
Institute of Software Technology

University of Stuttgart

Universitätsstraße 38

D–70569 Stuttgart

Master’s Thesis No. 21

Specification and Runtime

Extraction of Enterprise

Application Architectures for

Expert-Guided Performance

Problem Diagnosis

Claudio Waldvogel

Course of Study: Softwaretechnik

Examiner: Prof. Dr. Lars Grunske

Supervisor: Dr.-Ing. André van Hoorn

Commenced: 2015/01/14

Completed: 2015/07/16

CR-Classification: H.3.4

Abstract

The non-functional requirements (NFRs) of enterprise application systems (EASs) have a
significant impact on the Key Performance Indicators (KPIs) of companies. Among NFRs

like accessibility, security, and reusability is performance considered as one of the top
most important. Performance quantifies the degree to which an application meets the
requirements, with respect to response times and resource utilization. To enable early
performance problem detection, so-called Application Performance Management (APM)
tools are integrated in an EAS life cycle.

Due to the high initial and ongoing configuration effort of APM tools, they have hardly
been accepted in the industry. This results in time-consuming and error-prone manual
performance problem diagnosis. These vulnerabilities of APM tools are addressed by
the diagnoseIT research project. The main objective of the project is to enrich existing
APM processes with automated configuration of instrumentations as well as automated
performance problem detection and diagnosis. Since there is already a wide variety of
APM tools, diagnoseIT does not implement a new tool to measure performance metrics.
Instead, already existing APM tools provide their monitoring data to diagnoseIT. As part of
this research project arose this work and contributed three components to the diagnoseIT
framework.

As a basis for performance problem diagnosis, diagnoseIT needs to know a variety of
information (e.g., system architecture, execution environment, and dynamic runtime data)
about the monitored EAS. Therefore, an Enterprise Performance Model (EPM) was designed
and implemented in the first part of this thesis. The second part of the work was to provide
a maintenance service for the EPM and an associated integration interface for third-party
APM tools. The implemented components were assembled to a prototypical implementation
of the diagnoseIT framework. The final evaluation of the implemented solution has shown
that we are able to maintain the EPM by connecting the Kieker application performance
monitoring tool to diagnoseIT. The evaluation results of extensive load tests showed, however,
that the processable amount of data is limited by the current implementation of the
persistence unit.

iii

Zusammenfassung

Die nicht-funktionalen Qualitätseigenschaften (NFRs) von Enterprise-Anwendungen (EASs)
haben eine signifikante Auswirkung auf die Leistungskennzahlen von Firmen. Unter den
NFRs wie Zugänglichkeit, Sicherheit und Wiederverwendbarkeit gilt die Performance als
eine der allerwichtigsten. Die Performance entscheidet darüber, in welchem Ausmaß eine
Anwendung in punkto Antwortzeit und Nutzung der Ressourcen den Anforderungen
entspricht. Um das frühe Erkennen von Performance-Problemen zu ermöglichen, werden
sogenannte Application Performance Management (APM)-Tools in den EAS-Lebenszyklus
integriert.

Wegen des hohen anfänglichen, aber auch anhaltenden Pflegeaufwands von APM-Tools
werden sie in der Industrie kaum eingesetzt. Das alles läuft auf eine zeitraubende und
fehlerbehaftete manuelle Problemdiagnose der Performance heraus. Diese Unzulänglichkeit
der APM-Tools wird durch das diagnoseIT -Forschungsprojekt angegangen. Das Hauptziel
des Projektes ist es, schon bestehende APM-Prozesse sowohl mit automatisierter Konfigu-
ration von Instrumentierungen anzureichern als auch mit automatisierter Entdeckung und
Diagnose von Performance-Problemen. Da es bereits eine große Auswahl von APM-Tools
gibt, führt diagnoseIT kein neues Tool ein, um die Performance-Metrik zu messen. Stattdes-
sen stellen bereits bestehende APM-Tools ihrer Daten für diagnoseIT zur Verfügung. Aus
diesem Forschungsprojekt heraus entstand die vorliegende Arbeit.

Das Ziel dieser Arbeit war es, drei Komponenten für diagnoseIT bereitzustellen. Ein
sogenanntes Enterprise Performance Model (EPM) wurde definiert und implementiert,
um einlaufende monitoring data zu speichern und zu verarbeiten. Um das EPM zugäng-
lich zu machen, wurde ein System Model Maintenance Interface (SMMI) implementiert.
Die Tool-Integration für bereits existierende APM-Lösungen wurde als Adapter realisiert.
Alle Komponenten sind zusammengefügt als prototypische Implementierung des diagno-
seIT-Frameworks. Die abschließende Evaluation der implementierten Lösung hat gezeigt,
dass wir das EPM befüllen und auswerten können, indem wir das Kieker APM-tool mit
diagnoseIT verbinden. Die Resultate der Evaluation von ausführlichen Belastungstests zeig-
ten jedoch, dass die verarbeitbare Datenmenge durch die aktuelle Implementierung der
Persistenzschicht beschränkt ist.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 diagnoseIT and Scope of this Thesis . 1
1.3 Document Structure . 3

2 Research Methodology 5
2.1 G1: Enterprise Performance Model and Repository 6
2.2 G2: System Model Maintenance Interface (SMMI) and Prototype 7
2.3 G3: Evaluation . 9

3 Foundations and Technologies 11
3.1 Model-Driven Software Development (MDSD) 11
3.2 Eclipse Modeling Project (EMP) . 12
3.3 Not only SQL (NoSQL) . 16
3.4 Architecture of Enterprise Applications . 16
3.5 Architecture Modeling Languages . 18
3.6 Model Extraction . 19
3.7 Kieker Framework . 19

4 The Enterprise Performance Model (EPM) 23
4.1 Requirements . 23
4.2 EPM Specification . 25
4.3 EPM Implementation . 30

5 The diagnoseIT Framework 35
5.1 Requirements . 35
5.2 Supporting Software and Libraries . 37
5.3 Framework Implementation . 39
5.4 diagnoseIT Framework in Action . 49

6 Evaluation 53
6.1 Evaluation Goals . 53
6.2 Proof-of-Concept Evaluation . 54
6.3 Lab Experiment . 61

7 Related Work 75

vii

Contents

8 Conclusions and Future Work 77
8.1 Summary . 77
8.2 Discussion . 78
8.3 Future Work . 79

Bibliography 81

viii

List of Figures

1.1 Overview of the diagnoseIT approach . 2

2.1 Overview what parts of the diagnoseIT approach are covered by this thesis. . 5

3.1 Unifying Java, XML, and UML . 12
3.2 Minimal subset of Ecore model . 13
3.3 Connected Data Objects (CDO) architecture overview 14
3.4 CDO client architecture . 15
3.5 CDO server architecture . 15
3.6 Layered Architecture Example . 17
3.7 Kieker framework overview . 20
3.8 Kieker trace meta-model . 21
3.9 Subset of Kieker meta-model to represent software systems 22

4.1 Conceptual overview of the EPM . 25
4.2 Meta-classes for software modules. 26
4.3 Software module meta-model instance of the JPetStore application 27
4.4 Meta-classes for resource environments . 28
4.5 Exemplary instance of a resource environment meta-model. 28
4.6 Meta-classes for allocations and exemplary instance. 29
4.7 Meta-classes for software traces. 30
4.8 Example transformation from a method call to a trace meta-model instance. 31
4.9 Ecore modeling in Eclipse integrated development environment (IDE) 32

5.1 High-level diagnoseIT architecture overview. 40
5.2 Core classes of the Application component. 41
5.3 Core classes of the CDO server and client components 43
5.4 Core classes of the model repository component 45
5.5 Core classes of the adapter component. 47
5.6 Control flow to register an Adapter at a diagnoseIt application. 50
5.7 Control flow to update the EPM model repository. 52

6.1 Technical infrastructure of the proof-of-concept evaluation 56
6.2 Kieker pipe-and-filter structure of the DiagnoseITAnalysisTool 57
6.3 Content of the TraceRepository within Mongo Management Studio (MMS). . . 58
6.4 Repository overview within Eclipse IDE. 59

ix

List of Figures

6.5 Technical infrastructure of the lab experiment. 62
6.6 Activity diagram to visualize the functioning of the ExperimentRunner. 64
6.7 Kieker pipe-and-filter structure used in lab experiments 66
6.8 Example of a Box-and-Whisker Plot. 68
6.9 Response time measurements for Scenarios 1 and 2a. 68
6.10 Performance measurements for Scenario 1 . 70
6.11 Response time measurements for Scenario 2b,c 71
6.12 Performance measurements for Scenario 2a . 71
6.13 Performance measurements for Scenario 2b . 72
6.14 Performance measurements for Scenario 2c . 72

x

List of Tables

4.1 Complementing sub meta-models of the EPM 23
4.2 Enterprise Performance Model requirements 24
4.3 Excerpt of Ecore model configuration properties. 32
4.4 Generation Model Properties . 33

5.1 Extractable EPM Model Entities . 48
5.2 Exemplary content of the EPM in accordance with the described update

process. 51

6.1 EG1: Assessing the functionality of the diagnoseIT prototype, from a user’s
viewpoint. 54

6.2 EG2: Assessing the scalability of the System Model Maintenance Interface
(SMMI) in lab experiments. 55

6.3 Technical details of the employed physical machines. 57
6.4 Summary which parts of the Enterprise Performance Model are resolveable

with Kieker. 60
6.5 The experiment plan. 67
6.6 Experiment results summary . 74

xi

Listings

5.1 Example application configuration . 41
5.2 Application start up . 42
5.3 CDO Server Configuration . 42
5.4 CDO Environment Usage . 44
5.5 Excerpt of SystemModelMaintenanceResource . 46
5.6 Example Runtime Configuration (adapter-runtime-configuration.yml) 47
5.7 Simple example how Adapter is used to transmit a single Trace. 49
5.8 Example InaccessibleInformationResolver implementation 50
6.1 Exemplary experiment plan. 64

xiii

List of Acronyms

ACID Atomicity, Consistency, Isolation, and Durability

ADL Architecture Description Language

ADMTF Architecture-Driven Modernization Task Force

AIM Adaptable Instrumentation and Monitoring

API Application Programming Interface

APM Application Performance Management

CBSA component-based software architecture

CDO Connected Data Objects

CI confidence interval

CIM Common Information Model

DSL Domain Specific Language

DTO Data Transfer Object

EAS enterprise application system

EG evaluation goal

EMF Eclipse Modeling Framework

EMP Eclipse Modeling Project

EPM Enterprise Performance Model

FR functional requirements

GPML General Purpose Modeling Language

GQM Goal Question Metric

HTML Hypertext Markup Language

IaM instrumentation and monitoring

IDE integrated development environment

xv

Listings

IDM Instrumentation Description Model

IQR inter quartile range

JAR Java Archive

JAX-RS Java API for RESTful Web Services

JMS Java Message Service

JMX Java Management Extensions

JSON JavaScript Object Notation

JVM Java Virtual Machine

JVM TI JVM Tool Interface

KPI Key Performance Indicator

M2M model-2-model

M2T model-2-text

MDSD Model-Driven Software Development

MIB Management Information Base

MMS Mongo Management Studio

MOM Message-Oriented Middleware

NFR non-functional requirement

NoSQL Not only SQL

OMG Object Management Group

OSGI Open Services Gateway Initiative

POJO Plain Old Java Object

QoS Quality of Service

REST Representational State Transfer

SD standard deviation

SQL Structured Query Language

SMM Structured Metrics Meta-Model

xvi

Listings

SMMI System Model Maintenance Interface

SNMP Simple Network Management Protocol

SQL Structured Query Language

SUA system under analysis

T2M text-2-model

UML Unified Modeling Language

URI Uniform Resource Identifier

WAR Web application Archive

XMI XML Metadata Interchange

XML Extensible Markup Language

YAML YAML Ain’t Markup Language

xvii

Chapter 1

Introduction

1.1 Motivation

The non-functional requirements (NFRs) of enterprise application systems (EASs) have a
significant impact on the Key Performance Indicators (KPIs) of companies. Performance is
considered as one of the top most important NFRs. Performance quantifies the degree to
which an application meets the requirements, with respect to response times and resource
utilization. Integrating Application Performance Management (APM) tools in the EAS life
cycle enables early performance problem detection and troubleshooting. APM tools use
continuous monitoring to detect symptoms of performance problems. In addition, the
APM tools also run diagnostics to determine the cause of the problem. A crucial aspect for
monitoring and diagnostics, hence the possibility to detect performance problems, is the
quality of the measurement data. How often and what data is collected directly influences
the quality of the measurement data [diagnoseIT, 2015].

To date, APM tools have not found wide acceptance in industry. This is due to high
initial and ongoing configuration efforts of those tools. This results in manual performance
diagnosis. The research project diagnoseIT addresses the vulnerabilities of state-of-the-
art APM tools. The main objective of the project is to enrich existing APM processes
with automated configuration of instrumentations as well as automated performance
problem detection and diagnosis. The automation is based on formalized expert knowledge.
diagnoseIT can control the instrumentation independently and can thus achieve a good
balance between detail and overhead of the current instrumentation. Based on expert
knowledge, diagnoseIT instruments the monitored EAS with a default configuration. During
runtime the configuration is continuously refined to meet the EAS needs. Due to the expert
knowledge, diagnoseIT is aware of well-known error patterns and is capable to perform an
automated problem diagnosis [diagnoseIT, 2015].

1.2 diagnoseIT and Scope of this Thesis

The core components of the diagnoseIT approach are depicted in Figure 1.1. Each component
is identified by a work package. Information about the monitored EAS, such as system
architecture, current instrumentation, and Quality of Service (QoS) attributes, are stored
in the Enterprise Performance Model (EPM) (WP1). The EPM forms the basis for the APM

1

1. Introduction

WP1:
Enterprise Performance Model

WP2:
APM Knowledge Base

APM Knowledge Base
Repository

Knowledge Base
Meta-Model

Problem Diagnosis
Pattern
Instrumentation
Best Practices

System Model
Repository

System
Meta-Model

Instrumentation

Performance
Properties
Performance
Requirements

System Generic

System
Specific

WP3:
Runtime Diagnostics

Symptom
Recognition

Pattern
Interpretation

System Model
Maintenance

Instrumentation
Quality Monitor

WP4:
Tool Integration

Performance
 Measurement Data

Architecture
Information

Dynamic
Instrumentation

Diagnose
Feedback

inspectIT Kieker Alerting/
Ticketing

GUIAPM-1 APM-2 ...

APM Specialist

Performance Engineer
Manager

Developer
 Businessman

Enterprise System

Figure 1.1. Overview of the diagnoseIT approach

knowledge base (WP2). System-dependent as well as independent expert knowledge is
needed by diagnoseIT to facilitate automated instrumentation and problem diagnosis. The
automated diagnoseIT runtime diagnostics (WP3) relies on the combination of the EPM and
the APM knowledge base. diagnoseIT provides four runtime diagnostic components: (i)
system model maintenance, (ii) symptom recognition, (iii) pattern interpretation, and (iv)
instrumentation quality monitor. Independent APM tools are integrated in the diagnoseIT
architecture via an additional APM tool integration interface. This interface also serves as
entry point for data querying and modifications (e.g., querying architectural information
or updating the current instrumentation).

The scope of this thesis focuses on three components of the diganoseIT approach.
First, the EPM (WP1). The goals, including work packages, of the EPM are presented in
Section 2.1. Second, the system model maintenance component of the runtime diagnostics
module (WP3). In the following this component will be called System Model Maintenance
Interface (SMMI). The goals of the SMMI are presented in Section 2.2. Third, an APM tool
integration interface to connect existing APM tools to the diagnoseIT application (WP4). The
relating goals are presented in Section 2.2.

2

1.3. Document Structure

1.3 Document Structure

The remainder of this document is structured as follows:

Ź Chapter 2 provides a detailed description of the goals, research questions, and work
packages for this thesis.

Ź Chapter 3 comprises the foundations of this thesis.

Ź Chapter 4 gives a detailed overview of the developed Enterprise Performance Model
(EPM).

Ź Chapter 5 gives a detailed overview of the implemented diagnoseIT framework.

Ź Chapter 6 comprises the evaluation of the implemented diagnoseIT framework.

Ź Chapter 7 gives an overview of related work.

Ź Chapter 8 summarizes the results and outlines outstanding issues for possible future
work.

3

Chapter 2

Research Methodology

This chapter provides a detailed description of the goals (G) to be addressed by this thesis
and how they fit into the context of the diagnoseIT project. In addition, corresponding
work packages (WPs), deliverables, and used technologies are defined for each goal. The
overlapping parts of this thesis and the diagnoseIT project are depicted in Figure 2.1.

WP2:
APM Knowledge Base

APM Knowledge Base
Repository

Knowledge Base
Meta-Model

Problem Diagnosis
Pattern
Instrumentation
Best Practices

System Generic

System
Specific

Symptom
Recognition

Pattern
Interpretation

Instrumentation
Quality Monitor

Diagnose
Feedback

Alerting/
Ticketing

GUIAPM-1 APM-2 ...

APM Specialist

Performance Engineer
Manager

Developer
 Businessman

WP1:
Enterprise Performance Model

System Model
Repository

System
Meta-Model

Instrumentation

Performance
Properties
Performance
Requirements

WP3:
Runtime Diagnostics

System Model
Maintenance

WP4:
Tool Integration

Performance
 Measurement Data

Architecture
Information

Dynamic
Instrumentation

inspectIT Kieker

Enterprise System

Figure 2.1. Overview what parts of the diagnoseIT approach are covered by this thesis.

5

2. Research Methodology

2.1 G1: Enterprise Performance Model and Repository

The first goal of this thesis is the Enterprise Performance Model (EPM) in combination with
the related model repository. As depicted in Figure 2.1, WP1 is congruent with WP1 of the
diagnoseIT approach (see Figure 1.1).

The Enterprise Performance Model (EPM) serves to keep track of all relevant information
about a monitored system. The meta-model must be able to cover information on different
layers of abstraction. With respect to the monitored systems, it has to cover all relevant
information regarding the architecture. More specifically, packages, classes, methods and
the utilized middleware as well as information about the runtime environment like servers
and executing Java Virtual Machines (JVMs). In addition, the meta-model will be able to
store information about the current instrumentation of the system.

To complete the EPM, a model repository is developed in addition. The purpose of
the model repository is to provide a mechanism which allows to query and to modify
the underlying meta-model. The main challenge here is to decide which parts of the
meta-model should be published and which parts should be protected from external access.

The first part goal is to define a well thought through meta-model for the EPM. The
second is to specify a corresponding model repository for the diagnoseIT approach.

RQ1: Which properties have to be covered by the EPM?
RQ2: How can the different parts of the model be combined into one meta-model?

2.1.1 WP1.1: Requirements Analysis

The first and very crucial task is to determine what data can and especially must be stored
in the meta-model. To ensure that the final design of the meta-model satisfies all needs
for the diagnoseIT application, several steps can be performed. Together with the other
participants of the diagnoseIT project, a brainstorming workshop will ensure that the final
meta-model meets the expectations. As additional step, already existing application from
the diagnoseIT participants can be examined to locate hotspots for performance problems.
The deliverable of WP1.1 is a clearly defined list of properties and data which has to be
covered by the EPM. The deliverable provides an answer to RQ1.

2.1.2 WP1.2: Review Existing Meta-Models and Check Applicability

After all requirements are defined, the next important task is to check if already existing
solutions can be reused. Therefore existing meta-models with respect to architecture, execu-
tion traces, and JVM parameters must be searched and assessed for reuse. The assessment
includes testing for re-usability, as well as testing for partial reusability. A starting point
for the assessment of possible reusable meta-models are presented in Chapter 7.

6

2.2. G2: System Model Maintenance Interface (SMMI) and Prototype

2.1.3 WP1.3: Specification and Implementation of the diagnoseIT Meta-
Model

The third subtask of WP1 utilizes the results of WP1.1 and WP1.2 to specify and implement
the diagnoseIT meta-model. The main drivers of the final design of the meta-model are
the gathered requirements. Because the meta-model has to cover different aspects of the
system under analysis (SUA), e.g., architecture, execution traces, resource environments,
and JVM parameters, the output artifact will be a composite meta-model which contains
further meta-models. Nevertheless, all meta-models share a common goal, so they need a
connection. The implementation of the meta-model will be based on EMF’s meta-meta-
model Ecore. The deliverables of WP1.3 are, first, a clear specification of the EPM and
secondly a Java source-code artifact which contains the implementation. The deliverables
provide an answer to RQ2.

2.1.4 WP1.4: Specification and Implementation of the Model Repository

This task targets the specification and implementation of the model repository. A first
overview of the model repository was already given within the scope of G1 (Section 2.1).
The purpose of the model repository is two-fold. On the one hand, it serves as an interface
to retrieve and manipulate the data. On the other hand, the model repository is responsible
to persist the data. The persistence functionality is realized by utilizing the Connected Data
Objects (CDO) project of the Eclipse Modeling Project (EMP). The deliverables of WP1.4 are,
first, a clear specification of the model repository and secondly a Java source-code artifact
with the implementation. The deliverables provide an answer to RQ3.

2.2 G2: System Model Maintenance Interface (SMMI)
and Prototype

As depicted in Figure 2.1, the SMMI is part of WP3, the prototypical implementation is the
union of WP1, WP3, and WP4 of the diagnoseIT approach (see Figure 1.1).

The purpose of the System Model Maintenance Interface (SMMI) is to provide a clear
interface which enables the maintenance of the model repository (Section 2.1). In this
context maintenance means to keep the model repository in sync with the monitored
system. This requires the functionality to create, update, and delete entities within the
model repository, respectively within the EPM. In addition, the SMMI has to provide a
functionality to query the repository model. This goal has two crucial aspects. First, the
interface must be defined very carefully to ensure that neither too much nor too little
information of the underlying meta-model is provided. Second, it has to be decided how
the SMMI is made available and which transport protocols are used.

The second goal is divided into two parts. The first part is to define and implement
the SMMI that it meets the preceding functional description. The second part is a prototypi-

7

2. Research Methodology

cal implementation of the entire diagnoseIT system architecture. The architecture design
includes a solution how existing Application Performance Management (APM) tools can
be integrated into the diagnoseIT landscape and thus have access to the SMMI interface. In
summary, the prototype includes (i) the EPM, (ii) the model repository, (iii) the SMMI, and
(iv) an APM tool integration interface.

RQ3: What is an appropriate technology stack for the diagnoseIT prototype?

2.2.1 WP2.1: Requirements Analysis

The first and very crucial task is the preceding requirement analysis for all further work
packages of G2. This includes requirements for the SMMI, the APM integration interface,
and the overall system’s architecture. To enable a proper maintenance of the EPM, it must
be specified what functionality the SMMI has to provide. Since the SMMI serves as interface
to the EPM, the main task is to insert, update, and delete entities within the repository.
Furthermore, it will provide a functionality to query for EPM entities. At this point it is not
clear if the SMMI will directly deal with entities of the EPM. To hide the internal structure
of the EPM, a kind of transport object could be taken into account. Another part of the
requirement analysis is to define the technologies to be used. These considerations include
transport protocols, messaging strategies, middleware, web technologies, etc. A large part
of the requirements can be set by a workshop with the other participants of the diagnoseIT
project, as already proposed in WP1.1 (Section 2.1.1). The deliverables of WP2.1 are clear
specifications for (i) the SMMI, (ii) the APM tool integration interface, and (iii) the diagnoseIT
system architecture. The deliverables provide answers to RQ4 and RQ5.

