Listing 8.2. aop.xml: Configurating the monitoring scope

The instrumentation of our monitoring is presented in Listing 8.2. The file defines the
monitoring scope for our instrumentation and is divided into two parts, weaver and aspects.
The first one allows to set options for the weaving process. As we are interested in JDBC
calls, we need to include the option Java Packages. Furthermore, we define the monitoring
focus with the include tag. At the moment, we still monitor all classes, as a limitation, to
classes of a concrete observed Java software system, did not work properly. In the future,
we plan to fix this circumstance to increase the monitoring performance. Our setting under
the tag Aspects references our AspectConfiguration, which is employed, when AspectJ is
loaded by the JVM.

8.2 Monitoring Record Processing

Once the monitoring records are created, they need to be processed further. Related classes
are presented in Figure 8.3. In order to process the created monitoring records, we utilize
our defined monitoring record class MonitoringAbstractEventRecord, more precisely its con-
crete derivatives MonitoringBeforeEventRecord and MonitoringAfterEventRecord. Furthermore,
the MonitoringController employs a StringRegistry, which operates like a mapper for strings.

Our monitoring record class MonitoringAbstractEventRecord offers all necessary attributes
to enable a further processing of our created records. An overview of the class is given in

40

monitoring

MonitoringController

utils

record

StringRegistry

MonitoringAbstractEventRecord

MonitoringBeforeEventRecord MonitoringAfterEventRecord

1..*

0..*

1

0..1

employs

facilitates

Figure 8.3. Excerpt of related classes for record processing in our monitoring component

Figure 8.4. Our previously mentioned monitoring record attributes, which we described in
Section 4.2.2, are listed in the following:

Ź cid: an unique identifier for mapping before and after event records

Ź classNameId : mapped id, which represents the full Java class operation name

Ź classArgsId: mapped id, which represents the operation argument, e.g., a SQL statement

Ź timestamp: represents date and time of the record

Ź formattedReturnValue: returned value of an executed operation, formatted based on
the returned data type of the operation

The type of the record, more precisely the distinction between a before or after event
record, is handled through its derivate classes MonitoringBeforeEventRecord and Moni-
toringAfterEventRecord. Additionally, the type of the return value, e.g., ResultSet, boolean or
int, is parsed from the full class name and used for processing the formattedReturnValue. The
attribute StringRegistry references the self-named instance within the MonitoringController.
Basically, it applies a mapping between strings and an id. We employ this technique to
improve our monitoring speed, as multiple class operation names or arguments are just
added once to the registry. Hence, the second and all further accesses only require a
reading operation.

8.3 File Writing

The last task within our monitoring component is to write the monitoring records into a
monitoring log file for the upcoming analysis. This task is handled by the class FileLog-
Writer. If the writing of a monitoring log file is enabled within the configuration of the

41

record

<<Property>> -cid : int
-classNameId : Integer
-classArgsId : Integer
<<Property>> -timestamp : long
<<Property>> -formattedReturnValue : String
-stringRegistry : StringRegistry

MonitoringAbstractEventRecord

Figure 8.4. MonitoringAbstractEventRecord attributes

1 $0;592199450609250;Statement java.sql.Connection.createStatement();java.sql.Connection.

createStatement();null;null;0;0;592199450609250;null;null

2 $1;592199458627705;Statement java.sql.Connection.createStatement();java.sql.Connection.

createStatement();null;null;0;0;592199458627705;null;null

3 $0;592199490311527;boolean java.sql.Statement.execute(String);java.sql.Statement.execute(

String);null;null;0;0;592199490311527;null;create table signon (username varchar(25)

not null, password varchar(25) not null, constraint pk_signon primary key (username))

4 $1;592199497972053;boolean java.sql.Statement.execute(String);java.sql.Statement.execute(

String);null;null;0;0;592199497972053;false;create table signon (username varchar(25)

not null, password varchar(25) not null, constraint pk_signon primary key (username))

5 $0;592228000197825;boolean java.sql.Statement.execute(String);java.sql.Statement.execute(

String);null;null;0;0;592228000197825;null;SELECT itemid, productid, listprice FROM

item

6 $1;592228000297821;boolean java.sql.Statement.execute(String);java.sql.Statement.execute(

String);null;null;0;0;592228000297821;false;SELECT itemid, productid, listprice FROM

item

Listing 8.3. Excerpt of a monitoring log file using the Kieker format

MonitoringController, the monitoring records are sequentially written to the file system.
Depending on whether a conversion to the Kieker monitoring log format is requested or
not, a corresponding monitoring log file is created. Also the extension is configurable
through our monitoring configuration. As we need to employ the Kieker monitoring
log format for our analysis and visualization tasks within Kieker Trace Diagnosis, an
excerpt from an example log file is shown in Listing 8.3. Each line represents a monitoring
record and the inherited logging attributes are separated by a semicolon. The leading
value indicates the type of monitoring record ($0: MonitoringBeforeEventRecord and $1:
MonitoringAfterEventRecord).

42

As Kieker needs to know, which exact record type is represented in the log file for the
analysis, a mapping file, namely kieker.map, needs to be specified. Previously, we applied
the IRL to generate compatible Kieker records. These record classes are defined in this file
for a correct mapping, which is presented in Listing 8.4. Our generated monitoring record
classes are located within the kieker.common.record.io.database package.

1 $0=kieker.common.record.io.database.DatabaseBeforeEventRecord

2 $1=kieker.common.record.io.database.DatabaseAfterEventRecord

Listing 8.4. Kieker record mapping definition

43

Chapter 9

Analysis Implementation

The general workflow of our developed analysis component was explained in Section 4.2.2.
In this chapter, we describe our related implementation and name the relevant components,
which are presented in Figure 9.1.

model

<<component>>
DataModel

domain

<<component>>
DatabaseOperationCall

<<component>>
AggregatedDatabaseOperationCall

<<component>>
PreparedStatementCall

czi

<<component>>
DatabaseImportAnalysisConfiguration

<<component>>
Stages

Figure 9.1. Main components of our analysis component

Our implementation of the analysis component is structured into three packages, namely
model, domain, and czi. The first one consists of the class DataModel, which acts as a
data storage for Kieker Trace Diagnosis. The package domain contains mapping classes
for our previously generated monitoring records. DatabaseOperationCall serves as a basis
object for database operation calls, AggregatedDatabaseOperationCall for aggregated database
operation calls, and PreparedStatementCall for the same-named calls. The analysis, the
related configuration, and the employed filter (stages), are comprised within the classes
DatabaseImportAnalysisConfiguration, respectively Stages, which is an abstract component
that includes multiple filter. The presented classes within these three packages are described

45

in the following.

9.1 Monitoring Record Classes

In order to map our previously generated monitoring records based on the monitoring
component, we need to define Java objects within Kieker Trace Diagnosis. This allows
to process and utilize the monitoring records for our analysis and the visualization. Our
monitoring record classes extend the existing class AbstractOperationCall, as it already
provides useful attributes, e.g., component, operation, and the option to define children
objects. The latter one allows to construct (call) trees extending AbstractOperationCall. The
class is an abstract base for classes, which represent operation calls (also called executions)
within Kieker Trace Diagnosis. We describe our three newly introduced monitoring classes
in the following.

9.1.1 DatabaseOperationCall

The class DatabaseOperationCall is our primary class for storing and processing monitored
database operation calls. A reduced class diagram is presented in Figure 9.2. We employ the
class DatabaseOperationCall within Kieker Trace Diagnosis as a data structure for statements.

-traceID : long
-duration : long
-timestamp : long
-callArguments : String
-returnValue : String
-parent : DatabaseOperationCall

DatabaseOperationCall
-parent

Figure 9.2. Reduced class diagram of DatabaseOperationCall

The presented attributes are based on the record structure, we defined within our
monitoring component, as seen in Figure 8.4. The class consists of the following attributes:

Ź traceid: an unique identifier for statements

Ź duration: the duration of the executed statement

Ź timestamp: represents date and time of the record

Ź callArguments: includes the executed SQL statement

Ź returnValue: returned value of an executed operation, formatted based on the data type

46

Ź parent: contains a reference to a parent object, if one exists

9.1.2 AggregatedDatabaseOperationCall

The class AggregatedDatabaseOperationCall is applied as a data structure for aggregated
Statements based on their executed SQL statement. We present a reduced class diagram in
Figure 9.3.

