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Abstract  

Lithological evidence, benthic foraminiferal census counts, and high-resolution X-ray fluorescence 

(XRF) scanner-derived elemental data were integrated with planktonic foraminiferal biostratigraphy 

and bulk carbonate stable isotopes to retrace the Turonian to early Campanian paleoenvironmental 

evolution and sea-level history of the Tarfaya Atlantic coastal basin (SW Morocco). 

The lower Turonian is characterized by impoverished benthic foraminiferal assemblages, which 

reflect an impingement of the oxygen minimum zone on the shelf during a sea-level highstand. The 

appearance of low-oxygen tolerant benthic foraminiferal assemblages in the middle to upper 

Turonian indicates an improvement in bottom water oxygenation, probably linked to offshore 

retraction of the oxygen minimum zone during a regressive phase. From the late Turonian to 

Santonian, the presence of benthic foraminiferal with low diversity suggests relatively impoverished 

oxygenation in bottom water along the shelf. Three long-term oscillations in the abundance of 

terrigenous elements (increase of Al, Ti, K, Si and Fe normalized against Ca) are shown during the 

Coniacian and Santonian. This interval, which roughly corresponds to the Coniacian-Santonian 

Anoxic Event (OAE-3), is characterized by overall oxygen depleted to anoxic conditions at the sea-

floor (indicated by the high organic carbon content, the presence of laminations and by low 

manganese/sulphur, high vanadium/calcium and bromine/calcium ratios in XRF scanning records). 

The lower Campanian transgression, only recorded in the southern part of the Tarfaya Basin, 

coincided with substantial deepening, enhanced accumulation of fine-grained clay-rich hemipelagic 

sediments and improved oxygenation at the sea-floor (highest diversity and abundance of benthic 

foraminiferal assemblages and low values of log(Mn/S)). 

The sea-level changes reconstructed in the Tarfaya Basin are correlated to the global eustatic 

changes. Two major unconformities (U1/U2 and U3), which punctuate the upper Turonian to lower 

Campanian succession in Tarfaya SN°1 and 2, are correlative to the base of the Merchantville III and 

Magothy III sequence boundaries of Miller et al., (2004) and Mizintseva et al. (2009), respectively.  

Stable isotope data of bulk carbonates (outcrop sections and composite cores) are correlated to the 

English Chalk, the Niobrara Formation (US Western Interior Seaway) and to the stacked carbon 

isotope reference curve of Wendler (2013). The Tarfaya carbon isotope curve reveals in particular the 

Navigation Event in the Coniacian, the Haven Brow, the Horseshoe Bay and the Buckle Events in the 

Santonian as well as the Santonian/Campanian Boundary Event. 
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Zusammenfassung 

Lithologische Charakteristika, die Analyse benthischer Foraminiferenvergesellschaftungen und 

Variationen chemischer Elemente gemessen mit einem hochauflösenden Röntgenfluoreszenz (XRF) 

Scanner wurden mit der Biostratigraphie planktonischer Foraminiferen und stabilen Isotopendaten 

der Karbonatgesteine kombiniert, um eine Paläoumwelt-Rekonstruktion durchzuführen und 

Meeresspiegelschwankungen im atlantischen Tarfaya-Becken (SW-Marokko) für den Zeitraum 

Turon bis oberes Campan zu untersuchen.  

Das untere Turon ist charakterisiert durch eine verarmte Vergesellschaftung benthischer 

Foraminiferen, welche zurückzuführen ist auf das Übergreifen der Sauerstoffminimumzone auf den 

Schelf während eines Meeresspiegelhochstandes. Das Auftreten von Foraminiferen mit Toleranz 

gegenüber niedrigen Sauerstoffgehalten im mittleren und oberen Turon weist auf eine bessere 

Durchlüftung der Bodenwässer hin, was wahrscheinlich auf das Zurückweichen der 

Sauerstoffminimumzone infolge einer regressiven Phase zurückzuführen ist. Vom oberen Turon bis 

zum Santon zeigt die Vergesellschaftung benthischer Foraminiferen eine geringe Diversität, was auf 

eine Verschlechterung der Sauerstoffsättigung der Bodenwässer des Schelfes hindeutet. Während des 

Coniacs und Santons wurden drei langfristige Oszillationen in den Konzentrationen terrigener 

Elemente (Al, Ti, K, Si und Fe normalisiert gegen Ca) identifiziert. Dieser Intervall, welcher mit dem 

Anoxischen Event 3 (OAE3) korrespondiert, ist gekennzeichnet durch sauerstoffarme bis anoxische 

Bedingungen am Meeresboden (hoher Gehalt an organischem Kohlenstoff, Laminationen und 

niedrige Mangan/Schwefel-, hohe Vanadium/Kalzium- und hohe Brom/Kalzium-Verhältnisse 

gemessen durch XRF-Scans. Die Transgression des unteren Campans, welche nur das südliche 

Tarfaya-Becken erfasste, wurde begleitet von einer signifikanten Tiefenzunahme, einer verstärkten 

Ablagerung von feinkörnigen, tonreichen, hemipelagischen Sedimenten und einer verbesserten 

Durchlüftung der Bodenwässer (die Vergesellschaftung benthischer Foraminiferen weist die höchste 

Diversität und Individuenzahl simultan zu erniedrigten log(Mn/S)-Verhältnissen auf). 

Die Meeresspiegelschwankungen des Tarfaya-Beckens korrelieren mit globalen, eustatischen 

Meeresspiegeländerungen. Zwei ausgeprägte Diskordanzen (U1/U2 und U3) in den 

Sedimentabfolgen des oberen Turons bis unteren Campans der Bohrkerne Tarfaya SN°1 und 2 

korrelieren mit den Sequenzgrenzen Merchantville III und Magothy III von Miller et al., (2004) und 

Mizintseva et al., (2009). Die Ergebnisse der Messung Stabiler Isotopen der Karbonatgesteine der 
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Aufschluss-Sektionen und der korrelierten Bohrkerne (SN°1 und 2) wurden mit der Englischen 

Kreide, der Niobrara Formation (US Western Interior Seaway) und der kompilierten Kohlenstoff-

Isotopenkurve von Wendler (2013) korreliert. Eindeutig identifizierbar waren im Tarfaya Becken das 

Navigation-Event im Coniac, das Horseshoe Bay und Buckle-Event im Santon und das 

Santon/Campan-Event. 
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Chapter I. Introduction  

1. Location and geological overview of the study area 

The Tarfaya Basin extends along the southern coast of Morocco between 28° N and 24° N. It 

stretches over more than 1000 km along the western margin of the Sahara (Hafid et al., 2008). The 

basin is limited by the Anti-Atlas Mountains in the north, the Reguibat Basin in the east, the 

Mauritanides in the south and the Atlantic Ocean in the west. Figure 1 provides the locations of the 

outcrop sections and cores studied in the Tarfaya Basin. 

 
Figure 1: Location of newly drilled Tarfaya SN°1, 2, 3 and 4 cores and outcrop sections in the Tarfaya Basin, which form the base for 

a composite Albian to early Campanian stratigraphic log. Sections 1-5 were newly logged and sampled, section 6 (Albian-

Cenomanian) was previously studied by Kuhnt et al. (2009) and section 7 (lower Campanian) by Holbourn et al. (1999). Geology 

adapted from Choubert et al. (1966). 

 

The basin is situated at the tectonically stable western margin of the Saharan Platform. The 

evolution of the Tarfaya Basin is tightly connected with the geological history of the African Craton, 

controlled by the Late Triassic–Jurassic break-up of the supercontinent Pangaea (Baudin, 1995), 

resulting in the opening of the Atlantic (Rank et al., 1982). The initial break-up of Pangaea may have 

been associated with widespread volcanic activity on the Atlantic Ocean and known as the Central 

Atlantic Magmatic Province (Olsen, 1999). The basement of the basin is composed of folded 
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Precambrian and Paleozoic rocks, which are uncomformably overlain by Mesozoic and Cenozoic 

deposits.  

During Triassic times, a synrift continental megasequence (1000 m) was deposited in the 

basin. The sediments include evaporite horizons followed by sills of dolerite basalts. The post rift 

phase started with the Jurassic marine transgression, which only affected the northern part of the 

basin (Nzoussi-Mbassani et al., 2005). The post-Triassic extensional structures and subsidence of the 

basin are related to the opening of the Atlantic Ocean (Wiedmann et al., 1982). Important is the 

activation of the Zemmour fault that separates the Anti-Atlas and the Tindouf basin to the east 

(Choubert et al., 1966). With the activation of the fault, steady subsidence of the Tarfaya basin 

commenced in the Triassic followed by stepwise subsidence in the Jurassic and the Cretaceous.  

The Early to Middle Jurassic marine carbonates characterized by silty sandstones, limestones, 

dolomitic limestones and dolomites transgressed onto the Triassic rift sediments and/or evaporites. 

The Late Jurassic neritic marly limestones and calcarenites, intercalated with marls, shales and 

sandstones (formation of Puerto Cansado) are overlying the Early to Middle Jurassic marine 

carbonates (Choubart et al., 1966; Abou Ali et al., 2005).  

A thick deltaic sequence, of the Early Cretaceous age, accumulated during and after a major 

global Valanginian regression (Vail et al., 1977a). According to Ratschiller (1970), the shallow-

marine deposit from the Upper Cretaceous to the Eocene unconformably overlies the continental 

Lower Cretaceous formations. The upper Albian to lower Cenomanian sequence consists of 

claystone, marl, siltstone and dolomitic limestone (Wiedmann et al., 1982). The upper Cenomanian–

Turonian and Coniacian strata contain deeper-water shales and limestones, followed by shallower-

water oyster shell beds present in the Santonian (Freneix, 1972). The Campanian contains also 

deeper-water shales and limestones. The Maastrichtian only appears in the southern (El Aayun) part 

of the basin, south of the Sebkha Tah and is mainly composed of greenish marginal marine 

claystones.  

During the Tertiary the sea retreated, although minor transgressions occurred during the late 

Paleocene to Eocene. Deposits consist mainly of phosphatic and silty marls and dolomites (Butt, 

1982). During the Eocene and the Oligocene, the basin sediments were uplifted and folded, 

suggesting regional epirogenesis and inter-regional Alpine orogenesis related to extensive crustal 

shortening and subduction in the Tethys region (Dewey et al., 1973). Late Oligocene to early 

Miocene basin development shows an erosional hiatus because of the coincidence of a major 
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regression with intensified slumping, canyon incision, and bottom water circulation (Arthur et al., 

1979), with only little continental deposition taking place. After this long period of non-deposition or 

erosion, Miocene-Pliocene sediments unconformably overlay the Lower Cretaceous (Tan Tan 

Formation), Upper Cretaceous (NE part of the basin), Eocene and Oligocene (SW part of the basin) 

deposits. Following the Miocene-Pliocene, siliciclastic sediments once again started to be deposited 

both on- and off-shore with uplift events in the Atlas system (Frizon de Lamotte et al., 2009; Ruiz et 

al., 2010). 

 

2. Previous work and motivation 

The NW African margin represents an excellent model demonstrating syndepositional 

tectonics of a passive margin in the North Atlantic. The Tarfaya Basin, which comprises the 

southernmost Atlantic marginal basin of Morocco (latitudes 28° N and 24° N), contains around 700 

m of Upper Cretaceous laminated organic carbon-rich biogenic sediments covered by clastic 

Paleogene and Neogene deposits. This basin provides an excellent location to reconstruct the Late 

Cretaceous depositional history due to minimal regional tectonic influences (Choubert et al., 1966). 