2.2.2 WP2.2: Specification and Implementation of the SMMI

This task targets the specification and implementation of the SMMI. The main drivers of
the final design of the SMMI are the deliverables of WP1.3 (Section 2.1.3) and WP2.1. The
specification phase involves several steps. First of all, the provided operations have to be
defined. Second, for each operation the input and output objects must be set. In summary,
the deliverables of WP2.2 are (i) the Application Programming Interface (API), including
input and output parameters, and (ii) a Java source-code artifact with the implementation.

2.2.3 WP2.3: Specification and Implementation of the APM Integration
Interface

This task targets the specification and implementation of the APM integration interface.
Generally one can say that this is the manner how APM tools gain access to the SMMI, thus to
the EPM. For this reason, the API is mainly influenced by the results of WP2.2. Furthermore,

8

2.3. G3: Evaluation

the chosen technologies of WP2.1 are the main aspects how the APM integration is conducted.
The deliverables of WP2.3 are a clear specification of the APM integration interface and a
Java source-code artifact with the implementation.

2.2.4 WP2.4: Specification and Implementation of the diagnoseIT
Architecture

This task targets the entire system architecture of the diagnoseIT approach. As depicted in
Figure 2.1, the approach consists of three main constituent parts. The EPM, the SMMI, and the
APM tool integration. First, a connection between the implementations of the SMMI (WP2.2)
and the APM integration interface (WP2.3) is established. The realization of the connection
is based on the chosen technologies (WP2.1). Second, the Kieker Framework [van Hoorn
et al., 2012] is adapted to conform to the APM integration interface. The deliverables of this
task are the specification how the components are interconnected and how the interaction
is realized as well as Java source-code artifact with the implementations.

2.3 G3: Evaluation

Evaluating the implemented solution is a crucial part of the thesis. To ensure a mean-
ingful evaluation, the approach has to be evaluated from different viewpoints. At the
beginning the proof-of-concept implementation is evaluated for applicability. Subsequently,
lab experiments are carried out to examine how the system behaves in certain situations.
The results collected are used to evaluate whether the implemented solution, especially
the EPM and the SMMI, meets all requirements. The desired requirements are collected in
preceding requirement analysis within the scope of G1 (2.1) and G2 (2.2). A further part of
the evaluation is to assess the APM tool integration interface for applicability and ease of use.

RQ4: Does the approach meet all previously specified requirements?
RQ5: Is the approach applicable in real world scenarios?

2.3.1 WP3.1: Experiment Design

This purpose of this task is to determine the experiment design. In this thesis the Goal
Question Metric (GQM) approach, proposed by Caldeira and Rombach [1994], will be used
as evaluation mechanism . As proposed by Caldiera and Rombach, for each question (RQ4
and RQ5) one or more metrics will be defined. Furthermore, each metric is assigned an
evaluation method (proof-of-concept, lab experiment) and it is specified if it is a qualitative
or quantitative metric.

In addition to the GQM, it is specified how the experiments are conducted. This
specification describes how different situations will be simulated, e.g, increasing the load or

9

2. Research Methodology

simulating a distributed system. So it will be possible to measure the impact of increasing
the load, to the exemplary metric M1 (Responsiveness of SMMI) and how they correlate.
The deliverable of this work package is a clear specification how the experiments will be
conducted and what will be measured.

2.3.2 WP3.2: Setup Experiment Environment

This package aims to set up the entire experiment infrastructure. This comprises the SUA, the
diagnoseIT application, and the utilized APM tool. All applications have to be deployed and
properly configured to ensure a controlled experiment environment. All data, concerning
hardware and software configurations have to be retained. This is necessary to enable a
sound argumentation as well as the possibility to repeat the experiment. The deliverable
of this task is a clear description of the infrastructure, the software configuration, and the
hardware specifications.

2.3.3 WP3.3: Experiments

This task target the actual experiment execution. The SUA is instrumented by an existing
APM tool. The APM tool utilizes the SMMI (Section 2.1) to create a representation of the
monitored system within the model repository. During the benchmark, the situations
defined in WP3.1 are simulated.

While each test run, all data which is necessary for subsequent analysis is captured.
The data required are those that are directly related to the metrics defined in WP3.1. The
deliverable of this tasks is a dataset to be used in the final analysis.

2.3.4 WP3.4: Analyse Experiment Results

This tasks targets the final analysis of the data captured during experiments. The deliv-
erables of this package are answers to the questions RQ4, RQ5. The analysis will draw
conclusions how certain metrics are correlated to certain manipulations of the SUA. The
conclusions are expressed in the form (qualitative/quantitative) which was previously
assigned to this metric.

10

Chapter 3

Foundations and Technologies

This chapter gives an overview of the relevant technologies for this thesis. It starts with
an definition and description of Model-Driven Software Development (MDSD), followed
by a introduction to the Eclipse Modeling Project (EMP) in Section 3.2. It should be noted
that this section is inspired by the dissertation of André van Hoorn van Hoorn [2014].
Section 3.4 outlines architectures of enterprise applications. Following this, Section 3.5
introduces the purpose of architecture modeling languages. In Section 3.6 different model
extraction techniques are presented. The chapter closes with a brief introduction to the
Kieker framework in Section 3.7.1

3.1 Model-Driven Software Development (MDSD)

Using models to describe complex systems has a long tradition in engineering disciplines.
Models are used to describe complex problems more abstract, so they are better under-
standable. A model supports three features: mapping feature (an original object is mapped
to the model), reduction feature (only the, depending on the current viewpoint, important
properties of the original object are mapped to the model), and pragmatics feature (the
model must be usable to replace the original) [Brambilla et al., 2012; Ludewig, 2003].

Brambilla et al. [2012] defines three key concepts for MDSD. The first key concept is ab-
straction from specific realization technologies. More specifically, this means that modeling
languages are needed which do not depend on a certain technology. This contributes to
better portability as well as interoperability. The second key concept is automated code
generation, which means for instance the generation of API’s, XML-Schemas and Plain
Old Java Objects (POJOs). This concept supports productivity and efficiency. The third key
concept is separating development of application and infrastructure. The concept enables
the partitioned reusability of application-code and infrastructure-code. Definition 1 refers
to the definition of software in the context of MDSD stated by Brambilla et al. [2012].

Definition 1 Model + Transformation = Software

The equation requires two technologies. First, modeling languages and secondly model
transformation technologies. A modeling language covers definitions of abstract syntax,
concrete syntax, and semantics. While the abstract syntax defines the set of modeling
elements and how those can be combined, the concrete syntax describes how it is actually

11

3. Foundations and Technologies

Figure 3.1. Unifying Java, XML, and UML [Steinberg et al., 2008]

represented and the semantics defines the meaning of a model [van Hoorn, 2014]. Modeling
languages can be divided in General Purpose Modeling Languages (GPMLs) and Domain
Specific Languages (DSLs). The first are languages which are designed to apply to any
software domain. Prominent examples of GPMLs are the Unified Modeling Language (UML)
and state machines. The latter are used to express a specific domain in a software system.
Well-known examples are the Hypertext Markup Language (HTML) and the Structured
Query Language (SQL) [Brambilla et al., 2012].

The second required technology is model transformation. A model transformation
is the process of transforming a source model into a target model. It is possible to
distinguish between different transformation strategies. (i) the model-2-text (M2T) and
text-2-model (T2M) strategies are transformations which transfer models into a textual
representation and vice versa, e.g., source code. (ii) The model-2-model (M2M) approach
transforms the source model into the representation of the target model [Czarnecki and
Helsen, 2006].

3.2 Eclipse Modeling Project (EMP)

The EMP is project, under the patronage of the Eclipse Foundation, which was created to
collect different MDSD technology at one place. The different technologies are organized as
subprojects and can be separated in support for abstract and concrete syntax development,
model transformation and implementations of industry-standard meta-models [Eclipse
Foundation, 2014a]. In this thesis the two subprojects Eclipse Modeling Framework (EMF)
and Connected Data Objects (CDO) will heavily be used. In the following those two projects
will be introduced more detailed.

3.2.1 Eclipse Modeling Framework (EMF)

The purpose of the Eclipse Modeling Framework (EMF) project is split into two. On the one
hand it is a modeling framework and on the other hand it is a code generation tool. EMF

is used to build tools and applications, which are based on a structured data model. EMF

12

3.2. Eclipse Modeling Project (EMP)

Figure 3.2. Minimal subset of Ecore model [Steinberg et al., 2008]

provides tools and runtime support for models which are defined in the XML Metadata
Interchange (XMI) format [Eclipse Foundation, 2014a]. Thus, it can be said that EMF is a
framework which lets you create a model in different forms and generate the others. As
depicted in Figure 3.1, EMF unifies Java, Extensible Markup Language (XML), and UML. It
does not matter which one is used, the resulting EMF model links them together [Steinberg
et al., 2008].

Models in EMF are represented as Ecore models. Ecore itself is a EMF model, conse-
quently it is it’s own meta-model. If the model of a model is a meta-model, but the model
itself is a meta-model. Then, the meta-model is a meta-meta-model [Steinberg et al., 2008].

As can be seen from Figure 3.2, Ecore provides four base classes to create an EMF model.
EClass, EAttribute, EReference, and EDataType. EClass is used to model classes. Each EClass
can have zero or more attributes of type EAttribute and zero or more references of type
EReference. EAttribute is used to model the simple data types of objects. As depicted
in Figure 3.2, the type of an attribute is defined by an EDataType. EDataTypes represent
simple types which are not modeled as EClass, instead they are associated with plain
Java primitives or object types. Associations between classes are modeled as EReference.
Contrary to EAttribute, the type of an EReference is an EClass (see Figure 3.2). EReference
provides the containment property to define a whole-part relationship. Thus, it is possible
to couple the lifetime of an EReference to the associated container [Steinberg et al., 2008].

3.2.2 Connected Data Objects (CDO)

In addition to the previously described features, EMF provides a persistence framework as
well. Since EMF models can be represented as XMI files, the persistence framework serializes
model instance to XML files and deserializes from XML files. According to Stepper [2008],
this approach has several drawbacks. An excerpt of drawbacks are limited resource size,
no lazy loading, no concurrent modification, and no transactions. To circumvent these
shortcomings, the Connected Data Objects (CDO) model repository was developed.

CDO is a pure Java model repository for EMF models and meta-models. Figure 3.3
depicts a rough overview of the general CDO architecture. As can be seen CDO has a 3-tier

13

3. Foundations and Technologies

Figure 3.3. CDO architecture overview [Stepper, 2015]

architecture. EMF Application (CDO client), CDO Repository (CDO server), and Database. The
purpose of CDO is to provide a plurality of client application access to a shared model
repository via the Internet. The model repository itself is considered as CDO server and
can connect to different types of data storage back-ends, e.g., relational databases or
NoSQL [Stepper, 2015]. Provided features of CDO are: Persistence, Multi User Access,
Transactional Access, Transparent Temporality, Parallel Evolution, Scalability, Thread
Safety, Collaboration, Data Integrity, Fault Tolerance, and Offline Work. For this thesis the
important features are persistence and transaction access. A detailed description of all
features is available at [Stepper, 2015].

The persistence feature allows to store EMF models in all kind of databases, what
results in a vendor-specific free application code base. Accessing EMF model objects in
a transactional manner is supported by optimistic and/or pessimistic locking. The CDO

transaction support the Atomicity, Consistency, Isolation, and Durability (ACID) properties.

CDO Client/Server Architecture

To ease the usage of CDO, all components are implemented as OSGI bundles. The OSGI
specification is maintained by the OSGI Alliance1 and describes a dynamic module system
for Java. Prominent reference implementations are Equinox2 and ApacheFelix3. Equinox is
moreover heavily used within the Eclipse IDE. However, neither CDO client nor CDO server
do necessarily require a running OSGI environment and can perfectly operate stand-alone.
But, a missing OSGI environment increases the manual configuration effort [Stepper, 2015].

The internal architecture of a CDO client application is illustrated in Figure 3.4. The core
components can be distinguished in three groups. Models and EMF provide support to
integrate and interact with EMF models. Protocol, Transport, and Net4j Core enable the data
transport via the Internet. CDO Client interleaves all components and grants the Application
access to the CDO infrastructure [Stepper, 2015].

1http://www.osgi.org
2http://www.eclipse.org/equinox/
3http://felix.apache.org/

14

3.2. Eclipse Modeling Project (EMP)

Figure 3.4. CDO client architecture [Stepper, 2015]

Figure 3.5. CDO server architecture [Stepper, 2015]

Figure 3.5 depicts the core components of a CDO server, or rather a CDO model repository.
The core of each model repository is the CDO Server Core component. This component
comprises all functionality which is later provided by the repository, e.g., caching, lock
manger, session manager, and query handling. CDO Store is the component that acts as
database backend and decouples the repository of proprietary persistence technologies like
JDBC databases or Hibernate. Protocol, Net4j4 Core and Transport enable the client/server
communication [Stepper, 2015].

4https://wiki.eclipse.org/Net4j

15

3. Foundations and Technologies

3.3 Not only SQL (NoSQL)

Not only SQL (NoSQL) is the generic term for databases with aim to circumvent the
functionalities of SQL databases. Sometimes NoSQL is also referred to No SQl, but that is
not completely true. Indeed, there are databases that dispense SQL entirely, but also some
that have encapsulated it [Weber, 2010]. However, no NoSQL database relies on a relational
database model. Consequently, relations (represented as tables) are missing completely.
According to Weber [2010], NoSQL databases are divided in four core categories.

Ź Key/Value (K/V) stores
Datasets in K/V stores always consists of a unique key and a corresponding value. The
value can be of any kind. This might be simple types (e.g., integer, byte arrays, etc.) or
binary objects (e.g., images or text files). An example of a K/V store is redis5.

Ź Document store
The approach of document stores is to serialize data to human readable data files
like, JavaScript Object Notation (JSON) or YAML Ain’t Markup Language (YAML) and
store this representation as entire document. Contrary to K/V stores, document based
stores need to know what kind of data is stored. An example of a document store is
MongoDB6.

Ź Graph databases
In Graph databases, data records are implemented as directed/undirected graph. Due
to the fact that graphs consist of vertices and edges, the data records are interrelated.
Neo4J7 is an example of a graph database.

Ź Column-oriented databases
Column-oriented databases switch from a row oriented (SQL like) to a column oriented
database layout. This means, a row contains an arbitrary amount of values of the same
attribute. In turn, that means that one data record corresponds to exactly one column.
An example of a column-oriented database is Apache HBase8.

3.4 Architecture of Enterprise Applications

Since this thesis focuses on the domain of enterprise application systems (EASs), this section
will give a brief overview of common architectural styles related to EASs. In a common
sense, architecture of software systems consists of two parts. The high-level breakdown
into parts and early, hard to change, design decisions [Fowler, 2002]. In the context of this

5http://redis.io/
6https://www.mongodb.org/
7http://neo4j.com/
8http://hbase.apache.org/

16

3.4. Architecture of Enterprise Applications

Figure 3.6. Layered architecture example [Kambalyal, 2010]

thesis EASs are considered as distributed Java business applications, e.g., payroll, patient
records, and credit scoring.

According to Fowler [2002], layering is the most important technique to break a system
apart. Layering brings many benefits: (i) single layers are better understandable and can be
considered as a whole, (ii) layers might be replaced with an alternative implementation, and
(iii) dependencies between layers are reduced. Modern EASs contain at least a presentation,
a domain, and a data source layer. A three-layered architecture is shown in Figure 3.6. The
first layer is responsible to display information and enable user input, the second layer
contains the logic of the system and the latter establishes connections to any kind of data
source, e.g., databases and message systems. As depicted in Figure 3.6, the presentation
layer is located on the client machine, while business and presentation layers are located
on the server machine. Depending on the application, the presentation layer might also be
available at the server machine to prepare the data for subsequent display on the client
machine.

Modern EASs rely on specific technologies, the most prominent are presented in the
following.

Ź Load-Balancer A load-balancer redirects incoming requests to several instances of the
requested server-side functionality.

Ź Transaction Manager A transaction manager handles a set of system transactions. If
one transaction fails, the transaction manager is responsible to roll back all previous,
successfully executed transactions. Transaction managers are needed to keep the EAS in
a consistent state.

Ź Web Clients An increasing number of EASs is based on web technologies and is therefore

17

3. Foundations and Technologies

shipped with a web-frontend. A web-frontend is considered as thin-client, this means
that all processor-intensive tasks are outsourced to the server.

Ź Messaging A Message-Oriented Middleware (MOM) enables a loose couple communica-
tion between several clients within a distributed environment.

Ź Web Services Web services are a further technology to enable a loose couple com-
munication between several clients within a distributed environment. Furthermore,
composing web services enable the possibility to create whole new applications.

3.5 Architecture Modeling Languages

A software architecture exposes the coarse structure of a software system in form of various
interacting components. A well-defined architecture is a key success factor for complex
software system, because a software architect is able to reason about system properties on
an higher level of abstraction. Bass et al. [2012] define software architecture as stated in
Definition 2.

Definition 2 The software architecture of a system is the set of structures needed to reason about
the system, which comprise software elements, relations among them, and properties of both.

In order to utilize the benefits of good software architectures and thus to avoid infor-
mal and ad-hoc approaches, several formal notations, so-called Architecture Description
Languages (ADLs), to present system architectures were proposed [Garlan et al., 2010].
According to Matevska [2010] a software architecture must be viewed from various view-
points. ADLs share a common intersection of viewpoints – static viewpoint, dynamic
viewpoint, and deployment viewpoint. The static viewpoint considers the decomposition
of the system in form of components and connectors. The dynamic viewpoint considers
the runtime interaction among the components. The allocation of software components on
hardware components is considered by the deployment viewpoint.

In research there is still a disunity to what degree an ADL should support the developers.
On the one hand the major role of an ADL is to provide assistance by understanding a
software systems. Such ADLs need a simple and graphical syntax and do not necessarily
have a formally defined semantic. On the other hand the trend arose to provide formal
definitions and semantics. This trend focuses on enabling powerful tools like model
checkers, compilers, and parsers [Medvidovic and Taylor, 2000].

Since most ADLs are proprietary languages, w.r.t. syntax, formalism, and semantics, this
thesis focuses on the existing ADL UML 2. To support modeling large-scaled component-
based software architectures (CBSAs), the Object Management Group (OMG) introduced new
diagram types in the UML 2 specification. Diagram types for timing, interaction overview,
composite structures, components, and packages were added [Hamilton and Miles, 2006].

18

3.6. Model Extraction

3.6 Model Extraction

This section introduces different techniques, how models can be extracted from the
system under analysis (SUA). The introduced extraction techniques are based on reverse
engineering and in the scope of this thesis considered to gain information about the
system’s architecture, including interfaces and components, the component’s behaviour,
how components are assembled, the resource environment, how components are allocated
in the environment and how the system is used. Reverse engineering techniques are
separated into two main approaches: Static analysis and dynamic analysis [Chikofsky et al.,
1990]. However, both approaches have advantages and disadvantages that is why both can
be combined to a hybrid approach.

Static analysis is applied to source code or binaries, without actually executing the
code.This enables extracting interface and components. Also, the internal behaviour of
components and interconnections to other components are discoverable. The process is
split in three steps: (i) parsing the source code, (ii) generating the component model, (iii)
computing complexity metrics [Krogmann, 2012]. A drawback of static analysis is that no
information about the resource environment is available [Krogmann, 2012].

Dynamic analysis techniques execute the available code and monitor the SUA. To enable
dynamic analysis, either the source/byte code has to be instrumented, or the execution
environment already provides functionalities to monitor the SUA [Krogmann, 2012]. Due
to the fact, that a running system is examined, it is additionally possible to gain insight in
the resource demands of the components. A further benefit of dynamic analysis is, that also
distributed systems can be analysed and a complete environment model can be extracted
[Krogmann, 2012]. To ease the instrumentation of SUAs, there are several monitoring
frameworks available, e.g., the Kieker framework [van Hoorn et al., 2012].

The combination of static analysis and dynamic analysis is called a hybrid approach.
Hybrid approaches make it possible to exploit the advantages of both analysis approaches
and so compensate the respective disadvantages [Chikofsky et al., 1990].

Due to the fact that dynamic analysis approaches rely on representative test cases or
actual SUAs, static analysis approaches are considered to be more precise because those
are capable to uncover all branches within a software system. While most static analysis
approaches are limited with respect to complexity and size of the analysed system, dynamic
analysis approaches can handle and analyse large and distributed systems. For example
runtime bindings are already available for dynamic analysis [Krogmann, 2012].

3.7 Kieker Framework

Kieker is an extensible framework for analysing the runtime behaviour of software systems.
In the scope of this thesis, especially the feature of control flow trace reconstruction
is important. As depicted in Figure 3.7, the framework provides two main features.
Monitoring (Kieker.Monitoring) and analysis (Kieker.Anaylsis). Kieker.Monitoring comprises

19

3. Foundations and Technologies

Figure 3.7. Kieker framework overview [Kieker Project]

functionality for program instrumentation, data collection, and logging. While monitoring
a SUA, Kieker is able to provide various kinds of monitoring data (Monitoring Record), but all
data records share a common data structure to assure consecutive interoperability among
all features. Examples of Monitoring Records are operation executions, CPU utilization, and
memory consumption. To represent executed software operations Kieker provides so-called
OperationExecutionRecords. Those records encompass information about the host on which
the operation was performed, the signature of the executed operation, a timestamp when
the record was logged, further timestamps for start and end of the operation, and properties
to trace back the control flow.

As shown in Figure 3.7, data collection is performed by so-called probes (Monitoring
Probe). All Monitoring Records are written to an internal, but extensible, writer/reader
framework. Within the writer/reader framework exist always pairs of one writer (Monitor-
ing Writer) and one reader (Monitoring Reader). Writer/reader pairs are provided for file
system, database, Java Message Service (JMS), and Plain Old Java Objects (POJOs). While
the Monitoring Writers are always utilized by Kieker.Monitoring, Kieker.Anaylsis reads the
incoming Monitoring Records with the Monitoring Readers. The writer/reader framework
thus bridges the gap between monitoring and analysis [van Hoorn et al., 2012]. This thesis
mainly uses Kieker.Analysis, hence this will be presented more detailed in the following.

3.7.1 Kieker Analysis

Kieker.Analysis is responsible to read, analyse, and visualize the Monitoring Records collected
by the Monitoring Probes. The core components of Kieker.Analysis are Monitoring Readers,
the Analysis Controller, and Analysis Plugins (Figure 3.7). The Analysis Controller is used

20

3.7. Kieker Framework

Figure 3.8. Kieker trace meta-model [van Hoorn, 2014]

to create new instances of Kieker.Analyis. As depicted in Figure 3.7, each Kieker.Analysis
instance consists of several Analysis Plugins. All Analysis Plugins are lined up in a pipe and
filter architectural style. To enable a pipe and filter structure each Analysis Plugin provides
zero or more input ports and several output ports. Kieker distinguishes between two kinds
of Analyis Plugins, readers and filters. Consequently, Monitoring Readers are Analysis Plugins
itself. The first Analysis Plugin in the pipe and filter chain is a Monitoring Reader, followed
by an unlimited list of filters (Analysis Plugin).

The Analysis Controller is used to create the pipe and filter chain. The final configuration
how filters are assembled is either done programmatically or is provided as configuration
file. It should be noted that Analysis Plugins must never emanating from preceding or
trailing Analysis Plugins. This restriction facilitates unlimited usage of Analysis Plugins. A
predefined pipe and filter composition of Analysis Plugins is provided as Kiker.TraceAnalysis
tool. This is a stand-alone application to analyse already available monitoring data. One
feature of Kieker.TraceAnalysis is to reconstruct executed control flow traces. This is an
interesting feature, because as already described in Section 2.1 the Enterprise Performance
Model (EPM) has to reflect control flow traces as well.