-totalDuration : long
-minDuration : long
-maxDuration : long
-avgDuration : long
-calls : int
-callArguments : String
-parent : AggregatedDatabaseOperationCall

AggregatedDatabaseOperationCall

-parent

Figure 9.3. Reduced class diagram of AggregatedDatabaseOperationCall

The presented attributes are similar to our previous defined monitoring record structure.
The class consists of the following attributes.:

Ź totalDuration: the total used response time, regarding a specific aggregated statement

Ź minDuration: the minimum duration of the executed statement

Ź maxDuration: the maximum duration of the executed statement

Ź avgDuration: the average duration of the executed statement

Ź calls: the number of calls or children of a specific aggregated statement

Ź callArguments: includes the executed SQL statement

Ź parent: contains a reference to a parent object, if one exists

For each SQL statement a parent call is created. If a parent call for a statement call
already exists, then the statement call is added as a child to the parent call. As we are
interested in conducting a performance analysis of database operations, the response time
is very important. In order to find potential performance problems, more precisely concrete
statements, we calculate different timings for an aggregated statement. Therefore we note
the total, the average, the minimum, and the maximum response time. Additionally, we
employ an attribute calls, which stores the count of related children calls.

47

9.1.3 PreparedStatementCall

The last of the three mapping classes is PreparedStatementCall. We employ this data structure
for our same-named prepared statements. A reduced class diagram is shown in Figure 9.4.

-traceID : long
-duration : long
-timestamp : long
-abstractStatement : String
-concreteStatement : String
-returnValue : String
-parent : PreparedStatementCall

PreparedStatementCall
-parent

Figure 9.4. Reduced class diagram of PreparedStatementCall

The presented class PreparedStatementCall is a variation of the Statement class. We list the
relevant attributes, which are similar to our previous defined monitoring record structure.
The monitoring data structure consists of the following attributes:

Ź traceID: an unique identifier for a prepared statement

Ź duration: the duration of the execution

Ź timestamp: represents date and time of the record

Ź abstractStatement: includes the precompiled SQL statement, only if the object is a parent
object

Ź concreteStatement: shows the concrete executed SQL statement, only if the object is not
a parent object

Ź returnValue: returned value of an executed operation, formatted based on the data type

Ź parent: contains a reference to a parent object, if one exists

Each abstract statement defines its own call tree hierarchy. The abstract statement object
embodies the parent element and the concrete statements are referenced children nodes.
As each concrete statement contains a response time (duration), it is possible to distinguish,
which bound parameters may involve a performance problem.

48

9.2 DataModel

The class DataModel is a central container for data, which is used within the application. It
manages all necessary information for the visualization and offers data structures for the
analysis. A reduced class diagram of the class is displayed in Figure 9.5.

-databaseOperationCalls : List<DatabaseOperationCall>
-databaseStatementCalls : List<DatabaseOperationCall>
-aggregatedDatabaseStatementCalls : List<AggregatedDatabaseOperationCall>
-databasePreparedStatementCalls : List<PreparedStatementCall>
-importDirectory : File
-timeUnit : TimeUnit
-beginTimestamp : long
-endTimestamp : long

DataModel

Figure 9.5. Reduced class diagram of DataModel

The DataModel contains four lists for storing the results from the analysis for the
database calls. It also employs the analysis and sets the location of the monitoring log, if
one is loaded, into the attribute importDirectory. Furthermore, it specifies the applied time
unit, e.g., nanoseconds, and stores the starting and ending time of an executed analysis
(beginTimestamp and endTimestamp).

9.3 Analysis Configuration

In the previous sections we explained where database operations are stored within Kieker
Trace Diagnosis, and what kind of data structure we employ. In this section, we cover the
analysis based on the TeeTime1 Pipes-And-Filter framework. TeeTime offers an abstract
class, AnalysisConfiguration, for configuring an analysis and setting up pipes and filters.
The class represents a configuration of connected stages, which is needed to run an
analysis within TeeTime. As the framework utilizes the term stage instead of filter, we
adopt this naming and employ it in the following. For our purpose, we extend this
AnalysisConfiguration class and create our own analysis configuration, namely the class
DatabaseImportAnalysisConfiguration, which is illustrated in Figure 9.6.

The diagram shows our employed sinks within the Pipes-And-Filter architecture. We
possess a list for each specific database operation, e.g., PreparedStatementCall, and collect
them in a similar-named sink, which acts like an endpoint within the analysis. These lists

1http://teetime.sourceforge.net

49

-mergedDatabaseCalls : List<List<DatabaseOperationCall>>
-statements : List<List<DatabaseOperationCall>>
-aggregatedStatements : List<List<AggregatedDatabaseOperationCall>>
-preparedStatements : List<List<PreparedStatementCall>>
-collectorDatabaseCalls : CollectorSink<List<DatabaseOperationCall>>
-collectorStatements : CollectorSink<List<DatabaseOperationCall>>
-collectorAggregatedStatements : CollectorSink<List<AggregatedDatabaseOperationCall>>
-collectorPreparedStatements : CollectorSink<List<PreparedStatementCall>>

DatabaseImportAnalysisConfiguration

Figure 9.6. Reduced class diagram of DatabaseImportAnalysisConfiguration

are an in-between data storage, until the processed data is transfered into the DataModel.
As described in our approach, we divided the necessary into several tasks, which can be
transformed into stages for our analysis. Once again, we split our processing into two
domains. Therefore the subsections generic monitoring record processing and specific database
call handling are described in the following.

9.3.1 Generic Monitoring Record Processing

We set-up our analysis configuration and prepare the data structures for storing the results.
In order to retrieve these results, we need to further analyze the gathered data. Therefore,
we developed a process, which loads our recorded monitoring data and processes it through
several, subsequent tasks. In Figure 9.7, the process is illustrated, in form of a component
diagram. The diagram is composed of five components, namely the ReadingComposite, the
MultipleInstanceOfFilter, the DatabaseRecordTransformator, the CreateListOfDatabaseCalls, and
the DatabaseCallMerger. Once more, we want to focus on flexibility and extendibility. Hence,
our components are easy to maintain or replace. We explain the different stages in the
following.

ReadingComposite

This stage is a composite stage, which loads monitoring records from a specific directory,
deserializes them, and forwards them to an output port. As the stage already existed
within Kieker Trace Diagnosis, we applied it for our purpose.

MultipleInstanceOfFilter

The stage filters the deserialized monitoring records and matches them against existing
monitoring records, which are derived from the IMonitoingEvent record, a basic record type
defined in Kieker. As we employed the IRL and generated our own compatible Kieker

50

DatabaseImportAnalysisConfiguration

<<component>>
ReadingComposite

<<component>>
DatabaseRecordTransformator

<<component>>
CreateListOfDatabaseCalls

<<component>>
MultipleInstanceOfFilter<IMonitoringRecord>

<<component>>
DatabaseCallMerger

Figure 9.7. Analysis: Generic Monitoring Record Processing

monitoring records, the filter recognizes our records and matches them for the ongoing
analysis. We applied this stage for our purpose, as it already existed within Kieker Trace
Diagnosis.

51

DatabaseRecordTransformator

Within this stage, we filter our monitoring records for our record types DatabaseBeforeEven-
tRecord and DatabaseAfterEventRecord. We distinguish between them, as they offer different
information, e.g., the timestamp for calculating the duration (response time) of an executed
database operation and the returned value. All matched monitoring records are afterwards
transformed into DatabaseOperationCalls.

CreateListOfDatabaseCalls

This stage covers only a technical transformation. The processed database operation calls
are added to a list. This is a necessary step, as our ongoing stages operate on lists, instead
of single monitoring records.

DatabaseCallMerger

The DatabaseCallMerger takes the list of processed DatabaseCalls and merges each two
elements of the list sequentially (before and after events database calls) into one single
database call. This is a requirement for our next process, the Specific Database Call Handling.