In recent years, the Tarfaya basin has been primarily targeted for the study of Upper Cretaceous 

(Cenomanian-Turonian) laminated organic carbon-rich sediments to understand the intensity of 

anoxia, the magnitude and nature of the bulk carbonate δ
13

C excursions, the biotic effects of anoxia 

on benthic and planktonic foraminifera, regional patterns of appearance and extinction of marine 

species and the relation of the regional paleo-environmental evolution to climate and eustatic sea-

level changes (e.g. El Albani et al., 1999a and b; Kuhnt et al., 1995, 1997, 2005a, 2009; Kolonic et 

al., 2005; Mort et al., 2007, 2008; Keller et al., 2008, Gertsch et al., 2010a, Aquit et al., 2013).  

In this study, I present detailed sedimentary logging, photographic documentation, sequence 

stratigraphic interpretation as well as micropaleontological and geochemical analysis of the Upper 

Cretaceous sedimentary successions studied during five field expeditions of the Kiel 

Micropaleontology Group in 1997, 1998, 2000, 2003 and 2009 in addition to two cores drilled in fall 

2009. During these field expeditions five new outcrop sections El Amra, En Naila, Akhfennir, Tah 

North and Tisfourine were logged bed-by-bed and sampled in intermediate-high resolution. The main 

challenge of this study was the detailed stratigraphic correlation of these outcrop sections. (e,g., the 

correlation of the Coniacian in the El Amra and Akhfennir sections and also the relationship between 
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the top of the Santonian in the Tah North section and the earliest Campanian in the Tisfourine 

section). This Santonian/early Campanian transition corresponds to a major sequence boundary at the 

top of the Santonian (Choubert et al., 1966), which is difficult to investigate in outcrop section due to 

an intense coverage of this part of the sedimentary succession by sand dunes in the Sebkha Tah. To 

resolve this enigma, drill cores Tarfaya SN°1 and 2 were recovered with the help of ONHYM 

(National Office of Hydrocarbons and Mines of Morocco) during October-December 2009. Two 

additional cores (Tarfaya SN°3 and 4 were drilled further to the northeast to recover the older part of 

the Tarfaya Upper Cretaceous sedimentary succession down to the initial transgressive deposits of 

the upper Albian.  Figure 1 provides an overview of all sections studied and the locations of the four 

drill cores Tarfaya SN°1, 2, 3 and 4.  

The drilling was carried out along the SW flank of the Sebkha Tazra Anticline in the central 

part of the Tarfaya Basin. The axis of this anticline is striking NNE-SSW and intersects the main 

road between Tan-Tan and Tarfaya approx. 10 km SE of the Shell quarry. The W-SW flank of this 

anticline is then continuously dipping to the W until the eastern margin of the Sebkha Tah in the 

Southwest (Fig. 2) (Leine, 1986; Fig. 3). This anticline was formed by uplifting and folding of the 

Cretaceous sedimentary succession during the early Miocene (Leine, 1986). The result of this 

anticline is uplift of Albian deposits to the surface in the centre of the anticline and Campanian 

deposits at the southern margin (Sebkha Tah and Tisfourine). Later erosion truncated the Upper 

Cretaceous sediments, followed by deposition of a relatively thin sequence of Pliocene-Pleistocene 

clastic sediments, belonging to the Moghrabian Formation (Choubert et al., 1966).  
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Figure 2: Map showing the location of the Tazra anticline in the Tarfaya Basin, SW Morocco. After Leine (1986). 

 

 
Figure 3: Cretaceous structure of southern flank of the Sebkha Tazra anticline in the Tarfaya Basin, SW Morocco. After Leine (1986). 

 

For obtaining a complete record of the Upper Cretaceous succession in the Tarfaya Basin a 

drilling campaing was carried out along a transect across the SW flank of the Sebkha Tazra Anticline. 

Four cores were drilled in the Tarfaya area, which recovered a complete stratigraphic sequence from 



 28 

the Albian to the Campanian and the Moghrebian Formation at the top of each core. The oldest 

Cretaceous deposits (early Turonian to Albian) were recovered in core Tarfaya SN°4 close to center 

of the Sebkha Tazra Anticline. Youngest Cretaceous deposits (early Campanian) were recovered in 

Tarfaya SN°1 core close to Sebkha Tah. Tarfaya SN°2 and 3 cores were positioned between Tarfaya 

SN°1 and 4 cores to recover the entire succession with enough overlap to reliably correlate the cores 

using wireleine logging records. A total of 1100 meters of sediment was recovered with a Longyear 

L44 hydraulic drilling system “WD3500” (Fig. 4) (350 m at Tarfaya SN°1, 200 m at Tarfaya SN°2, 

200 m at Tarfaya SN°3 and 350 m at Tarfaya SN°4), which completely cover the entire ~700 m 

succession of the Upper Cretaceous, covered by approx. 20-30 m of Moghrabien lumachelle with 

sandstone beds. Wireline logging (e.g. Natural Gamma Ray with 1 cm resolution) was lowered into 

the drill hole a few weeks after the drilling was completed (Fig. 5). Cutting of the core in work (Kiel) 

and archive (ONHYM) halves was carried out with a high precision Kaufmann-Titan diamond rock 

saw (Fig. 6). Each segments was cleaned with sandpaper before spectrophotometric and XRF-

scanner based geochemical analyses. Figures 7 and 8 illustrate the segments before and after 

cleaning. The geochemical analyses (X-ray fluorescence scanner with 1 cm resolution (Fig. 9), 

carbonate and oxygen isotopes with 20 and 40 cm resolution), lithological description and 

micropaleontological investigations  (planktonic and benthic foraminifera) were carried out in Kiel 

using polished sediment slabs and discrete samples. 
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Figure 4: Schema and photograph of Longyear L44 hydraulic drilling system “Sondeuse hydraulique WD3500” used in the Tarfaya 

drilling. 
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Figure 5: Well downhole photograph and wire-line logging data carried out for Tarfaya SN°1 by the Geoatlas Laayoune Company. 
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Figure 6: Splitting into archive and working halves with a high precision Kaufmann-Titan diamond rock saw. 
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Figure 7: Photographs of segment before and after cleaning for analysis. 
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Figure 8: Photographs of segment before and after cleaning for analysis. 
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Figure 9: X-ray fluorescence core scanner at the Institute of Geosciences, Kiel. 

3. Objectives 

The principal objectives of this work are: (1) to reconstruct the paleoenvironmental evolution 

and sea-level changes of the Tarfaya coastal basin during the Turonian to early Campanian, based on 

wireline-logging, visual core description, bulk carbonate stable isotopes and X-ray fluorescence 

scanner derived high resolution elemental distribution data (2) to obtain high resolution correlation of 

Upper Cretaceous organic-rich deposits from outcrop sections with the newly drilled cores from the 

Tarfaya Basin (3) to date and correlate observed sequence boundaries in the Tarfaya Basin to the 

global sequences (Hardenbol et al., 1998; Miller et al., 2004) and (4) to investigate the possible 

influence of orbital insolation changes and eustatic sea-level flucations on the sedimentation in the 

Tarfaya Basin.  
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Chapter II. Late Cretaceous paleoenvironmental evolution of the Tarfaya 

Atlantic coastal Basin, SW Morocco 
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Abstract  

Lithological evidence, benthic foraminiferal census counts, and X-ray fluorescence (XRF) 

scanner-derived elemental data were integrated with planktonic foraminiferal biostratigraphy and 

bulk carbonate stable isotopes to retrace the Turonian to early Campanian paleoenvironmental 

evolution and sea-level history of the Tarfaya Atlantic coastal basin (SW Morocco). The lower 

Turonian is characterized by laminated organic-rich deposits, which contain impoverished benthic 

foraminiferal assemblages, reflecting impingement of the oxygen minimum zone on the shelf during 

a sea-level highstand. This highstand level is correlated to the global transgressive pulse above the 

sequence boundary Tu1. The appearance of low-oxygen tolerant benthic foraminiferal assemblages 

dominated by Gavelinella sp. in the middle to upper Turonian indicates an improvement in bottom 

water oxygenation, probably linked to offshore retraction of the oxygen minimum zone during a 

regressive phase. This interval is marked by major regressive events expressed by a series of 

erosional truncations associated with the prominent sequence boundaries Tu3 and/or Tu4. Dysoxic-

anoxic conditions recorded in the upper Santonian of the Tarfaya Basin coincide with the eustatic 

sea-level rise prior to Sa3 sequence boundary. The lower Campanian transgression, only recorded in 

the southern part of the Tarfaya Basin, coincided with substantial deepening, enhanced accumulation 

of fine-grained clay-rich hemipelagic sediments and improved oxygenation at the sea-floor (highest 

diversity and abundance of benthic foraminiferal assemblages). Stable isotope data from bulk 

carbonates are tentatively correlated to the English Chalk carbon isotope reference curve, in 

particular the Hitch Wood Event in the upper Turonian, the Navigation Event in the lower Coniacian, 

the Horseshoe Bay Event in the Santonian and the Santonian/Campanian Boundary Event.  

 

Key words: benthic foraminifera, XRF scanning, stable isotopes, Upper Cretaceous, sea-level 

change, Tarfaya Basin 
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Introduction  

The Tarfaya Basin extends along the west coast of Africa at latitudes 28-24°N, and is limited 

by the Anti-Atlas Mountains in the north, the Reguibat Basin in the east, the Mauritanides in the 

south and the Atlantic Ocean in the west. The evolution of the Tarfaya Basin is tightly connected 

with the geological history of the African Craton and the opening of the Atlantic (Rank et al., 1982). 

The basement is composed of folded Precambrian and Paleozoic rocks, which are uncomformably 

overlain by Mesozoic and Cenozoic deposits. The post-Triassic extensional structures and subsidence 

of the basin are related to the opening of the Atlantic Ocean (Wiedmann et al., 1982). An important 

evolutionary feature was the activation of the Zemmour fault that separated the basin from the Anti-

Atlas and Tindouf Basin (Choubert et al., 1966), and played an important role in the subsidence 

history of the basin during the Jurassic and Cretaceous. Detailed structural studies of the Tarfaya 

Basin were previously published by Wiedmann et al. (1982), El Khatib et al. (1995, 1996) and El 

Albani et al. (1999 a, b). 

Expanded sedimentary successions of Cretaceous age were deposited at the northwestern 

margin of the stable Sahara platform close to the original coastline of the Tarfaya Basin. These rocks 

are unconformably overlain by relatively thin sequences of Cenozoic proximal marine deposits. On a 

broad regional scale, the Lower Cretaceous successions are composed of detrital deposits of deltaic 

or fluvial origin, whereas the Upper Cretaceous deposits consist of limestones and marls, which are 

rich in organic matter. Previous investigations of Cretaceous and Cenozoic sections exposed close to 

the coast and around coastal salt flats (Sebkhas) and desiccated river beds in the Tarfaya Basin are 

listed in Table 1. Whereas recent work concentrated on the Cenomanian-Turonian black shale 

successions, corresponding to Ocean Anoxic Event 2 (OAE 2), this study focuses on the Turonian to 

Campanian sections outcropping in the northwestern part of the basin (Fig. 1). Our main objectives 

are 1) to correlate Upper Cretaceous successions within the Tarfaya Basin and 2) to reconstruct the 

paleoenvironmental evolution of the coastal marginal basin, based on analysis of lithological units, 

benthic and planktonic foraminiferal distribution, bulk carbonate stable isotopes and X-ray 

fluorescence scanner data. 
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Figure 1: Location of outcrop sections in the Tarfaya Basin, which form the base for a composite Albian to Campanian 

stratigraphic log. Sections 1-5 were newly logged and sampled, section 6 (Albian-Cenomanian) was previously studied 

by Kuhnt et al. (2009) and section 7 (lower Campanian) by Holbourn et al. (1999). Geology adapted from Choubert et al. 