3.7.2 Kieker Trace Meta-Model

Within the Kieker framework execution traces are available in two kind of representations.
Execution Trace and Message Trace. As shown in Figure 3.8, both share a common base entity:
Trace. As depicted, the representations differ how the actual executions are represented. As
Execution Trace the trace is represented as plain list of executions. In contrast, a Message
Trace is an aggregation of messages. Internally, an Execution Trace is the starting point and
gets transformed into a Message Trace. How the trace reconstruction takes place is out
of scope of this thesis. Further information is available in [van Hoorn, 2014; van Hoorn

21

3. Foundations and Technologies

Figure 3.9. Subset of Kieker meta-model to represent software systems [van Hoorn, 2014]

et al., 2009]. A message is the logical grouping of a receiving, and a sending execution.
Furthermore, a message adopts a certain role: Synchronous Call Message or Synchronous Reply
Message. This distinction clearly defines, if a certain message starts an execution, or if it is
returning execution. Additionally, each execution has attached one Allocation Component
and one Operation. Allocation Component and Operation are entities of the internal Kieker
meta-model to represent software systems (see Figure 3.9). As depicted, an Operation is part
of a Component Type. In this scope a Component Type represents, simply put, an available
class within the system. From this it follows that an Operation reflects a method of the
class. Furthermore, Figure 3.9 illustrates the dependency between Allocation Component
and Execution Container. By the combination of an Allocation Components and an Operations
within a message, it is possible to regain the information about the executed method and
where it was executed.

22

Chapter 4

The Enterprise Performance Model (EPM)

This chapter describes the meta-model which was developed for the diagnoseIT framework.
The presented results are the deliverables of work packages WP1.1 (Requirements Analysis
(2.1.1)), WP1.2 (Review Existing Meta-Models and Check Applicability (2.1.2)), and WP1.3
(Specification and Implementation of the diagnoseIT Meta-Models (2.1.3)).

The remainder of this chapter is structured as follows. Section 4.1 constitutes the
requirements of the EPM. A detailed description of the meta-model is given in Section 4.2.
The chapter closes with an overview how the meta-model was implemented using the
Eclipse Modeling Project (EMP).

4.1 Requirements

This section outlines the requirements which the EPM has to fulfil. During the requirement
analysis it turns out that the most important requirements are those, which were contributed
from the participants of the diagnoseIT project. In particular, the importance of an easy
to use meta-model was stressed. Accordingly, the EPM is designed as simple as possible
and thus can be considered as initial version for the diagnoseIT project. To reduce the
complexity of the model, especially complex extensibility mechanisms were neglected.
Since the EPM has to cover very different components of a system under analysis (SUA) a
further requirement was to partition the meta-model in complementing sub meta-models.
This partitioning can be considered as a simplification of the entire EPM as well.

Table 4.1. Complementing sub meta-models of the EPM

Enterprise Performance Model
Software Module Resource Environment Allocation Behaviour Instrumentation

As depicted in Table 4.1, five complementing sub meta-model were identified. Ac-
cording to the table the EPM has to cover the software module, the resource environment,
and the allocation. The allocation model is used to map a certain software module to
the resource environment which is executing the software module. To allow subsequent
performance analysis, the internal behavior of the software module must be covered. In the
context of this thesis the behaviour means the execution traces, executed within a monitored

23

4. The Enterprise Performance Model (EPM)

software module. In addition, to software module, resource environment, allocation, and
behavior, the current instrumentation of the SUA is contained in the EPM.

The instrumentation describes how monitoring data is collected and thus directly
influences the content of the other meta-models. Since the instrumentation meta-model
is out of scope of this thesis, an initial version was defined but neither implemented nor
tested.

The next step in the requirements analysis was to define the explicit requirements for
each of the complementing sub meta-models. The entire list of requirements is depicted
in Table 6.4. As can be seen from the table, the meta-model for software modules covers
properties needed to reverse engineer the systems architecture. In particular, these are types,
operations and signatures. To reconstruct component connections also the links between
operations, respectively types, must be available. Since the incorrect usage of frameworks
might lead to performance degradations (e.g. wrong definition of object-relational mapping
files), the software module meta-model contains the employed frameworks.

Table 4.2. Enterprise Performance Model requirements

Enterprise Performance Model
Software Module Resource Environment Allocation Behaviour
Type Node Software Module Message
Operation Node Link Execution Entity Message Kind
Operation Link Execution Entity Duration
Signature JVM Allocation
Framework Resource Operation

As Table 6.4 shows, the resource environment meta-model covers all relevant informa-
tion concerning the execution environment. Internally, the resource environment meta-
model is split in hardware and software components. Nodes, node links and resources
are considered as hardware components. A node describes a processing unit, that means
a physical server. A resource represents physical resources like CPU, memory, and disk
space. So-called execution entities (e.g., application servers, web servers, or databases)
are used to represent the executing software components. Since the diagnoseIT approach
focuses on Java applications also the underlying Java Virtual Machine (JVM) instances are
covered by the resource environment. A single JVM can also be an execution entity.

The allocation model is used to establish a connection between software modules and
resource environments. For this purpose the allocation model creates mappings which
describe which software module is executed by which execution entity.

All previously described meta-models are related to static information of the SUA. In
contrast, the behavior meta-model refers to the dynamic data, which is collected while
monitoring a software system. In scope of the diagnoseIT approach behavior is equivalent to
execution traces. Due to this definition will the behavior meta-model henceforth be named
trace meta-model. Execution traces consist theoretically of an infinite amount of messages.

24

4.2. EPM Specification

Messages can be of a certain kind (e.g., Call, or Reply) and each message is associated
with a certain operation of the software module meta-model. To regain the information
on which execution entity (respectively node) the message was executed it contains the
mapping information of the allocation model. Additionally, an execution trace contains the
execution duration.

4.2 EPM Specification

This section describes the meta-model developed for the diagnoseIT approach. As described
in Section 3.2.1, the Eclipse Modeling Framework (EMF) unifies Java, Extensible Markup Lan-
guage (XML), and the Unified Modeling Language (UML). To comply to theses specifications
and therefore enable a subsequent transformation to an Ecore model, the abstract syntax of
the EPM is presented as UML class diagrams. In order that the model is better understood,
UML object and sequence diagrams are used to present exemplary instances of the EPM. In
accordance with the requirement that the EPM is subdivided into five complementing sub
meta-models, the EPM was designed as shown in Figure 4.1. The depicted meta-model is
considered as a conceptual overview, since the actual implementation stipulates that an
instance of the EPM can comprise several instances of the sub meta-models. This means for
example that diagnoseIT is able to monitor two different software modules at the same time.

EnterprisePerformanceModelSoftwareModuleModel

ResourceEnvironmentModel AllocationModel

TraceModel

Instrumentat ionModel

modules

1 trace

1

environments 1

instrumentations1

1

modules

allocations1environments 1allocations

1

trace

1

1 instrumentations

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 4.1. Conceptual overview of the EPM

4.2.1 Software Module

The software module meta-model contains all elements to recapture a software system’s
architecture. The smallest, but closed, building block of a Java application is a class. To
avoid naming confusions we reference classes as types.

25

4. The Enterprise Performance Model (EPM)

SoftwareModule

Type

Operat ion

Signature
Framework

FrameworkElement

element0..*

types

*

frameworks

*

signature1

caller

callee

1

*

operation

framework

elements

1

0..*

*

1

callee

caller

0..*

1

elements

framework

VersionInformation
0..* element

*

frameworks

version

*

types

operation1

1 signature

1version

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 4.2. Meta-classes for software modules. Note that attributes are not shown.

As depicted in Figure 4.2 a software module (SoftwareModule) references types (Type),
frameworks (Framework), and a version (VersionInformation). The version (VersionInformation)
allows the EPM to deal with same software modules but in different versions. Consequently,
a software module (SoftwareModule) is uniquely identifiable by its name and version.

We define types (Type) as lists of operations (Operation). Each operation (Operation)
references exactly one signature (Signature). Thus, operations (Operation) are unique by
design and method overloading is enabled by default. To implement the requirement
that component connections must be discoverable (Section 4.1), each operation (Operation)
defines a list with its callees. A callee is an operation (Operation), which an operation
(Operation) is able to call.

To enable the performance problem diagnosis based on utilized frameworks (Section 4.1),
each software module (SoftwareModule) references a list of frameworks (Framework). Each
framework (Framework) itself references a collection of elements (FrameworkElement). An
element (FrameworkElement) is considered as the part of a framework which is utilized
in a software system. Possible elements (FrameworkElement) are, e.g., interfaces, abstract
classes, or classes. If a type (Type) is somehow part of a framework, it has to reference the
corresponding element (FrameworkElement).

Figure 4.3 illustrates an exemplary software module meta-model instance of the JPet-
Store application, which is used as running example in this thesis. As depicted JPetStore
is a software module (SoftwareModule). It contains two types (Type), AccountService and
AccountActionBean. Additionally, it is shown that it uses the Stripes framework (Framework).
With respect to component links it is depicted that the getAccount operation (Operation) of
AccountService links to the signOn operation (Operation) of the AccountActionBean. Further-
more, Figure 4.3 shows that AccountActionBean is an actionBean element (FrameworkElement)

26

4.2. EPM Specification

AccountActionBean : Type signOn : Operation

AccountService : Type getAccount : Operation

JPetStore : SoftwareModule

stripes : Framework actionBean:FrameworkElement

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 4.3. Software module meta-model instance of the JPetStore application. Note that attributes
are not shown.

of the Stripes framework (Framework).

4.2.2 Resource Environment

The resource environment meta-model defines the set of available nodes (Node). The entire
meta-model is depicted in Figure 4.4. As depicted a resource environment (ResourceEnvi-
ronment) consists of several nodes (Node). Each node has information about the installed
operating system (OperatingSystem) attached. Node links are modeled as list of nodes
(Node), for each node. Nodes (Node) reference a list of execution entities (ExecutionEntity).
An execution entity (ExecutionEntity) is defined as a software component which executes,
or at least partially executes, the monitored software system. Execution entities (Executio-
nEntity) can therefore be of special types: application server (ApplicationServer), web server
(WerbServer), or database (Database).

The easiest variation of an execution entity (ExecutionEntity) is a simple JVM. If an
execution entity (ExecutionEntity) is executing a Java application, it references the executing
JVM (JVM), including properties (JVMProperties) and arguments (JVMArguments). If a node
(Node), an execution entity (ExecutionEntity), or a JVM (JVM) utilizes physical resources
it has to reference the resource (Resource). A resource (Resource) comprises CPUs (CPU),
memory (Memory), and disk space (HDD).

Figure 4.5 illustrates an exemplary resource environment meta-model instance. As
depicted, the resource environment (ResourceEnvironment) petstore comprises one node
(Node) server1 and one execution entity (ExecutionEntity) jvmEntity. Since jvmEntity is of
base type ExecutionEntity, it has to have a JVM (JVM) instance attached. Furthermore, it is
shown that the JVM (JVM) jvm1 utilizes two CPUs (CPU) and memory (Memory).

27

4. The Enterprise Performance Model (EPM)

AllocationModel ModuleAllocation

SoftwareModule ExecutionEntity

ResouceEnvironment

N o d e ExecutionEntity

ApplicationServer

DatabaseWeb Server

Operat ingSystem

Resource

H D D

CPU

M e m o r y

JVM JVMProperties

JVMArguments

target

source

0..*

1

1

*

*

0..*

source

target

*

1

*

*

*

*

1

0..1

1

1

1

1
1

1

*

1

0..1

*

*

1

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 4.4. Meta-classes for resource environments. Note that attributes are not shown.

petstore :
ResouceEnvironment

server1 :
N o d e

server1Resource :
Resource

cpu1 : CPU

cpu2 : CPU

mem1 : Memory

hdd1 : HDD
jvmResource : Resource

jvm1 : JVM

cpu1 : CPU

cpu2 : CPU

memory : Memory

jvmEntity : ExecutionEntity

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 4.5. Exemplary instance of a resource environment meta-model.

28

4.2. EPM Specification

AllocationModel ModuleAllocation

SoftwareModule ExecutionEntity

ResouceEnvironment

N o d e ExecutionEntity

ApplicationServer

DatabaseWeb Server

Operat ingSystem

Resource

H D D

CPU

M e m o r y

JVM JVMProperties

JVMArguments

target

source

0..*

1

1

*

*

0..*

source

target

*

1

*

*

*

*

1

0..1

1

1

1

1
1

1

*

1

0..1

*

*

1

Visual Paradigm Standard Edition(University of Stuttgart)

(a) Meta-classes for allcocations

allocation : AllocationModel JPetstore@jvmEntity
ModuleAllocation

jvmEntity : ExecutionEntity Jpetstore : SoftwareModule

Visual Paradigm Standard Edition(University of Stuttgart)

(b) Exemplary instance of the allocation meta-
model

Figure 4.6. Meta-classes for allocations and exemplary instance.

4.2.3 Allocation

As described in Section 4.1, the purpose of the allocation model is to map a software
module (SoftwareModule) to an execution entity (Execution Entity). This mapping was
achieved by designing the allocation model, as depicted in Figure 4.6a. As can be seen, the
allocation model (AllocationModel) contains a list of module allocations (ModuleAllocation).
Each module allocation (ModuelAllocation) references one software module (SoftwareModule)
and one execution entity (ExecutionEntity). For our running example this results in an
allocation model (AllocationModel), as depicted in Figure 4.6b.

4.2.4 Trace

Figure 4.7 shows the meta-model which is used to represent execution traces. Each trace
(Trace) is associated to a certain software module (SoftwareModule), hence the software
module (SoftwareModule) is considered as owner of the trace (Trace). As depicted, a trace
(Trace) consists of a list of messages (Message), which represent method calls. Since a
method call always consists of one calling and one called method, each message comprises
two operation executions (OperationExecution). Operation executions (OperationExecution)
clearly define what (Operation) was executed and where (ModuleAllocation) it was executed.
By the module allocation (ModuleAllocation), it becomes possible to determine the executing
node (Node).

Furthermore, a message (Message) is of certain sort (MessageSort). Current available sorts
(MessageSort) are: SynchCall, AsynchCall, Reply, Database, and Exception. In addition, to the
default message (Message), the extended types DatabaseMessage and ExceptionMessage are
available. Exception messages (ExceptionMessage) are used to indicate that errors occurred
while executing the trace. The occurred error should be identifiable by error codes or
stracktraces provided by the exception message (ExceptionMessage). Database messages
(DatabaseMessage) are markers that a database call was executed. The kind of the database
call is defined by a database operation (DatabaseOperation). Current available database
operations (DatabaseOperation) are: Select, Insert, Delete, and Update.

To complete the running example, an exemplary execution within the JPetStore applica-

29

4. The Enterprise Performance Model (EPM)

TraceRating

Trace Message

Operat ion

ModuleAllocation

DatabaseMessage

SynchCall
AsynchCall
Reply
DataBase
Exception

<<enumera t i on>>
MessageSort

Select
Insert
Delete
Update

<<enumera t i on>>
DatabaseOperat ion

ExceptionMessage

OperationExecution

1 *

1

caller

1

1

1

0..*0..*

1
callee

1

1

caller

1

1
callee

*1

1

1

1

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 4.7. Meta-classes for traces. Note that attributes are not shown.

tion is depicted in Figure 4.8a. As shown, a user calls the getAccount operation (Operation)
to retrieve his account information. However, before the account information is returned,
the AccountService internally delegates the call to the signOn operation (Operation) of the
AccountActionBean. The result of transforming the exemplary execution into the diagnoseIT
trace meta-model is depicted in Figure 4.8b. We assume that all messages (Message) are
executed by the same execution entity (ExecutionEntity). Therefore, the JPetStore@jvmEntity
module allocation (ModuelAllocation) is shown only once. As shown, trace1 consists of four
messages (Message). Message1 and message2 of sort (MessageSort) SynchCall, message3 and
message4 of Reply.

4.3 EPM Implementation

The carried out steps to transform the defined meta-models (4.2) into Java source code
artifacts are described hereinafter. The entire transformation process is performed by

30

4.3. EPM Implementation

AccountService AccountActionBean

1.1: signOn

1.2:

1: getAccount

Actor

1.3:

Visual Paradigm Standard Edition(University of Stuttgart)

(a) Exemplary execution within the JPetStore
application.

trace1 : Trace

JPetStore :
SoftwareModule

message1
: Message

JPetStore@jvmEntity
: ModuleAllocation

caller :
OperationExecution

callee :
OperationExecution

start :
Operat ion

getAccount :
Operat ion

message2
: Message

caller :
OperationExecution

callee :
OperationExecution

getAccount:
Operat ion

signOn :
Operat ion

message3
: Message

caller :
OperationExecution

callee :
OperationExecution

signOn:
Operat ion

getAccount :
Operat ion

message4
: Message

caller :
OperationExecution

callee :
OperationExecution

getAllocation:
Operat ion

start :
Operat ion

Visual Paradigm Standard Edition(University of Stuttgart)

(b) Exemplary trace meta-model instance.

Figure 4.8. Example transformation from a method call to a trace meta-model instance.

using the Eclipse Modeling Framework (EMF), which is available as plugin for the Eclipse
integrated development environment (IDE). As described in Section 3.2.1, the EMF is (i) a
modeling framework and (ii) a code generation tool. Accordingly, we first transfer the meta-
models to Ecore and then generate the Java source code. Exemplary for all meta-models,
the steps are described for the software module meta-model.

4.3.1 Ecore Modeling

Each Ecore model is a composition of the four base classes: EClass, EAttribute, EReference,
and EDataType (3.2.1). The first step is to create EClass representations for all entities
of the software module meta-model, as shown in Figure 4.9a. In addition, we decided
that all model elements inherit from a common ModelEntity class. By means of this base
ModelEntity class it is possible to distribute common functionality to all model elements
with very little effort. At present, the ModelEntity has only one property, named key, to
clearly identify model elements. Once all classes are prepared, the inter-dependencies can
be established.

A software module (EClass) has four attributes: name, version, frameworks, and
types. First two are modeled as attributes (EAttribute), latter as references (EReference). To
illustrate how attributes and classes are defined in detail, an excerpt of the mandatory, most
important, and most likely to change configuration values is depicted in Table 4.3. With
respect to the software module (EClass) it is shown (i) that the inheritance of ModelEntity
is defined by the SuperType property, (ii) that the name property (EAttribute) is of type
(EDataType) string (EString), and (iii) that the types property (EReference) is of type (EType)

31

4. The Enterprise Performance Model (EPM)

(a) Ecore representation of the softare module
meta-model (b) Ecore defintion of the KeyObjectMap class

Figure 4.9. Ecore modeling in Eclipse IDE

Table 4.3. Excerpt of Ecore model configuration properties.

EClass(SoftwareModule) EAttribute(name) EReference(types)
Property Value Property Value Property Value
Name SoftwareModule Name name Name types
ESuperType ModelEntity EType EString EType KeyObjectMap
Interface false Lower Bound 0 Lower Bound 0
Abstract false Upper Bound 1 Upper Bound -1

Containment true

KeyObjectMap.

EMF provides common data types (EDataType) like ESting, ELong, EMap, EObject, etc., by
default. Except for user-defined enumeration (EEnum), these are the data types which can
be used as attributes (EAttribute). Relations to other data types (EDataType), e.g., the types
reference (EReference), must be modeled as references (EReference).

The types reference (EReference) is a special feature. The amount of types as part
of a software system can easily go into the 10-100 thousands. Therefore, we decided
to model the types reference (EReference) as map. Thus, a fast an easy access to types
is possible. This is achieved by (i) an upper bound of -1 and (ii) a custom data type
KeyObjectMap. The negative upper bound generally converts references (EReference) in lists.
Since neither attributes (EAttribute) can be containments nor can references (EReference)
by maps (EDataType), a custom type (EClass) as data type (EDataType) for maps is needed.
Figure 4.9b uncovers the internal structure of KeyObjectMap, a simple key-value pair. The
key as attribute (EAttribute) and the value as reference (ERefernce). Proper usage is depicted
in Figure 4.9a.

32

4.3. EPM Implementation

4.3.2 Model-2-Text (M2T) Transformation

Once all meta-models are defined, the code generation can be carried out. Each model-
ing project within the Eclipse IDE includes in addition to the Ecore model a so-called
generation model. The generation model provides a large amount of configuration
values to affect the generated source code. A detailed functional description of all
properties is available in [Steinberg et al., 2008]. To generate the EPM source code,
the properties need to be set as depicted in Table 4.4. Since the EPM instances are
stored in a Connected Data Objects (CDO) repository we need to assure that a CDO

repository is able to handle all EPM elements properly. This is enabled by extend-
ing the CDO root class (org.eclipse.emf.internal.cdo.CDOObjectImpl), respectively interface
(org.eclipse.emf.cdo.CDOObject). The Base Package property is used to integrate the generated
source code in an the required package hierarchy. After a successful code generation the
SoftwareModule interface looks like the following:
public interface de.unistuttgart.metamodel.softwareModule.SoftwareModule extends ModelEntity
As can be seen the SofwareModule extends our root class ModelEntity and ModelEntity is
generated to:

public interface de.unistuttgart.metamodel.common.ModelEntity extends CDOObject
The purpose of the ModelEntiy base class was described in Section 4.3.1 and since this
is the root class of all further EPM entities it is the only entity which inherits from
org.eclipse.emf.cdo.CDOObject.

Table 4.4. Generation Model Properties

Property Value
Base Package de.unistuttgart.metamodel
Root Extend Interface org.eclipse.emf.cdo.CDOObject
Root Extend Class org.eclipse.emf.internal.cdo.CDOObjectImpl

33

Chapter 5

The diagnoseIT Framework

This chapter describes the realization of the dianoseIT framework. The deliverables of the
previously roughly described work packages (WP1.4 and WP2.2-WP2.4) are presented in a
structured, detailed manner. Also, the Enterprise Performance Model (EPM) of the previous
chapter is taken and embedded in the framework’s overall architecture.

The chapter is structured as follows. Section 5.1 summarizes the gathered requirements.
Section 5.2 gives a short introduction to employed third-party libraries and frameworks.
Section 5.3 provides a detailed overview of the developed framework as well as detailed
insights to certain components.

5.1 Requirements

This section outlines the requirements for the EPM model repository, the System Model
Maintenance Interface (SMMI), the Application Performance Management (APM) tool in-
tegration, and the diagnoseIT prototype architecture (see work packages WP1.4 (2.1.4)
and WP2.1(2.2.1)). The requirements are split in functional requirements (FRs) and non-
functional requirements (NFRs).

5.1.1 Functional Requirements (FRs)

The following introduced FRs assure that the developed approach meets the goals G1
(Enterprise Performance Model and Repository) and G2 (System Model Maintenance Interface
(SMMI) and Prototyp) which were motivated in sections 2.1 and 2.2.

FR1 Configuration

diagnoseIT application instances are supposed to be deployed in various environments.
Therefore, several components of the diagnoseIT framework require a flexible configuration
mechanism. This mainly concerns components which serve as database backends.

FR2 Stand-Alone EPM Model Repository

By default, model repositories built on top of the Connected Data Objects (CDO) framework,
run within an Eclipse environment. To bypass this prerequisite, diagnoseIT provides a CDO

35

5. The diagnoseIT Framework

environment which, is detached from Eclipse. Providing access to the EPM is the main task
of the model repository. This encloses creating, reading, updating, and deleting parts of
EPM instances. Additionally, the repository is partitioned to reflect the identical structure
as the EPM (see Section 4.1).

FR3 Separate Data Storage for Static and Dynamic Data

Since the EPM covers static and dynamic data, diagnoseIT provides access to two database
engines. This allows a separate storage and the possible overhead of CDO can be neglected
for dynamic data. Arising dynamic data, e.g., execution traces, are stored separately in a
NoSQL database.

