
Research Perspective on Supporting Software
Engineering via Physical 3D Models

Florian Fittkau, Erik Koppenhagen, and Wilhelm Hasselbring
Software Engineering Group, Kiel University, Kiel, Germany

Email: {ffi, eko, wha}@informatik.uni-kiel.de

Abstract—Building architects, but also civil or mechanical
engineers often build from their designs physical 3D models for a
better presentation, comprehension, and communication among
stakeholders. Software engineers usually create visualizations
of their software designs as digital objects to be presented
on a screen only. 3D software visualization metaphors, such
as the software city metaphor, provide a basis for exporting
those on-screen software visualizations into physical models.
This can be achieved by 3D-printers to transfer the advantages
of real, physical, tangible architecture models from traditional
engineering disciplines to software engineering.

We present a new research perspective of using physical models
to support software engineering. Furthermore, we describe four
envisioned usage scenarios for physical models which provide a
plethora of new research topics. To examine the benefits of our
concept, we investigate the first usage scenario by evaluating the
impact of using physical models on program comprehension in
teams through a first controlled experiment.

Since the usage of physical models had a diverging influence
for our chosen task set, we report on the qualitative results in
this paper. We observed that the physical models improved the
team-based program comprehension process for specific tasks by
initiating gesture-based interaction.

I. INTRODUCTION

As stated by Ball and Eick [1] in 1996, “software is

intangible, having no physical shape or size.” However, ef-

fective program comprehension requires abstractions from

source code in larger projects. To overcome this challenge,

many software visualization techniques exist. Such software

visualizations often rely on metaphors, such as the 3D software

city metaphor [2].

Although 3D visualizations can deliver more information

compared to 2D visualizations due to its additional dimension,

it is often difficult for users to navigate in 3D spaces using a

2D screen and a 2D input device [3]. As a consequence, users

may get disoriented [4] and thus the advantages of the third

dimension may be abolished.

One solution candidate for the navigation issue is Virtual

Reality (VR). It provides benefits via stereoscopy in combi-

nation with specialized hardware [5], [6]. However, it relies

on – sometimes expensive – extra equipment which has to be

purchased and might not function in every environment.

Traditional engineering disciplines overcome these issues by

building solid, physical 3D models of their designs. Beneath

resolving navigation issues, the physical models are used

for better presentation, comprehension, and communication

among stakeholders.

In this paper, we present a new research perspective to

transfer these advantages to software engineering by building

physical models following the 3D software city metaphor

through 3D-printing. Furthermore, we describe four envi-

sioned, potential usage scenarios for physical models and

formulate possible research questions. To the best of our

knowledge, we are the first to envision and create such physical

models of software visualizations.

To show the potential of using physical models, we conduct

a first controlled experiment for our first envisioned usage

scenario, i.e., in the context of program comprehension. Ges-

tures support in thinking and communication processes [7]

and thus can enhance program comprehension in groups. We

hypothesize that physical models support in gesticulation.

In our experiment, we compare the usage of an on-screen

model (visualized on a plain 2D screen) to the usage of a

physical model for program comprehension in small teams

(pairs). Since the overall results were not significant due to

our chosen task set, we focus on the qualitative aspects of the

experiment in this paper. For further additional details about

the experiment, we refer to our longer technical report [8].

To facilitate the verifiability and reproducibility of our results,

we provide a package [9] containing all our data including the

raw data and 112 recordings of the participant sessions.

In summary, our main contributions are:

1. a new research perspective to transfer the advantages

of physical models to software engineering through 3D-

printing,

2. four envisioned usage scenarios for physical models and

possible research questions, and

3. the results of an execution with 56 teams of a first

controlled experiment comparing the usage of an on-

screen model to the usage of a physical model in typical

program comprehension tasks.

The remainder of this paper is organized as follows. The

envisioned usage scenarios and possible research questions for

physical models are described in Section II. Then, Section III

introduces our virtual models and how we create physical

models of them. Section IV presents the results of a controlled

experiment to evaluate the impact of using physical models

for program comprehension. Encountered challenges during

the creation of physical models are described in Section V.

Related work is discussed in Section VI. Finally, we draw the

conclusions and illustrate further future work in Section VII.

978-1-4673-7526-9/15 c© 2015 IEEE VISSOFT 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

125



II. ENVISIONED USAGE SCENARIOS

Physical models provide a plethora of future research pos-

sibilities. We envision several potential usage scenarios for

physical models which we will outline in the following and

propose selected research questions.