(1966). 
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Location Data Time interval References 

Sebkha Tazra Petrography, chemical 

composition and mineralogy of 

oil shale deposits  

Upper Cretaceous 

(Cenomanian-

Campanian) 

Leine, 1986 

Core S13 Microfossil assemblages and 

organic matter accumulation 

rates 

Cenomanian-Turonian Kuhnt et al., 

1986, 1990 

Cap Juby Reflection seismic data Triassic to Miocene El Khatib et 

al., 1995 

Cores S5, S13, 

S20, S21, S25, 

S75, 

Cyclostratigraphy of organic-

carbon-rich deposits  

Cenomanian-Turonian Kuhnt et al., 

1997, 2004 

Core S75 

Sebkha Tah 

(Tah West) 

Oued Amma 

Fatma 

Benthic foraminiferal and clay 

mineral assemblages 

Turonian (Amma Fatma 

and Core S75) 

Campanian (Sebkha Tah) 

Holbourn et 

al., 1999 

Sebkha Tah 

Akhfenir 

Oued Amma 

Fatma 

Sebkhat Tazra 

Lithology, microfacies and 

clay mineral assemblages 

Cenomanian-Campanian El Albani et 

al., 1999a 

Tassegdelt 

El Amra 

Mohamed Plage 

Lithology and microfacies  Cenomanian-Turonian El Albani et 

al., 1999b 

Mohamed Plage 

Core S 13 

Benthic foraminiferal 

assemblages 

Cenomanian Gebhardt et al., 

2004 

Ifni/Tan-Tan 

margin 

Basement structure and 

seismostratigraphy 

Pre-Triassic basement 

Triassic-Liassic rift 

Abou Ali et 

al., 2005 

Cores S13, S57, 

S75 

Carbon isotopes and organic 

carbon accumulation 

Cenomanian-Turonian Kolonic et al., 

2005 

Core S13 

Mohamed plage 

Lithology, stable isotopes and 

sequence stratigraphy 

Cenomanian Kuhnt et al., 

2009 

 

 
Table 1: Overview of Cretaceous and Cenozoic outcrop successions and drilled cores investigated in the Tarfaya Basain. 
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1. Material and Methods 

During five field expeditions in 1997, 1998, 2000, 2003 and 2009 detailed sedimentary 

logging, sequence stratigraphic analyses and photographic documentation as well as 

micropaleontological and geochemical sampling of Cretaceous to Neogene sedimentary successions 

were undertaken in the northern Tarfaya Basin. Previously published data from selected outcrop 

sections were integrated with data from five new sections: El Amra, En Naila, Akhfennir, Tah North 

and Tisfourine that were investigated during the most recent fieldwork. Figures 1-2 and Table 1 

provide an overview of all sections studied. 

 

 

 
Figure 2: (A) Overview of the lower part of the En Naila section, key beds are labelled; (B) uppermost Turonian succession in the El 

Amra section, key beds are labelled; (C) overview of the Akhfennir section (early Santonian); (D) overview of the Tah North section 

(upper Santonian). 
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1.1. Paleoenvironmental analyses of benthic foraminiferal assemblages 

A total of 280 micropaleontological samples from organic rich clay intervals in the El Amra, 

En Naila, Akhfennir, Tah North and Tisfourine sections of the Tarfaya Basin were dry weighed and 

processed using an alcoholic solution of anionic tensides (REWOQUAT by REWO-Chemie, Steinau, 

Germany), which helped to break down indurated samples of organic rich laminated chalk. Benthic 

foraminifera were quantitatively picked from splits of the 250-630 µm fractions and numbers per 100 

g of sample were calculated. Benthic foraminifera were additionally picked from splits of the 125-

250 µm fractions in 32 selected samples to complement census counts of the larger size fractions and 

to ensure that smaller taxa were not overlooked. Key index taxa were determined and documented 

with scanning electron micrographs. Planktonic foraminifera from splits of the 250-630 µm fractions 

were picked, planktonic-benthic ratios determined, and a biostratigraphic zonation based on 

planktonic foraminifera was established. Planktonic foraminifera occur throughout the investigated 

sections, except in 20 samples of the El Amra section. Planktonic foraminifera are generally well 

preserved, exhibiting no evidence of dissolution; thus, the lack or low abundance of benthic 

foraminifera in some intervals was not considered to reflect diagenesis but original changes in the 

composition of assemblages. Benthic foraminiferal distribution was quantitatively monitored using 

the following indices: 

 (1) Shannon-Weaver information function (Shannon and Weaver, 1949), which provides an 

index of diversity:  

                                                                                                                     S 

                                              H(S)=-∑ Piln pi 
                                                                                                                   i=1 

where S is the number of species and pi is the proportion of the ith species (p = total count of one 

species divided by total count of benthic specimens). 

(2) percentage of benthic foraminiferal specimens in the total number of foraminifera: B% = 

(B/(P+B))*100 where P represents the number of planktonic foraminifera and B the number of 

benthic foraminifera. 

1.2. Stable isotope analysis of bulk carbonate  

A total of 255 samples (80 samples from El Amra, 46 samples from En Naila, 25 samples 

from Akhfennir, 28 from Tisfourine and 76 samples from Tah North) were measured for stable 
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isotopes of bulk carbonates. Measurements were made with a Finnigan MAT 251 mass spectrometer 

at the Leibniz Laboratory for Radiometric Dating and Stable Isotope Research at the Christian-

Albrechts University in Kiel. The instrument is coupled online to a Carbo-Kiel device for automated 

CO2 preparation of carbonate samples. Samples were reacted by individual acid addition. The system 

has an accuracy (on the delta scale) of ± 0.05‰ for carbon and ± 0.08‰ for oxygen isotopes. The 

results were calibrated using the National Institute Bureau of Standards and Technology 

(Gaithersburg, Maryland) carbonate isotope standard NBS 20, internal standards and NBS 19 and are 

reported as 
13

Ccarb on the PeeDee belemnite (PDB) scale.  

1.3. X-ray fluorescence (XRF)-scanning  

XRF measurements were carried out with an Avaatech X-ray fluorescence core scanner at the 

Institute of Geosciences, Christian-Albrechts-University in Kiel. Scanning was performed (at 1 cm 

interval) on polished slabs (6 to 8 cm in length) of homogeneous, oriented samples with flat and 

smooth surface. 10 kv and 30 kv (tube voltage settings) were used to identify the following elements: 

Ti, Al, Ca, Mg, Fe, K (Table 2). 

Tube voltage (kv) Filter Elements analysed 

10 None Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn 

30 Pd thick Br, Rb, Sr, Zr, 

 

Table 2: Instrumental settings of the Avaatech XRF core scanner for specific sets of elements (Richter et al., 2006) used in the 

analyses of discrete rock samples fromoutcrop sections in the Tarfaya Basin. 

1.4. Planktonic foraminiferal biostratigraphy and carbon isotope stratigraphy  

The planktonic foraminiferal biostratigraphy is based on the zonation of Robaszynski and 

Caron (1995). Based on the biostratigraphic framework, carbon isotope events were tentatively 

correlated to the English Chalk carbon isotope reference curve of Jarvis et al. (2006), which provides 

a robust framework for Late Cretaceous carbon isotope stratigraphy. 
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2. Results 

2.1. Lithostratigraphy  

2.1.1. El Amra section 

The ~99 m thick El Amra section (28° 09.211´N, 11° 46.075´W) is located a few kilometers 

inland from the coast, ~110 km northeast of the town of Tarfaya. Three major lithological units were 

recognized, based on bed to bed logging (Supplementary Fig. 1): 

Unit 1 (~23 m thickness, lower Turonian) at the base of the section is mainly composed of 

dark-brown laminated shale beds (up to ~120 cm thickness) alternating with lighter limestone layers. 

Two types of limestones occur: nodular limestones (~20 cm thickness) and bioclastic limestones (10-

40 cm thickness) with erosive bases, hummocky cross stratifications and horizontal laminations, 

which are prominent in the upper part of the unit. 

Unit 2 (~53 m thickness, middle Turonian to Coniacian) in the middle of the section consists 

of three lithological subunits. Subunit 1 (23.54-34.20 m), composed of laminated shale beds (15-40 

cm thickness) intercalated with nodular limestone layers (~10 cm), is separated from subunit 2 by 

thin shell beds containing Crassatella spp. (“astarte-lumachelle” marker beds of Choubert et al. 

1967). Subunit 2 (34.20-50.15 m) consists of laminated shale intercalated with sparitic limestone 

beds (~10 cm thickness) exhibiting oblique laminations. A distinctive laminated sparitic bed occurs at 

the top of subunit 2. Subunit 3 (50.15-75.50 m) consists of laminated shales and calcareous marls. 

Unit 3 (~23 m thickness, Coniacian) is dominated by laminated shale alternating with marly 

limestone layers (15-30 cm thickness). Sparitic limestone beds (~20 cm thickness) with oblique 

laminations characterize the upper part of this unit. 

2.1.2. En Naila section 

This ~11 m thick section (28° 03.074´N, 12° 07.630´W) is situated in a shallow dry sebkha a 

few kilometers inland from the coast, ~70 km northeast of Tarfaya. The succession is mainly 

composed of black laminated shales alternating with limestones of varying thickness (Supplementary 

Fig. 2). Two types of limestones are present: marly, cross-laminated limestone with wavy base 

containing shells debris and rare ammonites, and nodular massive limestone containing shell 

fragments.  
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2.1.3. Akhfennir section 

This ~69 m thick section (28° 04.0´N, 12° 01.3´W) is located a few kilometers inland from 

the village of Akhfennir, ~80 km northeast of Tarfaya. Two main lithological units are distinguished 

(Supplementary Fig. 3): 

Unit 1, corresponding to the basal and middle part of the section, is mainly composed of 

marls alternating with bioclastic limestones or nodular limestones (20-40 cm thickness). The 

limestones at the base of the section show oblique laminations. 

Unit 2, corresponding to the upper part of the section, is dominated by marly limestones 

alternating with calcareous marls (10-25 cm thickness). At the top of the section, the marly 

limestones evolve into limestones containing shells fragments (inoceramids), which show a 

characteristic yellow weathering. 

2.1.4. Tah North section 

This ~47 m thick section (27° 44.110´N, 12° 48.350´W) is located along the western edge of 

the Sebbka Tah, ~35 km southeast of Tarfaya. It is composed predominantly of laminated marls 

intercalated with marly limestones of varying thickness (Supplementary Fig. 4).  The laminated marls 

in the lower part of the section (0-15 m) are rich in invertebrate fossils (inoceramids, small oysters 

and bivalves) and fish teeth. The uppermost 8 m of the Cretaceous succession (37-45 m) consist of 

thin-bedded marly limestones within dark-gray calcareous marls. 