FR4 System Model Maintenance Interface (SMMI)

As depicted in Figure 2.1, the SMMI serves as access point to the EPM model repository.
Hence, all components which dependent on repository data utilize the SMMI. In summary,
the internal Application Programming Interface (API) of the repository is published by the
SMMI.

FR5 Adapter as integration facility

The diagnoseIT framework provides a configurable adapter as integration facility. This
guarantees a seamless, unambiguous integration for third-party APM tools. The adapter
grants access to all necessary information and resources, which might be necessary for
APM tools.

FR6 Asynchronous Representational State Transfer (REST) API

All communication between a diagnoseIT application and adapters is realized by using
REST services. An adapter provides all necessary interface descriptions to establish a bi-
directional connection. The data exchange is realized with Data Transfer Objects (DTOs). By
the use of DTOs, the EPM’s internal structure is hidden and the data exchange is kept more
lightweight.

FR7 Data Pre Processing

An adapter provides an extensible data pre-processing mechanism. The pre-processing
is mainly used to prevent multiple transmissions of the same data and thus to limit the
network traffic to a minimum. Additionally, the data is analyzed and further information
is extracted.

36

5.2. Supporting Software and Libraries

FR8 Inaccessible Data Provisioning

As long as an adapter processes the latest data, it is essential that additional information is
retrievable from the connected APM tool. This data exchanged is established by an optional
supplementary interface. However, the adapter must not rely on the existence of this
interface since it can not be assumed that each APM tool is capable to provide the required
data.

FR9 Access Control

Each adapter has to log on to the diagnoseIT application. The adapter provides an iden-
tification number to the system and receives a valid session identification in return. The
session identification is henceforth transmitted in addition to each request.

5.1.2 Non-Function Requirements (NFRs)

Non-functional requirements (NFRs) describe certain quality criteria to be met by the
developed framework.

NFR1: Reusability

Software systems as well as requirements evolve and change over time. Hence, the
diagnoseIT framework supports a modular structure to enable partial replacements of
components. Additionally, it must be configurable (FR1) to be deployed in various execution
environments.

NFR2: Extensibility

In addition to reusability, diagnoseIT provides expansion capabilities. By extension points it
is possible to add additional functionality which either can not be provided from diagnoseIT
or which might be replaced in the future.

NFR3: Context Awareness

All interactions with the model repository are executed in an enclosing context. With
respect to the EPM this means, a context provides information what the origin of the data
is (e.g. which software module is updated). This enables streamlined interface definitions,
because less parameters are needed.

5.2 Supporting Software and Libraries

The development of the diagnoseIT framework is supported by third-party libraries/frame-
works. Relying on third-party products reduces the development time, increases code

37

5. The diagnoseIT Framework

quality and enforces encapsulation. The used libraries are introduced in the following.

5.2.1 Dropwizard (Vers. 0.8.0)

Dropwizard is an application framework which is composed of stable and mature Java
libraries. The goal of Dropwizard is to provide a simple and lightweight bundle containing
performant and reliable implementations of everything a production-ready web application
needs. By using Dropwizard, the application code remains focused on what it is actually
intended to do [Dropwizard]. Although, it has not yet reached a 1.0 version it already
provides a lot of support to develop RESTful applications.

In contrast to traditional Java web applications, Dropwizard applications are not shipped
as Web application Archives (WARs) and deployed in application servers like Tomcat1 or
JBoss2. Instead, the applications are assembled as single Java Archives (JARs), including
all required dependencies. Thus, an application can be deployed in every environment
without worrying about necessary libraries. This supports FR1 and NFR1. Dropwizard
applications enable their web application characteristic by starting a Jetty HTTP server
internally. Jetty is a pure Java Web server and javax.servlet container. Due to its small size
it is particularly suitable to be integrated into other software [Eclipse Foundation, 2015].
Additionally, Dropwizard embeds the Jersey framework for building RESTful applications.

5.2.2 Jersey (Vers. 2.1)

To ease the development of Web services build according to the REST architectural style,
the Java API for RESTful Web Services (JAX-RS) specification was defined. JAX-RS defines
a common API how RESTful Web service are build with Java [Hadley and Sandoz, 2009].
Jersey is a toolkit to simplify development of RESTful Java client-server applications and
serves as JAX-RS reference implementation. But, in addition to compliance of the JAX-RS
specification the toolkit provides additional features for further simplifications [Oracle
Corporation, 2015b].

5.2.3 HK2 (Vers. 2.4.0-b15)

To increase reusability, testability, and maintainability of Java source code, the JSR-3303

specification was developed to provide an extensible dependency injection API. HK2 is a
lightweight and dynamic dependency injection framework, which implements the JSR-330
specification [Oracle Corporation, 2015a]. As Jersey internally uses HK2, benefit of using
HK2 is a seamless integration in Jersey and the Dropwizard environment. Using HK2
supports NFR1 and NFR2.

1http://tomcat.apache.org/
2http://www.jboss.org/
3https://www.jcp.org/en/jsr/detail?id=330

38

5.3. Framework Implementation

5.2.4 Guava (Version 18.0)

Guava is a collection of free libraries for Java that is provided from Google. The library
is intended as extension to the default Java development library and is used all over
the Google Java services. Beside basic utility functions to increase comfort using Java,
Guava provides, e.g., extended collections, concurrency libraries, caching, string processing,
and simplified input/output processing [Google, 2015]. Within the diagnoseIT approach
especially the basic Java language utilities, collections, and parts of the concurrency library
are used.

5.2.5 MongoDB (Version 3.0.2)

According to FR3, diagnoseIT uses the MongoDB document store (see 3.3), to store dynamic
trace data. MongoDB was chosen for several reason. The main reason was the already
existing basic knowledge. This was supported by MongoDB’s capabilities to handle large
amount of data, as well as the availability of Java support.

5.3 Framework Implementation

This section describes the implementation of the diagnoseIT framework and provides
detailed insights in the internal architecture. A high-level architecture overview is depicted
in Figure 5.1. As can be seen, the framework is split in two major components: Application
and Adapter. Application comprises all core components which provide the operational
aspects of diagnoseIT. This includes, Web resources representing a REST API, the SMMI

implementation, and the EPM repository. MongoDBClient, CDOClient, and CDOServer
provide database functionality and are connected to corresponding database servers. The
current implementation assumes that CDOServer is an embedded component. Hence,
it starts and stops with the Application. However, Section 5.3.2 will demonstrate that
CDOServer is easyly extractable and independently executable.

The Adapter component serves as interface for APM tools to communicate with diagnoseIT.
For this purpose, the Adapter comprises all functionalities to process input data (PreProcessor)
and to transmit it to the server (WebResourceProxy). APM tools interact with a so-called
Runtime, which is considered as façade to the offered underlying components.

5.3.1 Application

Prior to a detailed description of the components shown in Figure 5.1, this section describes
the internal architecture of the overall application. Mechanisms how components are
started, connected, and stopped are introduced. Additionally, it is shown how frameworks
and libraries described in Section 5.2 are utilized. The core classes of an application are
depicted in Figure 5.2, classes of third-party libraries are accordingly prefixed, Dropwizard
(DW), Jersey/JAX-RS (RS), and HK2.

39

5. The diagnoseIT Framework

< < c o m p o n e n t > >
Application

< < c o m p o n e n t > >
Web Resource

< < c o m p o n e n t > >
S M M I

< < c o m p o n e n t > >
Repository

< < c o m p o n e n t > >
CDOServer

< < c o m p o n e n t > >
MongoDBClient

< < c o m p o n e n t > >
CDOClient

< < c o m p o n e n t > >
CDOClient

< < c o m p o n e n t > >
MongoDBClient

< < c o m p o n e n t > >
CDOServer

< < c o m p o n e n t > >
Repository

< < c o m p o n e n t > >
S M M I

< < c o m p o n e n t > >
Web Resource

< < c o m p o n e n t > >
H 2

< < c o m p o n e n t > >
MongoDB

< < c o m p o n e n t > >
Adapter

< < c o m p o n e n t > >
Runt ime

< < c o m p o n e n t > >
PreProcessor

< < c o m p o n e n t > >
Web Resource Proxy

< < c o m p o n e n t > >
Web Resource Proxy

< < c o m p o n e n t > >
PreProcessor

< < c o m p o n e n t > >
Runt imeAPM Tool

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 5.1. High-level diagnoseIT architecture overview.

The base class for all applications is AbstractApplication. By extending DW.Application,
this is also the entry point to the Dropwizard framework. Each AbstractApplication requires
an ApplicationConfiguration. Since an ApplicationConfiguration is not created manually but
generated from a configuration file, this is described at the end of the section. Dropwizard
provides a feature to define bundles and register them in a DW.Application. Bundles have
to implement the DW.Bundle interface and are invoked while a DW.Application is starting
to perform a certain piece of work. This feature is used to implement an ApplicationBoot-
strapBundle, which is responsible to create and initialize all further components.

The first step while an application is bootstrapped, is to create a HK2.ServiceLocator. As
described in Section 5.2.3, HK2 is a dependency injection framework and a HK2.ServiceLocator
is the container for all injectable classes. The classes to be managed by the container are
defined by a HK2.Binder which is created by implementations of AbstractApplication. This
architectural style supports NFR1 and NFR2.

After creating the HK2.ServiceLocator, an internal AutomaticBootstrap process is started
to scan the classpath for subclasses of IModelRepository, RS.Path, and DW.Managed. All
detected classes are instantiated by using the prior created HK2.ServiceLocator. This ensures
that all classes get their dependencies properly injected. The further process differs by the
corresponding type. IModelRepositories can directly be initialized. RS.Path and DW.Managed

40

5.3. Framework Implementation

DefaultApplication

AbstractApplication DW.Application

ApplicationBinder

<< In te r face>>
HK2.Binder

<< In te r face>>
DW.Manged

<< In te r face>>
DW.Bundle

ApplicationBootstrapBundle AutomaticBootstrap

<< In te r face>>
IModelRepository

<< In te r face>>
RS.Path

<< In te r face>>
HK2.ServiceLocator

ApplicationConfiguration

1

1

1

< < c r e a t e > >

< < u s e > >

1

< < u s e > >

< < u s e > >

1

< < u s e >

1

< < c r e a t e > >

1

1

1

1

1

1

1

1

< < c r e a t e > >

1

1

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 5.2. Core classes of the Application component.

are registered in the Dropwizard environment. The DW.Managed interface is used to
integrate a class into the life-cycle of a Dropwizard application, this means implementing
instances are started and stopped in common with the application. RS.Path is an annotation,
defined by JAX-RS, to indicate a resource class. In short, a resource is a REST API definition
and registered in the Jersey environment. A detailed description of resources follows in
Section 5.3.5.

For an application to be started, it requires a configuration file in the YAML Ain’t
Markup Language (YAML) human-readable data serialization format, which is subsequently
transformed in an ApplicationConfiguration instance. As the sample configuration file
(Listing 5.1) shows, the configuration comprises settings for Dropwizard (e.g., application-
ContextPath) and the diagnoseIT framework (e.g., configurations for the CDO server and
client). Listing 5.2 demonstrates how an application is configured and requested to start
the internal Jetty server. This flexible configuration mechanism supports FR1.

Listing 5.1. Example application configuration

1 #Dropwizrad configuations

server:

3 applicationContextPath: /diagnoseIT

applicationConnectors:

5 - type: http

port: 8080

41

5. The diagnoseIT Framework

7

#DiagnoseIT configurations

9 classpathScanning: ["de.unistuttgart.diagnoseIT.server"]

embeddedCDOServer: True

11 adapterWhiteList: ["1","2"]

13 cdoServerConfiguration:

verbose: False

15 gracefulShutDown: True

configurationFile: "META-INF/default-cdo-server.xml"

17

cdoClientConfiguration:

19 repository: "EnterprisePerformanceModel"

connector: "localhost:2036"

Listing 5.2. Application start up

java -cp application.jar de.uni.ExampleApplication server configuration.yml

5.3.2 CDO Client and Server

Since the Eclipse Modeling Project (EMP) model repository is built on top of the CDO

framework, the initial step in the course of this thesis was to implemented the CDO server
and CDO client components. Normally, CDO repositories are created and used inside a
running Eclipse integrated development environment (IDE). This is in contradiction with
FR2 and thus diagnoseIT needed a fully functional, Eclipse independent, CDO environment.
When researching how this can be achieved, it turns out that additional effort is needed
[Stepper, 2015]. There exist several working examples which are, however, also contrary to
FR2. They are primarily static and do not offer the whole configuration capabilities as if
CDO runs in an Eclipse environment [Eclipse Foundation, 2014c].

Listing 5.3. CDO Server Configuration

1 <?xml version="1.0" encoding="UTF-8"?>

<cdoServer>

3 <acceptor type="tcp" listenAddr="0.0.0.0" port="2036"/>

<repository name="EnterprisePerformanceModel">

5 <property name="optimisticLockingTimeout" value="10000"/>

<store type="db">

7 <property name="connectionKeepAlivePeriod" value="60"/>

<dbAdapter name="h2"/>

9 <dataSource class="org.h2.jdbcx.JdbcDataSource"

URL="jdbc:h2:/tmp/db/EnterprisePerformanceModel"/>

11 </store>

</repository>

13 </cdoServer>

Within Eclipse, a CDO server component is fully configurable by means of a single
Extensible Markup Language (XML) file. An example configuration file is provided in

42

5.3. Framework Implementation

CDOClientConfiguration

CDOClient

CDOTransactionManager

<< In te r face>>
DW.Managed

1

1

CDOServer

CDOServerConfiguration

1

1

11

1

DBStoreFactory

1

1

< < c r e a t e > > 11

1

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 5.3. Core classes of the CDO server and client components

Listing 5.3. The configuration file indicates that a CDO server will be activated on TCP
port 2036 and it provides a CDO repository with name ’EnterprisePerformanceModel’.
In addition, it can be seen that a H24 database engine is used. A complete CDO server
configuration reference is provided by [Eclipse Foundation, 2014b].

To meet FR1, FR2, and NFR1, diagnoseIT adopts this configuration mechanism. On
the one hand this makes it possible to reuse existing configurations files and on the
other hand, existing knowledge how CDO servers are configured can be reused. To keep
the configuration and coding experience as similar as possible, the CDO source code
was examined for reusable parts. Reuse was possible in two ways. First, direct reuse
of certain components. Second, components must be cloned and adjusted. The main
reason for adjustments was a lacking OSGI environment and the thus resulting malfunction,
misconfiguration of certain components.

The core classes to initialize the CDO environment are depicted in Figure 5.3. As
shown, CDOServer and CDOClient are configurable by additional configuration classes
(CDOClientConfiguration and CDOServerConfiguration). The server configuration is mainly
needed to make the server configuration file known to the CDOServer implementation.
CDOClientCongfiguration provides information how to connect to the CDOServer.

To ensure a proper integration in the application life-cylce, the DW.Manged interface
is implemented. To simplify transaction handling, a CDOTransactionManger is available.
This is used to create, modify, and commit transactions. To reduce the amount of created
transactions, new transactions are only created by an explicit statement. Otherwise, an
existing transaction is reused. DBStoreFactory provides necessary implementations which
match the store property of the server configuration. An example, how a fully functional
CDO environment is initialized, started, and stopped, is shown by Listing 5.4.

4http://www.h2database.com/html/main.html

43

5. The diagnoseIT Framework

Listing 5.4. CDO Environment Usage

1 //1. CDOServer creation and start

CDOServerConfiguration serverConfiguration = new CDOServerConfiguration();

3 serverConfiguration.setConfigurationFile("cdo-server.xml");

CDOServer server = new CDOServer(serverConfiguration);

5 server.start();

7 //2. CDOClient and CDOTransactionManager creation

CDOClientConfiguration clientConfiguration = new CDOClientConfiguration();

9 clientConfiguration.setConnector("localhost:2036");

clientConfiguration.setRepository("EnterprisePerformanceModel");

11 CDOClient client = new CDOClient(clientConfiguration);

CDOTransactionManager transactionManger = new CDOTransactionManager(client);

13

//Initialize a transaction, Create a new resource and add a new SoftwareModule

15 CDOTransactionContext context = transactionManger.createTransaction();

CDOResource myResource = context.getTransaction()

17 .getOrCreateResource("MySoftwareModule");

myResource.getContents()

19 .add(SoftwareModuleFactory.eINSTANCE.createSoftwareModule());

21 //Commit to ensure the new SoftwareModule is persisted

context.commit();

23

//stop server and transactionManager

25 transactionManger.terminate();

server.stop();

5.3.3 Model Repositories

FR2 expresses the need for a stand-alone model repository to store the Enterprise Perfor-
mance Model (EPM). This FR basically consists of two parts. First, the already presented
stand-alone CDO environment (see 5.3.2). Second, a model repository implementation uti-
lizing the CDO functionalities. As depicted in Figure 5.1, a repository is the only component
with access to the data stores.

To ensure a proper separation of concern, the overall model repository is subdivided
in several sub-repositories. The separation is inherited from the EPM itself. Consequently,
this results in the following sub-repositories: ResourceEnvironmentRepository, SoftwareMod-
uleRepository, AllocationRepository, and TraceRepository. Each sub-repository provides CRUD
functionality for the corresponding part of the EPM. A rough overview of the core classes, a
repository implementation consists of, is depicted in Figure 5.4. For each sub-repository
it is mandatory to implemented the IModelRepository interface. Otherwise, the automatic
bootstrap process (see 5.3.1) is not able to detect and initialize it.

Model repositories can access a ContextManager, which is the premise, to fulfil NFR3.
The ContextManager always provides a valid Context for the current invocation of the
model repository. This means, conversely, that each invocation of a model repository

44

5.3. Framework Implementation

<< In te r face>>
IModelRepository

AbstractRepository ContextManger CDOTransactionManager

Context

1

1

1

< < u s e > >

*

1

1

*

1

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 5.4. Core classes of the model repository component

has to be wrapped in a certain Context. Corresponding functionality is provided by the
ContextManager. The provided Context supplies further metadata, e.g, which software
module should be updated.

To support FR3, the TraceModelRepository has additional functionalities to persist ex-
ecution traces in a NoSQL database. Currently, this is the in Section 5.2.5 introduced
MongoDB.

5.3.4 System Model Maintenance Interface (SMMI)

As indicated in Section 2.2, the purpose of the SMMI is to publish a common API to maintain
the EPM model repository. As depicted in Figure 2.1, the SMMI has two usage areas. On
the one hand, it serves as access point to the EPM model repository for other, but internal
diagnoseIT components. On the other hand, it provides functionality to populate the EPM

model repository with new data, provided by foreign APM tools. From the perspective of
APM tools, the current implementation is mainly designed to support updating the EPM

model repository, rather than retrieving data. Internal diagnoseIT components, however,
gain unlimited access to EPM instance.

5.3.5 Web Resources

JAX-RS defines a resource as Java class that uses JAX-RS annotations to implement a Web
resource. A resource class is a Plain Old Java Object (POJO) with at least one @Path
annotation. The @Path annotation defines a relative Uniform Resource Identifier (URI)
path. The base URI depends on the deployment context of the web application [Hadley
and Sandoz, 2009]. The diagnoseIT framework contains currently two resource classes.
ApplicationResource and SystemModelMaintenanceResource. The first provides functionality
for example, to register an adapter, or to check whether the application is available. The
latter is the Web resource which servers as entry to the SMMI for APM tools.

An excerpt of the SystemModelMaintenanceResource is shown in Listing 5.5. As depicted
the class, as well as the update method are annotated with @Path. In combination with

45

5. The diagnoseIT Framework

the applicationContextPath, taken from the application configuration (see Listing 5.1), this
results in http://server:8080/diagnoseIT/systemModelMaintenance/update as endpoint to invoke
the update method over the Internet. Furthermore, the listing shows that the method has to
be invoked as POST request and consumes data serialized with JSON. Besides the JAX-RS
functionality, it can be seen how HK2 injects the actual SystemModelMaintenanceService
and how service invocations are wrapped in a certain Context. The current Context always
depends on a valid session identification, provided by the user. Using the Jersey framework
as JAX-RS implementation enables compliance with FR6.

Listing 5.5. Excerpt of SystemModelMaintenanceResource

@Path("/systemModelMaintenance")

2 public class ModelMaintenanceResource {

@Inject

4 private SystemModelMaintenanceService maintenanceService;

@POST

6 @Path("/update")

@Consumes(MediaType.APPLICATION_JSON)

8 public void update(final UpdateRequest request,

final @Suspended AsyncResponse response) {

10 ContextManager.executeInContext(request.getSessionID(), () -> {

response.resume(maintenanceService.update(request));

12 });

}

14 }

5.3.6 APM Tool Integration – Adapter

The final step while implementing the diagnoseIT framework was to implement the APM tool
integration, as described in Section 2.2.3. In analyzing the requirements for the integration
interface, it turns out that it is beneficial to provide an extended integration mechanism.
This is because different APM tools can be connected to diagnoseIT, and each tool might
have its on data format. Hence, every tool has to transform its data, to comply with the
diagnoseIT format. To simplify the use of the diagnoseIT framework, an extensible integration
adapter was implemented. The resulting requirements for the adapter are FR5-9. In the
following, a brief introduction of the adapter’s internal functioning is given.

An excerpt of the internal core classes is provided by Figure 5.5. The core component of
each Adapter is the Runtime which is responsible for ensuring that all further components
are properly created and initialized. As depicted, a Runtime is individual configurable by a
RuntimeConfiguration. The configuration is, as for the Application (5.3.1), provided as YAML

file. Like shown in Listing 5.6, a RuntimeConfiguration provides information how to connect
to a certain diagnoseIT application as well as a context which is needed for interactions
with the System Model Maintenance Interface (SMMI). While the Adapter is starting, the
identification property is used to log on to the Application. If the identification is known, the
Application returns a valid session identifier. This is an initial implementation of FR9 and

46

5.3. Framework Implementation

AbstractAdapter

Adapter

Runt ime

RuntimeConfiguration

ProxyRegistry

<< In te r face>>
HK2.ServiceLocator

EntityPreProcessingChain

ResourceProxyFactory ProxyInvocationHandler

<< In te r face>>
IEntityPreprocessor

<< In te r face>>
@ResourceInterface

<< In te r face>>
InaccessibleInformationResolver

1

1

1

1

1

1

1

< < u s e > >

1

1

1

1

1

1

1

1

1

1

1

< < c r e a t e > >

1

1

1

< < c r e a t e > >

1

1

1

1

1

1

< < u s e > >

1

< < c r e a t e > >

< < u s e > >

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 5.5. Core classes of the adapter component.

might be enhanced in the future.
When a Runtime is initializing, it creates proxies which enable the communication

with the Application. All classpath classes annotated with @ResourceInterface are collected
and the ResourceProxyFactory creates corresponding proxies. All generated proxies are
subsequently available in the ProxyRegistry. As Figure 5.5 indicates, proxies can access an
EntityPreProcessingChain. With respect to FR7, this chain is executed along with each proxy
invocation. The EntityPreProcessingChain can be equipped with an arbitrary amount of
IEntityPreprocessors.

The Runtime uses an InaccessibleInformationResolver interface. The purpose of this in-
terface is to provide an optional callback mechanism whereby the Adapter can request
additional information from a connected APM tool. Hence, the InaccessibleInformationResolver
is a summarizing interface which currently comprises ITypeResolver and IResourceEnviron-
mentResolver. The first is used to gather additional information for a certain type, e.g.,
which interfaces it implements or if it is annotated. The latter resolves certain parts of a
resource environment, e.g., resolve a Node to a corresponding name (see Section 4.2.2).