A. Program Comprehension in Teams
Gestures support in thinking and communication pro-

cesses [7]. Since physical models are more accessible than

2D screens and provide a natural interaction possibility, they

might increase the gesticulation of users. This might lead to

faster and better understanding when applied in a team-based

program comprehension scenario due to its supporting nature.

Furthermore, the advantages might increase when applied in

larger teams. Since software systems are often changing, the

model should only be printed for special occasions, e.g., a new

developer team or upcoming major refactorings.
Potential Research Questions: In which scenarios/tasks do

physical models provide benefits? Does the additional usage

of physical models provide advantages compared to sole on-

screen tooling? How large is the impact of gesticulation on

correctness and time spent in team-based program compre-

hension tasks?

B. Educational Visualization
A further usage scenario is the usage of 3D models for

educational purposes. Like an anatomic skeleton model used

in a biology course, 3D models of design patterns, architectural

styles, or reference architectures could be 3D-printed. Advan-

tages include the possibly increased interest of the students

and due to a 3D visualization and the possibility to touch the

model, there might be a higher chance to remain in memory.

Further interaction possibilities, e.g., plugging mechanisms,

with the 3D model could be developed to support the learning

process of the students.
Potential Research Questions: Which software visualization

metaphor provides the best basis for representing design

patterns? How large is the impact of using physical models for

educational purposes? How to display the dynamic behavior

in physical models which is often defined by a design pattern?

C. Effort Visualization in Customer Dialog
A further potential field of application are dialogs with

customers. Customers often see the GUI as the program since

the actual program logic code is often invisible for them.

Therefore, the – possible large – effort to add a feature or to

refactor the code is also often invisible for them. Presenting

a physical 3D model of the status quo and another physical

3D model of the desired state, might convince the customer of

the effort of the required change. This could also be achieved

with two on-screen software visualizations but a touchable and

solid 3D model might provide higher conviction.
Potential Research Questions: Do customers accept phys-

ical models to show the effort? Does the usage of physical

models increase the conviction of effort in a customer dialog?

How much impact does a physical model provide in this

process (e.g., measured in amount of money for the effort)?

D. Saving Digital Heritage

We envision physical models to be a step toward saving

the digital heritage of software visualizations. Compared to

programs, physical models do not depend on the availability

of SDKs, library versions, or hardware and thus are less

vulnerable to changes of external environment. Often it is

uncertain, if the code can still be run in thirty years. In

contrast, depending on the material (e.g., resin or metal),

physical models might last hundreds of years. One might argue

that pictures of the visualizations are sufficient. However,

they do not provide interaction possibilities and can suffer

from occlusion. Contrary, physical models still provide the

possibility to interact (e.g., rotate) avoiding possible occlusion.

Potential Research Questions: How to provide an omni

accessible archive for physical models? How to convert 2D

software visualizations to 3D physical models?

III. FROM VIRTUAL TO PHYSICAL MODELS

A. Our City Metaphor in a Nutshell

This section introduces the semantics of our city metaphor

implemented in our web-based ExplorViz1 tool. Figure 1

displays a physical model visualizing the quality tool PMD2

utilizing our city metaphor. The visualization is constructed

from an execution trace of PMD used as the object system

in our controlled experiment. The flat green platforms in

our visualization represent packages showing their contained

elements. The green boxes on the top layer are packages

hiding their internal details. The two green tones serve to

differentiate the hierarchy levels. Classes are visualized by

purple boxes. The height of classes maps to the active instance

count. The layout is a modified version of the layout used in

CodeCity [10].

B. Creating Physical 3D-Printed Models

After creating the on-screen model in ExplorViz by moni-

toring a PMD run, we exported the model as an OpenSCAD3

script file. To fit the build platform of our low-budget 3D-

printer (a Prusa i3), we split the exported model into twelve

jigsaw pieces and exported these as STL4 files as input for the

3D-printer. After printing each piece, we glued them together.

The fully assembled physical PMD model is 334 mm wide and

354 mm deep. Finally, we manually painted the single-colored

model. The overall building time of the physical PMD model

(see Figure 1) sums up to 58 hours and the costs of material

are about 9AC on our low-budget, self-built, and rather slow

3D-printer. On a modern multi-color printer, 3D-printing the

model would take only a small fraction of the building time

(i.e., a few hours) and save several of the described working

steps. The encountered challenges for creating physical models

are described in Section V.