9.3.2 Specific Database Call Handling

Once we handled our records through the Generic Monitoring Record Processing, we apply
additional filter, in order to extract related database operation call objects. Hence, we
focus on identifying specific database operations, e.g., Statements and Prepared Statements,
which we described in Section 4.1. As we continue our analysis using the Pipes-And-
Filter framework TeeTime, we present the involved components and stages for the specific
database call handling in Figure 9.8.

For our further analysis, we employ four different types of stages, namely Distributors,
Extractors, Aggregators, and Sinks. Our analysis is divided into three branches, which
are used to extract Statements, combine these based on their executed SQL statements to
Aggregated Statements, and process Prepared Statements. We describe these three branches in
the following.

Statements

In order to extract related database operation calls, we start with the first stage, the
Distributor<List<DatabaseOperationCalląą, which is located at the top left corner of our
diagram. It distributes the merged database operation calls from the generic monitoring
record processing to the StatementExtractor and the PreparedStatementExtractor. The latter
one is applied for Prepared Statements. The StatementExtractor, extracts statements from
database calls and refines them for our ongoing analysis. This includes merging several

52

DatabaseImportAnalysisConfiguration

<<component>>
Distributor<List<DatabaseOperationCall>>

<<component>>
StatementExtractor

<<component>>
Distributor<List<DatabaseOperationCall>>

<<component>>
PreparedStatementExtactor

<<component>>
StatementAggregator

<<component>>
CollectorSink<List<PreparedStatementCall>>

<<component>>
CollectorSink<List<AggregatedDatabaseOperationCall>>

<<component>>
CollectorSink<List<DatabaseOperationCall>>

Figure 9.8. Analysis: Specific database call handling

statements calls (createStatement() and related executors) into one single call. Also the
overall response time is calculated. Afterwards these statements are forwarded to a sink,
which acts as a storage for them (CollectorSink<List<DatabaseOperationCalląą).

Aggregated Statements

The second distributor Distributor<List<DatabaseOperationCalląą forwards the extracted
statements to the StatementAggregator. This stage aggregates statement calls based on their
operation and executed SQL statement. Furthermore, related response times, e.g., the
average and maximum response time, are calculated.

Prepared Statements

The PreparedStatementExtractor stage extracts and aggregates prepared statement calls based
on our definition in Section 5.1.2. We merge prepared statement calls (prepareStatement and
related setters and executors) into one call including children, if they exist. Additionally,
the PreparedStatementExtractor creates an abstract prepared statement with variables, if a
precompiled statement is processed for the first time. Afterwards the abstract Prepared
Statement, which is enriched by setters, is employed to reconstruct concrete executions.
These are stored within the call hierarchy of the abstract Prepared Statement.

53

Chapter 10

Visualization Implementation

In the previous section, we described, how we process monitored database operations,
analyze them, and store them into the Datamodel class, in order to prepare the resulting data
for our visualization. In Chapter 6, we decided to employ the Call Tree View [De Pauw et al.
2002] representation for our approach. We apply this form of visualization to represent
the call hierarchy of a database operation call. Furthermore, we developed, based on the
existing underlying visualization architecture within Kieker Trace Diagnosis, which applies
the MVC pattern, three different representation views. Additionally, we provide filtering
and sorting functions for our recorded monitoring data. In the following, we present an
overview of the underlying architecture and describe our three related views.

10.1 Architecture

As mentioned before, Kieker Trace Diagnosis utilizes the MVC pattern for the visualization.
We integrate our related views and develop them upon this underlying architecture. In
Figure 10.1, the MVC-based visualization architecture, for visualizing database calls, is
shown.

Kieker Trace Diagnosis facilitates a Main view, which acts as a parent view for several
other views. These are the previously existing views for business operation records and
our new database operation monitoring records. The MVC architecture allows us to divide
our visualization component into three partitions, in order to separate the internal data
structure and the processing from the presentation, towards the user of the GUI. We employ
three different views, namely the Statements, the Aggregated Statements, and the Prepared
Statements view. Each of them also applies the MVC pattern.

Figure 10.2 shows the navigation structure of our available views within the GUI. On
the one hand Business Operation views are offered, on the other hand our new views
for Database Operations are shown. Each view represents a sub-view, which is related to
the Main view. The Main view initializes and manages the nodes within the presented
navigable tree. We explain our three related database operation views in the following.

55

M

CV

Main

M

CV

Statements

M

CV

Aggregated Statements

M

CV

Prepared Statements

Figure 10.1. MVC architecture of our visualization implementation

Figure 10.2. Kieker Trace Diagnosis: navigation tree view screenshot

10.2 Statements

We developed our Statements view based on our previously presented mock-up, which
is shown in Figure 10.3. Therefore, our view is divided into four different components,
namely the Filter, the Data Grid, the Detail Panel, and the Footer. The header is not shown, as
the name of the currently selected database operation is included in the navigation tree.
Additionally, we created another component, the Detail Panel, to enhance the visualization,
as we present a second information sub-view for the user.

56

Figure 10.3. Kieker Trace Diagnosis: statement view screenshot

At the top left corner of the view, the input box for filtering the presented statements, the
Filter, is shown. The filter operates with regular expressions for filtering the database calls.
The Data Grid component consists of all necessary information about the related statement
calls. These are the executed SQL statement string, the returned value, the response time,
and the mapped trace id. There are corresponding columns within the Data Grid, that
allow an ascending or descending sorting of the shown statements. The sorting criterion
is chosen by clicking on one of the described columns. Furthermore, the user can use a
scrollbar to navigate through the statement items within the list. Our component Detail
Panel shows the available information for the currently selected statement, e.g., “DROP
INDEX productName”, in the screenshot. Hence, we offer a second, more structured
perspective for the user. Below the Detail Panel the Footer component is located, which
shows the number of statements within the view.

10.3 Aggregated Statements

In this section, we present our Aggregated Statements view, which shows statements, which
have been aggregated based on their executed SQL statement. The view is presented in
Figure 10.4.

As the layout is similar to the Statements view, we do not introduce the components again
and describe only the differences instead. In comparison to the first view, we added some
time-related columns. More precisely, we present the total, the average, the minimum, and
the maximum response time for an aggregated statement. Additionally, each aggregated
statement contains the executed SQL statement and the count, which represents the number

57

Figure 10.4. Kieker Trace Diagnosis: aggregated statement view screenshot

of executions. The Detail Panel component is extended towards the added columns and
presents all necessary information to a related aggregated statement at a glance.

10.4 Prepared Statements

The third and last view covers our monitored Prepared Statements. Once again, we offer a
similar view to the previous presented database operation views. The Prepared Statements
view is shown in Figure 10.5.

Figure 10.5. Kieker Trace Diagnosis: prepared statement view screenshot

58

The difference to the last view is related to the distinction of an abstract prepared
statement and its concrete executions. Prepared statements are precompiled statements
with variables, which are bound to later set call parameters, before their execution. For the
first time in our visualization, the Data Grid component really shows a tree visualization.
The previous views also used trees, but they were flat. More precisely, we merged these
calls into one single call for the visualization. For our prepared statements we have a tree
with nodes, in order to visualize an abstract prepared statement (parent), and its concrete
executions (children). This is necessary, as we are interested in concrete executions, that may
cause performance problems. Furthermore, as we want to offer the functionality to analyze
a concrete prepared statement with its executed parameters and the related response time,
we present the executed SQL statement, more precisely we substitute the variables with
bonded values, within the SQL statement string. Afterwards, the abstract Prepared Statement,
which is enriched by setters, is employed to reconstruct concrete executions. These are
stored within the call hierarchy of the abstract Prepared Statement. Additionally, we present
some time-related columns, which are the same, as for the Aggregated Statements view.

59

Chapter 11

Evaluation

In this chapter, we present the evaluation of our approach and its corresponding im-
plementation. We start with a definition of our evaluation goals and our used metrics.
Subsequently, we describe our set-up and the execution of our tests within our evaluation
environment. We conduct a survey, to verify the functionality and usability of our tool. In
the end, we analyze our tests and illustrate the devoted results.