Listing 5.6. Example Runtime Configuration (adapter-runtime-configuration.yml)

identification: "1"

2 endpoint: "http://localhost:8080/diagnoseIT"

toolName: "MonitoringTool"

4 classpathScanning: ["de.unistuttgart"]

context:

6 module: "JPetstore"

moduleVersion: "1"

8 resourceEnvironment: "JPetstoreEnvironment"

47

5. The diagnoseIT Framework

Table 5.1. Extractable EPM Model Entities

SoftwareModule ResourceEnvironment
Default Supported Default Supported

Type X X Node - X
Operation X X ExecutionEntity - X
Signature X X JVM - X
FrameworkElement - X

5.3.7 Enterprise Performance Model (EPM) Element Extraction

In the scope of this thesis, a so-called TraceUpdateRequestPreProcessor was developed. This
preprocessor is always available in the EntityPreProcessingChain and is accordingly invoked
for each entity which passes the Adapter. Benefit of TraceUpdateRequestPreProcessor is
that depending on the input Trace, certain parts of the associated SoftwareModule as well
as ResourceEnvironment are reconstructable. This becomes possible, because a Trace has
detailed knowledge of Operation and ModuleAllocation (see Section 4.2.4). Table 5.1 gives an
overview, which entities are extractable by default, and which can solely be extracted with
further support of the APM tool. In order to ensure this support, the tools have to provide
an implementation of the beforehand introduced InaccessibleInformationResolver interface.
In order to resolve Nodes, ExecutionEntities, and JVMs, the tools receive the corresponding
name of the entity.

A more complex task is to dissolve the affiliation of a Type to a certain Framework. To re-
move this task from APM tools, the Adapter provides a FrameworkScanner. In order to ensure
correct functionality, the FramworkScanner is initialized with corresponding meta-data. The
meta-data comprises information about the Framework, more specifically name, classpath
pattern, and the framework’s classification, as well as for the associated FrameworkElements,
more specifically, name and recognition patterns. Currently, the FrameworkScanner sup-
ports a Type’s inheritance hierarchy and class-level annotations as patterns to assign it a
FrameworkElement. Nevertheless, the recognition patterns must be contributed from the
APM tool, by implementing the ITypeResolver interface (see Table 5.1).

Detecting FrameworkElements is a three step process. First, all recognition patterns of
a Type are requested from the APM tool. Second, the obtained recognition patterns are
checked against the classpath patterns of all Frameworks. If there is a match, we can assure
that this Type is at least somehow related to the Framework. As third and final step, the Type
recognition patterns are compared with the initially provided FrameworkElement meta-data.
If this step succeeds, the Type is henceforth linked with this FrameworkElement, accordingly
identifiable as part of a Framework.

48

5.4. diagnoseIT Framework in Action

5.4 diagnoseIT Framework in Action

After the preceding technical descriptions, this section provides a brief usage example.
The example demonstrates (i) how a new Adapter is created, configured and started, (ii)
how the IModelMaintenanceResource is obtained and used, and (iii) the internal, but ab-
stracted, control flow within the diagnoseIT framework. The example is from the perspective
of an APM tool. From this it follows the assumption that a running diagnoseIT applica-
tion instance is available at a certain endpoint (see Listing 5.2). To reuse the adapter
runtime configuration from Listing 5.6, we assume a diagnoseIT instance is available at
http://localhost:8080/diagnoseIT.

Lines 1-6 of Listing 5.7 show how a new Adapter is created,configured and started by
using an AdapterBuilder. The builder provides convenience functionality to setup new
adapters, e.g., define the configuration file and set the InaccessibleInformationResolver. An
exemplary implementation of InaccessibleInformationResolver is illustrated in Listing 5.8. The
provided sample implementation simply returns empty representations of the requested
entities.

Listing 5.7. Simple example how Adapter is used to transmit a single Trace.

Adapter adapter = AdapterBuilder.newAdapter(Adapter.class)

2 .configureFromFile("adapter-configuration.yml")

.inaccessibleResolver(new MyInaccessibleInformationResolver())

4 .build();

6 adapter.start();

8 TraceDTO traceDTO = TraceDTO.trace(start, end)

.syncCallMessage()

10 .from("A.methodA():void", 100, "jvm1", "server0")

.to("B.methodB():String", 100, "jvm1", "server0")

12 .syncReplyMessage().from("B.methodB():String", 100, "jvm1", "server0")

.to("A.methodA():void", 100, "jvm1", "server0")

14 .build();

16 IModelMaintenanceResource maintenanceResource = adapter.api().maintenanceResource();

maintenanceResource.update(new UpdateRequest().forTrace(traceDTO));

18

adapter.stop();

Sequence Diagram 5.6 illustrates the control flow after starting an Adapter. Internally,
the Runtime initiates a registration process to log on to the system. To register, the
IApplicationResource proxy asynchronously invokes the ApplicationResource REST API. The
request is parameterized with a ClientRegistrar, which corresponds to a subset of the
RuntimeConfiguration (Listing 5.6), consisting of context and identifier. As depicted, the
Runtime blocks until it receives a session identifier in return as the identifier is mandatory
for all further processing. Once the session identifier is available, it is attached to the
Runtime and the Adapter is ready for use.

49

5. The diagnoseIT Framework

Adapter

APM-Tool

Runtime IApplicationResource ApplicationResource ApplicationService

2: start()
1: start()

3: register(registrar)

13:

4: register(registrar)
5: register(registrar)

7: createSession(registrar)

8: sessionID

9: callBack(sessionID)

6: suspend()

10: callBack(sessionID)

11: attach(sessionID)
12:

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 5.6. Control flow to register an Adapter at a diagnoseIt application.

How the Adapter is used to update the EPM, by sending a trace, is illustrated in lines 8-17
of Listing 5.7. Since the data transport is realized by DTOs, a new TraceDTO is constructed
(lines 8-14). To construct traces as described in Section 4.2.4 a builder is provided. The final
steps to transmit the recently created trace are (i) obtaining the IModelMaintenanceResource,
(ii) wrapping the DTO in a UpdateRequest DTO, and (iii) invoking the update operation of
IModelMaintenanceResource (lines 16-17).

Listing 5.8. Example InaccessibleInformationResolver implementation

1 private class MyInaccessibleInformationResolver extends AbstractInaccessibleInformationResolver {

@Override

3 public NodeDTO resolveNode(String environment, String nodeName) {

return NodeDTO

5 .newBuilder(nodeName).build();

}

7

@Override

9 public ExecutionEntityDTO resolveExecutionEntity(String environment, String nodeName, String executionEntity) {

return ExecutionEntityDTO.

11 newBuilder(ExecutionEntityDTO.ExecutionEntityType.JVM, executionEntity, nodeName)

.build();

13 }

15 @Override

public ResolvedType resolveType(String fullQualifiedClassName) throws TypeResolutionException {

17 return Utils.resolveType(fullQualifiedClassName);

}

19 }

The by the IModelMaintenanceResource.update() initiated control flow is depicted in
Figure 5.7. In order to increase the diagrams readability, certain steps were simplified and
UpdateRequest is entitles as Request.

50

5.4. diagnoseIT Framework in Action

Whenever a new Request is available, the in Section 5.3.6 introduced EntityPreProcess-
ingChain is executed. By default, the chain contains two preprocessors: SessionIdDistributor
and TraceUpdateRequestPreProcessor. The purpose of SessionIdDistributor is, to enrich pro-
cessed DTOs with the previous received session identifier. Proceeding from the previous
description (5.3.7), the TraceUpdateRequestPreProcessor extracts further information from the
trace and enriches the Request with it. The processed Request is subsequently transmitted to
the server-side SystemModelMaintenanceResource.

Prior to the final update process, the ContextManager (5.3.3) has to ensure context
awareness. For this, the ContextManager creates, depending on the session identifier, a
new Context and activates it. As described in Section 5.3.3, the Context dictates which
parts of which repository are updated. Once the Context is established, the SMMI imple-
mentation is invoked. The SystemModelMaintenanceService unwraps the DTOs from Request,
transforms them in CDOObjects (4.3.2), and updates the corresponding repository. Since,
up to four model repositories might be changed, Figure 5.7 indicates it as looping call
to IModelRepositoriy. This comprises updates of TraceRepository, SoftwareModulRepository,
AllocationRepository, and ResourceEnvironmentRepository (see Chapter 4). After updating the
repositories, the previous valid Context is restored and the return value is send back to the
Adapter.

Table 5.2 shows the exemplary content of the EPM at the end of the preceding described
update process. As seen, it contains one SoftwareModule (JPetStore), one ResourceEn-
vironment (JPetstoreEnvironment), and one AllocationModel. The available Types of the
SoftwareModule directly reflect the message definition made in Listing 5.7. This also applies
to the ResourceEnvironment. In addition, the AllocationModel states, that a SoftwareModule
JPetStore is executed by ExecutionEntity jvm1. Remarkable is the unique identifier JPet-
Store@1::jvm1@server0 of this allocation, which is so descriptive that the entire allocation is
recoverable.

Table 5.2. Exemplary content of the EPM in accordance with the described update process.

EnterprisePerformanceModel
SoftwareModule

Name Version Type
JPetStore 1 Name Operation Signature

A methodA A.methodA():void
B methodB B.methodB():void

ResourceEnvironment
Name Node
JPetstoreEnvironment Name ExecutionEntity

server0 jvm1
AllocationModel

Identifier
JPetStore@1::jvm1@server0 SoftwareModule ExecutionEntity

JPetStore jvm1

51

5. The diagnoseIT Framework

A
P

M
-T

o
o

l

IM
o

d
e

lM
a

in
te

n
a

n
ce

R
e

so
u

rc
e

P
re

P
ro

ce
ss

in
g

C
h

a
in

IP
re

P
ro

ce
ss

o
r

lo
o

p

S
ys

te
m

M
o

d
e

lM
a

in
te

n
a

n
ce

R
e

so
u

rc
e

C
o

n
te

xt
M

a
n

g
e

r
S

ys
te

m
M

o
d

e
lM

a
in

te
n

a
n

ce
S

e
rv

ic
e

1
:

u
p

d
a

te
(R

e
q

u
e

st
)

2
:

e
xe

cu
te

(R
e

q
u

e
st

)

3
:

p
ro

ce
ss

(R
e

q
u

e
st

)

4
:

R
e

q
u

e
st

IM
o

d
e

lR
e

p
o

si
to

ry

5
:

R
e

q
u

e
st

6
:

u
p

d
a

te
(R

e
q

u
e

st
)

7
:

e
xe

cu
te

In
C

o
n

te
xt

(
se

ss
io

n
Id

,C
a

lla
b

le
)

8
:

se
tC

u
rr

e
n

tC
o

n
te

xt
(C

o
n

te
xt

)

9
:

u
p

d
a

te
(R

e
q

u
e

st
)

1
0

:
u

p
d

a
te

1
1

:

1
2

:

lo
o

p

1
3

:
re

st
o

re
C

o
n

te
xt

(C
o

n
te

xt
)

1
4

:
re

tu
rn

V
a

lu
e

1
5

:
ca

llB
a

ck
(r

e
tu

rn
V

a
lu

e
)

1
6

:
ca

ll
b

a
ck

(r
e

tu
rn

V
a

lu
e

)

V
is

u
a

l
P

a
ra

d
ig

m
 S

ta
n

d
a

rd
 E

d
it

io
n

(U
n

iv
e

rs
it

y
o

f
S

tu
tt

g
a

rt
)

Figure 5.7. Control flow to update the EPM model repository.

52

Chapter 6

Evaluation

This chapter targets the evaluation of the diagnoseIT framework implementation, by an-
swering the research questions raised in (Section 2.3). The research questions regarding the
evaluation are formulated as follows:

Ź RQ4: Does the approach meet all previously specified requirements?

Ź RQ5: Is the approach applicable in real world scenarios?

In this thesis we employed the Goal Question Metric (GQM) approach as measurement
mechanism in order to answer the research questions. Caldeira and Rombach [1994]
proposed GQM as framework to transfer questions in measurable goals. The application of
the GQM, in the scope of this thesis, is subject of Section 6.1. The results of the conducted
proof-of-concept evaluation are presented in Section 6.2. Section 6.3 presents the results of
the carried out lab experiment.

6.1 Evaluation Goals

This section describes how the GQM approach is applied in this thesis. According to Caldeira
and Rombach [1994], the application of GQM results in a measurement model, which targets
at certain issues for the interpretation of measurement data. The measurement model is
divided into the following three levels: Conceptual level (Goal), operational level (Question),
and quantitative level (Metric). A goal is defined for one of three types of measuring objects
(products, processes, and resource) and from a certain viewpoint. Questions emboss the
way how the achievement of a goal is performed. A metric defines data which enables
answering one or more questions [Caldeira and Rombach, 1994].

The GQM goals defined for the diagnoseIT framework are presented in the following. To
avoid name confusion with goals from Chapter 2, we refer them as evaluation goals (EGs).

EG1: Assessing Functionality of the diagnoseIT Framework

As stated in Section 2.2, a big part of this thesis was to implement a prototype of the
diagnoseIT framework. EG1 is used to answer RQ4 (Does the approach meet all previously
specified requirements?). Thus, the purpose of EG1 is to evaluate the functionality of all
developed components. The formal definition of EG1, as proposed by Caldeira and

53

6. Evaluation

Table 6.1. EG1: Assessing the functionality of the diagnoseIT prototype, from a user’s viewpoint.

Goal EG1
Purpose Assessing the
Issue functionality of
Object the diagnoseIT prototype
Viewpoint of a users viewpoint

Question Q1.1 Does the diagnoseIT prototype meet all previously
specified requirements?

Metrics M1 Functioning of components

Question Q1.2 Up to what granularity is Kieker able to serve the EPM?
Metrics M2 Enterprise Performance Model (EPM) coverage

Rombach [1994], is presented in Table 6.1. EG1 comprises two questions. The first is to
evaluate if the prototype works as expected. The second to evaluate to what extent the APM

tool Kieker is able to equip the EPM. This EG is addressed by the in Section 6.2 presented
proof-of-concept evaluation.

EG2: Assessing Scalability of System Model Maintenance Interface (SMMI)

With respect to the goals of this thesis, the SMMI is the core component to interact with a
diagnoseIT application. Since the SMMI is used from a various amount of APM tools, it has to
scale along with the emerging workload. Hence, EG2 targets RQ5 (Is the approach applicable
in real world scenarios?). The formal definition of EG2 is depicted in Table 6.2.

As shown, EG1 defines three questions. For each of the scalability attributes responsive-
ness, memory consumption, and CPU utilization a corresponding combination of question
and metric was formulated. This EG is addressed by the in Section 6.3 presented lab
experiment.

6.2 Proof-of-Concept Evaluation

In the proof-of-concept evaluation we deploy a, with Kieker instrumented, Java-base
enterprise application to an application server. A developed analysis tool receives the
monitoring data and transfers it to a diagnoseIT instance. The evaluation methodology
is presented in Section 6.2.1, followed by the experimental setting in Section 6.2.2. The
evaluation results are presented in Section 6.2.3.

54

6.2. Proof-of-Concept Evaluation

Table 6.2. EG2: Assessing the scalability of the System Model Maintenance Interface (SMMI) in lab
experiments.

Goal EG2
Purpose Assessing the
Issue scalability of
Object the System Model Maintenance Interface (SMMI)
Viewpoint in lab experiments

Question Q2.1 How responsive are model repository updates with
increasing load?

Metrics M3 Response time

Question Q2.2 How memory intensive are model repository updates with
increasing load?

Metrics M4 Memory consumption

Question Q2.3 How CPU intensive are model repository updates with
increasing load?

Metrics M5 CPU utilization

6.2.1 Evaluation Methodology

As described, this proof-of-concept evaluation is mainly used to evaluate the functionality
of the developed diagnoseIT framework. The evaluation is conducted as follows. A
diagnoseIT application is started. In addition, on a different physical machine, a Java-based
enterprise application is deployed to a Tomcat1 application server. The deployed application
contains a Kieker-based instrumentation. As described in the foundations (3.7.1), we used
Kieker.Analysis to obtain and process the monitoring data of the application. To establish
a connection between Kieker.Analysis and diagnoseIT, a so-called DiagnoseITAdapterPlugin
was integrated in Kieker’s pipe and filter structure. Hence, Kieker serves as APM tool to
serve diagnoseIT. The DiagnoseITAdapterPlugin receives the processed monitoring data and
transmits it to diagnoseIT, as described in Section 5.4. The metrics of EG1 are predominantly
evaluated qualitative, by demonstrating the applicability of the developed approach.

55

6. Evaluation

< < d e v i c e > >
Client

<<execut ionEnvironment>>
JVM

< < c o m p o n e n t > >
DiagnoseITAnalyisTool

(vers. 0 .1)

JMS

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

< < c o m p o n e n t > >
Apache ActiveMQ

(vers . 5 .10 .1)

JMS

<<execut ionEnvironment>>
Apache Tomcat
(vers . 8 .0 .18)

< < c o m p o n e n t > >
Kieker

(vers . 1 .11)

< < c o m p o n e n t > >
HSQLDB

(vers. 2 .3 .2)

< < c o m p o n e n t > >
JPetStore
(vers. 6)

<<execut ionEnvironment>>
Apache Tomcat
(vers . 8 .0 .18)

< < c o m p o n e n t > >
Kieker

(vers . 1 .11)

< < c o m p o n e n t > >
HSQLDB

(vers. 2 .3 .2)

< < c o m p o n e n t > >
JPetStore
(vers. 6)

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

< < c o m p o n e n t > >
Apache ActiveMQ

(vers . 5 .10 .1)

JMS

<<execut ionEnvironment>>
JVM

< < c o m p o n e n t > >
DiagnoseITAnalyisTool

(vers. 0 .1)

JMS< < c o m p o n e n t > >
JPetStore
(vers. 6)

< < c o m p o n e n t > >
HSQLDB

(vers. 2 .3 .2)

< < c o m p o n e n t > >
Kieker

(vers . 1 .11)

< < c o m p o n e n t > >
Apache ActiveMQ

(vers . 5 .10 .1)

< < c o m p o n e n t > >
DiagnoseITAnalyisTool

(vers. 0 .1)

< < d e v i c e > >
Server

< < c o m p o n e n t > >
MongoDB

(vers. 3 .0 .2)

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

HTTP

< < c o m p o n e n t > >
H 2

(vers . 1 .4 .186)

< < c o m p o n e n t > >
DiagnoseIT
(vers. 0 .1)

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

HTTP

< < c o m p o n e n t > >
H 2

(vers . 1 .4 .186)

< < c o m p o n e n t > >
DiagnoseIT
(vers. 0 .1)

JMS

JMS
HTTP < < c o m p o n e n t > >

DiagnoseIT
(vers. 0 .1)

< < c o m p o n e n t > >
MongoDB

(vers. 3 .0 .2)

< < c o m p o n e n t > >
H 2

(vers . 1 .4 .186)

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 6.1. Technical infrastructure of the proof-of-concept evaluation

6.2.2 Experimental Setting

This section describes the employed software and hardware infrastructure. The technical
infrastructure is depicted in Figure 6.1. The figure gives an overview of software and
hardware components, as well connections. As depicted, the infrastructure comprises two
physical machines, we refer them as client and server. The technical details, regarding CPU,
RAM, Operating System, and the used Java version, are provided in Table 6.3. As shown
in Figure 6.1, the client device contains three software execution environments (version
numbers are depicted as well). A Tomcat application server, including the instrumented
JPetstore application, Kieker.Monitoring, and a HSQL2 database, which is mandatory for
JPetStore. An Apache ActiveMQ Java Message Service (JMS) server is used to establish the
Kieker monitoring log/stream (see Figure 3.7). The DiagnoseITAnalysisTool processes the
monitoring data and transfers it to diagnoseIT.

The diagnoseIT application is deployed to the server device. As show, the H2 database,
which serves as data storage for the Enterprise Performance Model (EPM), is embedded into
the same execution environment as diagnoseIT. The server device also hosts a MongoDB
instance.

JPetStore Application

JPetStore is an open source J2EE web application, representing a Web shop. As the name
suggests, it offers animals. Basically JPetStore is a sample application to demonstrate the

1http://tomcat.apache.org/
2http://hsqldb.org/

56

6.2. Proof-of-Concept Evaluation

Table 6.3. Technical details of the employed physical machines.

Client Server
CPU Intel Core i5-3470 3.20GHz x4 Intel Core i5-3470 3.20GHz x4
RAM 4GB 4GB
OS Linux (Mint) 3.16.0-38-generic x86_64 Linux (Mint) 3.16.0-38-generic x86_64
Java 1.8.0_45 1.8.0_45

< < c o m p o n e n t > >
JMSReader

< < c o m p o n e n t > >
ExecutionRecordTransformation

Fi l ter

< < c o m p o n e n t > >
TraceReconstruction

Fi l ter

< < c o m p o n e n t > >
DiagnoseITAdapter

Plugin

OperationExecutoionRecord

OperationExecutoionRecord Execution MessageTrace UpdateRequest

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 6.2. Kieker pipe-and-filter structure of the DiagnoseITAnalysisTool

usage of MyBatis 33, Spring 34 and Stripes5. As usual for Web shops, JPetStore provides a
HTML Web interface to interact with the application. Therefore typical functionalities, like
signing in/off, inspecting products, add/remove products to a shopping cart, and finally
purchasing an order, are provided. Technically, JPetStore is build as 3-tier architecture:
presentation layer, application layer, and persistence layer, as described in Section 3.4
[MyBatis, 2015].

To receive monitoring data we instrumented JPetStore as follows. As described in
Section 3.7.1, Kieker.Monitoring can provide different kinds of monitoring data. In our
proof-of-concept evaluation we were only interested in execution traces. Accordingly,
Kieker.Monitoring was configured to monitor all method invocations within the sample
application. The thus requested OperationExecutionRecords (3.7.1) are passed to JMS and
received from the DiagnoseIIAnalysisTool.

DiagnoseITAnalysisTool

Based on Kieker.Analysis, we developed the DiagnoseITAnalysisTool. The purpose of this tool
is to receive, process and forward the monitoring data. According to the description in
Section 3.7.1, we designed a pipe-and-filter structure as depicted in Figure 6.2. The chain
consists of four Kieker plugins:

Ź JMSReader
A Kieker plugin to receive OperationExecutionRecords from JMS and subsequently dispatch
them to the pipe-and-filter chain. This filter is already provided by Kieker.

Ź ExecutionRecordTransformationFilter

3https://mybatis.github.io/mybatis-3/
4http://spring.io/
5https://stripesframework.atlassian.net/wiki/display/STRIPES/Home

57

6. Evaluation

Figure 6.3. Content of the TraceRepository within Mongo Management Studio (MMS).

The purpose of this filter is to transform OperationExecutionRecords in Executions. An
OperationExecutionRecord is a flat representation of an Executions what means that all
available monitoring data is represented as simple types (e.g., string, integer, long,
etc.). The Execution representation in contrast, enables the succeeding execution trace
reconstruction. This filter is already provided by Kieker.

Ź TraceReconstructionFilter
The TraceReconstructionFilter assembles all incoming Executions to a valid MessageTrace.
The Kieker MessageTrace meta-model was already introduced in Section 3.7.2. This filter
is already provided by Kieker.

Ź DiagnoseITAdapterPlugin
The purpose of the DiagnoseITAdapterPlugin is to transform an incoming MessageTrace
into a diagnoseIT compliant representation. To transfer the trace data to diagnoseIT, the
plugin internally utilizes the diagnoseIT Adapter as described in Section 5.4.

6.2.3 Experiment Results

In order to gather the results of the poof-of-concept application, two additional tools were
needed. To inspect the dynamic data, i.e., the received execution traces, which are stored
in a MongoDB instance we used the Mongo Management Studio (MMS)6. MMS connects to
a running MongoDB and provides a Web interface to inspect the database. Since CDO is

6http://www.litixsoft.de/mms/

58

6.2. Proof-of-Concept Evaluation

Figure 6.4. Repository overview within Eclipse IDE.

a member of the EMP, the Eclipse IDE offers the functionality to connect to running CDO

servers and present the content of the repositories. This feature was used to inspect the
content of the EPM.