2.1.5. Tisfourine section 

This ~21 m thick section (26° 40.148´N, 13° 40.744´W) is located along the southern edge of 

the Sebbka Tisfourine, ~30 km south of Tarfaya. The lower part of the section (0-8 m) is composed 

of homogenous dark-gray olive to black, clay-rich marls, followed by intensely bioturbated dar 

brown marls between 8 and 9 m. The upper part of the Cretaceous succession is composed of 

weathered homogeneous olive gray marls (Supplementary Fig. 2).  The Tisfourine section is 

considered as the proximal equivalent of the more expanded Tah West section, which is located ~5 

km to the South and was previously described by Holbourn et al. (1999). 
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2.2. Micropaleontology 

2.2.1. Planktonic foraminiferal biostratigraphy  

The zonation of Robaszynski and Caron (1995) was adapted and additional local zonal 

boundaries and “subzones” were defined to obtain a more detailed stratigraphic subdivision of the 

Upper Cretaceous in the Tarfaya Basin. Six global planktonic foraminiferal zones were identified 

(Table 3; Fig. 3). The following definitions of zones and “subzones” are used: 

The Whiteinella archaeocretacea Zone ranges from the extinction of Rotalipora cushmani to 

the first appearance of Helvetoglobotruncana helvetica. In the Tarfaya Basin it can be subdivided 

using the first appearance of marginotruncanids (Marginotruncana ex gr. renzi) and 

Helvetoglobotruncana praehelvetica. Correlation to the nannoplankton biostratigraphy (first 

appearance of Quadrum gartneri) and carbon isotope stratigraphy  (Kolonic et al., 2005; Kuhnt et al., 

2005a) indicates that the chronostratigraphic range of the W. archaeocretacea Zone is extended in the 

Tarfaya basin and includes most of the lower Turonian. 

The base of the Helvetoglobotruncana helvetica Zone is defined with the first appearance of 

H. helvetica (Wonders, 1980). In the Tarfaya sequence, a transitional interval is observed at the base 

of the H. helvetica Zone. This interval is transitional in two aspects: (1) taxonomically due to 

occurrence of forms transitional between H. praehelvetica and H. helvetica; (2) quantitatively by the 

extreme rarity of typical H. helvetica in the lowermost part of the zone, which may bias the definition 

of the lower zonal boundary (depending on the richness and preservation of the faunal assemblages). 

For local biostratigraphic correlation, the first common occurrence of typical H. helvetica is used as 

the base of the H. helvetica Zone. Preliminary correlation with ammonite events in the Tarfaya basin 

(Wiedmann and Kuhnt, 1996) indicates a chronostratigraphic position in the lower part of the 

Mammites nodosoides ammonite Zone (top of the lower Turonian) for the base of the H. helvetica 

acme Zone.  

The lower boundary of the Marginotruncana sigali Zone is defined by the last appearance of 

H. helvetica and the first appearance of the zonal marker together with Marginotruncana 

schneegansi, M. coronata and M. marginata. Additional datum levels in the uppermost part of this 

zone are defined by the first appearances of M. sinuosa, M. undulata and the genus Falsotruncana. 

The base of the M. sigali Zone was correlated to the middle part of the Collignoniceras woollgari 
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ammonite Zone (lower part of the middle Turonian) by Amedro et al. (1978) and Robaszynski and 

Caron (1995). A Dicarinella primitiva subzone was initially used in the Tarfaya Basin to characterize 

the upper part of the M. sigali Zone. However, the zonal marker appears as an intermediate form 

between M. schneegansi and Dicarinella concavata (Wonders, 1980). Thus, the lower boundary of 

the D. primitiva subzone is ambiguous in the Tarfaya Basin and is not used for stratigraphic 

correlation. 

The lower boundary of the Dicarinella concavata Zone is well defined by the first 

appearance of D. concavata, which is easily recognized. However, the first occurrence of D. 

concavata in the Tarfaya basin appears somewhat later than its global first appearance. In the Tarfaya 

basin, D. concavata first occurs above the “astarte-lumachelle” marker beds, associated with early 

Coniacian ammonites (Choubert et al., 1966; Wiedmann et al., 1978), while the base of the D. 

concavata Zone in other subtropical pelagic sections is in the late Turonian (Robaszynski and Caron, 

1995; Gradstein et al., 2012). A delayed first occurrence of D. concavata in the Tarfaya basin is also 

supported by correlation to the calcareous nannofossil zonation (Jackie Lees, pers. comm., 2013), 

which indicates that the base of the D. concavata Zone is above the first occurrence of M. 

staurophora within nannoplankton zone UC10 (early to middle Coniacian). The upper boundary of 

the D. concavata Zone is defined by the first appearance of Dicarinella asymetrica at the top of the 

Coniacian 

The base of the Dicarinella asymetrica Zone is generally correlated to the 

Coniacian/Santonian boundary (Robaszynski and Caron, 1995; Gradstein et al., 2012). However, it is 

somewhat arbitrary due to the continuous evolution from D. concavata into D. asymetrica and the 

relatively rare occurrence of D. asymetrica in the early part of its range. To overcome this difficulty, 

the base of this zone is defined by the first occurrence of typical specimens of D. asymetrica with 

five or more chambers in the last whorl, a wide umbilicus and distinct umbilical ridges (Plate 1).  

The base of the Globotruncanita elevata Zone is defined by the first appearance of G. elevata 

and G. stuartiformis at the base of the Campanian. As reported in earlier studies of the Tarfaya basin 

(Choubert et al., 1966; Wiedmann et al., 1978), there may be a small hiatus in the uppermost 

Santonian. The top of the G. elevata zone is not reached in Cretaceous marine successions north of 

the Sebkha Tah. 

The planktonic foraminiferal zones identified in outcrop sections of the Tarfaya Basin are given in 

Table 3. Although the Tah North and upper part of the Akhfennir sections are both assigned to the D. 
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asymetrica zone, the Tah North section is considered to be slightly younger in age (late Santonian) on 

account of its stratigraphically higher position, when correlated across the basin to the Akhfennir 

section. 

 

Table 3: Planktonic foraminiferal zones identified in outcrop sections of the Tarfaya Basin 

 

 

 

Figure 3: Biostratigraphic correlation of Upper Cretaceous sections in the Tarfaya Basin. 

Section Foraminiferal zone Age 

El Amra Section (99 m thickness) Helvetoglobotruncana helvetica zone 

(0 to 23.36 m) 

Early to middle 

Turonian 

 Marginotruncana sigali zone (23.36 

to 75.69 m) 

Middle to late 

Turonian 

 Dicarinella concavata zone (75.69 to 

99 m) 

Coniacian 

En Naila section (12 m thickness) Helvetoglobotruncana helvetica zone Early Turonian 

Akhfennir section (69 m thickness) Dicarinella concavata and 

Dicarinella asymetrica zone 

Coniacian-

Santonian 

Tah North section (45 m thickness) Dicarinella asymetrica zone Late Santonian 

(see text) 

Tisfourine section (17 m thickness) Globotruncanita elevata zone Early Campanian 
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Plate 1: Figs. 1-12: Variability of Dicarinella concavata in the uppermost D. concavata Zone in the Akhfennir section (Sample T71). 

Umbilical views of typical specimens and intermediate forms to Dicarinella asymetrica (Figs. 7 and 9), which show weak development 

of umbilical ridges with number of chambers (4-5) in the last whorl and relatively narrow umbilicus typical of D. concavata. Figs. 13-

24: Variability of Dicarinella asymetrica in the lowermost D. asymetrica Zone in the Akhfennir section. Note still weakly developed 

umbilical ridges but wider umbilicus and more than 5 chambers in the last whorl in specimens from sample T51 (Figs. 22-24; base of 

D. asymetrica Zone). Typical forms (Figs. 15-16 and 18; Sample T32) possess distinct umbilical ridges, a wider umbilicus and 6 

chambers in the last whorl. All scale bars are equal to 100 m. 
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2.2.2. Benthic foraminiferal distribution  

A total of 30 benthic foraminiferal taxa were identified in 280 samples from the five newly 

investigated outcrop sections in the Tarfaya Basin. Assemblages exhibit considerable temporal 

variability both in abundance and diversity. In the El Amra section, the lack or low abundances of 

benthic foraminifera in Unit 1 and the lower part of Unit 2 corresponds to the dysoxic-anoxic zone 

identified by Kuhnt and Wiedmann (1995). In the upper part of Unit 2 and in Unit 3 (upper Turonian 

to Coniacian), benthic foraminifera show low diversity (diversity index: 0–1) and higher abundances 

(255-11066 specimens/100g (>250 µm) and 6623-107708 specimens/100g (>125 µm). Five 

dominant taxa were identified: Neobulimina sp., Pyramidina szajnochae, Textularia sp., Gavelinella 

sp. and Flabellina sp. (Fig. 4; Plate 2; Supplementary Tables 1 and 2). 

The En Naila section (lower Turonian, H. helvetica Zone) is virtually devoid of benthic 

foraminifera within the dominant black shale lithology, except for samples EN17 and EN18, which 

contain Gabonita spp. (Supplementary Table 3).  

The Akhfennir section (Coniacian to lower Santonian) is characterized by low diversity 

(diversity index: 0-1) and highly fluctuating abundances of benthic foraminifera (122-60695 

specimens/100g (>250 µm) and 9790-207069 specimens/100g (>125 µm). The assemblages are 

generally dominated by Gavelinella sp., but also include Neobulimina sp., Textularia sp. and 

Flabellina sp. (Fig. 4; Plate 2; Supplementary Tables 2 and 4). 

The Tah North section (middle to upper Santonian) is characterized by low benthic diversity 

(diversity index: 0-1) and highly fluctuating abundances (554-19536 specimens/100g (>250 µm) and 

7753-102873 specimens/100g (>125 µm), except in the upper part of the succession (>32 m), where 

abundances decrease markedly. The assemblages are generally dominated by Gavelinella sp., 

Neobulimina sp., Textularia sp., Lenticulina articulata and Flabellina sp. (Fig. 4; Plate 2; 

Supplementary Tables 2 and 5). 

In the Tisfourine section (lower Campanian), benthic foraminifera exhibit the highest 

diversity (diversity index: 1.33-2.12) and highest abundances (456-2469 specimens/100g (>250 µm) 

and 13638-78529 specimens/100g (>125 µm). Twenty-nine taxa were identified including 

Gavelinella dakotensis, Lingulogavelinella sp., Gyroidinoides nitidus, Lenticulina articulata and 

Flabellina sp., which occur frequently throughout the section (Fig. 4; Plate 2; Supplementary Tables 

2 and 6). 
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Figure 4: Benthic foraminiferal distribution (size fractions 250-630 and 125-250 m) in newly logged outcrop sections of the Tarfaya 

Basin. a) %benthic versus planktonic foraminifera, green arrows indicate increasing and decreasing oxygenation at the sea-floor; b) 

Diversity index (Shannon-Weaver index), red arrows indicate marked increase in benthic foraminiferal diversity during the early 

Campanian; c) Number of species, black arrow indicates marked increase in species number during the early Campanian; d) Benthic 

foraminiferal abundance per 100 g of sample. Note: Red dots indicate complementary benthic foraminiferal data from the 125-250 µm 

fractions. No benthic foraminifera were found in the En Naila samples studied. 
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Plate 2: Environmentally significant Late Cretaceous benthic foraminifera in the Tarfaya Basin: 1-2. Flabellina sp 1., sample El Amra 

50; 3-4. Frondicularia lanceola (Perner, 1892), sample Tisfourine 13; 5-6. Stilostomella alexanderi (Cushman, 1936), sample 

Tisfourine 4; 7-8. Neobulimina sp., sample Akhfenir 83; 9-10. Gavelinella dakotensis (Fox, 1954), umbilical and spiral views, sample 

Tisfourine 15; 11-12. Gavelinella sp., umbilical and spiral views, sample Akhfenir 83; 13-14. Gyroidinoides nitidus (Reuss, 1844), 

umbilical and spiral views, sample Tisfourine 25; 15-16. Lenticulata articulata (Reuss, 1863), sample Tisfourine 25; 17-18. 