11.1 Goals

Our main goal is to evaluate the functionality and usability of our software, which is
divided into the monitoring, and the analysis and visualization component. The latter one
is integrated into Kieker Trace Diagnosis. More precisely, we evaluate the functionality
and usability of the whole software system. A software engineer should be able to use
our approach, in the context of JDBC, to monitor database operations of a specific Java
application. Furthermore, the visualization, which is based on the processed analysis,
has to be easy-to-use. Filtering and sorting of database operations, like statements and
prepared statements, is an essential part.

As we conduct a survey for our evaluation process, the goal is to identify how users
interact with our software and how usable it is. This includes also the functionality of
our software, the correctness of the presented data, and how useful it is, when the user
employs our software, when conducting an analysis on database operations. Additionally,
we want to know, if assigned questions within our survey, which contain a single task, are
solvable with our software.

11.2 Methodology

This section describes our methodology, which is used in our usability experiment. We
employ an usability test based on a survey, respectively questionnaire, we introduced in
Chapter 2. Questionnaires have been used a long time to evaluate user interfaces [Root
and Draper 1983]. We decided to create a survey based on the SUS questionnaire, and
add severals tasks, as we are interested in the overall usability of our software and the

61

usefulness to solve specific questions using it. The participants should verify the usability
of our software. Additionally, we measure the overall time, each participant spent on the
questionnaire.

11.3 Usability Experiment

Our usability experiment is structured into five, consecutive parts. We start with our
developed questionnaire, continue with the experimental set-up, describe how we conduct
the experiment, present the results, and close with a discussion.

11.3.1 Questionnaire

We choose a questionnaire, respectively survey, as an evaluation method to verify our
software. Therefore, we developed a paper-based questionnaire for our usability testing
experiment. We created questions, that may occur during a performance analysis of
database operations within an existing software system.

It is important to choose well-defined questions within an usability test, as they directly
influence the results of experiment [Nielsen and Landauer 1993]. According to Nielsen and
Landauer, we should employ at least 30 test subjects within our experiment to get valid
results.

Our questions are result-based tasks, as the user tries to solve the question on his own
and we do not provide a fixed, predefined way to find a solution. Our questionnaire begins
with less complex questions, e.g., naming the number of presented views, and ends with
more complex understanding questions. This allows the test subject to get familiar with
our software, so that we can raise the complexity in the latter questions. We divided our
questionnaire in six parts. The first part covers personal questions and experiences within
the context of database systems and performance analysis. The last part are debriefing
questions about the usefulness and behavior of our software. We present the related parts
in the following.

Personal Information

Our questionnaire begins with a part for personal information. We are interested in the
overall semester, the target degree, and the experience level, regarding some skills, of our
participants. For rating of their experience level, we employ a 5-point Likert Scale [Likert
1932] ranging from 0 (no experience) to 4 (expert with years of experience). The skills, to
rate, are listed in the following:

Ź Java Programming

62

Ź Performance Analysis

Ź Database Systems

Ź SQL

Ź Kieker Trace Diagnosis

We choose these skills, since they are related to the expertise of a real user of our
software. In order to compare our results, we need to measure the experience of our
participants.

Introduction

In Table 11.1, our defined questions including their id within the questionnaire, their
description, and maximum achievable points (score) are displayed. To give the subject time
for becoming familiar with the tool, we start with simple questions, which focus on the
navigation structure of our software.

Table 11.1. Description of the questions from the introduction part of our questionnaire

ID Description Score

2.1 How many different views, regarding database operations, are offered by
the program?

1

2.2 How many statements, aggregated statements and prepared statements
have been loaded?

3

2.3 How long was the overall analysis duration? 1

Statements

In this part, we start with specific questions according to our software. In our scenario,
our participant is a software engineer, who conducts a performance analysis of a software
system. He suspects, that database operations may cause performance problems. Therefore,
he is interested in a statement, e.g., that has the highest response time. This is often a good
starting point for further analysis. The related questions are shown in Table 11.2.

Aggregated Statements

An aggregated statement represents multiple executed SQL statements. One single state-
ments call may not cause a performance issue, even if its response time is high. In contrast,
a huge amount of executed similar SQL statements with an inconspicuous response time

63

Table 11.2. Description of the questions from the statements part of our questionnaire

ID Description Score

3.1 Name the trace ID and response time (in ms) of the statement, that has the
highest response time.

1

3.2 What is its underlying calling Java operation? 1

3.3 What kind of SQL statement took the lowest amount of time? 1

can cause a performance issue. Therefore, we present related questions in Table 11.3.
Especially in larger software systems this sort of questions may occur.

Table 11.3. Description of the questions from the aggregated statements part of our questionnaire

ID Description Score

4.1 Name the aggregated statement, its count of invocations, and the total
response time (in μs) of the statement, that has the highest total response
time.

3

4.2 Name the aggregated statement, its count of invocations, and the average
response time (in μs) of the statement, that has the highest average time.

3

4.3 Name the aggregated statement, its count of invocations, and the average
response time (in μs) of the statement, that has the lowest minimum
response time.

3

Prepared Statements

This part of the questions is related to prepared statements. The user needs to employ our
tree navigation within our corresponding view, in order to find a solution. In addition, the
user is challenged to distinguish between an abstract and a concrete prepared statement.
Altogether, this part is the most difficult one within our questionnaire. We present the
related questions in Table 11.4.

Debriefing Questions

Our last part within the questionnaire is feedback oriented. We were interested in their
opinion, related to a specific functionality or overall impression, of our software. Again,
we employ a 5-point Likert scale, ranging from 0 (very difficult or very bad) to 4 (very easy
or very good), and present the related questions in Table 11.5.

64

Table 11.4. Description of the questions from the prepared statements part of our questionnaire

ID Description Score

5.1 Name the abstract prepared statement, that has the highest response time. 1

5.2 Name, referred to the previous question, the concrete prepared statement
parameter(s) or variable(s) and corresponding response time(s), that cause
the highest response time.

2

5.3 Name the concrete prepared statement, that has the highest count of
invocations. Also name its distinct parameters and response times.

3

Table 11.5. Description of the debriefing questions our questionnaire

ID Description

6.1 How difficult was it to navigate through the program?

6.2 How difficult was it to filter and sort database statements for specific
problems?

6.3 Was the program easy to use?

6.4 How was your overall impression of the tool?

6.5 Do you have any comments/suggestions concerning the usage of the
program? Was something ambiguous or not clear?

Related keywords within the questions are marked bold, to emphasis the related func-
tionality, we are interested in. The last question, with id 6.5, does not apply the Likert scale.
Instead it uses a free text field.

11.3.2 Experimental Set-up

This section describes the experimental set-up for our evaluation. Prior to the set-up of our
experiment, we needed to generate sample data for the usability test. Hence, we employed
the aforementioned JPetStore in version 5.0 and executed it on our development system. As
we used several machines and software configurations within our experiment, we explain
them in the following.

Configuration

As the experiment takes place in an experimental laboratory, we provide an overview of
the hardware and software configuration in the following.

65

Table 11.6. Employed hardware configurations within the experiment

Machine 1 Machine 2 Machine 3

Model Dell Optiplex 7010 Dell Optiplex 7010 Lenovo Thinksta-
tion S10 6423

CPU Intel Core i3 3220
2x 3.30GHz

Intel Core i5 3470
4x 3.20GHz

Intel Core 2 Duo
E8400 2x 3.00GHz

RAM 8GB 8GB 8GB

Display Size 24 inch
(widescreen)

24 inch
(widescreen)

19 inch (standard)

Display Resolution 1920 x 1080 pixels 1920 x 1200 pixels 1280 x 1024 pixels

Hardware Configuration We employ three different machines, which are used during
our experiment. As the underlying hardware differs, we present their relevant hardware
specification in Table 11.6.

The hardware configuration is different, especially in display size and resolution. This
circumstance is based on the varying hardware specification of the equipment within
our computer lab. This provides not an ideal condition for conducting our experiment.
Although our software does not require a high hardware specification and our application
does not need a large display size with a resolution greater than 1280 x 1024 pixels,
we are optimistic that this fact does not influence our experiment negatively. In an
following experiment, we recommend to employ only machines with an identical hardware
configuration, especially the used displays.