Figure 6.3 depicts an excerpt of the TraceRepository, after the JPetStore Web application
was used to run through several use cases, like inspecting the products catalog, searching
for products, and finally purchasing an order. As shown, the trace reflects the trace
meta-model as defined in Section 4.2.4. Based on the provided example trace we can infer
that there was an execution trace, initiated by the user (ROOT_OPERATION), to a certain
component, called CatalogActionBean. Additionally, it is depicted that the CatalogActionBean
is executed by an unspecified ExecutionEntity, which executes on a Node called client. With
respect to the ResourceEnvironement, with Kieker we are able to determine the name of the
Node, but we are not able to determine any information related to the ExecutionEntity. That
is why ExecutionEntity is unspecified.

As described in Section 5.3.7, this information is used to extract additional entities
for the SoftwareModuleRepository and the ResourceEnvironmentRepository. The contents of
which are depicted by Figure 6.4. In the top left corner, it is shown that the Software-
ModuleRepository consists of two Frameworks (Stripes and Spring) and several Types. As
illustrated, CatalogActionBean (Figure 6.3), comprises several Operations, e.g., setCategory(),
getCategory(), viewCategory(), etc. Further properties of CatalogActionBean are presented
in the bottom left corner. Besides name and package it can be seen that CatalogActionBean

59

6. Evaluation

Table 6.4. Summary which parts of the Enterprise Performance Model are resolveable with Kieker.

Enterprise Performance Model
Software Module Covered Resource Environment Covered

Type X Node l
Operation X Node Link X
Operation Link X Execution Entity 7
Signature X JVM 7
Framework Resource 7

Allocation Covered Trace (Behaviour) Covered

Software Module X Message X
Execution Entity 7 Message Kind X

Duration X
Allocation 7
Operation X

is an ActionBean and is consequently part, or user, of the Stripes Framework. The top right
corner shows the content of ResourceEnvironmentRepository and AllocationRepository. Due
to the employed technical infrastructure (6.1), the AllocationRepository contains only one
allocation and the ResourceEnvironment the corresponding Node and ExecutionEntity. As
depicted neither the Node nor the ExecutionEntity have any resource attached. The reason
for this is the same as for the unspecified ExecutionEntity, Kieker does not provide this
information. At least not by default. Kieker already provides the Kieker.Monitoring methods
as Java Management Extensions (JMX) service, but rather to configure the monitoring
than requesting further data [Kieker Project]. Possible solutions for this shortcomings are
discussed in the future work section (8.3).

Result Summary

With respect to the addressed evaluation goal EG1 (Assessing functionality of the diagnoseIT
framework) with the enclosed questions Q1.1 (Does the diagnoseIT prototype meet all previously
specified requirements?) and Q1.2 (Up to what granularity is Kieker able to serve the EPM?) we
draw the following conclusions:

Ź Q1.1: From a functional point of view, the proof-of-concept evaluation has shown that
all components of the implemented diagnoseIT framework work as envisioned in Chap-
ter 2 and described in Chapter 5. The prototype provides an adapter implementation
as integration facility for third-party APM tools, in order to supply diagnoseIT with
monitoring data which is subsequently processed and, depending on the type of data,
stored in different databases. The completeness of the EPM strongly depends on the data
provided by the APM tool. If monitoring data is provided in form of traces, diagnoseIT is

60

6.3. Lab Experiment

instantly able to recover architectural information of the system under analysis (SUA).
With respect to information concerning the resource environment, which executes the
SUA, the evaluation revealed that diagnoseIT is highly dependent on the capabilities of
the APM tool.

Ź Q1.2: This evaluation revealed, that the Kieker APM tool is already able to provide large
parts of the EPM. The main reason for this is that during the requirements analysis for
the EPM, the internal Kieker meta-models were analyzed. Consequently, certain parts,
especially the trace meta-model, of the EPM are inspired by the Kieker meta-models.
Table 6.4 provides an overview of those parts of the EPM which are resolvable by Kieker.
For each top-level entity of the EPM it is noted if the entity is (i) Xresolvable, (ii) l

partially resolvable, or (iii) 7 not resolvable.

As can be seen, all entities of the software module meta-model are resolvable out
of the box. As described in Section 5.4, the meta-data for frameworks is provided
separately and thus the framework entity is not considered in this evaluation. However,
as presented in the results, types are associated with frameworks. This was enabled by
adding the JPetStore source code to the classpath of the DiagnoseITAnalysisTool. Hence, it
was possible to resolve the inheritance hierarchy and possible annotations for given full
qualified class names on the client machine. In terms of the resource environment meta-
model, the name of a node and node links are resolvable. Execution entities, Java Virtual
Machines (JVMs), and information of utilized resources are absent. The irresolvable
execution entities follows an incomplete allocation meta-model as a consequence. To
ensure a sound and usable EPM, diagnoseIT provides a so-called unspecified generic
execution entity. As shown in Figure 6.3, the trace model is also affected by the absent
execution entity.

6.3 Lab Experiment

This section presents the results of applying the diagnoseIT approach in a lab experiment.
To assess the scalability of the implemented System Model Maintenance Interface (SMMI),
diagnoseIT is put under load and the performance metrics are measured. The employed eval-
uation strategy is presented in Section 6.3.1, followed by the description of the experimental
setting in Section 6.3.2. Section 6.3.3 presents the results.

6.3.1 Evaluation Methodology

To assess the scalability of the implemented approach we decided to conduct lab exper-
iments to ensure controlled, repeatable conditions. Definition 3 provides a definition of
scalability, by Smith and Williams [2002], which we incur in this thesis.

Definition 3 Scalability is the ability of a system to continue to meet its response time or throughput
objectives as the demand for software functions increases [Smith and Williams, 2002].

61

6. Evaluation

< < d e v i c e > >
Client

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

< < c o m p o n e n t > >
Kieker.Analysis

(vers . 1 .11)

< < c o m p o n e n t > >
ExperimentRunner

(vers. 0 .1)

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

< < c o m p o n e n t > >
Kieker.Analysis

(vers . 1 .11)

< < c o m p o n e n t > >
ExperimentRunner

(vers. 0 .1)

< < c o m p o n e n t > >
ExperimentRunner

(vers. 0 .1)

< < d e v i c e > >
Server

< < c o m p o n e n t > >
MongoDB

(vers. 3 .0 .2)

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

< < c o m p o n e n t > >
Kieker.Monitoring

(vers . 1 .11)

HTTP

< < c o m p o n e n t > >
H 2

(vers . 1 .4 .186)
< < c o m p o n e n t > >

diagnoseIT
(EvaluationApp)

(vers. 0 .1)

<<execut ionEnvironment>>
JVM

(vers. 1 .8 .0 45)

< < c o m p o n e n t > >
Kieker.Monitoring

(vers . 1 .11)

HTTP

< < c o m p o n e n t > >
H 2

(vers . 1 .4 .186)
< < c o m p o n e n t > >

diagnoseIT
(EvaluationApp)

(vers. 0 .1)

< < c o m p o n e n t > >
diagnoseIT

(EvaluationApp)
(vers. 0 .1)

< < c o m p o n e n t > >
MongoDB

(vers. 3 .0 .2)

< < c o m p o n e n t > >
H 2

(vers . 1 .4 .186)

< < c o m p o n e n t > >
Kieker.Monitoring

(vers . 1 .11)

HTTP

< < c o m p o n e n t > >
Kieker.Analysis

(vers . 1 .11)

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 6.5. Technical infrastructure of the lab experiment.

The experiments were conducted as follows. The diagnoseIT application was connected
to a dynamic Kieker trace generator. To generate synthetic traces, the trace generator
uses previously recorded Kieker monitoring data from the JPetStore sample application.
Depending on the configuration of the generator, different scenarios can be simulated. In
this experiment we distinguish between two scenarios.

First, increased intensity scenario. This means that in a fixed time period the amount
of generated traces is increased continuously, but a trace’s content is always the same.
Second, increased data variation scenario. That means that the amount of generated traces
is constant, but the internals of the traces are modified. An example of this, with respect
to the Kieker trace meta-model (see 3.7.2), is modifying the AllocationComponent of each
execution. Hence, a distributed system is simulated. For diagnoseIT this results in constant
updates of the ResourceEnvironmentRepository and the AllocationRepository. To obtain the
required measurement data for metrics M3 (response time), M4 (memory consumption),
and M5 (CPU utilization), the diagnoseIT application is instrumented with Kieker itself.

6.3.2 Experimental Setting

This section describes the employed software and hardware infrastructure which was used
to conduct the lab experiment. Figure 6.5 outlines the technical infrastructure, technical
details of the used physical machines are equivalent to the ones of the proof-of-concept
evaluation and can consequently be taken from Table 6.3.

The diagnoseIT instance to be monitored is along with Kieker.Monitoring deployed to the
server device. As shown in Figure 6.5, diagnoseIT is deployed as EvaluationApplication, which

62

6.3. Lab Experiment

corresponds to a slightly modified version of diagnoseIT. The client machine comprises
Kieker.Analysis and a so-called ExperimentRunner. Benefit of the ExperimentRunner is that it
has capabilities to automatically execute predefined experiment plans.

Data Preparation

As described in Section 6.3.1, the lab experiment was conducted with generated syn-
thetic trace data. To gather the initial dataset, we reused the experimental setting of the
proof-of-concept evaluation (Section 6.2.2) and used the JPetStore sample application for ap-
proximately 2 minutes. Following this, the monitoring data was inspected to gain detailed
insights. The original monitoring data consists of 1905 records (OperationExecutionRecord),
1248 traces, 18 types, and one resource environment. From these data we can deduce that
the average size of a trace within the JPetStore application comprises « 1, 5 records. To
ensure from the outset a slightly higher load, we chose a medium-sized trace, comprising
11 records, as input trace for the trace generation process. Building on this single trace, we
defined that the root dataset for all further experiments is 1000 times this trace. Addition-
ally, we defined that this dataset comprises 200 types, 2 resource environments, and it has
a total duration of 180 seconds.

EvaluationApplication

The EvaluationApplication is a three features enhanced version of AbstractApplication (see
Section 5.3.1). Due to the extensibility mechanisms of diagnoseIT the required enhance-
ments were possible without modifying the diagnoseIT code base. In order to advice
Kieker.Monitoring to sample CPU utilization, memory consumption, and garbage collection,
we added additional configuration options by extending the default ApplicationConfiguration.
In addition, we provided a instrumented implementation of SystemModelMaintenanceService,
by modifying the used HK2.Binder. The last addition was a so-called ExperimentResource
Web Resource (see Section 5.3.5). The resource provides a REST API for the ExperimentRunner,
comprising functionality to store experiment results, delete databases, and to reboot the
entire EvaluationApplication.

ExperimentRunner

To ensure controlled, repeatable experiments, we implemented a ExperimentRunner to
execute a predefined experiment plan. An exemplary experiment plan is provided by
Listing 6.1. Basically a plan is divided in three sections. First, general configuration
properties which are valid for all experiments. However, they might be overwritten.
Second, a definition for an experiment which is always executed in advance to ensure
the JVM is initialized and all classes are loaded. Third, an arbitrary list of experiment
definitions. The internal functioning of the ExperimentRunner is depicted in Figure 6.6 and
explained in the following.

63

6. Evaluation

1 adapterConfig: "experiment-adapter.yml"

pluginAdapterConfig: "plugin-adapter.yml"

3 inputDir: "trace"

5 rampUpExperiment: "Also a experiment definition"

experiments:

7 - name: "60sec2000Traces100Types2Environments"

duration: 60

9 traceCount: 2000

types: 100

11 typeDistribution: [70,40]

environmentDistribution: 2

13 repeats: 3

Listing 6.1. Exemplary experiment plan to
simulate a three times repeated experiment
which runs 60 seconds, generates 2000 exe-
cution traces, 100 types are spread over the
traces, and the traces are distributed on 2 re-
source environments.

Initialize

experiments > 0

Initialize
Experiment

Terminate

repeats > 0

No

run rampup
Experiment

delete database
and store timestamp

No

Yes

run experiment

store results
delete database

reboot server

Yes

Get next
experiment

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 6.6. Activity diagram to visualize the
functioning of the ExperimentRunner.

The first step is to initialize the ExperimentRunner. In this step, the experiment plan is
loaded and based on the provided configuration file (Listing 6.1 line 1) a diagnoseIT Adapter
is created. The Adapter is needed to access to previous introduced ExperimentResource. In a
next step it is checked whether more not yet executed experiments are available and if so,
the next one is taken and initialized. While initializing a new experiment, the later used
synthetic traces are generated. The generation process comprises five steps:

1. The first step is to load the previously determined initial trace which is provided as
Kieker monitoring data. The location of the monitoring data must be provided along
with the experiment plan.

2. The traceCount property defines the total amount of generated traces. In the scope of the
generation process this means how often steps 3-5 are repeated.

3. This step targets the types and typeDistribution properties. Types define the amount
of types which should be distributed over the chosen traces, typeDistribution defines
the distribution, the emergence percentage, of types over all traces. At the start of
monitoring of a software system, each type is considered as new, but after a certain time
most are known. This scenario can be simulated by setting the typeDistribution property.
For example, a typeDistribution of [70,40] means that 70% of all types are distributed to
the first 40% of all traces. With respect to the example experiment plan (6.1) this means
accordingly that 70 types are distributed to traces 1-800, the remaining 30 types to traces
801-2000.

4. After the types are distributed, this step handles the environmentDistribution property.

64

6.3. Lab Experiment

The value of the property defines the amount of possible hosts. Each record of a trace
gets randomly a new host assigned.

5. The last step is to modify the execution time of each OperationExecutionRecord. De-
pending on the provided duration property and the overall amount of OperationExecu-
tionRecords the duration for each record is calculated. This modification is needed to
simulate an increasing amount of traces in the same time period.

To ensure sound experiment results, all generated synthetic traces are stored and the
same set of traces is reused for all repeats of the experiment. As shown in Figure 6.6, as
next step the ExperimentRunner checks if the experiment should be executed one more
time. The total number of repeats is defined by the repeats property of the experiment
description.

As described before, the experiment plan contains a special, so-called, rampup exper-
iment description. Formally, this is exactly the same description as for all experiments,
but with a different purpose. The rampup experiment is carried out before each regular
experiment execution, to ensure a proper initialized, ready (i) diagnoseIT application, and
(ii) JVM. This is needed to avoid a falsification of later measured performance data due
to, e.g., extensive class loading or database initialization operations. Once the rampup
experiment finishes, the ExperimentRunner utilizes the ExperimentResource to instruct the
diagnoseIT application to remove all rampup data from the databases, as well as to store
the time stamp when the rampup was finished. The timestamp is needed to distinguish
between rampup and actual experiment in the monitoring data.

To carry out the actual experiment as next step, a new experimental environment is
created for each run of an experiment. In this case, experimental environment is equivalent
with a new Kieker.Analysis instance. In the experimental setting description of the proof-of-
concept evaluation (Section 6.2.2), we introduced the DiagnoseITAnalyisTool along with the
employed Kieker pipe-and-filter structure to connect Kieker.Analysis and diagnoseIT. Since
in the lab experiment the monitoring data is generated artificially, rather than provided by
a real instrumented SUA, the Kieker pipe-and-filter setup had to be slightly modified.

As depicted in Figure 6.7, the JSMReader was replaced by a PipeReader. Using the
PiperReader allows programmatically dispatching records to the pipe-and-filter chain. Hence,
as soon as an experiment starts, all previous generated synthetic traces are passed to the
PipeReader. In addition, a RealtimeRecordDelayFilter was inserted in between PipeReader
and ExecutionRecordTransformationFilter. This filter delays the transmission of incoming
monitoring records, in accordance with a record’s timestamp. Since the generated traces
have calculated timestamps, this is a beneficial feature to simulate real time monitoring.
The rest of the experiment proceeds as same as described in Section 6.2.2. If an experiment
ends, the ExperimentRunner instructs the server to (i) store the experiment results along
with the recorded monitoring data, (ii) delete all databases, and (iii) reboot the diagnoseIT
application. These three operations are mandatory to ensure same conditions for each
experiment. Subsequently, the ExperimentRunner determines if this experiment should be
executed once more. If all repeats are already executed, the next experiment is selected

65

6. Evaluation

< < c o m p o n e n t > >
PipeReader

< < c o m p o n e n t > >
ExecutionRecord

TransformationFilter

< < c o m p o n e n t > >
TraceReconstruction

Fi l ter

< < c o m p o n e n t > >
DiagnoseITAdapter

Plugin

OperationExecutionRecord

Execution

MessageTrace

< < c o m p o n e n t > >
Realt imeRecord

DelayFi l ter

OperationExecutionRecord OperationExecutionRecord

UpdateRequest

Visual Paradigm Standard Edition(University of Stuttgart)

Figure 6.7. Kieker pipe-and-filter structure used in lab experiments

and initialized. If no more experiment is available, the ExperimentRunner is terminated.

Experiment Plan Preparation

The last step in preparing the experiments was to define the experiment plan. Previously,
we described that the experiment covers two scenarios – Scenario 1 (increased intensity)
and Scenario 2 (increased data variation). The final experiment plan is depicted in Table 6.5.
For clarity, the original monitored data as well as the defined root dataset, respectively
experiment, are presented on top of the table. To distinguish the experiments, we defined
a common naming schema. The name of an experiment always contains information of
those parameters that have been changed compared to the root experiment. The pattern
is as follows: TracesXTypesXEnvironments. Accordingly, an experiment called 4x4x10 has
four times more traces, four times more types, and simulates 10 resource environments.
With respect to the root experiment, this sums up to 4000 traces, 800 types, and 10 resource
environments.

As Table 6.5 depicts, Scenario 1 starts with the root experiment, then the amount of
traces is always doubled. This means conversely that twice as many adapters are simulated.
In Scenario 2, the definitions of 4x, 8x, and 16x are reused, but the amount of types is
continuous doubled. The different variants of Scenario 2 are referenced as Scenario 2a, 2b,
and 2c.

6.3.3 Experiment Results

This section starts with a short introduction how the results are presented, followed by the
results of Scenario 1 and Scenario 2.

66

6.3. Lab Experiment

Table 6.5. The experiment plan.

Name Record Trace Type Env t(s)
Original 1905 1248 18 1 120
Root 11000 1000 200 2 180

Sc
en

ar
io

1 1x 11000 1000 200 2 180
4x 44000 4000 200 2 180
8x 88000 8000 200 2 180
16x 176000 16000 200 2 180
32x 352000 32000 200 2 180
64x 704000 64000 200 2 180

Sc
en

ar
io

2a 4x2x10 44000 4000 400 10 180
4x4x10 44000 4000 800 10 180
4x8x10 44000 4000 1600 10 180
4x16x10 44000 4000 3200 10 180
4x32x10 44000 4000 6400 10 180

Sc
en

ar
io

2b 8x2x10 88000 8000 400 10 180
8x4x10 88000 8000 800 10 180
8x8x10 88000 8000 1600 10 180
8x16x10 88000 8000 3200 10 180
8x32x10 88000 8000 6400 10 180

Sc
en

ar
io

2c 16x2x10 176000 16000 400 10 180
16x4x10 176000 16000 800 10 180
16x8x10 176000 16000 1600 10 180
16x16x10 176000 16000 3200 10 180
16x32x10 176000 16000 6400 10 180

Result Presentation

With respect to M3 (response time), M4 (memory consumption), and M5 (CPU utilization)
we chose line graphs and Box-and-Whisker plots (will be called Boxplot from now on) as
appropriate representation style.

A Boxplot is used to summarize and display the distribution of a dataset. Boxplots are
mainly used to highlight five important characteristics of a dataset: the first (Q1), second
(Q2 or median), and third (Q3) quartile, as well as the inter quartile range (IQR). In addition,
the minimum, maximum values are shown. The IQR is a measurement for the scattering of
a dataset, but compared to a simple range calculation (difference between maximum and
minimum) it is less influenced by outlier values. The IQR is defined as the range between
Q3 and Q1. Q1 defines that 25% of the values are smaller than Q1, Q3 that 25% are greater
than Q3. As depicted in Figure 6.8, Boxplots represent the IQR as a rectangle from Q1 to
Q3. Q2, the median, is represented as line within the rectangle and separates the dataset in
two equally sized halves, i.e., 50% are smaller and 50% are greater than Q2. The so-called
whiskers represent the minimum, maximum values as short black lines and are connected

67

6. Evaluation

50 100 150 200 250 300

Q1 Q2 Q3Min Max

Outlier
(Median)

Figure 6.8. Example of a Box-and-Whisker Plot.