Lenticulina sp., sample Tisfourine 28; 19-20. Osangularia cordieriana (Hermanni, 1962), umbilical and spiral views, sample 

Tisfourine 23; 21-22. Spiroplectammina cretosa (Cushman, 1936), sample Tisfourine 22; 23-24. Ramulina sp., sample Tisfourine 18; 

25-26. Siphogenerinoides sp., sample Tisfourine 21; 27-28. Pyramidulina sp., sample Tisfourine 21. Scale bars are equal to 300 µm for 

Figs. 1-6, 15-17, 25-26, and 28, and equal to 100 µm for Figs. 7-14, 18-25, and 27. 
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2.3. Isotope stratigraphy  

Bulk carbonate δ
13

C values range between 0.5 and -4‰ in the lower Turonian to lower 

Campanian successions investigated in the Tarfaya outcrop sections. Values below -4‰, which were 

measured in cemented carbonate beds and nodules, indicate diagenetic overprint. Maximum values 

are generally ~2 to 2.5‰ lower than maximum values in the English Chalk and the Italian Scaglia at 

Gubbio (Jarvis et al., 2006), which is probably due to the higher nutrient content of upwelling water 

masses in the Tarfaya Basin. 

 Bulk isotope analysis of 80 samples in the El Amra section (Fig. 5 and 6) reveals an overall 

decrease in δ
13

C from 0.5‰ to values below -1.0‰ from the base to the top of Unit 1. The boundary 

between Units 1 and 2 (23 m), which corresponds to the boundary between the H. helvetica and M. 

sigali zones, is marked by a negative excursion with values dropping below -3‰. Values then 

fluctuate around -2.0‰ until ~40 m. Above this level, values become enriched, reaching -1.0‰ 

between 40 and 63 m in an interval, where marginotruncanids occur and benthic foraminifera 

increase in abundance. This level may correspond to the Hitch Wood Event identified in the Upper 

Cretaceous of England (Jarvis et al., 2006). From 68 m to the top of the section, values show a 

sustained decline from -2.0 to -4.5‰. This marked δ
13

C decrease may be correlated to the Navigation 

Event (Jarvis et al., 2006). The δ
18

O curve shows no distint trend in the lower 70 m of the section 

(Turonian). A decrease from -4 to <-6‰ occurs in the upper part of the succession (upper Turonian 

to lower Coniacian). 

The En Naila δ
13

C curve (lower Turonian, H. helvetica Zone) is characterized by high-

amplitude variations with values oscillating between 1.7 and -2.2‰ (Supplementary Fig. 5). 

Maximum values (>1.5‰) occur in the lower part of the section between 0 and 3 m. Two main 

decreasing trends are evident between 3 and 6 m (from 1 to -1‰) and between 7 m and the top of the 

section (from 1 to -2‰). 

In the lower part of the Akhfennir section (0 to 40 m, Coniacian to lower Santonian), the 

δ
13

C curve, based on 25 samples, shows fluctuations between -2 and 0‰. Above 40 m, 
13

C values 

exhibit a decreasing trend, reaching minimum values <-3.5‰ between 50 and 55 m (lower 

Santonian). The uppermost samples of the Akhfennir section (above 55 m) are characterized by 

marked fluctuations between -1.5 and 3.5‰ (Fig. 6). The δ
18

O curve fluctuates between -3 and -6, 
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showing no distint long-term trend. These marked fluctuations are probably due to diagenetic 

cementation in the more carbonate-rich intervals. 

The δ
13

C curve from Tah North (middle to upper Santonian) is characterized by an overall 

decreasing trend from 0 to -3.0‰ (Fig. 6). The highest values (~ 0‰) at the base of the section 

probably correspond to the middle Santonian Horshoe Bay Event in the Upper Cretaceous of England 

(Jarvis et al., 2006). The δ
18

O curve shows no long-term trend and fluctuations are of lower 

amplitude than in the Akhfennir section, probably reflecting the more homogeneous marly sediment 

composition. 

δ
13

C values are highest, remaining close to 0‰, in the lower part of the Tisfourine section (0-

8 m), which probably corresponds to Santonian/Campanian Boundary Event. δ
13

C values then exhibit 

a sustained decline from 0.4 to -1.4‰ in the upper part of the section (Fig. 6). The δ
18

O curve 

exhibits a clear trend towards heavier values, related to the global climate cooling in the early 

Campanian (Clarke and Jenkyns, 1999; Huber et al., 2002). 

 
Figure 5: Correlation of bulk carbon isotope (13C) from newly investigated outcrop sections of the Tarfaya Basin to the English Chalk 

carbon isotope reference curve (Jarvis et al., 2006). 
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Figure 6: Composite geochemical and paleontological records in newly logged outcrop sections of the Tarfaya Basin. a) %benthic 

versus planktonic foraminifera, green arrows indicate increasing and decreasing oxygenation at the sea-floor; b) Bulk carbon isotope 

data (13C) and tentative correlations to the English Chalk carbon isotope reference curve of Jarvis et al. (2006), Green dots indicate 

limestones, red dots indicate diagenetically altered limestones with 13C value below -5%; c) Bulk oxygen isotope data (18O), blue 

arrow indicates cooling during the early Campanian; d-f) Elemental log-ratios of Si/Ca, Al/Ca and Mn/Ca, red arrows indicate 

increases in terrigenous flux in the Tisfourine section (Santonian/Campanian boundary); light blue arrow indicates an increase in 

carbonate flux in the Tah North section (upper Santonian); the En Naila section replicates the lowermost part of the El Amra section, 

En Naila records are shown is Supplementary Fig. 1. 

2.4. Geochemistry (XRF scanning data) 

Variations in the abundance of the major elements Fe, Ti, Si and Al present in marine 

sediment cores have been used to reconstruct changes in terrigenous input into the basins (Peterson et 

al., 2000; Haug et al., 2001; Jaeschke et al., 2007; Mulitza et al., 2008; Tisserand et al., 2009; Govin 

et al., 2011). In the Tarfaya Basin, lowstands are characterized by an increase in carbonate-rich rocks 

(higher Ca), as the elements Si, Al, Fe, Mg, S and Ba become exported into deeper parts of the basin 

as fine terrigenous clastic material (clay and silt) due to stronger bottom current activity on the shelf. 

In contrast during highstands, impingement of the oxygen minimum zone onto the shelf and 

prevalence of deeper, quieter bottom water conditions lead to deposition of Si, Al, Fe, Mg, S and Ba. 

The log-ratios of Mn/Ca additionally provide information about deep-water oxygenation, as the 
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sedimentary Mn content in organic-rich environments is almost entirely dependent upon redox 

conditions.  Minerals containing reduced Mn are rare in marine sediments (Calvert and Pedersen, 

1996; Tribovillard et al., 2006) and modern and Cretaceous upwelling deposits are commonly 

depleted in Mn (Brumsack, 1986), thus higher log(Mn/Ca) indicates better oxygenated bottom 

waters.  

At El Amra (lower Turonian to Coniacian), the log(Si/Ca) and log(Al/Ca) curves show strong 

fluctuations in the lower part of the section (0-40 m), where benthic foraminifera are scarce or absent 

(Fig. 6). In this interval, values oscillate between -1 and -2.5 for log(Si/Ca) and between -2 and -3.5 

for log(Si/Ca). Above 40 m, values initially fluctuate close to -1 for log(Si/Ca) and -2 for 

log(Al/Ca), then decrease between 76 and 91 m to -2.5 for log(Si/Ca) and -3.5 for log(Al/Ca), finally 

showing a small rebound in the uppermost part of the section (91-99 m). The log(Mn/Ca) curve 

exhibits relatively similar trends with values ranging between -1.7 and -3.3 in the lower part of the 

section (0-40 m). Values oscillate around -2.5 until ~ 76 m, then decrease to -3 between 76 and 91 m 

and oscillate between -2.5 and -3 in the uppermost part of the section (91-99 m). 

At En Naila (lower Turonian), the log(Si/Ca) and log(Al/Ca) curves show marked 

fluctuations with values between -1 and -2 for log(Si/Ca) and between -2 and -3.5 for log(Al/Ca), 

whereas log(Mn/Ca) values oscilate between -2 and -3.2 (Supplementary Fig. 5).  

At Akhfennir (Coniacian to lower Santonian), the log(Si/Ca), log(Al/Ca) and log(Mn/Ca) 

curves exhibit no overall distinct trend with average values fluctuating around -1.1 for log(Si/Ca), -

2.4 for the log(Al/Ca) and with values varying between -1.8 and -3.0 for log(Mn/Ca) (Fig. 6).  

At Tah North (middle to upper Santonian), the log(Si/Ca) and log(Al/Ca) curves are 

characterized by low-amplitude fluctuations with values between -1 and -1.5 for log(Si/Ca) and 

between 2 and -5.5 for log(Al/Ca) (Fig. 6). The log(Mn/Ca) values exhibit an overall decrease from -

2.3 to -3.2 from the base of the section to 27 m, with lowest values and small amplitude variability 

above 12 m. 

At Tisfourine (lower Campanian), the log(Si/Ca) and log(Al/Ca) curves exhibit no distinct 

trend. Values range from -1 to -0.5 for log(Si/Ca) and from -2.3 to -1.9 for log(Al/Ca), decreasing 

towards -1.5 and -2.5, respectively in the uppermost part of the section (Fig. 6). The log(Mn/Ca) 

values show marked fluctuations from 0 to 13 m, oscillating between -1.5 and -2.5. Towards the top 

of the section (last two samples), the log(Mn/Ca) values decrease to -2.9. 
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3. Discussion 

3.1. Benthic foraminifera as indicators of paleoproductivity and basin oxgenation 

The composition of benthic foraminiferal assemblages is strongly dependent on the 

productivity of surface waters, the oxygenation of bottom waters, and the rate of export organic 

carbon flux to the sea-floor (Gooday et al., 1994; van der Zwaan et al., 1999; den Dulk et al., 2000). 

For instance modern assemblages from intense oxygen minimum zones generally exhibit lower 

diversity with dominance of species that are more tolerant of oxygen depletion (den Dulk et al., 

2000). Thus, changes in the composition of benthic foraminiferal assemblages can be used to monitor 

temporal variations in organic export flux and bottom water oxygenation. Although species 

distribution differed considerably during the Cretaceous, benthic foraminifera have been shown to 

provide powerful proxies for reconstructing the paleoenvironmental evolution of coastal basins 

(Gebhardt et al., 2004; Holbourn et al., 1999, 2001). 