Software Configuration We employed Windows 7 Professional 64 Bit, including the first
Service pack, as operation system for our experiment. Furthermore, we applied the Java
Software Development Kit (SDK) in version 1.8, as our software system requires Java for
the execution.

11.3.3 Execution of the Experiment

Before the experiment took place, we conducted a small pilot study with two students
as participants. Therefore, we received feedback, which helped us to improve our ques-
tionnaire. Furthermore, we added hints or rephrased questions, which were mentioned
as not clear or difficult. We utilized a paper-based questionnaire, which was described in
Section 11.3.1, for our experiment. The test subjects had no time limit, and could work in
parallel, as we prepared three machines for our purpose. At the beginning, each participant

66

received a sheet of paper containing a short description of our experiment and the related
context. This information sheet can be found in Appendix A. They were given sufficient
time to read this paper. Afterwards, we informed the test subjects, that they can ask
during their experiment session, if a question is not clear. Subsequently, the questionnaire
started with personal questions and experiences within the context of database systems and
performance analysis. Thereupon, we assigned tasks, that may occur during conducting
a performance analysis of database operations. The experiment session ended with the
debriefing questions.

11.3.4 Results

In this section, we present the measured results from our experiment, respectively question-
naire. We start with the personal questions, continue with our application related questions
(Q2 - Q5), and close with our debriefing questions.

Personal Information

Our experiment inherited 36 participants, thereof one bachelor student, 32 master students,
and 3 PhD students. In the first part of our questionnaire, we asked the test subjects to rate
their experience level, regarding the skills Java Programming, Performance Analysis, Database
Systems, SQL, and Kieker Trace Diagnosis. The results, including the specific skill, the mean,
and the standard deviation, are shown in Table 11.7.

Table 11.7. Results of the rated experiences within the personal information part

Skill Mean SD

Java Programming 2.6111 0.5491

Performance Analysis 1.0833 0.6917

Database Systems 1.1666 0.6969

SQL 1.3888 0.7663

Kieker Trace Diagnosis 0.4722 0.6540

Introduction

We asked simple questions within this part to get the participants familiar with our software.
These were mainly related to navigation structure. The results, including the question id,
the mean, and the standard deviation, are displayed in Table 11.8

67

Table 11.8. Results of the introduction part

ID Mean SD

2.1 0.9166 0.2803

2.2 2.9166 0.5

2.3 1 0

Statements

In this part, we were interested in how our participants handle statements. The participants
had to find and employ the related views to give a correct answer. The results are shown
in Table 11.9.

Table 11.9. Results of the statements part

ID Mean SD

3.1 1.3333 0.6761

3.2 0.9722 0.1666

3.3 0.9722 0.1666

Aggregated Statements

As aggregated statements may cause performance issues, we asked the users related
questions, which may occur during a performance analysis. The corresponding results are
displayed in Table 11.10

Table 11.10. Results of the aggregated statements part

ID Mean SD

4.1 2.6388 0.6393

4.2 2.5833 0.7699

4.3 2.5277 0.8101

68

Prepared Statements

This part of the questions was related to prepared statements. Within the questionnaire,
these questions were the most difficult one. The participants had to distinguish between
an abstract and a concrete prepared statement, which could be challenging, if they were
not familiar with these kind of database operations. We present the related results in
Table 11.11.

Table 11.11. Results of the prepared statements part

ID Mean SD

5.1 0.9722 0.1666

5.2 1.6111 0.6448

5.3 2.25 1.2507

Debriefing Questions

Our last part within the questionnaire was designed to get feedback towards our developed
software solution. We were interested in their opinion of our software. The results are
shown in Table 11.12.

Table 11.12. Results of the debriefing questions part

ID Mean SD

6.1 3.3611 0.7616

6.2 3.1666 0.6094

6.3 3.2777 0.6594

6.4 3 0.7559

Additionally, the test subjects had to name comments or suggestions concerning the
usage of our software. As the text answers are inappropriate to be listed here, they can be
found within the raw results in Appendix B.

11.3.5 Discussion of Results

In this section, we discuss the results we presented in the previous section. The time,
which the participants spent performing the questionnaire, resulted in 23.58 minutes in the

69

average case, with a standard deviation of 5.69 minutes. Our two participants within the
pilot study needed about 30 minutes for the test. This may be attributed to the refinement
of our questionnaire based on the feedback of the pilot study. For our concrete task-related
questions, which start with the introduction part (Q2) and end with the prepared statements
part (Q5), we are interested in the average correctness for each question. In the following,
we describe the different parts and analyze and discuss the results.

Personal Information

Based on this data, we can correlate the task-related answers with the experience of the
test subjects. The test subjects rated their experience level of Java Programming between
intermediate and advanced (average), which seems adequate, since most of them may have
gained their experience within their bachelor or master course. The result for Performance
Analysis was located at the beginner level in the average case. This circumstance is hardly
surprising, as the students get rarely in touch with this process during their study. The
results for Database Systems and SQL are nearby at the beginner level (average). Although
there is a mandatory lecture within the bachelor course, the participants do not feel
experienced enough, to rate their experience level as intermediate. Our last question was
related to the usage of Kieker Trace Diagnosis, in which we had integrated our developed
components. Our test subjects rated their skill between none and beginner, which is very
reasonable as the tool is not published at the moment. Additionally, as we integrated the
functionality towards database operations within our thesis, the related source code is also
not available at this time.

Introduction

Our questions within the introduction part of our questionnaire have been designed with
the purpose, to get familiar with our software. Therefore, our questions were simple
and could be solved by exploring the navigation structure of our software. The average
correctness for the related questions is shown in Figure 11.1.

We measured good average correctness results for our three Questions 2.1, 2.2, and 2.3.
Hence, we imply that the first steps within our software are appropriate and our software
has a good navigation structure. The latter implication is based on the 100% average
correctness rate for Question 2.3. Additionally, we asked how long the duration of the
analysis took place.

Statements

To solve our questions, regarding statements, the test subjects were required to apply for
the first time our built-in sorting function, as we asked in Question 3.1 for the statement,

70

Q2.1 Q2.2 Q2.3

Question

Av
er

ag
e

co
rre

ct
ne

ss
 (p

er
ce

nt
ag

e)

0
20

60
10

0 92% 97% 100%

Figure 11.1. Average correctness per question within the introduction part

Q3.1 Q3.2 Q3.3

Question

Av
er

ag
e

co
rre

ct
ne

ss
 (p

er
ce

nt
ag

e)

0
20

60
10

0

67%

97% 97%

Figure 11.2. Average correctness per question within the statements part

which has the highest (total) response time. We present the average correctness for the
related questions in Figure 11.2.

71

Q4.1 Q4.2 Q4.3

Question

Av
er

ag
e

co
rre

ct
ne

ss
 (p

er
ce

nt
ag

e)

0
20

60
10

0

88% 86% 84%

Figure 11.3. Average correctness per question within the aggregated statements part

Surprisingly, many participants were not able to name the correct answer, which is
indicated through the low average correctness rate of 67%. One possible explanation
may be, that the correct answer for Question 3.2 is an answer, which applies to multiple
statements.

Aggregated Statements

The questions within the aggregated statements part had been more difficult than the
previous questions. The average correctness for the Questions 4.1, 4.2, and 4.3 is shown in
Figure 11.3.

These questions were designed to be similar to questions, which may occur during
a performance analysis. We measured very positive average correctness results of 88%
(4.1), 86% (4.2), and 84% (4.3). The answer to Question 4.1 and 4.2 were the same. This
circumstance was intended to be a pitfall, in order to test the participants. Just a few
participants, which answered Question 4.1. correctly, failed the following Question 4.2.

Prepared Statements

Our last task-oriented part within the questionnaire was related to prepared statements.
The view, which had to be employed to solve our Questions 5.1, 5.2, and 5.3, was different
to the previous ones. For the first time, a call tree structure was visualized and presented

72

Q5.1 Q5.2 Q5.3

Question

Av
er

ag
e

co
rre

ct
ne

ss
 (p

er
ce

nt
ag

e)

0
20

60
10

0 97%
81% 75%

Figure 11.4. Average correctness per question within the prepared statements

a list of abstract prepared statements and their concrete executions, in form of children
nodes. We present the average correctness for our questions in Figure 11.4.