●●●●●●●●●● ●●●●●●●●● ●● ● ●●●●●● ●●●●● ●●●● ●●●●●●●●●● ●●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●●●●●●●●● ●●●● ●●●●●●● ● ● ●●●●● ●●●● ●●●● ●● ●●●●●●●● ●●●● ●●● ●●●●●●●● ●●● ●● ●●● ●● ● ●●●●●●●● ●● ● ●●● ●●●●● ●●●●●●●●●●●● ●●●●● ●●●●●● ●●●● ●●●●● ●●● ●● ●●● ●●● ●●●● ● ●●●● ●●●●● ●●● ●●● ●●● ●● ●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●● ●●● ●● ●●●●● ● ● ●●● ●●●●●● ●●● ●●●●●●●●● ●●● ● ●●●● ●●●●●●● ●● ●●●●● ●●● ●●● ●●●●● ●● ●●●●●●● ●●●●● ●● ●● ●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●● ●●● ●●● ●● ● ●●● ● ●●●●●●●●●● ●●●●●● ●●●● ●●●●● ●●●●●● ●●●●●●● ●●●●● ●●●● ●● ●●●●●●●● ●● ●● ●●●●●●● ●●● ●●● ●●● ● ●●● ●●●●●●● ●●●●●● ●●● ●● ●●● ● ●●●●● ●●●●●●●●●●●● ●●● ●●●●●● ●●●●●● ●● ● ●●● ●●●●●●● ●●● ●● ●●●●●●●● ●●●● ●●● ●●●● ●● ●●● ●● ●● ●●● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●● ●● ●●● ●●●●●●●● ●●●● ●●●●● ●●●●●●●● ● ●● ●●●●● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●● ●●●● ●●●● ●● ●● ●●● ●● ●●●●●●● ●●● ●● ●●●●●●● ●●●●●● ●●●● ●●●● ●●● ●●●●●●●●● ●● ● ●●●●●●●●● ●● ●●●● ●● ●●● ● ●●● ●●●●●●● ●●●●● ●●●● ●● ●●● ●●●●● ●● ●●●● ●●● ●● ●● ●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●●● ● ●●● ●●● ●●● ●●●●●● ●● ● ● ●●●● ●●●●● ●● ● ●●●●●●●●●●●●● ●●●●●●●● ●●● ●● ●● ●●● ●●●●●● ●●●●● ●●●●● ●● ●●●●●●●●●● ●● ●●●● ●●●●●●●● ●●●●●● ●●● ● ●●●●●● ●●● ●●●●●●●●●●● ●● ●●●●● ●● ●●●●●● ●●●●●●●●●●●● ●●●●● ●● ● ●●●●●● ●● ●●●●●●●●●● ●●● ●●●●●●● ●● ●●●●●● ●●●●● ●●●●●●●● ●● ●●●●●●●●●●●● ●● ●●●●●● ●● ●●●●●●●● ●●●●● ●●●●●●● ●●● ●●●●● ●●● ●●● ●●● ●●●● ●●●●●●● ●●●● ●●●●●●●● ●●●●●● ●●● ●●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●● ●●●●●● ● ●●●●●● ●●●●●● ● ●● ● ●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●● ●●● ●●● ●●●●●●●●● ●●●● ●● ● ●●● ●●●●●●● ●●● ●● ● ●●●● ●●●●●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●● ● ●●● ●●●●●●●●●● ●●●● ●● ●●●●●●● ●●●●● ●●●●● ● ●● ●●●●● ●●●● ●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●● ●●● ●●●● ●● ● ●●●●●●● ● ●●●●●● ●● ●●●● ●●● ●●●●●●●●●●●●● ●●●●● ●● ● ●●●●●●● ●● ●●●●● ●● ●●●●●●●●●●●●● ●●●●●● ●●● ●●●● ●●●● ●●●●●● ● ●●●●●●●●●●●●● ●● ●●●● ●●●●● ●● ●● ●●●●●● ●● ●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●● ●●●●● ●●●● ●● ●● ●●●● ●●● ●● ●●●●●●● ●● ●●● ●●●●●●●●●● ●● ●●● ●●●● ●●●● ●●● ●● ●●● ●●●●●●● ●●● ●●●●● ●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●● ● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●● ●●●●●●●●●●●● ●●●● ●● ●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●● ●●● ●●● ●●●● ●●●●●●● ●●●● ●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●● ●●●● ●●● ● ●●●● ●● ● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●●●●●●●●●●● ●●●● ●●●●●●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●● ● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ● ● ●●● ●●●●●●●●●●● ●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ● ●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ● ● ●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●● ● ●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ● ●●●●● ●●● ●●●●●●●● ●●●●●● ●●● ●●●●●●● ●●● ●●● ● ●● ●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●● ●● ●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●●●● ●● ●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●● ●● ● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●● ●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●● ●● ●●● ● ●●●●● ● ●●●●●● ● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ● ●● ●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●● ● ●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●● ●●● ● ●●●●● ●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●● ● ●●●●●●● ● ● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●● ●● ●●●●●●● ●●● ●● ●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●● ●● ●●●● ●●●●●● ●●●●●●● ●●● ●●●●●●●●● ●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●●●●●●●● ●● ●●●●●●●● ●●● ●●●● ●●● ●●●●● ●● ●● ●●●●●●●● ●● ●●● ●●●●●●●● ●●● ●●●● ●●●● ● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●● ●● ●●● ●●●● ● ●●● ●●●●●● ●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●● ●●●● ●●● ● ●●●● ●● ●●● ●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●●●● ●●● ● ●●● ●●●●●●●● ●● ●●●●●●● ●●● ●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●● ●●● ●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●● ●●●● ●●●● ●● ●●●●●● ●●●● ● ●●●●●●●●● ● ●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●●●● ●●●●●●●●●●● ●●●●●● ● ●●●●●● ●●●●● ●●●●●● ● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●●● ●●●●● ● ●● ●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●● ●●●● ●● ●●● ●●● ●● ● ●● ●●●●●● ●●●●●●●● ●●●● ●● ●● ●●● ●●●● ●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●● ●● ●● ●●●●●● ●● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●● ●● ●●● ● ●● ●● ● ●●●● ●●●●●●●●● ● ● ● ●●●● ●●●●●●●● ● ●●●●●●● ●●● ●●●●●●●●● ●● ● ●●●● ● ●●●● ●●●●● ●●● ●●●● ●● ●● ●●●●●●●●● ●● ●●● ●●●● ●● ● ●●●●●●● ●●●●● ●● ●●●●●● ●● ●●●● ●● ●●●● ●●● ●●● ●● ●● ●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●● ●●● ●●●●● ●● ●●● ●●● ●●●●●●●●●● ●● ●●●●●● ●●●●●●● ● ●● ●●●● ●●●●●● ●● ●●●●●●● ● ●● ● ●●●●●● ●●●● ●● ●● ●●●●●●● ●●● ●● ●● ●●● ● ●●● ● ●●● ●●● ●●● ●● ●●●●●● ●●●● ●●●●●●● ●● ● ●●●●●● ● ● ●● ●●●●●● ●●●● ●●●●● ●●●● ●●●●● ●● ●●●●●●●●●●●● ●●● ●●● ●●●● ●●●●● ●● ●●●● ●●● ●●● ● ●●●●●●● ●● ●●●● ●●● ●●●●●●●●● ●●●●●● ●● ●● ●● ●●● ● ●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●●● ●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●● ●● ●●●●● ●●●●●●● ● ●●●●●●●● ●●● ●●● ●● ●● ●●●●●●● ●●●● ●● ● ● ●●●● ●●●●●●●●● ●●●● ● ●●●●●●● ●● ●●●●●●● ●●●●● ●●●● ● ●●●●● ●● ●●●●●●●● ●●●●●●● ● ● ●●●●●●●●●● ●●● ●●●● ●● ●●●● ●● ●●●●●● ●● ●● ● ●●●●●● ●●● ●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●● ●● ●●●● ●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●● ●●●● ●●● ●●● ●●●●●●●●●● ●●●●● ● ●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●● ●●●● ● ●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●● ●●● ●● ●●●●●●●● ●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●● ●●● ●●● ●● ●●●●●●●●●●●● ●●●●● ●● ●●●●● ●●●●●●●● ●●●●●●●●● ●●●●● ●● ●●● ●●●● ●●●●●● ●●●● ●●●● ●●●●●● ●●● ●●●● ●●● ●●●● ●●●●● ●●●●● ● ●●●●●●●● ●●●●●●● ●●● ●● ● ●●● ●●● ●● ●● ● ●●● ● ●●●●● ●●●● ●●●● ●●●●● ●● ●●●●●● ●●●● ●●●● ●●●●●●● ●●● ●●● ●● ●●●●●●●● ●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ●●●●●●●● ●●●● ●● ●●●●●● ●●●●●●●●● ●●●●●●● ●● ●●● ●●●● ●●● ● ● ●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●● ● ● ●●●● ●● ●●●●●● ●●●●●● ●●●●●● ●●● ●●● ●●●●●●●● ●●● ●●●● ●●● ● ●●●●●●●●●●●●●●● ●● ●●●

●● ● ●●●●●●●●●●● ●●●●●●●●● ●● ● ● ●● ●● ●●● ●● ●●●● ●●● ●● ●●●●● ● ● ●●● ●● ●● ●●●● ● ●● ●●●●●

●● ●●●●●●●●●●●●● ● ● ●● ●●●●●● ● ● ●● ●

●●● ●●●●●●● ●● ●●● ●●●●●● ●●●● ●●● ●●●●● ●●●● ●●● ●●●● ●●●●● ●●●●● ●● ●●● ●●● ●●●● ●●● ● ●● ●●●●● ●● ● ● ●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●● ●●● ● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●●● ●●● ●●●● ●●●●● ●● ●● ●● ●●● ● ●●● ●● ●●●●●●●●●● ●●● ●●● ●● ●●●●●●●● ●● ●●

● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

64x

32x

16x

8x

4x

1x

0 50 100 150 200 250

Response time (milliseconds)

(a) SMMI response times for Scenario 1

●● ● ● ●

● ●●●●●●●●●●● ●●● ●●● ●●●●●●● ●●●●●●● ●●●●●● ●● ●●●●●● ●●●●●● ●●

●● ●●●●●● ●●●●●● ●● ● ●●●●● ●●●●●● ●●●●● ●●●●●●● ●● ●● ●●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●● ●●●● ●● ●● ●●●● ●● ●●●●● ●●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●● ●● ●● ●●● ●● ●● ●●●● ●●● ●●● ●●● ●● ●● ●● ●● ●●● ●●● ●●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●● ●● ●●● ●● ●●●● ●● ●●●●● ●●●●● ●●●●● ●● ●●●●●● ●● ●● ●● ●● ●●● ●● ●● ●●●●● ●●●●● ●●●● ●● ●● ●● ●●● ●● ●● ●●● ●●●●●●● ● ●●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●●●●●●● ●●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●●● ●●● ●●● ●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●●● ●●● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●●● ●●● ●● ●● ●● ●● ●●●●● ●●● ●●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●

●●●●●●● ●●● ●●●●● ●●●● ●●●●● ●●● ● ●● ●●● ●●●●●●● ●● ●●● ●●● ●●● ●●●● ●●●●●● ●● ●●●●● ●●●● ●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●● ●●● ●●●● ● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●● ●● ●● ●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●●● ●●●●●●●●●●●●● ●● ● ●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●● ●● ●●● ●●●●● ●●● ●●● ● ● ●●●●●

4x
32

x1
0

4x
16

x1
0

4x
8x

10
4x

4x
10

4x
2x

10

0

50
0

10
00

15
00

20
00

Response time (milliseconds)

(b) SMMI response times for Scenario 2a

Figure 6.9. Response time measurements for Scenarios 1 and 2a.

to the IQR by a dotted line [Boslaugh, 2012]. However, the minimum and maximum values
are restricted to: min ě Q1´ 1.5 ¨ IQR and max ď Q3 + 1.5 ¨ IQR. All values which exceed
this range are considered as outliers and depicted as circles.

In addition to the visual representation of the results, a summary table are provided.
The purpose of the summary tables is to provide additional information on the data. As
additional data is provided, the mean, the confidence interval (CI), the standard deviation
(SD), the median, and the p90 quartile. The mean defines the arithmetic average of all
values and is the sum of all values divided by the total number of values. In between the
CI are significant. The SD defines the average range of the the values around the mean. The
p90 quartile defines that 90% are smaller and 10% are greater than the value of p90.

68

6.3. Lab Experiment

Scenario 1

In the following the measuring results for experiments 1x, 4x, 8x, 16x, 32x, and 64x are
presented. The summary of all measurements is depicted in Table 6.6.

Ź Figure 6.9a shows the measured response times for the System Model Maintenance
Interface (SMMI). It is noticeable that with an increasing amount of traces, the average
response times decrease. This observation is confirmed by all values of Table 6.6.
Experiment 1x, the root experiment, starts with a mean value of 43.51 milliseconds and
a CI of ˘ 0.92. The last experiment of Scenario 1 has a mean value of 4.67 milliseconds
and a CI of ˘ 0.05. Also the SD is continuously decreasing. The main reason for this is
presumably that "only" 200 types are distributed on an increasing amount of traces (up
to 64000). This leads to increased time intervals between CDO accesses. Conversely, we
can say that the MongoDB performs quite well.

Ź Figure 6.10a illustrates the CPU utilization of the diagnoseIT application for experiments
1x, 8x, and 64x. As can be seen, 8x and 64x have high peak values at the beginning.
Furthermore, it is shown that all experiments have high peaks in the last third of
the experiment. Unfortunately, the causes for this phenomenon are still unclear and
included in all measurements. Besides this peaks it can be seen, that in contrast to
response times, the CPU utilization increases along with the amount of traces.

Ź Figure 6.10b shows the memory consumption measurements of experiments 1x, 8x, 64x.
As depicted, the memory consumption is approximately constant for all experiments.
The only conspicuous are two elevated peaks of 64x at the beginning.

Scenario 2

In the following the results of Scenarios 2a, 2b, and 2c are presented. As described in
Section 6.3.1, the purpose of Scenario 2 is to evaluate the behaviour of the implemented
diagnoseIT prototype if it is put under load with different variations of data.

Ź Figure 6.9b shows the measured response times for Scenario 2a. Compared with the
results of Scenario 1 (see Figure 6.9a), the results are very different. It is immediately
apparent that increasing the amount of types has a significant impact on the response
times. However, considering the amount of data that is transmitted to diagnoseIT in
a rather short period of time, an average response time below 300 milliseconds (see
Table 6.6) – stops after 4x16x10 – is acceptable. As can be seen in the summary table,
the next doubling step to 4x32x10 causes a big performance degradation. Looking at
the associated CPU utilization in Figure 6.12a, it can be seen that there is a medium
load, but diagnoseIT needs, compared to the preceding experiments, almost three times
as long to process 4x32x10. If the SMMI response times of Scenario 2a (Figure 6.11a)
are compared to 2b and 2c (Figures 6.11a, 6.11b), the same pattern as already known

69

6. Evaluation

0 50 100 150 200

0

20

40

60

80

100

Elapsed time (seconds)

C
P

U
 U

til
iz

at
io

n
(%

)

64x
8x
1x

(a) CPU utilization (Scenario 1)

●

0 50 100 150 200

0.0

0.5

1.0

1.5

Elapsed time (seconds)

H
ea

p
U

sa
ge

 (
G

B
)

64x
8x
1x
regression
max heap

(b) Memory consumption (Scenario 1)

Figure 6.10. Performance measurements for Scenario 1

from Scenario 1 is identifiable. An increasing number of traces, reduces the response
times. The observation here is that this phenomenon is not related to the overall amount
of types, as long as the compared experiments are dealing with the same amount.
However, despite the reduced response times, 16x32x10 has a big amount of outliers
with a duration up to 3500 milliseconds. With respect to the experiment plan (6.5), we
can see that in experiment 16x32x10 approximately 978 (176000recods/180sec) records
are arriving at the diagnoseIT application per second. From these measuring results we
conclude that the current prototypical implementation is only partially able to cope with
this volume of data.

Ź With respect to the CPU utilization, measured in Scenario 2 (Figures 6.12a, 6.13a, and
6.14a), it can be seen that all series of measurement include hight peaks at almost the
similar point in time. Apart from this fact, the CPU utilization differs only marginally
in the different experiments.

Ź Figures 6.12b, 6.13b, and 6.14b show the measured memory consumption of Scenario
2. It is shown that, compared to Scenario 2, the increased amount of data is directly
reflected in the memory consumption. An interesting observation is that Scenario 2b,
the medium experiment, requires slightly more memory than 2a and 2c. Additionally,
it can be seen that the longer an experiment takes the memory consumption increases.
According to the experiment result data, it is not clear so far whether this is a serious
issue or if the memory consumption levels off after a certain period.

70

6.3. Lab Experiment

●● ● ● ●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●● ●●●●● ●●● ●● ●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●

● ● ●●● ●● ●● ●● ●● ● ●●● ●● ● ●● ●● ●●● ●● ●● ● ●● ● ●●● ●● ● ●● ● ●● ● ●● ●●● ● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●●● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ●● ● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ● ●● ● ●● ● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ● ●● ●●●● ●●●●●●●●●●●●●●●

●●●● ● ●●●●●●●●● ● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

8x
32

x1
0

8x
16

x1
0

8x
8x

10
8x

4x
10

8x
2x

10

0

50
0

10
00

15
00

20
00

25
00

Response time (milliseconds)

(a) SMMI response times for Scenario 2b

●● ●● ●● ●●●●●● ●●●●●●●●●● ●● ●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●● ● ●●● ●●

●● ● ●● ●●●●●●● ●● ●● ●● ●●● ●●●● ●●●● ●● ●● ●● ●●● ●● ● ●● ● ●●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●●● ●● ●●●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ●● ● ●● ●●● ● ●● ● ●● ●● ●● ●● ●● ●●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ●●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ●● ●●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●● ● ●● ● ●● ●● ●● ● ●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ● ●● ●● ● ●● ●●● ●● ●● ●

●●●●●●●●● ●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●● ●●● ●● ●● ●● ● ●●● ●● ●● ●●● ●● ●●● ●●● ●●● ●● ● ●●●● ●● ●●● ●●●●● ●● ●●●● ●●● ●●● ●● ●● ●●● ●● ●● ●● ● ●●● ●● ●●● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●●●● ●● ●●● ●●● ●● ●●● ●●● ●● ●● ●● ●●●● ●●● ●●● ●●● ● ●●● ●●● ●● ●● ●● ●● ●● ●● ● ●●● ●● ● ●●● ●●● ●●● ●●● ●● ●● ●●●● ●●● ●● ●●● ●● ●● ●● ● ●●● ●● ● ●●● ●● ●● ●●●●● ●●● ●●●●●● ●●● ●●●● ●●● ●●●● ● ●●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●● ●● ●● ●● ●● ●●●● ●●●● ●●● ●● ●●● ●● ●●●● ●●● ●●● ● ●●● ●● ●● ●● ● ●●● ●●●● ●●● ●● ●● ● ●●● ●● ●●● ●●● ●● ●●●● ●● ●●●●● ●● ●●● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●●●●● ●●● ●●● ●● ●●●● ●●● ●● ●● ●● ●●● ●● ●●● ●●● ● ●●● ●● ●● ●●●●● ●●● ●●●● ●● ●●● ● ●●● ●● ●● ●●● ●● ●●● ●●● ●● ●●●●● ● ●●●●● ●● ●●●● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●●● ●●●● ●● ●● ●●● ●● ●● ●● ●●● ● ●●● ●●● ●●● ●● ●● ●● ●● ●●●●● ●●● ●● ●● ●● ●●● ● ●●● ●● ●● ●● ●●● ●●● ●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●

●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●

16
x3

2x
10

16
x1

6x
10

16
x8

x1
0

16
x4

x1
0

16
x2

x1
0

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

Response time (milliseconds)

(b) SMMI response times for Scenario 2c

Figure 6.11. Response time measurements for Scenario 2b,c

●

0 100 200 300 400 500 600

0

20

40

60

80

100

Elapsed time (seconds)

C
P

U
 U

til
iz

at
io

n
(%

)

4x32x10
4x16x10
4x4x10

(a) CPU utilization (Scenario 2a)

●

0 100 200 300 400 500 600

0.0

0.5

1.0

1.5

Elapsed time (seconds)

H
ea

p
U

sa
ge

 in
 G

ig
ab

yt
es

4x32x10
4x16x10
4x4x10
regression
max heap

(b) Memory consumption (Scenario 2a)

Figure 6.12. Performance measurements for Scenario 2a

71

6. Evaluation

●

0 100 200 300 400 500 600 700

0

20

40

60

80

100

Elapsed time (seconds)

C
P

U
 U

til
iz

at
io

n
(%

)

8x32x10
8x16x10
8x4x10

(a) CPU utilization (Scenario 2b)

●

0 100 200 300 400 500 600 700

0.0

0.5

1.0

1.5

Elapsed time (seconds)

H
ea

p
U

sa
ge

 in
 G

ig
ab

yt
es

8x32x10
8x16x10
8x4x10
regression
max heap

(b) Memory consumption (Scenario 2b)

Figure 6.13. Performance measurements for Scenario 2b

●

0 200 400 600 800

0

20

40

60

80

100

Elapsed time (seconds)

C
P

U
 U

til
iz

at
io

n

16x32x10
16x8x10
16x2x10

(a) CPU utilization (Scenario 2c)

●

0 200 400 600 800

0.0

0.5

1.0

1.5

2.0

Elapsed time (seconds)

H
ea

p
U

sa
ge

 in
 G

ig
ab

yt
es

16x32x10
16x8x10
16x2x10
regression
max heap

(b) Memory consumption (Scenario 2c)

Figure 6.14. Performance measurements for Scenario 2c

72

6.3. Lab Experiment

Result Summary

With respect to the addressed evaluation goal EG2 (Assessing Scalability of the System Model
Maintenance Interface (SMMI)) with the enclosed questions Q1.1 (How responsive are model
repository updates with increasing load?), Q1.2 (How memory intensive are model repository
updates with increasing load?), and Q1.3 (How CPU intensive are model repository updates with
increasing load?) we draw the following conclusions:

Ź Q1.1: This evaluation revealed that the responsiveness (M3) of repository updates
strongly depends on the composition of the arriving data. This is mainly due to the
fact that an hight amount of previously unknown data force updates of all parts of the
Enterprise Performance Model (EPM). However, we showed that up to a certain point,
respectively a combination of amount of traces and amount of data variation, diagnoseIT
provides acceptable response times. If this point is exceeded, (in this experiment that was
the step from 4x16x10 to 4x32x10), a deterioration of response times is identifiable and
single calls might last up to 3000 milliseconds. Since this performance degradation is not
identifiable in the results of of Scenario 1, we assume that the current CDO integration is
responsible for it. Possible improvements and adaptations are provided in Section 8.3.

Ź Q1.2: The experiments showed that an increasing level of data variation is directly
reflected in the used memory (M3). But we showed that the diagnoseIT prototype is able
deal with various kinds of data variations without memory errors. However, it must be
examined whether the memory consumption is acceptable in longer lasting tests, or if
sever memory issues arise.

Ź Q1.3: With respect to M5 (CPU utilization), the evaluation revealed that non of the
conducted experiments forced a longer lasting above-average high CPU utilization. We
showed that, independently of the experiment, the CPU usage of all experiments are
comparable. However, all measurement series comprise, so far inexplicably, high peaks
during the experiments. This is an occasion for further investigation.

73

6. Evaluation
Table

6.6.Experim
ent

results
sum

m
ary

N
am

e
M

ean
C

I
SD

M
edian

p90
N

am
e

M
ean

C
I

SD
M

edian
p90

Scenario 1

1x
43.51

˘
0.92

14.87
41.86

49.34
4x2x10

41.81
˘

0.33
10.75

41.18
46.82

Scenario2a

RT (ms)

4x
41.31

˘
0.29

9.42
41.13

43.43
4x4x10

44.56
˘

0.91
29.37

41.30
87.59

8x
18.51

˘
0.35

15.81
23.40

45.61
4x8x10

135.57
˘

4.92
158.84

41.84
395.78

16x
9.95

˘
0.13

8.44
11.99

16.74
4x16x10

258.69
˘

6.84
220.77

233.68
561.12

32x
6.79

˘
0.07

6.25
6.64

12.51
4x32x10

745.98
˘

13.29
428.62

671.87
1354.3

64x
4.67

˘
0.05

6.20
3.60

7.69
CPU (%)

1x
8.32

˘
1.73

11.07
6.79

13.73
4x2x10

18.94
˘

1.53
9.77

18.75
25.84

4x
21.36

˘
2.35

15.08
20.91

27.17
4x4x10

20.74
˘

1.78
11.42

21.17
29.51

8x
23.36

˘
2.03

13.01
23.24

33.41
4x8x10

24.20
˘

1.96
12.53

23.90
37.10

16x
30.50

˘
2.15

13.74
29.06

43.29
4x16x10

36.61
˘

1.6
10.50

35.18
49.32

32x
40.32

˘
3.38

21.63
36.73

72.55
4x32x10

31.13
˘

0.66
7.31

30.99
38.24

64x
47.11

˘
3.63

23.22
42.25

85.00

Memory (GB)

1x
0.25

˘
0.04

0.11
0.25

0.39
4x2x10

0.31
˘

0.04
0.12

0.30
0.47

4x
0.30

˘
0.04

0.14
0.29

0.49
4x4x10

0.37
˘

0.04
0.14

0.38
0.52

8x
0.31

˘
0.04

0.13
0.31

0.47
4x8x10

0.34
˘

0.05
0.14

0.32
0.51

16x
0.27

˘
0.04

0.13
0.29

0.44
4x16x10

0.40
˘

0.07
0.21

0.35
0.75

32x
0.34

˘
0.05

0.14
0.34

0.53
4x32x10

0.62
˘

0.05
0.25

0.63
0.98

64x
0.31

˘
0.05

0.14
0.31

0.50

Scenario 2b

8x2x10
18.75

˘
0.34

15.35
23.54

45.90
16x2x10

10.11
˘

0.13
8.35

12.01
17.76

Scenario2c

RT (ms)

8x4x10
20.02

˘
0.42

19.33
23.61

46.08
16x4x10

11.15
˘

0.15
9.98

12.13
23.95

8x8x10
58.33

˘
2.24

102.37
23.44

209.11
16x8x10

17.64
˘

0.52
33.24

12.34
36.12

8x16x10
174.56

˘
5.22

238.03
39.51

572.48
16x16x10

70.41
˘

2.11
136.00

11.82
286.55

8x32x10
423.25

˘
8.3

378.85
319.45

1002.09
16x32x10

276.21
˘

6.41
413.38

39.85
938.42

CPU (%)

8x2x10
22.78

˘
1.72

11.01
22.56

32.41
16x2x10

31.83
˘

2.31
14.77

31.51
45.62

8x4x10
23.49

˘
2.08

13.33
22.35

34.50
16x4x10

32.72
˘

2.41
15.43

33.23
47.60

8x8x10
29.44

˘
2.52

16.15
28.25

46.01
16x8x10

40.04
˘

2.88
18.45

39.17
60.99

8x16x10
36.58

˘
1.44

11.25
33.63

50.05
16x16x10

45.43
˘

1.54
10.97

45.26
56.50

8x32x10
34.71

˘
0.62

7.33
33.87

43.67
16x32x10

32.92
˘

0.56
7.69

31.60
42.89

Mem. (GB)

8x2x10
0.29

˘
0.04

0.12
0.29

0.45
16x2x10

0.27
˘

0.04
0.12

0.25
0.44

8x4x10
0.27

˘
0.04

0.12
0.25

0.42
16x4x10

0.34
˘

0.04
0.13

0.37
0.49

8x8x10
0.38

˘
0.06

0.18
0.39

0.61
16x8x10

0.40
˘

0.06
0.17

0.36
0.62

8x16x10
0.45

˘
0.05

0.19
0.43

0.73
16x16x10

0.49
˘

0.05
0.17

0.49
0.71

8x32x10
0.75

˘
0.06

0.38
0.72

1.31
16x32x10

0.69
˘

0.04
0.31

0.66
1.09

74

Chapter 7

Related Work

This section discusses work that is related to scope of this thesis. The discussed work can
be classified in meta-modeling and instrumentation and monitoring (IaM) approaches. The
remainder of this sections is structured as the research topics introduced in Chapter 2. At
first approaches with scope on meta-modeling will be presented. Follow by an approach
with scope on IaM.