1http://www.explorviz.net
2http://pmd.sourceforge.net
3http://www.openscad.org
4http://www.fabbers.com/tech/STL Format

126



Fig. 1. Physical 3D-printed and manually painted city metaphor model of PMD (334 mm wide and 354 mm deep)

IV. FIRST EVALUATION FOR PROGRAM COMPREHENSION

Aside from introducing physical models in this paper, we

present the qualitative results of a first evaluation for the

envisioned physical models. We compared the impact of using

either an on-screen model (i.e., a virtual model) or a physical

model to solve typical program comprehension tasks in a team-

based scenario. As object system we used PMD and measured

the correctness of the solutions and time spent for each task

typically used in the context of program comprehension [11].

Afterwards, we analyzed the employed strategies and possible

differences between both groups.

Since the overall results were not significant due to our

chosen task set, we focus on the qualitative aspects of the

experiment in this paper and only briefly describe the design.

For further additional details about the experiment, we refer

to our longer technical report [8].

We used a between-subjects design. Thus, each subject

solved tasks with either using the on-screen or the physical

model. The 112 participants – forming 56 teams – were

students. The teams were assigned to the control or the

experimental group by random assignment.

To summarize the impact of using physical models in our

task set: Two tasks were positively influenced by the physical

model. In contrast, one task was negatively influenced and the

rest of the five tasks were even or without clear statement.

In the following, we report on the analysis of the two

positively influenced tasks to point out beneficial scenarios

for physical models. The reasons behind the one negatively

influenced task (Which package name occurs the most in the
application?) was mainly due to some less readable labels in

the physical model.

The first positively influenced task was: Assuming a good
design, which package could contain the Main class of the
application? The physical model group outperformed the on-

screen model group by 19% in average correctness while

using roughly the same time. In the on-screen model group,

the team partner often had to search for the package name

that the teammate was talking about. In contrast, the physical

model group often used gestures to show the package under

investigation. Furthermore, all packages could be clearly seen

without scrolling or rotating.

The second positively influenced task was: What is the
purpose of the lang package and what can you say about its
content regarding PMD? The on-screen model group required

more time (about 10% longer) for roughly the same correct-

ness score as the physical model group. We observed that both

team partners used gestures during discussion in the physical

model group - also in parallel. In contrast, it was harder for

the on-screen model group to use gestures in parallel since one

arm often occludes the screen. These parallel gestures could

127



have increased the efficiency to solve the task in the physical

model group.

In summary, we observed a higher amount of gestures in the

physical model group compared to the on-screen model group.

These were used to communicate with the team partner and

reading the package paths. Difficulties with the physical model

were encountered due to less readable labels.

V. ENCOUNTERED 3D-PRINTING CHALLENGES

During the process of creating a physical model from a vir-

tual city metaphor model, we encountered several challenges.

In this section, we provide an overview of these and present

how we overcame them to enable other researches to create

physical models of their own visualizations.

A. Potential 3D-Printer Input Format Change

Since being a new technology in the consumer market, the

input format for 3D-printers may still change. To mitigate

this risk, ExplorViz exports OpenSCAD script files of the

virtual models and not a directly 3D-printable formated file.

The script files contain commands how to create entities, for

instance, boxes with their position. The resulting rendered

objects can be exported to six different file formats, at the

moment.

B. Mapping Virtual Dimension to Physical Dimension

The virtual city metaphor model has its own virtual dimen-

sion in ExplorViz but this dimension has no concrete relation

to a physical dimension. To create a physical model, we had

to find a mapping coefficient.

There are two opposing factors. The smallest parts are the

buildings (classes) and the labels. Both should be printed

as large as possible to avoid fragile buildings and to ensure

readability of the labels. On the opposite, the overall model

should be as small as possible since a huge model would

require more head movement and time to grasp the model.

After a period of prototyping, we found a mapping coefficient

which is a trade-off between both factors.

C. Creating Labels

To provide a useful physical model, the components had to

be labeled. Since June of 2014, OpenSCAD directly supports

rendering fonts via the text() command. However, some

fonts are harder to print for the 3D-printer and are less readable

at small size. Therefore, we tested some fonts and achieved

the best performance with Consolas.

D. Limited Build Volume

We use a Prusa i35 to print our city metaphor models due to

its rectangular build platform. It can print objects with a size

of up to 200 mm3. However, our models can easily get larger

than this volume, as in the case of the PMD model presented in

Figure 1. Therefore, we split the models into multiple smaller

jigsaw pieces using the PuzzleCut6 library for OpenSCAD.