The relatively diverse shelf assemblages from the Mohammed Plage section reflect an overall 

deepening trend during the Cenomanian (Gebhardt et al., 2004). However, intensification of the 

oxygen minimum zone probably inhibited a diverse benthic foraminiferal community from becoming 

established on the shelf in the latest Cenomanian to early Turonian. The absence or low abundance of 

benthic foraminifers (>250 microns) at the base of El Amra and En Naila sections within laminated 

strata indicate dysoxic-anoxic bottom waters in the early Turonian, previously linked to the 

intensification of upwelling along the margin of the Tarfaya Basin (Kuhnt et al., 1990; Holbourn et 

al., 1999). The presence of relatively well preserved planktonic foraminifera throughout the section 

supports that the scarcity of benthic foraminifera does not reflect poor preservation in these intervals. 

The appearance of shelf benthic foraminifera tolerant of low-oxygen conditions at ~35 m in the El 

Amra section (middle Turonian) marks a slight improvement in bottom water oxygenation, possibly 

related to a seaward shift and/or decrease in the intensity of the oxygen minimum zone.  

From the late Turonian to Santonian, benthic foraminiferal abundances increased, although 

diversity remained generally low with dominance of Gavelinella spp. at El Amra, Akhfennir and Tah 

North, suggesting relatively impoverished oxygenation at the sea-floor along the shelf. The higher 

variability of the Tah North record points to considerable temporal fluctuations in bottom water 

oxygenation. However, the marked decline in abundance and diversity in the upper part of the Tah 

North section points to an intensification and/or expansion of the oxygen minimum zone, possibly 
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related to the late Santonian transgressive event below sequence boundary Sa3. However, the 

correlation of this short interval of anoxia in the upper part of the Tah North succession to a more 

widespread global event is difficult to ascertain, as the upper part of the section is truncated by an 

unconformity (Fig. 4). The early Campanian assemblages from the Tisfourine and Tah West sections 

exhibit high diversity and abundance (Fig. 4; Holbourn et al., 1999), indicating an overall 

improvement in oxygenation at the sea-floor. However, the high abundance of buliminids and 

bolivinids together with the elevated marine organic matter content at Tah West point to an elevated 

organic export flux and vigorous upwelling along the margin of the basin (Holbourn et al., 1999).  

3.2. Tarfaya Basin sea-level history and correlation to Cretaceous eustatic sequences 

Sea-level was substantially higher than at present and exhibited considerable long- and short-

term variability in the Cretaceous greenhouse world (Miller et al., 2005; Müller et al., 2008). Long-

term eustatic sea-level changes were probably controlled by plate tectonics. Explanations include 

higher sea-floor spreading rates, due to hotter oceanic crust displacing sea water and causing long 

term flooding of continents (Kominz, 1984) or/and breakup of the supercontinent Pangaea, which 

may have led to overall subsidence of continents relative to the oceans during the Jurassic to 

Cretaceous. Miller et al., (2003; 2005) suggested that Late Cretaceous sea-level changes, which were 

relatively large (>25 m) and rapid (<1 m.y.), were glacioeustatic and probably driven by the periodic 

waxing and waning of ephemeral ice sheets in Antarctica, paced by Milankovitch forcing.  

As the Tarfaya Basin remained tectonically stable during most of the Cretaceous, it provides 

an ideal location to reconstruct regional and global sea-level changes, based on the evolution of 

marginal marine sequences deposited along the basin edge. Lithological data, XRF derived 

terrigenous flux estimates, geochemical and micropaleontological estimates of bottom water 

oxygenation together with planktonic to benthic foraminiferal ratios were integrated to retrace the 

Cenomanian to Campanian sea-level history of the Tarfaya Basin. This reconstruction leads us to 

propose a tentative correlation of regional sea-level signals to eustatic changes and sequences 

suggested by Hardenbol et al. (1998). 

3.2.1. Cenomanian to Campanian sea-level history of the Tarfaya Basin 

In the Cenomanian succession of Mohammed plage, Kuhnt et al. (2009) identified two main 

transgressive cycles, separated by a regressive interval characterized by lagoonal lowstand deposits 
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indicating a transient sea-level fall of >30 m within a main transgressive trend. This long-term global 

sea-level rise led to major circulation and productivity changes and to the installation of an 

intensified oxygen minimum zone on the platform of the Tarfaya Basin during the late Cenomanian 

(Kuhnt and Wiedmann 1995; Kuhnt et al., 1997). Dysoxic-anoxic conditions at the peak of the 

transgression in the latest Cenomanian/early Turonian are marked by the absence of benthic 

foraminifera and enhanced preservation of organic matter. However, bioclastic limestone beds 

displaying hummocky cross-stratification, oblique lamination and erosive bases indicate that major 

storm events occurred during transient sea-level lowstands (El Albani et al., 1999b; Kuhnt et al., 

2009). 

In the En Naila section and at base of the El Amra section (Unit 1), the intercalation of 

lowstand limestone packages and highstand black shales corresponds to marked fluctuations in the 

XRF-scanner derived elemental composition of laminated organic rich (high Si, Fe and Al) and 

carbonate-rich (high Ca) deposits (Fig. 6 and Supplementary Fig. 5). These intervals, which are 

generally impoverished in benthic foraminifera (>250 m), can be correlated to the last transgressive 

pulse of the early Turonian within the H. helvetica Zone (Fig. 6). In the later part of the Turonian (El 

Amra section, Unit 2), the basin experienced a major regressive phase with overall advance of the 

coastline, mainly indicated by generally higher abundances of benthic foraminifera and an increase in 

the ratio of benthic to planktonic foraminifera (Figs. 4 and 6). 

The Coniacian to Santonian interval was marked by successive transgressive and regressive 

events, which are poorly resolved in the Akhfennir and El Amra (Unit 3) successions. Lumachelle 

layers (sparitic limestones with numerous shell fragments), which often have erosive basal contacts, 

can be interpreted as tempestites characterizing lowstands. However, the last transgressive pulse 

within the D. asymetrica zone in the latest Santonian relatively is well constrained in the Tah North 

section, where sample density and temporal resolution are substantially higher. The scarcity of 

benthic foraminifera in the upper part of the section points to an intensification of the oxygen 

minimum zone on the shelf of the Tarfaya Basin, possibly related to peak of the late Santonian 

transgression. The lower Campanian (G. elevata Zone) in the Tisfourine and Tah West sections 

(Holbourn et al., 1999) is characterized by planktonic and benthic assemblages indicating an outer 

shelf to upper bathyal environment, significantly deeper than during the Coniacian and most of the 

Santonian. The presence of marly deposits with increased log (Si/Ca) and log (Al/Ca) in the XRF-

scanner data (Fig. 6) indicates a substantial increase in terrigenous flux, potentially linked to climatic 
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changes in the hinterland and/or tectonic movements at the margins of the basin during an initial 

phase of basin uplift, which continued during the Cenozoic (El Khatib et al., 1995). 

3.2.2. Correlation to Cretaceous eustatic sequences 

The prominent early Turonian highstand within the H. helvetica Zone, detected in the En 

Naila succession and at the base of the El Amra succession (Fig. 7), is most likely correlative to the 

sea-level highstand below the sequence boundary Tu1 of Hardenbol et al. (1998). In contrast, the 

higher abundances of benthic foraminifera and the presence of erosive bases in the upper Turonian 

(Unit 2 at El Amra, Fig. 7) indicate a shift of the oxygen minimum zone towards the open ocean 

associated with a lowering of the sea-level. This regressive phase probably corresponds to the major 

regressions associated with sequence boundaries Tu3 and Tu4 in Hardenbol et al. (1998). 

The latest Turonian to early Coniacian decrease in 
13

C at the top of the El Amra section 

(starting within the M. sigali Zone at ~62 m in the El Amra Section and reaching a minimum within 

the lower part of the D. concavata Zone at ~90 m (15 m above the FO of D. concavata) may 

correspond to the Navigation Event in the Upper Cretaceous English chalk succession (Jarvis et al., 

2006). Based on the delayed first occurrence of D. concavata in the Tarfaya basin (close to or above 

the Tu-Co boundary), the 
13

C minimum falls well into the Coniacian and clearly above the Tu4 

sequence boundary. This event is associated with very variable conditions on the Tarfaya shelf, 

including dysoxic environments as shown by the relatively low abundance and diversity of benthic 

foraminifera and decrease in log(Mn/Ca). This interval probably reflects transgressive pulses 

associated with the sea-level highstand below the sequence boundary Co1. However, this 

transgressive trend is punctuated by carbonate-rich intervals characterized by oblique lamination as 

well as low log(Si/Ca) and log(Al/Ca), which may indicate transient regressive pulses. Similar 

oscillations close to the Navigation Event are indicated in the sea-level reconstruction of the Russian 

platform (Sahagian et al., 1996, Jarvis et al., 2006)  

The early and middle Santonian sea-level history is poorly constrained in the Akhfennir 

outcrop section (Fig. 7). The overall increase in carbonate (decrease in log(Mn/Ca), log(Al/Ca), 

log(Si/Ca)) in the Tah North section may be related to a relative sea-level fall during the late 

Santonian, possibly corresponding with the eustatic sequence boundary Sa2. One of the most striking 

events in the sedimentary succession of the Tarfaya Basin is the prevalence of dysoxic-anoxic 

conditions in the latest Santonian as indicated by the absence or the low abundance and diversity of 
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benthic foraminiferal assemblages. This “dysoxic-anoxic event” is tentatively related to a major 

transgressive event in the latest Santonian, prior to the Sa3 sequence boundary in the Hardenbol et al. 

(1998) scheme.  

Following the Sa-3 sequence boundary, which is represented by a hiatus in the Tarfaya 

sedimentary succession, high diversity benthic foraminiferal assemblages including bathyal species 

indicate a significant deepening of the sea-floor and somewhat improved oxygenation of bottom 

waters in the early Campanian, although productivity and organic carbon flux remained high 

(Holbourn et al., 1999).  Enhanced fine-grained terrigenous sediment supply (increased log(Al/Ca) 

and log(SiCa)) and an increase in bulk carbonate 
18

O and 
13

C are probably related to the onset of 

global climate change at the Santonian-Campanian boundary (Ando et al., 2011). Although the 

deepening of the Tarfaya Basin in the early Campanian probably reflect local tectonic activity, it may 

also relates to several eustatic transgressive events, which occurred within the early Campanian G. 

elevata Zone. 

 

 
Figure 7: Tentative correlation of paleontological records from the El Amra, Akhfennir, Tah North and Tisfourine sections to eustatic 

sequences and sea-level history after Hardenbol et al. (1998). a) %benthic versus planktonic foraminifera; b) Bulk carbon isotope 

(13C); c) log (Mn/Ca). Foraminiferal zonation follows Robaszynki and Caron (1995), except for the base of the G. concavata Zone 

due to the later occurrence of G. concavata in the Tarfaya Basin. Green and blue shadings mark stratigraphic position of the El Amra 

and Tisfourine sections.  
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4. Conclusion 

Lithological, paleontological, and geochemical data in five marginal marine successions were 

integrated to retrace the paleoenvironmental evolution and sea-level history of the Tarfaya Basin 

from the early Turonian to early Campanian. A global transgression during the early Turonian (En 

Naila and base of El Amra sections) led to the installation of an oxygen minimum zone on the 

platform of the Tarfaya Basin, resulting in increased deposition of organic matter and unfavourable 

conditions at the sea-floor for benthic foraminifera. In the middle Turonian, the appearance of low-

oxygen tolerant benthic foraminiferal assemblages dominated by Gavelinella sp. (El Amra section, 

Unit 2) marks an improvement in water oxygenation at the sea-floor, probably associated with 

retraction of the oxygen minimum zone further offshore during a regressive phase. The late 

Santonian “dysoxic-anoxic event”, only recorded in the Tah North section, may be related to a 

general intensification and expansion of the oxygen minimum zone in the eastern North Atlantic 

prior to the Santonian-Campanian boundary. High benthic foraminiferal diversity during the early 

Campanian (Tisfourine section) indicates a marked improvement in oxygenation at the sea-floor, 

although organic carbon export flux remained high, as shown by the marine organic matter content. 