The Architecture-Driven Modernization Task Force (ADMTF), a sub subdivision of the
Object Management Group (OMG), developed the Structured Metrics Meta-Model (SMM).
The main objective of SMM is to provide an expandable meta-model to describe measures for
software systems. The ADMTF defines a measure as a method to compute values for certain
elements within a software systems (e.g. algorithm to count lines of code or compute
average response times). The three core elements of SMM are: Measure, Measurement and
Measurand. A Measure defines what and how will be measured and can be applied to
several model elements. The result of executing a Measure is stored as Measurement. Each
Measurement includes a relationship to the Measurand (i.e. the measured model element)
[Object Management Group, Inc, 2012b; Frey et al., 2011]. In the scope of this thesis, SMM

might be used to store measured values of the SUA in the EPM. But at this point it is not yet
clear to which extent measurements at all must be stored.

Due to some shortcomings of SMM, Frey et al. [2011] proposed the MAMBA approach.
MAMBA extends the SMM meta-model to address two main issues: (i) aggregate functions
are limited to sum, maximum, minimum, average, and standard deviation, and (ii) SMM has
no native support for periodic measures. Both shortcomings are bypassed by extending the
existing SMM meta-model with classes for custom aggregate functions as well as classes to
defined periodic measurements. Furthermore, MAMBA provides tool support for runtime
execution of SMM models and a query language [Frey et al., 2011]. In the scope of this
thesis it has to be clarified if the extensions of MAMBA are actually needed or if SMM is
sufficient.

The SLAstic meta-model was developed for representing architectural information of
a SUA. To enable different specific architectural views on a system, the SLAstic meta-
model is partitioned into four complementing sub-modules. The type repository model
defines all available software components, including required and provided interfaces.
In addition, it defines available types of execution containers and software/hardware
resources. The component assembly model specifies the assembly components as well as
the interconnection between them. An assembly component is an instance of a component

75

7. Related Work

type from the type repository model. The execution environment model specifies the
set of available execution containers as well as information about their interconnections.
The mapping from assembly components to the executing execution container is captured
from the deployment component model. Furthermore, the SLAstic approach contains a
extensible set of meta-classes to specify the system behaviour and usage as well as concepts
for annotating architectural entities for Quality of Service (QoS) measures and measurement
instrumentation [van Hoorn, 2014]. In the scope of this thesis, the SLAstic approach might
be used to reflect architectural information about the SUA within the EPM.

A further approach of the ADMTF is the Common Information Model (CIM). The purpose
of CIM is to provide a conceptual information model to describe management that is not
bound to a particular implementation. CIM thus enables interchanging management
information between applications. CIM is partitioned in the CIM Specification and the CIM

Schema. The former describes the language, naming, meta schema and mapping techniques
to other management models (e.g. Simple Network Management Protocol (SNMP) and
Management Information Base (MIB)). The meta schema is the formal description of the
model and defines terms, usage, and semantics. The latter provides a set of classes with
properties and associations as actual model description. The CIM schema thus enables
organizing all relevant information about the managed environment [Object Management
Group, Inc, 2012a]. In the scope of this thesis, CIM might be used to enabled management
information exchange of the SUA.

Wert and Heger [2014] proposed an approach for instrumentation and monitoring (IaM)
for automated software performance analysis. This approach addresses the not negligible
performance overhead of code instrumentation as well as the manual effort of selective
code instrumentation. Their main criticism of state-of-the-art IaM approaches is the lacking
support for automatic adaptation of the instrumentation. Hence, any change of the
instrumentation causes a reboot of the SUA. To provide the missing support, Wert and
Heger [2014] introduced an Instrumentation Description Model (IDM) and an Adaptable
Instrumentation and Monitoring (AIM) framework. IDM is an extensible meta-model to
describe instrumentation and monitoring instructions for SUAs in an abstract, descriptive,
and context-independent way. IDM provides two ways to capture measurement data: (i)
sampling (i.e. periodically retrieve CPU utilization), and (ii) control flow instrumentation
(i.e. retrieve response times from the control flow of the SUA). AIM is the counterpart of IDM,
hence the execution engine of IDM instances. AIM utilizes the JVM Tool Interface (JVM TI) to
enable run-time instrumentation of the SUA. In the scope of this thesis, AIM could be used
to reflect information of the current instrumentation within the EPM.

76

Chapter 8

Conclusions and Future Work

This chapter draws conclusions of the presented work. A summary is provided in Sec-
tion 8.1, followed by a discussion in Section 8.2. Section 8.3 presents outstanding issues for
possible future work.

8.1 Summary

In Chapter 1 the diagnoseIT project was introduced, in which context this thesis emerged.
The main objective of diangnoseIT is to enrich existing APM processes with automated
configuration of instrumentation as well as automated performance problem detection.
For this purpose a framework was envisioned and in this thesis three components of this
framework were developed and contributed to the project.

In Chapter 4 we presented the Enterprise Performance Model (EPM), a meta-model
to keep track of all relevant information of a system under analysis (SUA). The EPM

includes meta-models to represent software modules, resource environments, allocation
models, and execution traces. We used the Ecore meta-meta-model of the Eclipse Modeling
Framework (EMF) to implement the EPM. In order to equip the EPM with persistence
capabilities, we implemented a model repository on top of the Connected Data Objects (CDO)
framework.

Once the EPM was defined and implemented, we implemented the associated framework.
The framework comprises two major components – the diagnoseIT Application and a so-
called Adapter (see Chapter 5). The Application provides all required functionality to
maintain the EPM, this functionality is made accessible by publishing a Representational
State Transfer (REST) API. The provided API is supported by the Adapter and can be used by
any third-party application to interact with the Appliaction.

The implemented framework was evaluated in Chapter 6. To evaluate different as-
pects of the developed system, we conducted a proof-of-concept evaluation as well as lab
experiments. The results obtained are divided into two parts, from a functional perspec-
tive, we can say that all components work as envisioned. Considering the performance
measurements we have to say that there are still open issues.

77

8. Conclusions and Future Work

8.2 Discussion

The following discussion targets goals G1 (Enterprise Performance Model and Repository) and
G2 (System Model Maintenance Interface (SMMI) and Prototype) with the enclosed research
questions (R1-R5) defined in Chapter 2. G3 (Evaluation) is implicit discussed since the
evaluation results are used to answer research questions R4 and R5. Each research question
is answered and considered in isolation.

RQ1: Which properties have to be covered by the EPM?

In Section 4.1, we presented the results of the requirements analysis regarding the EPM.
As stated, the current implementation is considered as initial version for the diagnoseIT
project. The meta-model is designed as simple as possible, according to the requirements
of the project’s participants, but nevertheless it includes all relevant parts to cover entire
software modules, resource environments, execution traces, and allocations. An allocation
defines a mapping of a software module to the resource environment which is executing it.
Since the diagnoseIT projects targets Java enterprise applications, the resource environment
meta-model is optimized to include information of the executing JVMs. Summarizing we
say that the proposed EPM is a good starting point for diagnoseIT and can easily be extended
to comply with new requirements.

RQ2: How can the different parts of the meta-model be combined into one meta-model?

In order to comply with the separation of concern design principle, the EPM is split into five
complementing sub meta-models: ResourceEnvironmentModel, AllocationModel, SoftwareMod-
uleModel, TraceModel, and InstrumentationModel. With respect to the InstrumentationModel
we have to say that it is envisioned and was defined in a first version, but it was neither im-
plemented nor tested. Further details how the different sub meta-model are interconnected
are provided in Chapter 4.

RQ3: What is an appropriate technology stack for the diagnoseIT prototype?

Since the technology stack concerns all parts of the framework this was a crucial aspect of
this thesis. In summary we have implemented a Java Web application which publishes a
REST API. The implementation was support by several third-party libraries.

The required model-repositories are implemented on top of EMP’s CDO framework.
Benefit of using CDO is the out-of-box support for EMF/Ecore models, thus also for our
EPM. As additional database backend for dynamic data we used the Not only SQL (NoSQL)
database engine MongoDB.

The encompassing framework architecture is implemented by the use of well-known
and mature Java frameworks. When selecting the frameworks was ensured that they either
implement a certain specification or de-facto standards. Considering this requirement

78

8.3. Future Work

we chose Jersey (Java API for RESTful Web Services (JAX-RS) specification), HK2 (JSR-330
specification), Dropwizard (Combines Jersey and HK2), and Google Guava. A more
detailed description of the employed frameworks is available in Chapter 5.

RQ4: Does the approach meet all previously specified requirements?

In Chapter 6 this research question was refined to an evaluation goal (EG) as follows:
Assessing functionality of the diagnoseIT framework, with the enclosed questions Q1.1 (Does the
diagnoseIT prototype meet all previously specified requirements?) and Q1.2 (Up to what granularity
is Kieker able to serve the EPM?)

The EG (respectively the research question) was evaluated by conducting a proof-of-
concept evaluation (Section 6.2). The results of the evaluation confirm that, from a functional
point of view, all specified requirements are fulfilled. We were able to instrument and
monitor a Java Web application with the Kieker framework and to process, store, and
inspect the monitored data with the diagnoseIT framework. This enables us to identify goals
G1 and G2 as fulfilled.

RQ5: Is the approach applicable in real world scenarios?

In Chapter 6 this research question was refined to an evaluation goal (EG) as follows:
Assessing Scalability of the System Model Maintenance Interface (SMMI)), with the enclosed
questions Q1.1 (How responsive are model repository updates with increasing load?), Q1.2 (How
memory intensive are model repository updates with increasing load?), and Q1.3 (How CPU
intensive are model repository updates with increasing load?)

The EG (respectively the research question) was evaluated by conducting a lab experi-
ment (Section 6.3). The results of the experiment showed that the applicability is not yet
guaranteed. With respect to response time measurements the results are reasonable, but
the results for CPU utilization and memory consumption enforce further investigations. In
certain situations were not negligible CPU utilization peaks recognizable. The causes for
this peaks are so far inexplicable. The related test results are available in Chapter 6.

8.3 Future Work

In the following, outstanding issues for possible future work are outlined.

Ź As described in Chapter 4, the EPM includes a further meta-model to cover information
of the current instrumentation of the SUA. This meta-model needs to be defined and
integrated in the EPM as well as the diagnoseIT framework.

Ź In the current version of the diagnoseIT framework, the CDO server is realized as em-
bedded component. With the current implementation of the CDO server it should be
possible with little effort to create a fully stand-alone CDO server component.

79

8. Conclusions and Future Work

Ź A further improvement of the model repositories would be to connect the CDO server
to a NoSQL database. In the course of this thesis it was investigate if CDO could be
connected to the same MongoDB instance which is used to store the dynamic trace data.
CDO already provides a so-called CDO/MongoDB Store which is intended to solve exactly
this idea. But CDO/MongoDB Store is developed for MongoDB v.1.6.5, diagnoseIT uses
v.3.0.2. Since it is not guaranteed that the CDO/MongoDB Store will ever be adapted to a
newer version of MongoDB, it is possible to implement a custom CDO Store to enable
this improvement.

Ź To improve the Kieker integration, Kieker.Analysis needs to be enhanced with a func-
tionality to request information of the monitored system from Kieker.Monitoring. This
functionality enables a proper implementation of the InaccessibleInformationResolver
interface (Chapter 5, Section 6.2).

80

Bibliography

[Bass et al. 2012] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, 3rd edition, 2012.

[Boslaugh 2012] S. Boslaugh. Statistics in a nutshell. " O’Reilly Media, Inc.", 2012.

[Brambilla et al. 2012] M. Brambilla, J. Cabot, and M. Wimmer. Model-driven software
engineering in practice. Synthesis Lectures on Software Engineering, 1(1):1–182, 2012.

[Caldeira and Rombach 1994] V. Caldeira and H. D. Rombach. The goal question metric
approach. Encyclopedia of software engineering, 2(1994):528–532, 1994.

[Chikofsky et al. 1990] E. J. Chikofsky, J. H. Cross, et al. Reverse engineering and design
recovery: A taxonomy. Software, IEEE, 7(1):13–17, 1990.

[Czarnecki and Helsen 2006] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–645, 2006.

[diagnoseIT 2015] diagnoseIT, 2015. URL http://diagnoseit.github.io/.

[Dropwizard] Dropwizard. Dropwizard User Guide. URL http://www.dropwizard.io/manual/index.

html.

[Eclipse Foundation 2014a] Eclipse Foundation. Eclipse modeling project, 2014a. URL
http://eclipse.org.

[Eclipse Foundation 2014b] Eclipse Foundation. Cdo/server configuration reference,
2014b. URL https://wiki.eclipse.org/CDO/Server_Configuration_Reference.

[Eclipse Foundation 2014c] Eclipse Foundation. Cdo/user contributed documentation,
2014c. URL http://wiki.eclipse.org/CDO/User_Contributed_Documentation.

[Eclipse Foundation 2015] Eclipse Foundation. Jetty - servlet engine, 2015. URL http:

//www.eclipse.org/jetty/.

[Fowler 2002] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[Frey et al. 2011] S. Frey, A. van Hoorn, R. Jung, W. Hasselbring, and B. Kiel. Mamba: A
measurement architecture for model-based analysis. 2011.

81

http://diagnoseit.github.io/
http://www.dropwizard.io/manual/index.html
http://www.dropwizard.io/manual/index.html
http://eclipse.org
https://wiki.eclipse.org/CDO/Server_Configuration_Reference
http://wiki.eclipse.org/CDO/User_Contributed_Documentation
http://www.eclipse.org/jetty/
http://www.eclipse.org/jetty/

Bibliography

[Garlan et al. 2010] D. Garlan, R. Monroe, and D. Wile. Acme: an architecture description
interchange language. In CASCON First Decade High Impact Papers, pages 159–173. IBM
Corp., 2010.

[Google 2015] Google. Guava - user guice, 2015. URL http://code.google.com/p/guava-libraries/

wiki/GuavaExplained.

[Hadley and Sandoz 2009] M. Hadley and P. Sandoz. Jax-rs: Java™ api for restful web
services. Java Specification Request (JSR), 311, 2009.

[Hamilton and Miles 2006] K. Hamilton and R. Miles. Learning UML 2.0, volume 286.
O’Reilly, 2006.

[Kambalyal 2010] C. Kambalyal. 3-tier architecture. 2, 2010. URL http://channukambalyal.

tripod.com/.

[Kieker Project] Kieker Project. Kieker 1.10 User Guide. URL http://kieker-monitoring.net/

documentation/.

[Krogmann 2012] K. Krogmann. Reconstruction of software component architectures and
behaviour models using static and dynamic analysis, volume 4. KIT Scientific Publishing,
2012.

[Ludewig 2003] J. Ludewig. Models in software engineering–an introduction. Software and
Systems Modeling, 2(1):5–14, 2003.

[Matevska 2010] J. Matevska. Software-architekturbeschreibung. In Rekonfiguration kompo-
nentenbasierter Softwaresysteme zur Laufzeit, pages 49–72. Springer, 2010.

[Medvidovic and Taylor 2000] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description languages. Software Engineering,
IEEE Transactions on, 26(1):70–93, 2000.

[MyBatis 2015] MyBatis. Mybatis - jpetstore, 2015. URL https://github.com/mybatis/jpetstore-6.

[Object Management Group, Inc 2012a] Object Management Group, Inc. Common infor-
mation model (cim), January 2012a. URL http://www.dmtf.org/standards/cim.

[Object Management Group, Inc 2012b] Object Management Group, Inc. Architecture-
driven modernization (adm): Structured metrics meta-model (smm), January 2012b. URL
http://www.omg.org/spec/SMM/.

[Oracle Corporation 2015a] Oracle Corporation. Hk2 - a light-weight and dynamic
dependency injection framework, 2015a. URL https://hk2.java.net/2.4.0-b26/.

[Oracle Corporation 2015b] Oracle Corporation. Jersey - restful web services in java, 2015b.
URL https://jersey.java.net/.

82

http://code.google.com/p/guava-libraries/wiki/GuavaExplained
http://code.google.com/p/guava-libraries/wiki/GuavaExplained
http://channukambalyal.tripod.com/
http://channukambalyal.tripod.com/
http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/documentation/
https://github.com/mybatis/jpetstore-6
http://www.dmtf.org/standards/cim
http://www.omg.org/spec/SMM/
https://hk2.java.net/2.4.0-b26/
https://jersey.java.net/

[Smith and Williams 2002] C. Smith and L. Williams. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley, 2002.

[Steinberg et al. 2008] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

[Stepper 2008] E. Stepper. Connected data objects (cdo) - the emf model repository. 2008.
URL https://eclipse.org/cdo/documentation/presentations/EclipseCon_2008/CDO-Presentation.pdf.

[Stepper 2015] E. Stepper. Cdo model repository documentation., 2015. URL http://www.

eclipse.org/cdo/documentation/.

[van Hoorn 2014] A. van Hoorn. Model-Driven Online Capacity Management for Component-
Based Software Systems. Number 2014/6 in Kiel Computer Science Series. Department
of Computer Science, Kiel University, Kiel, Germany, 2014. Dissertation, Faculty of
Engineering, Kiel University.

[van Hoorn et al. 2009] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey,
and D. Kieselhorst. Continuous monitoring of software services: Design and application
of the kieker framework. 2009.

[van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework
for application performance monitoring and dynamic software analysis. In Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering, pages 247–248.
ACM, 2012.

[Weber 2010] S. Weber. Nosql databases. University of Applied Sciences HTW Chur, Switzer-
land, 2010.

[Wert and Heger 2014] A. Wert and C. Heger. Adaptable instrumentaion and monitoring,
2014. URL http://sopeco.github.io/AIM/.

https://eclipse.org/cdo/documentation/presentations/EclipseCon_2008/CDO-Presentation.pdf
http://www.eclipse.org/cdo/documentation/
http://www.eclipse.org/cdo/documentation/
http://sopeco.github.io/AIM/

Decleration

I declare that this thesis is the solely effort of the author. I did
not use any other sources and references than the listed ones.
I have marked all contained direct or indirect statements from
other sources as such. Neither this work nor significant parts of it
were part of another review process. I did not publish this work
partially or completely yet. The electronic copy is consistent with
all submitted copies.

place, date, signature

	1 Introduction
	1.1 Motivation
	1.2 diagnoseIT and Scope of this Thesis
	1.3 Document Structure

	2 Research Methodology
	2.1 G1: Enterprise Performance Model and Repository
	2.1.1 WP1.1: Requirements Analysis
	2.1.2 WP1.2: Review Existing Meta-Models and Check Applicability
	2.1.3 WP1.3: Specification and Implementation of the diagnoseIT Meta-Model
	2.1.4 WP1.4: Specification and Implementation of the Model Repository

	2.2 G2: System Model Maintenance Interface (SMMI) and Prototype
	2.2.1 WP2.1: Requirements Analysis
	2.2.2 WP2.2: Specification and Implementation of the SMMI
	2.2.3 WP2.3: Specification and Implementation of the APM Integration Interface
	2.2.4 WP2.4: Specification and Implementation of the diagnoseIT Architecture

	2.3 G3: Evaluation
	2.3.1 WP3.1: Experiment Design
	2.3.2 WP3.2: Setup Experiment Environment
	2.3.3 WP3.3: Experiments
	2.3.4 WP3.4: Analyse Experiment Results

	3 Foundations and Technologies
	3.1 Model-Driven Software Development (MDSD)
	3.2 Eclipse Modeling Project (EMP)
	3.2.1 Eclipse Modeling Framework (EMF)
	3.2.2 Connected Data Objects (CDO)

	3.3 Not only SQL (NoSQL)
	3.4 Architecture of Enterprise Applications
	3.5 Architecture Modeling Languages
	3.6 Model Extraction
	3.7 Kieker Framework
	3.7.1 Kieker Analysis
	3.7.2 Kieker Trace Meta-Model

	4 The Enterprise Performance Model (EPM)
	4.1 Requirements
	4.2 EPM Specification
	4.2.1 Software Module
	4.2.2 Resource Environment
	4.2.3 Allocation
	4.2.4 Trace

	4.3 EPM Implementation
	4.3.1 Ecore Modeling
	4.3.2 Model-2-Text (M2T) Transformation

	5 The diagnoseIT Framework
	5.1 Requirements
	5.1.1 Functional Requirements (FRs)
	5.1.2 Non-Function Requirements (NFRs)

	5.2 Supporting Software and Libraries
	5.2.1 Dropwizard
	5.2.2 Jersey
	5.2.3 HK2
	5.2.4 Guava
	5.2.5 MongoDB

	5.3 Framework Implementation
	5.3.1 Application
	5.3.2 CDO Client and Server
	5.3.3 Model Repositories
	5.3.4 System Model Maintenance Interface (SMMI)
	5.3.5 Web Resources
	5.3.6 APM Tool Integration – Adapter
	5.3.7 Enterprise Performance Model (EPM) Element Extraction

	5.4 diagnoseIT Framework in Action

	6 Evaluation
	6.1 Evaluation Goals
	6.2 Proof-of-Concept Evaluation
	6.2.1 Evaluation Methodology
	6.2.2 Experimental Setting
	JPetStore Application
	DiagnoseITAnalysisTool

	6.2.3 Experiment Results
	Result Summary

	6.3 Lab Experiment
	6.3.1 Evaluation Methodology
	6.3.2 Experimental Setting
	Data Preparation
	EvaluationApplication
	ExperimentRunner
	Experiment Plan Preparation

	6.3.3 Experiment Results
	Result Presentation
	Scenario 1
	Scenario 2
	Result Summary

	7 Related Work
	8 Conclusions and Future Work
	8.1 Summary
	8.2 Discussion
	RQ1: Which properties have to be covered by the EPM?
	RQ2: How can the different parts of the meta-model be combined into one meta-model?
	RQ3: What is an appropriate technology stack for the diagnoseIT prototype?
	RQ4: Does the approach meet all previously specified requirements?
	RQ5: Is the approach applicable in real world scenarios?

	8.3 Future Work

	Bibliography