As prepared statements are often used within large-scaled software systems, we are
especially interested in the correctness of our results. Once again, we measured very
positive average correctness rates of 97% (Question 5.1), 81% Question 5.2), and 75%
(Question 5.3). We want to name Question 5.1, particularly. We achieved a rate of nearly
100%, which is a overwhelming good value, as we remember, that most participants rated
their experience regarding database systems and SQL as beginner. Either the participants
did not need to know exactly what was questioned and solved the question anyway, or
they were able to deduct. In comparison, the rate of 75% for Question 5.3 seems a little bit
left behind. This may be the result of the inaccuracy of this question. Some participants
mentioned during the experiment, that this question was not clear. A better formulated
question might have resolved in a better rate.

Debriefing Questions

Within the debriefing questions part, we wanted to get feedback from the participants
based on their usage of our software during the experiment. In comparison to the previous
parts, we were not interested in the average correctness of a question. Instead, we wanted
to know how difficult or bad, respectively easy or good, some functionalities or the overall
impression of our software were. The results are presented in Figure 11.5. The percentage
is ranged from 0% (very difficult or very bad) to 100% (very easy or very good).

73

Q6.1 Q6.2 Q6.3 Q6.4

QuestionAv
er

ag
e

op
in

io
n

of
 e

as
y

or
 g

oo
d

(p
er

ce
nt

ag
e)

0
20

60
10

0

84% 79% 82%
75%

Figure 11.5. Average rating of easy or good per question within the debriefing questions

The participants rated the difficulty to navigate through our software between easy and
very easy (84%, Question 6.1). In the same manner our filtering and sorting functionality
were rated (79%, Question 6.2). The difference may be related to the limitation of the
filtering, as it only accepts a regular expression. In the opinion of the test subjects, our
software was easy to use (82%, Question 6.3), also the overall impression (75%, Question
6.4). Therefore, three of four users say, that the overall impression of our software is very
good. The presented results are very good and indicate, that our software is applicable for
conducting a performance analysis in the context of database operations.

11.3.6 Threats to Validity

Our experiment was performed on three different systems. Although we used more than
one system, our experiment is not representative for all available systems. Furthermore,
since we could not use the same hardware three times, it is possible, that the results are
not completely comparable. Therefore, we suggest to conduct further experiments with
the same hardware, for validating our results, and different object systems for a general
validation.

Another threat concerns the assigned questions, which might not reflect real performance
problems. We defined valid questions concerning a performance analysis of database oper-
ations within a software system, in order to verify our software for a real environment. Our
test subjects were made up of bachelor, master, and PhD students. Therefore, they might

74

have behave differently in comparison to professional software engineers or developers.
Conducting a further experiment, employing only professionals, may quantify this impact.

11.4 Summary

Summarized, we observed positive feedback from our participants, which matches the high
correctness rate of our questions (Q2 to Q5), in combination with the positive results from
our debriefing questions (Q6). Although the difficulty of our questions increased within the
questionnaire, the participants were nearly consistently able to give correct answers. This
confirms that our software system have a bearing on conducting a performance analysis of
database operations. As we have validated the usability of our developed tool through our
conducted experiment, our software system is worthwhile to be further developed. Our
raw results and paper-based questionnaire of the experiment is available in Appendix B,
respectively Appendix C.

75

Chapter 12

Related Work

During our literature research, we only found a few suitable approaches within the
research body, which were related to our context, monitoring database operations within
a performance analysis of a software system. Ma et al. [2012] presented an approach
towards monitoring public clouds and created a framework for this purpose. They provide
a visualization of observed SQL statements, which shows their number of issues per
second. As they are only interested in the kind of database operation, e.g., SELECT,
CREATE, INSERT or DELETE, their visualization presents only aggregated calls towards
the mentioned level. A more detailed inspection of specific database calls, which we offer
in our developed tool, is not possible.

Apart from the research body, there are also exist tools in the industrial context. These are
commercial and often very expensive. One of these tools is InspectIT, another monitoring
framework developed by the company Novatec.1 Although the source code of the tool is
not available in terms of open source, the software can be used, based on the supplied
license agreement. The tool was presented at the Symposium on Software Performance
2014 in Stuttgart.2 It performs a dynamic analysis of Java programs during their execution
using an instrumentation of the JVM based on the Java package java.lang.instrument.3 In
addition to the capabilities of the presented approaches, InspectIT allows to show executed
SQL queries and their corresponding execution times. Our visualization approach was
inspired by the tool InspectIT, as it offers a simple, similar visualization of information on
database operations.

Another tool within this context is the New Relic APM tool,4 supplied by the same-name
company. The framework offers a wide range of features, from application response times
to security audits. It also features database monitoring. Large companies, e.g., Kickstarter,5

employ this monitoring framework. Their database monitoring component provides a
detailed overview of database performance and indicates critical errors, which are slowing
down an application. They are also ranking the most time consuming database calls and

1http://www.inspectit.eu
2http://www.performance-symposium.org/fileadmin/user_upload/palladio-conference/2014/slides/08_inspectit.pdf
3http://docs.oracle.com/javase/6/docs/api/index.html?java/lang/instrument/package-summary.html
4http://newrelic.com
5http://www.kickstarter.com

77

combine this information with aggregated metrics, e.g., response times, throughput, and
slow SQL traces. Furthermore, they offer the ability to filter the database communication to
show only operations and metrics of a specific type. In comparison to our approach, they
additionally offer a visualization for showing slow (prepared) statements. The user can
identify slow, problematic statements, without the need to search within a list of statements.

The company AppDynamics6 offers, beside their APM solution, also a product for
database monitoring. Their software is capable of troubleshooting performance issues in
production environments, in order to diagnose the root cause of database-related perfor-
mance issues, using fine-grained historical data. Additionally, they offer functionalities to
tune and fix performance issues pro-actively, based on performance metrics, such as the
consumption of resources or concrete execution plans. Furthermore, they claim to invoke
a monitoring overhead of less than 1%. In comparison to our approach, the tool already
offers features to fix performance problems or at least to optimize the performance.

Dynatrace7 provides another APM solution with their product Dynatrace Application
Monitoring. Although the details are not presented on their website, their software involves
a monitoring of database operations. Furthermore, they visualize calls within the observed
software. Additionally, they list response times and highlight potential problems. They also
reveal related method arguments, return values, SQL statements, and more. Compared to
our approach, their software provides more visualization options, e.g., trend analysis or
anomaly detection.

6http://www.appdynamics.com
7http://www.dynatrace.com

78

Chapter 13

Conclusions and Future Work

In this chapter, we summarize our thesis and discuss future work.

13.1 Conclusions

In this thesis, we developed an aspect-oriented approach for performance monitoring of
database operations. We described our implementation and conducted an evaluation, in
form of an usability test based on a paper-based questionnaire in combination with our
developed tool. Our constructed software is composed of three components, namely the
monitoring component, the analysis component, and the visualization component. We designed
our monitoring component to be generic and versatile, in order to allow multiple analysis
and visualization tools to use this data as input. We integrated our analysis component and
visualization component into Kieker Trace Diagnosis, which employs the Kieker monitoring
record structure. Additionally, Fittkau integrated our monitoring component successfully
into his monitoring tool ExplorViz [Fittkau 2015]. Based on these two technological
integrations, we verified our monitoring tool as being versatile. Additionally, we conducted
an experiment with 36 participants, in order to validate the usability of our developed
software. In our experiment, we observed positive feedback from our participants, which
correlated with the high average correctness rates of the results. Although the difficulty of
our questions increased within the questionnaire, the participants were nearly consistently
able to give correct answers. This confirms, that our software system has a bearing on
conducting a performance analysis of database operations. As we have validated the
usability of our developed tool through our conducted experiment, our software system is
worthwhile to be further developed.