Bulk carbonate isotope data are tentatively correlated to the English Chalk carbon isotope 

reference curve of Jarvis et al. (2006), in particular the Hitch Wood Event in the late Turonian, the 

Navigation Event in the early Coniacian, the White Fall and the Horseshoe Bay Event in the 

Santonian and the Santonian/Campanian Boundary Event. Our results further suggest that the 

prominent early Turonian highstand corresponds to the last transgressive pulse below the sequence 

boundary Tu1 and that the regressive phase during the late Turonian is related to the major regression 

associated with sequence boundaries Tu3 and Tu4. The late Santonian “dysoxic-anoxic event” 

recorded in the upper part of the Tah North section possibly coincides with the eustatic sea-level rise 

prior to the Sa3 sequence boundary. The early Campanian transgressive event follows the Sa3 

sequence boundary. 

Further investigation will focus on two sedimentary cores (Tarfaya SN°1 and SN°2), newly 

drilled in the Tarfaya Basin, which provide a continuous and expanded record of shelf sedimentation 

from the Turonian to the Campanian. High resolution XRF core scanning data and bulk stable 

isotopes will allow to closely track short- and long-term variations in elemental composition and in 
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13

C and 
18

O, thus providing an essential dataset to better understand the paleoceanographic 

evolution and the sea-level history of this marginal shelf basin during the Turonian to Campanian. 
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Supplementary Material of Chapter II. Late Cretaceous paleoenvironmental 

evolution of the Tarfaya Atlantic coastal Basin, SW Morocco 

 
Supplementary Figure 1: Lithological log of the El Amra section in the Tarfaya Basin with position of analyzed samples. 
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Supplementary Figure 2: Lithological log of the En Naila and Tisfourine sections in the Tarfaya Basin with position of analyzed 

samples. 
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Supplementary Figure 3: Lithological log of the Akhfennir section in the Tarfaya Basin with position of analyzed samples. 
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Supplementary Figure 4: Lithological log of the Tah North section in the Tarfaya Basin with position of analyzed samples.  
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Supplementary Figure 5: Geochemical records in the En Naila section in the Tarfaya Basin based on isotope stratigraphy and log-

ratios of elements (Si/Ca, Al/Ca and Mn/Ca) derived from X-ray fluorescence scanning. 
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EA 172 top 37 1   15     53  1/8 424 412 0.683 3 10.20 

EA 170 174           174   1/64 11136 7509 0.000 1 24.54 

EA 168 mid 203           203   1/32 6496 7385 0.000 1 40.16 

EA 167             0 0 0 0 0.000 0 0.00 

EA 166 194           194   1/32 6208 8804 0.000 1 14.66 

EA 162             0 0 0 0 0.000 0 0.00 

EA 154 321           321  1/8 2568 6941 0.000 1 15.21 

EA 152 445 10 2       457   1/32 14624 11066 0.133 3 16.45 

EA 150 77           77  1/8 616 885 0.000 1 4.91 

EA 144 77     3 424 1 505   1/16 2020 5008 0.476 4 24.30 

EA 142 119       24   143  1/8 1144 2491 0.452 2 20.80 

EA 141 182 4       51 237   1/32 7584 6936 0.602 3 16.69 
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EA 134 387           387   1/16 6192 6567 0.000 1 17.70 

EA 130 65 1         66   1/16 1056 3345 0.079 2 18.30 

EA 129 58 11         69   1/4  276 797 0.439 2 19.11 

EA 128 71           71  1/8 568 1243 0.000 1 16.20 

EA 127 144           144  1/8 1152 2880 0.000 1 18.03 

EA 126 85           85   1/16 1360 4748 0.000 1 19.30 

EA 125 23           23   1/16 368 902 0.000 1 20.50 

EA 124 146           146   1/2  292 498 0.000 1 33.13 

EA 123 99           99   1/32 3168 8050 0.000 1 30.30 

EA 122 14         1 15   1/16 240 624 0.245 2 20.21 

EA 121 12           12  1/8 96 375 0.000 1 14.70 

EA 120 84           84   1/4  336 255 0.000 1 3.81 

EA 119 54           54   1/16 864 1714 0.000 1 8.81 

EA 118 top 4           4  1/8 32 75 0.000 1 3.46 

EA 118         213   213  1/8 1704 1757 0.000 1 16.27 

EA 116 1     3     4   1/4  16 57 0.562 2 16.24 

EA 115   1         1   1/4  4 11 0.000 1 3.10 

EA 113       4     4   1/16 64 151 0.000 1 17.60 

EA 111 1           1 1 1 2 0.000 1 21.06 

EA 107             0 0 0 0 0.000 0 0.00 

EA 106 93           93   1/16 1488 3740 0.000 1 18.50 

EA 105 104           104  1/8 832 2113 0.000 1 21.18 

EA 103 36           36  1/8 288 809 0.000 1 5.29 

EA 101 40   2       42   1/16 672 3100 0.191 2 6.84 

EA 99 7           7   1/4  28 76 0.000 1 5.89 

EA 97 1   2       3   1/2  6 23 0.637 2 0.01 

EA 95 top 1           1   1/4  4 16 0.000 1 0.00 

EA 95 mid 2           2  1/8 16 60 0.000 1 0.00 

EA 93 top 12           12  1/8 96 275 0.000 1 0.00 

EA 91 50 16         66   1/4  264 353 0.554 2 12.02 

EA 89 23 7         30  1/8 240 1191 0.543 2 17.49 

EA 87 top 8 5         13   1/2  26 68 0.666 2 6.53 

EA 87 base 146           146  1/8 1168 2917 0.000 1 12.00 

EA 85 104           104   1/4  416 1212 0.000 1 13.20 

EA 81             0 0 0 0 0.000 0 6.53 

EA 80             0 0 0 0 0.000 0   

EA 79 3           3   1/2  6 15 0.000 1 0.00 

EA 78             0 0 0 0 0.000 0   

EA 77 2           2   1/2  4 17 0.000 1 0.00 

EA 74             0 0 0 0 0.000 0   

EA 73             0 0 0 0 0.000 0 0.00 

EA 72             0 0 0 0 0.000 0   

EA 71 2           2   1/2  4 16 0.000 1 0.00 

EA 70 nod             0 0 0 0 0.000 0   

EA 70 3           3   1/2  6 15 0.000 1 0.00 

EA 69             0 0 0 0 0.000 0 0.00 

EA 68             0 0 0 0 0.000 0   
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EA 65 3           3   1/2  6 9 0.000 1 0.00 

EA 64             0 0 0 0 0.000 0   

EA 56             0 0 0 0 0.000 0   

EA 50 2 40         42   1/2  84 75 0.191 2 2.76 

EA 47             0 0 0 0 0.000 0   

EA 45             0 0 0 0 0.000 0   

EA 43             0 0 0 0 0.000 0   

EA 40             0 0 0 0 0.000 0 0.00 

EA 39             0 0 0 0 0.000 0 0.00 

EA 37             0 0 0 0 0.000 0 0.00 

EA 36 3           3   1/2  6 17 0.000 1 0.00 

EA 33             0 0 0 0 0.000 0   

EA 32             0 0 0 0 0.000 0 0.00 

EA 31             0 0 0 0 0.000 0 0.00 

EA 30             0 0 0 0 0.000 0 0.00 

EA 29             0 0 0 0 0.000 0   

EA 28             0 0 0 0 0.000 0 0.00 

EA 27             0 0 0 0 0.000 0   

EA 26 top             0 0 0 0 0.000 0 0.00 

EA 26 base             0 0 0 0 0.000 0 0.00 

EA 25             0 0 0 0 0.000 0 0.00 

EA 24             0 0 0 0 0.000 0 0.00 

EA 23             0 0 0 0 0.000 0   

EA 22             0 0 0 0 0.000 0 0.00 

EA 21             0 0 0 0 0.000 0   

EA 20             0 0 0 0 0.000 0 0.00 

EA 18             0 0 0 0 0.000 0 0.00 

EA 17             0 0 0 0 0.000 0 0.00 

EA 16             0 0 0 0 0.000 0 0.00 

EA 15             0 0 0 0 0.000 0 0.00 

EA 14/15             0 0 0 0 0.000 0 0.00 

EA 14             0 0 0 0 0.000 0 0.00 

EA 13             0 0 0 0 0.000 0   

EA 12 base             0 0 0 0 0.000 0   

EA 11             0 0 0 0 0.000 0 0.00 

EA 10             0 0 0 0 0.000 0 0.00 

EA 9 top             0 0 0 0 0.000 0 0.00 

EA 9 base             0 0 0 0 0.000 0 0.00 

EA 8             0 0 0 0 0.000 0   

EA 7 top             0 0 0 0 0.000 0 0.00 

EA 7 base             0 0 0 0 0.000 0 0.00 

EA 6             0 0 0 0 0.000 0   

EA 5   4         4   1/2  8 16 0.000 1 1.23 

EA 4             0 0 0 0 0.000 0 0.00 

EA 2             0 0 0 0 0.000 0   

EA 1             0 0 0 0 0.000 0 0.00 

Supplementary Table 1: Benthic foraminiferal census counts in the El Amra outcrop section, Tarfaya Basin (250-630 µm size 

fractions). 
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Tisf 26 17 4 18 36 11     6 2 2 2 2 100 1/512 51200 38463 1.831 10 

Tisf 21 16   8 9 5     17 6 4   3 68 1/512 34816 28292 1.917 8 

Tisf 16 40 8 6 5 11   3 16 7     3 99 1/512 50688 46605 1.828 9 

Tisf 11 38 4 12 8 6 2 1 10 5 2   6 94 1/128 12032 13638 1.931 11 

Tisf 6 14   16 22 7   4 28 14   2 4 111 1/256 28416 31394 1.956 9 

Tisf 1 17 11 10 12 11   2 25 2 4   4 98 1/1024 100352 78529 2.053 10 

                   

TN 2 46                     7 53 1/128 6784 20366 0.390 2 

TN 12 148                       148 1/256 37888 102873 0.000 1 

TN 22 27 7                     34 1/512 17408 45040 0.508 2 

TN 32 62 1                     63 1/512 32256 93172 0.082 2 

TN 42 16                       16 1/256 4096 7753 0.000 1 

TN 52 136                       136 1/256 34816 96738 0.000 1 

TN 62 5 2                     7 1/256 1792 5238 0.598 2 

TN 72 15                       15 1/512 7680 18422 0.000 1 

                   

T 2 m 21 9                   16 46 1/256 11776 21864 1.044 3 

T 8 12 2                     14 1/1024 14336 9790 0.410 2 

T 13 25 1                     26 1/1024 26624 40248 0.163 2 

T 17 44 6                     50 1/1024 51200 60721 0.367 2 

T 25 25 5                     30 1/1024 30720 43630 0.451 2 

T 37 131 3                     134 1/1024 137216 204069 0.107 2 

T 61 38 1                     39 1/1024 39936 76272 0.119 2 

T 71 101 2                     103 1/512 52736 192327 0.096 2 

T 87 84                       84 1/2048 172032 167509 0.000 1 

                   