5http://reprap.org/wiki/Prusa i3
6http://nothinglabs.blogspot.de/2012/11/puzzlecut-openscad-library.html

Fig. 2. One unpainted jigsaw piece of our physical PMD model

Figure 2 shows one jigsaw piece from our PMD model. After

the print, the model is assembled and agglutinated.

E. Monochromacity

Most of the current consumer 3D-printers, which use the

fused filament fabrication technique, create only single-colored

objects. Three-colored objects are possible but the 3D-printer

must be upgraded. Our city metaphor models contain six

colors and thus they require a different solution at the mo-

ment. We prime the printed model using a white spray can.

Afterwards, we use miniature figure colors to manually paint

the models. An unpainted model and some used colors can be

seen in Figure 2.

VI. RELATED WORK

Since we are – to the best of our knowledge – the first

creating physical models of software visualizations, there is

only related work to our visualization and evaluation method-

ology. However, general information visualization also uses

3D-printing to create physical visualizations.7 First, we dif-

ferentiate us from related work concerning the city metaphor.

Afterwards, we describe virtual reality approaches, which also

aim for a more natural impression and intuitive navigation.

Finally, software visualization experiments, which compare

themselves to other software visualizations, are discussed.

Since out of our focus, we do not discuss experiments com-

paring software visualizations to IDEs and refer to [10] for

more details.

A. City Metaphor

In contrast to existing city metaphor approaches, e.g., [2],

[10], [12], we enable the user to create physical models from

the on-screen presentation to facilitate, for instance, more

intuitive navigation.

7http://dataphys.org/list

128



B. Virtual Reality for Software Visualization

Imsovision [13] aims at representing object-oriented soft-

ware in a virtual reality environment. The user is tracked with

electromagnetic sensors attached to the shutter glasses and a

wand which is used for the 3D navigation.

SykscrapAR [14] is an augmented reality approach employ-

ing the city metaphor to visualize software evolution. The user

can interact with a physical marker platform in an intuitive way

while the actual visualization can be seen only on the monitor.

Contrary to both approaches, our physical models do not

require any additional devices once they are created.

C. Experiments Comparing Software Visualizations

Storey et al. [15] compared three software visualizations in

an experiment. The authors performed a detailed discussion of

the tools’ usage but provided no quantitative results.

Lange and Chaudron [16] investigated the benefits of their

enriched UML views by comparing them with traditional

UML diagrams. In contrast, we compare the impact of using

physical models on program comprehension.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we presented the vision of transferring the

advantages of physical, tangible models to support software

engineering. We described four potential usage scenarios, and

investigated the impact of using physical models on team-

based program comprehension by a first controlled experiment.

In our experiment, we identified two tasks that benefit

from using physical models in comparison to using on-screen

models. However, our experiment resulted in no overall impact

neither on time spent nor on correctness of solutions to the

program comprehension tasks, since the effects of each task

compensate each other for our chosen task set.

Our in-depth analysis of the strategies used by the teams

supports our hypothesis that physical models provide an ap-

propriate, complementary communication basis and increase

interaction when solving comprehension tasks in small teams.

In the analysis, we observed an increase in the amount of

performed gestures when using the physical model.

We provide a package containing all our experimental data

to facilitate the verifiability and reproducibility for replications

and further experiments. It contains the employed version

of ExplorViz v0.6-exp (including source code and manual),

input files, STL files for 3D-printing the used models, tutorial

materials, questionnaires, R scripts, dataset of the raw data

and results, and 112 screen and camera recordings of the

participant sessions. The package is available online [9] with

source code under the Apache 2.0 License and the data under

a Creative Commons License (CC BY 3.0).

In the context of program comprehension, future work

is manifold. To validate our observations in the controlled

experiment for program comprehension, further replications

should be conducted. Furthermore, our experiment design

should be tested with a larger team size where gesticulation

and communication can have a higher impact, and with

professionals as subjects. Further experiments should examine

the combination of using a physical model and an on-screen

model compared to solely using an on-screen model. Likewise,

physical models should be compared to Virtual Reality and

could be enhanced by Augmented Reality.

On a more general perspective, we only investigated a part

of the first usage scenario of the four envisioned scenarios

revealing a promising future research direction. The other

scenarios should also be evaluated. Another direction is the

creation of physical models of other 3D software visualization

metaphors, e.g., trees [17], spheres [18], or solar systems [19].