Our developed software supports a software engineer conducting a performance analysis
on database operations. We offer the ability to observe database communication based on
JDBC. More precisely, the software engineer is able to inspect executed database operation
calls, which are in our case statements, aggregated statements, or prepared statements. We
provide three related views within our visualization, which are based on the representation
of Call Tree Views. This form of visualization allows the representation of the hierarchy
of a database operation call. Furthermore, it offers an architecture, which is suitable for
functions like filtering and sorting our recorded monitoring data. Our displayed record

79

information includes, in the case of statements, the executed SQL statement and the
response time. For aggregated statements we enrich this information with additional
timings, such as the average, minimum, or maximum response time. These timings
are calculated for a specific aggregated statement, based on the related statements. For
prepared statements, we additionally provide the related abstract prepared statement and
the concrete executions with bound variables (SQL parameters).

13.2 Future Work

During the development process, we developed new ideas to improve our software. Some
points of the future work were identified by ourself, others were provided as feedback
through our usability testing experiment. We describe these in the following.

We gather several information when we instrument a software system. Some database
operations return the number of database entries, which were affected by this specific
executed operation. This allows a software engineer to measure the impact of the concerned
database operation. Additionally, we could offer more visualization options, e.g., views
based on other approaches, for example 3D visualizations. Some participants of the
experiment considered, that the loading process of a monitoring log file, or at least the
completion of it, should be displayed in an adequate way. We agree, that an upcoming
version should cover this issue. Another feedback is related to the filtering within Kieker
Trace Diagnosis. Multiple users mentioned during our experiment, that the filtering
functionality is inconvenient and difficult to use due the need to define a regular expression.
An improvement towards an easier filtering, e.g., based on substrings, could enhance the
usability of our software. With reference to our experiment, we suggest to conduct further
experiments to validate the usability of our approach. More precisely, we recommend a
controlled experiment, similar to [Fittkau et al. 2015a]. Additionally, the population could
be extended, to include professional users, which may use and rate our tool differently,
compared to the students we employed in our experiment.

80

Bibliography

[Ball 1999] T. Ball. The Concept of Dynamic Analysis. In: Software Engineering. Edited
by O. Nierstrasz and M. Lemoine. Volume 1687. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1999, pages 216–234. (Cited on page 5)

[Canfora Harman and Di Penta 2007] G. Canfora Harman and M. Di Penta. New Frontiers
of Reverse Engineering. In: 2007 Future of Software Engineering. FOSE ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pages 326–341. (Cited on page 5)

[Chiba 1998] S. Chiba. Javassist - a reflection-based programming wizard for Java. In:
Proceedings of OOPSLA’98 Workshop on Reflective Programming in C++ and Java. 1998,
page 174. (Cited on page 20)

[Chikofsky and Cross 1990] E. Chikofsky and I. Cross J.H. Reverse engineering and design
recovery: a taxonomy. Software, IEEE 7.1 (1990), pages 13–17. (Cited on page 5)

[Coble et al. 1997] J. M. Coble, J. Karat, M. J. Orland, and M. G. Kahn. Iterative usability
testing: ensuring a usable clinical workstation. In: Proceedings of the AMIA Annual Fall
Symposium. American Medical Informatics Association. 1997, page 744. (Cited on
page 9)

[De Pauw et al. 2002] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and
J. Yang. Visualizing the execution of Java programs. In: Software Visualization. Springer,
2002, pages 151–162. (Cited on pages 29 and 55)

[Ducasse and Pollet 2009] S. Ducasse and D. Pollet. Software Architecture Reconstruction:
A Process-Oriented Taxonomy. Software Engineering, IEEE Transactions on 35.4 (2009),
pages 573–591. (Cited on page 6)

[Fittkau 2015] F. Fittkau. Live Trace Visualization for System and Program Comprehension
in Large Software Landscapes. In: PhD Topic Presentation. 2015. (Cited on page 79)

[Fittkau et al. 2013a] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live Trace
Visualization for Comprehending Large Software Landscapes: The ExplorViz Approach.
In: 1st IEEE International Working Conference on Software Visualization (VISSOFT 2013).
2013, pages 1–4. (Cited on pages 13 and 28)

[Fittkau et al. 2013b] F. Fittkau, J. Waller, P. C. Brauer, and W. Hasselbring. Scalable and
Live Trace Processing with Kieker Utilizing Cloud Computing. In: Proceedings of the
Symposium on Software Performance: Joint Kieker/Palladio Days 2013. Volume 1083. CEUR
Workshop Proceedings, 2013, pages 89–98. (Cited on pages 13 and 23)

81

[Fittkau et al. 2015a] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller. Comparing Trace
Visualizations for Program Comprehension through Controlled Experiments. In: 23rd
IEEE International Conference on Program Comprehension (ICPC 2015). 2015. (Cited on
pages 28 and 80)

[Fittkau et al. 2015b] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz: Visual Runtime
Behavior Analysis of Enterprise Application Landscapes. In: 23rd European Conference
on Information Systems (ECIS 2015). 2015. (Cited on pages 13 and 23)

[Florian Fittkau 2015] Florian Fittkau. ExplorViz Project. 2015. url: http://www.explorviz.net/
(visited on 06/26/2015). (Cited on page 14)

[Fowler 2002] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley
Longman Publishing Co., Inc., 2002. (Cited on page 1)

[Froihofer et al. 2007] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka. Overview
and evaluation of constraint validation approaches in Java. In: Proceedings of the 29th
international conference on Software Engineering. IEEE Computer Society. 2007, pages 313–
322. (Cited on page 20)

[Gamma et al. 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994. (Cited on
page 23)

[Hasselbring 2011] W. Hasselbring. Reverse Engineering of Dependency Graphs via
Dynamic Analysis. In: Proceedings of the 5th European Conference on Software Architecture:
Companion Volume. ECSA ’11. Essen, Germany: ACM, 2011, 5:1–5:2. (Cited on pages 11,
27, 28)

[Jung et al. 2013] R. Jung, R. Heinrich, and E. Schmieders. Model-driven Instrumentation
with Kieker and Palladio to forecast Dynamic Applications. In: Proceedings Symposium
on Software Performance: Joint Kieker/Palladio Days 2013 (KPDAYS 2013). Volume 1083.
CEUR Workshop Proceedings. CEUR, 2013, pages 99–108. (Cited on page 11)

[Karat 1997] J. Karat. Evolving the scope of user-centered design. Communications of the
ACM 40.7 (1997), pages 33–38. (Cited on page 8)

[Kiczales et al. 1997] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. English. In: ECOOP’97 — Object-
Oriented Programming. Edited by M. Akşit and S. Matsuoka. Volume 1241. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 1997, pages 220–242. (Cited on
pages 7, 8)

[Kiczales et al. 2001] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold. An Overview of AspectJ. English. In: ECOOP 2001 — Object-Oriented
Programming. Edited by J. Knudsen. Volume 2072. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2001, pages 327–354. (Cited on page 10)

82

[Knight and Munro 2000] C. Knight and M. Munro. Virtual but visible software. In:
Proceedings of IEEE International Conference on Information Visualization. 2000, pages 198–
205. (Cited on pages 13 and 27)

[Likert 1932] R. Likert. A technique for the measurement of attitudes. Archives of psychology
(1932). (Cited on page 62)

[Ma et al. 2012] K. Ma, R. Sun, and A. Abraham. Toward a lightweight framework for
monitoring public clouds. In: Computational Aspects of Social Networks (CASoN), 2012
Fourth International Conference on. IEEE. 2012, pages 361–365. (Cited on page 77)

[Müller et al. 2000] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and
K. Wong. Reverse Engineering: A Roadmap. In: Proceedings of the Conference on The
Future of Software Engineering. ICSE ’00. Limerick, Ireland: ACM, 2000, pages 47–60.
(Cited on pages 5, 6)

[Neilson et al. 1995] J. Neilson, C. Woodside, D. Petriu, and S. Majumdar. Software
bottlenecking in client-server systems and rendezvous networks. Software Engineering,
IEEE Transactions on 21.9 (1995), pages 776–782. (Cited on page 7)

[Nielsen and Landauer 1993] J. Nielsen and T. K. Landauer. A mathematical model of the
finding of usability problems. In: Proceedings of the INTERACT’93 and CHI’93 conference
on Human factors in computing systems. ACM. 1993, pages 206–213. (Cited on page 62)

[Oracle 2011] Oracle. JDBC™ 4.1 Specification. 2011. (Cited on pages 1, 9, 17, 18)

[Pooley 2000] R. Pooley. Software Engineering and Performance: A Roadmap. In: Proceed-
ings of the Conference on The Future of Software Engineering. ICSE ’00. Limerick, Ireland:
ACM, 2000, pages 189–199. (Cited on page 7)

[Project 2013] K. Project. Kieker User Guide. Apr. 2013. url: http://kieker-monitoring.net/

documentation/. (Cited on page 11)

[Root and Draper 1983] R. W. Root and S. Draper. Questionnaires as a software evaluation
tool. In: Proceedings of the SIGCHI conference on Human Factors in Computing Systems.
ACM. 1983, pages 83–87. (Cited on page 61)

[Sabetta and Koziolek 2008] A. Sabetta and H. Koziolek. Measuring Performance Metrics:
Techniques and Tools. English. In: Dependability Metrics. Edited by I. Eusgeld, F. Freiling,
and R. Reussner. Volume 4909. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, pages 226–232. (Cited on page 7)

[Sauro and Lewis 2012] J. Sauro and J. R. Lewis. Quantifying the user experience: Practical
statistics for user research. Elsevier, 2012. (Cited on page 9)

[Tonella and Ceccato 2004] P. Tonella and M. Ceccato. Aspect mining through the formal
concept analysis of execution traces. In: Reverse Engineering, 2004. Proceedings. 11th
Working Conference on. 2004, pages 112–121. (Cited on page 8)

83

[Tullis and Albert 2008] T. Tullis and W. Albert. Measuring the User Experience: Collect-
ing, Analyzing, and Presenting Usability Metrics. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2008. (Cited on page 9)

[Tullis and Stetson 2004] T. S. Tullis and J. N. Stetson. A comparison of questionnaires
for assessing website usability. In: Usability Professional Association Conference. 2004,
pages 1–12. (Cited on page 9)

[Van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers,
S. Frey, and D. Kieselhorst. Continuous Monitoring of Software Services: Design
and Application of the Kieker Framework. Technical report TR-0921. Department of
Computer Science, Kiel University, Germany, Nov. 2009. (Cited on page 11)

[Van Hoorn et al. 2011] A. van Hoorn, S. Frey, W. Goerigk, W. Hasselbring, H. Knoche,
S. Köster, H. Krause, M. Porembski, T. Stahl, M. Steinkamp, and N. Wittmüss. Dy-
naMod Project: Dynamic Analysis for Model-Driven Software Modernization. In: Joint
Proceedings of the 1st International Workshop on Model-Driven Software Migration (MDSM
2011) and the 5th International Workshop on Software Quality and Maintainability (SQM
2011). Volume 708. CEUR Workshop Proceedings. Invited paper. 2011, pages 12–13.
(Cited on page 1)

[Van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A Framework
for Application Performance Monitoring and Dynamic Software Analysis. In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
ACM, Apr. 2012, pages 247–248. (Cited on page 11)

[Wettel and Lanza 2008] R. Wettel and M. Lanza. CodeCity: 3D Visualization of Large-Scale
Software. In: Companion of the 30th international conference on Software engineering. ACM.
2008, pages 921–922. (Cited on page 27)

[Wulf et al. 2014] C. Wulf, N. C. Ehmke, and W. Hasselbring. Toward a Generic and
Concurrency-Aware Pipes & Filters Framework. In: Symposium on Software Performance
2014: Joint Descartes/Kieker/Palladio Days. 2014. (Cited on pages 12, 23, 24)

[Xu et al. 2010] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky. Software
Bloat Analysis: Finding, Removing, and Preventing Performance Problems in Modern
Large-scale Object-oriented Applications. In: Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research. FoSER ’10. Santa Fe, New Mexico, USA: ACM,
2010, pages 421–426. (Cited on page 7)

84

Kiel University Prof. Dr. Wilhelm Hasselbring
Department of Computer Science M.Sc. Christian Wulf
Software Engineering

Assignments for Software Engineering for
Parallel and Distributed Systems (SS 15)

Assignment 8

Issued at 26th June 2015 Due to 3th July 2015

Task 1: SQL Database Operations in Distributed Systems 12 points
Based on reverse engineering through dynamic analysis it is possible to perform a software perfor-
mance analysis in order to detect performance bottlenecks or issues. These may have a negative
effect concerning non-functional requirements of the software like increased execution times or
memory usage.

Most distributed systems comprise at least one database that is often executed on a dedicated
node. As performance problems are in many cases related to databases, it is often worth to
take a look at database communication. Common application monitoring frameworks are usually
limited to business operations. But for our specific use case, monitoring database operations,
there is a lack of freely available tools, which support a developer in conducting a performance
analysis. As a result, we developed an approach to aid this process.

In order to further develop our approach, we conduct a study at our working group. The study
investigates the usability of our developed tool and should ratify the usefulness of our approach.
During the study you will answer a few questions concerning the usage of our tool, while your
are performing an analysis of recorded monitoring data. Neither you have to draw diagrams, nor
you have to program. The expected solving time is about 30 minutes. Based on the number of
correct answers, you can earn a maximum of 12 points.

To get an appointment, please enter your Stu-Number in the form of ”stuXXXXX“ at
http://doodle.com/chktht3uc2fizyge. Please choose one time slot and remember your choice,
because your registration will not be visible afterwards. The study takes place next week, start-
ing on Monday 29.06. in room 1210 (CAP4). If you have further questions, feel free to contact
Christian at (czi@informatik.uni-kiel.de).

1

Christian Zirkelbach
Usability Study - SQL Database Operations in Distributed Systems

1 Personal Information

1.1 Please note the time:

1.2 Please name your Stu-Number:

1.3 Please name your overall semester (“Fachsemester”):

1.4 Target degree:

Bachelor Master Ph.D

1.5 Please rate your experience level:

None Beginner Intermediate Advanced Expert
Java Programming
Performance Analysis
Database Systems
SQL
Kieker Trace Diagnosis

530109968 0001

Christian Zirkelbach
Usability Study - SQL Database Operations in Distributed Systems

2 Introduction

2.1 How many different views, regarding database operations, are offered by the program?

2.2 How many statements, aggregated statements and prepared statements have been loaded?

2.3 How long was the overall analysis duration?

3 Statements

3.1 Name the Trace ID and response time (in ms) of the statement, that has the highest response time.

3.2 What is it’s underlying calling Java operation?

3.3 What kind of SQL statement took the lowest amount of time?

530109968 0002

Christian Zirkelbach
Usability Study - SQL Database Operations in Distributed Systems

4 Aggregated Statements

4.1 Name the aggregated statement, it’s count of invocations, and the total response time (in μs) of the
statement, that has the highest total response time.

4.2 Name the aggregated statement, it’s count of invocations, and the average response time (in μs) of the
statement, that has the highest average time.

4.3 Name the aggregated statement, it’s count of invocations, and the average response time (in μs) of the
statement, that has the lowest minimum response time.

530109968 0003

Christian Zirkelbach
Usability Study - SQL Database Operations in Distributed Systems

5 Prepared Statements

5.1 Name the abstract prepared statement, that has the highest response time.

5.2 Name, referred to the previous question, the concrete prepared statement parameter(s) or variable(s) and
corresponding response time(s), that cause the highest response time.

5.3 Name the concrete prepared statement, that has the highest count of invocations.
Also name it’s distinct parameters and response times.

530109968 0004

Christian Zirkelbach
Usability Study - SQL Database Operations in Distributed Systems

6 Debriefing Questions

6.1 How difficult was it to navigate through the program?

very difficult very easy

6.2 How difficult was it to filter and sort database statements for specific problems?

very bad very good

6.3 Was the program easy to use?

very difficult very easy

6.4 How was your overall impression of the tool?

very bad very good

6.5 Do you have any comments/suggestions concerning the usage of the program?
Was something ambigious or not clear?

6.6 Please note the time:

530109968 0005