Every usage scenario might reveal different results with other

representation of physical models.

REFERENCES

[1] T. Ball and S. G. Eick, “Software visualization in the large,” Computer,
vol. 29, no. 4, pp. 33–43, 1996.

[2] C. Knight and M. Munro, “Virtual but visible software,” in Proc. of
IEEE Int. Conf. on Inf. Vis. (IV 2000). IEEE, 2000, pp. 198–205.

[3] A. Teyseyre and M. Campo, “An overview of 3D software visualization,”
IEEE TVCG, vol. 15, no. 1, pp. 87–105, Jan. 2009.

[4] K. P. Herndon, A. van Dam, and M. Gleicher, “The challenges of 3D
interaction: A CHI ’94 Workshop,” SIGCHI Bull., vol. 26, no. 4, pp.
36–43, Oct. 1994.

[5] C. Ware, K. Arthur, and K. S. Booth, “Fish tank virtual reality,” in
Proceedings of the INTERACT 1993 and Conference on Human Factors
in Computing Systems (CHI 1993). ACM, 1993, pp. 37–42.

[6] C. Ware and P. Mitchell, “Reevaluating stereo and motion cues for
visualizing graphs in three dimensions,” in Proc. of 2nd Symp. on
Applied Perc. in Graph. and Vis. (APGV 2005). ACM, 2005, pp. 51–58.

[7] S. Goldin-Meadow, Hearing gesture: How our hands help us think.
Harvard University Press, 2005.

[8] F. Fittkau, E. Koppenhagen, and W. Hasselbring, “Research perspective
on supporting software engineering via physical 3D models,” Kiel
University, Tech. Rep. 1507, Jun. 2015.

[9] ——, “Experimental data for: Research perspective on supporting soft-
ware engineering via physical 3D models,” Jun. 2015, zenodo.org. doi:
10.5281/zenodo.18378.

[10] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities:
A controlled experiment,” in Proc. of 33rd Int. Conf. on Software
Engineering (ICSE 2011). ACM, 2011, pp. 551–560.

[11] V. Rajlich and G. S. Cowan, “Towards standard for experiments in
program comprehension,” in Proc. of 5th Int. Workshop on Program
Comprehension (IWPC 1997). IEEE, 1997, pp. 160–161.

[12] T. Panas, R. Berrigan, and J. Grundy, “A 3D metaphor for software
production visualization,” in Proc. of 7th Int. Conf. on Information
Visualization (IV 2003). IEEE Computer Society, 2003, pp. 314–320.

[13] J. I. Maletic, J. Leigh, A. Marcus, and G. Dunlap, “Visualizing object-
oriented software in virtual reality,” in Proc. of 9th Int. Workshop on
Prog. Comprehension (IWPC 2001). Society Press, 2001, pp. 26–35.

[14] R. Souza, B. Silva, T. Mendes, and M. Mendonca, “SkyscrapAR: An
augmented reality visualization for software evolution,” in Proc. of 2nd
Brazilian Workshop on Software Visualization (WBVS 2012), 2012.

[15] M.-A. Storey, K. Wong, and H. Müller, “How do program understanding
tools affect how programmers understand programs?” in Proc. of 4th
Work. Conf. on Reverse Eng. (WCRE 1997). IEEE, 1997, pp. 12–21.

[16] C. Lange and M. R. V. Chaudron, “Interactive views to improve the
comprehension of UML models – An experimental validation,” in Proc.
of 15th Int. Conf. on Prog. Comp. (ICPC 2007), June 2007, pp. 221–230.

[17] E. Kleiberg, H. Van De Wetering, and J. J. Van Wijk, “Botanical
visualization of huge hierarchies,” in IEEE Symposium on Information
Visualization. IEEE Computer Society, 2001.

[18] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz, “Software
landscapes: Visualizing the structure of large software systems,” in
Proceedings of the Sixth Joint Eurographics-IEEE TCVG conference
on Visualization. Eurographics Association, 2004, pp. 261–266.

[19] H. Graham, H. Y. Yang, and R. Berrigan, “A solar system metaphor for
3D visualisation of object oriented software metrics,” in Proceedings of
the Australasian Symposium on Information Visualisation (APVIS 2004).
Australian Computer Society, Inc., 2004, pp. 53–59.

129