EA 166 37 9                     46 1/1024 47104 66805 0.494 2 

EA 152 134 5                     139 1/1024 142336 107708 0.155 2 

EA 150 13 5                     18 1/256 4608 6623 0.591 2 

EA 144 3 17                   5 25 1/512 12800 31738 0.839 3 



 71 

EA 141 37 3                     40 1/1024 40960 37461 0.266 2 

EA 134 19 4                     23 1/512 11776 12490 0.462 2 

EA 124 45 9                     54 1/128 6912 23566 0.451 2 

EA 120 20 2                     22 1/256 5632 17080 0.305 2 

EA 118 3 47                     50 1/1024 51200 6598 0.227 2 

EA 89                                   1 

EA 87 t                                   1 

EA 87 b                                   1 

EA 85                                   1 

EA 81                         0 0 0 0 0.000 0 

EA 80                                     

EA 79                                   1 

EA 78                                     

EA 77                                   1 

EA 74                                     

EA 73                                   1 

EA 72                         0 0 0 0 0.000 0 

EA 71                                   1 

EA 70 n                                     

EA 70                         0 0 0 0 0.000 0 

EA 69                         0 0 0 0 0.000 0 

EA 68                                     

EA 65                         0 0 0 0 0.000 0 

EA 64                                     

EA 56                                     

EA 50                                   2 

EA 47                                     

EA 45                                     

EA 43                                     

EA 40                         0 0 0 0 0.000 0 

EA 39                         0 0 0 0 0.000 0 

EA 37                         0 0 0 0 0.000 0 

EA 36                         0 0 0 0 0.000 0 

EA 33                                     

EA 32                         0 0 0 0 0.000 0 

EA 31                         0 0 0 0 0.000 0 

EA 30                         0 0 0 0 0.000 0 

EA 29                         0           

EA 28                         0 0 0 0 0.000 0 

EA 27                                     

EA 26 t                         0 0 0 0 0.000 0 

EA 26 b                         0 0 0 0 0.000 0 

EA 25                         0 0 0 0 0.000 0 

EA 24                         0 0 0 0 0.000 0 

EA 23                         0           

EA 22                         0 0 0 0 0.000 0 

EA 21                         0           
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EA 20                         0 0 0 0 0.000 0 

EA 18                         0 0 0 0 0.000 0 

EA 17                         0 0 0 0 0.000 0 

EA 16                         0 0 0 0 0.000 0 

EA 15                         0 0 0 0 0.000 0 

EA 14/15                         0 0 0 0 0.000 0 

EA 14                         0 0 0 0 0.000 0 

EA 13                         0           

EA 12 

base                         
            

EA 11                         0 0 0 0 0.000 0 

EA 10                         0 0 0 0 0.000 0 

EA 9 top                         0 0 0 0 0.000 0 

EA 9 base                         0 0 0 0 0.000 0 

EA 8                                     

EA 7 top                         0 0 0 0 0.000 0 

EA 7 base                         0 0 0 0 0.000 0 

EA 6                                     

EA 5                         0 0 0 0 0.000 0 

EA 4                         0 0 0 0 0.000 0 

EA 2                                     

EA 1                         0 0 0 0 0.000 0 

                   

En 24                         - - - - - - 

En 23                         - - - - - - 

En 22                         - - - - - - 

En 21 a                         - - - - - - 

En 21                         - - - - - - 

En 20                         - - - - - - 

En 19 top                         - - - - - - 

En 19 mid                         - - - - - - 

En 19 

45cm                          
- - - - - - 

En 19 a                         - - - - - - 

En 18                         - - - - - - 

En 16                         - - - - - - 

En 15 b                         - - - - - - 

En 15                         - - - - - - 

En 15 a                         - - - - - - 

En 14 b                         - - - - - - 

En 14                         - - - - - - 

En 14 a                         - - - - - - 

En 13                         - - - - - - 

En 12                         - - - - - - 

En 11                         - - - - - - 

En 10 c                         - - - - - - 

En 10                         - - - - - - 

En 10 b                         - - - - - - 

En 10 a                         - - - - - - 
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En 9                         - - - - - - 

En 8 c                         - - - - - - 

En 8                         - - - - - - 

En 8 b                         - - - - - - 

En 8 a                         - - - - - - 

En 7                         - - - - - - 

En 6                         - - - - - - 

En 6 a                         - - - - - - 

En 5                         - - - - - - 

En 4                         - - - - - - 

En 3 e                         - - - - - - 

En 3 d                         - - - - - - 

En 3 c                         - - - - - - 

En 3                          - - - - - - 

En 3 b                         - - - - - - 

En 3 a                         - - - - - - 

En 2                         - - - - - - 

En 1                         - - - - - - 

En 1 b                         - - - - - - 

En 1 a                         - - - - - - 

En 1 base                         - - - - - - 

 

Supplementary Table 2: Benthic foraminiferal census counts in the El Amra, Akhfennir, Tah North, Tisfourine and En Naila outcrop 

sections, Tarfaya Basin (125-250 µm size fractions). 
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En 24 - - - - - - - 

En 23 - - - - - - - 

En 22 - - - - - - - 

En 21 a - - - - - - - 

En 21 - - - - - - - 

En 20 - - - - - - - 

En 19 top - - - - - - - 

En 19 middle - - - - - - - 

En 19 45 cm  - - - - - - - 
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En 19 a - - - - - - - 

En 18 - - - - - - - 

En 16 - - - - - - - 

En 15 b - - - - - - - 

En 15 - - - - - - - 

En 15 a - - - - - - - 

En 14 b - - - - - - - 

En 14 - - - - - - - 

En 14 a - - - - - - - 

En 13 - - - - - - - 

En 12 - - - - - - - 

En 11 - - - - - - - 

En 10 c - - - - - - - 

En 10 - - - - - - - 

En 10 b - - - - - - - 

En 10 a - - - - - - - 

En 9 - - - - - - - 

En 8 c - - - - - - - 

En 8 - - - - - - - 

En 8 b - - - - - - - 

En 8 a - - - - - - - 

En 7 - - - - - - - 

En 6 - - - - - - - 

En 6 a - - - - - - - 

En 5 - - - - - - - 

En 4 - - - - - - - 

En 3 e - - - - - - - 

En 3 d - - - - - - - 

En 3 c - - - - - - - 

En 3  - - - - - - - 

En 3 b - - - - - - - 

En 3 a - - - - - - - 

En 2 - - - - - - - 

En 1 - - - - - - - 

En 1 b - - - - - - - 

En 1 a - - - - - - - 

En 1 base - - - - - - - 

 

Supplementary Table 3: Benthic foraminiferal census counts in the En Naila outcrop section, Tarfaya Basin (250-630 µm size 

fractions). 
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T 2 melk 335       335   1/8  2680 4975 0.000 1 31.53 

T 2 cal 140       140   1/32 4480 4630 0.000 1 15.40 

T 6 193   2   195   1/32 6240 5274 0.057 2 24.69 

T 7 22       22   1/8  176 462 0.000 1 28.71 

T 8 141       141   1/32 4512 3081 0.000 1 31.96 

T 12 84       84   1/32 2688 2347 0.000 1 7.17 

T 13 182   1   183   1/16 2928 4426 0.034 2 19.26 

T 14 283       283   1/64 18112 17944 0.000 1 23.51 

T 17 398       398   1/32 12736 15103 0.000 1 39.80 

T 21 310       310   1/16 4960 11659 0.096 1 20.63 

T 25 195       195   1/32 6240 8861 0.000 1 31.33 

T 31 147       147    1/128 18816 16846 0.000 1 21.70 

T 32 14       14   1/8  112 122 0.683 1 3.16 

T 37 387       387   1/64 24768 36835 0.000 1 65.87 

T 45 280 100     380    1/128 48640 33168 0.576 2 52.50 

T 51 448     22 470   1/32 15040 21002 0.189 2 21.87 

T 61 267       267   1/32 8544 16316 0.000 1 52.79 

T 66 66       66   1/32 2112 5363 0.000 1 4.86 

T 67 83       83   1/8  664 1143 0.000 1 7.14 

T 71 334       334   1/16 5344 19484 0.000 1 26.33 

T 78 115       115   1/16 1840 6352 0.000 1 13.39 

T 82 35       35   1/32 1120 1963 0.000 1 8.89 

T 83 255 83     338   1/16 5408 6998 0.557 2 32.42 

T 87 476 11     487    1/128 62336 60695 0.108 2 36.46 

T 91 45 85     130   1/16 2080 3370 0.645 2 7.90 

 

Supplementary Table 4: Benthic foraminiferal census counts in the Akhfennir outcrop section, Tarfaya Basin (250-630 µm size 

fractions). 
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TN 76 96           96   4/16 384 2119 0.000 1 58.81 

TN 75 54         1 55   2/16 440 1193 0.091 2 8.99 

TN 74 5           5   1/16 80 249 0.000 1 2.68 

TN 73 2 2         4   1/16 128 311 0.693 2 2.88 

TN 72 15   2       17   1/16 272 757 0.362 2 4.73 

TN 71 26   1       27   1/16 864 2487 0.158 2 5.02 

TN 70 14         1 15   1/16 480 1287 0.245 2 5.66 

TN 69 56           56   2/16 448 1465 0.000 1 11.74 

TN 68 50           50   1/16 800 2993 0.000 1 7.48 

TN 67 42           42   2/16 336 1202 0.000 1 10.02 

TN 66 5           5   2/16 40 144 0.000 1 3.49 

TN 65 40           40   2/16 320 1218 0.000 1 7.60 

TN 64 24 7 6       37   1/16 592 3161 0.891 3 7.83 

TN 63 2           2   1/16 32 91 0.000 1 2.01 

TN 62 10           10   4/16 40 216 0.000 1 2.68 

TN 61 3   1       4   2/16 32 134 0.562 2 2.01 

TN 60 5           5   2/16 40 88 0.000 1 1.71 

TN 59 117 17         134   1/16 4288 11953 0.380 2 21.04 

TN 58 120           120   1/16 1920 3927 0.000 1 23.96 

TN 57 57   63       120   1/16 1920 6434 0.692 2 30.68 

TN 56 22 4         26   2/16 208 656 0.429 2 6.60 

TN 55 32           32   1/16 512 1425 0.000 1 23.20 

TN 54 117           117   1/16 1872 6525 0.000 1 48.64 

TN 53 172   1       173   2/16 1384 3712 0.036 2 27.15 

TN 52 128           128   2/16 1024 2845 0.000 1 19.19 

TN 51 131           131   1/16 4192 11129 0.000 1 31.51 

TN 50 340           340   1/16 5440 9989 0.000 1 45.05 

TN 49 95           95   1/16 3040 10261 0.000 1 35.71 

TN 48 122           122   1/16 3904 10378 0.000 1 52.22 

TN 47 101           101   1/16 1616 6433 0.000 1 18.40 

TN 46 217           217   1/16 3472 6355 0.000 1 41.50 

TN 45 26           26   1/16 832 1695 0.000 1 20.20 

TN 44 49   1       50   1/16 800 1681 0.098 2 23.71 

TN 43 149           149   1/16 4768 9379 0.000 1 27.32 

TN 42 55   9       64   2/16 512 1298 0.406 2 11.87 
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TN 41 182 1 2       185   1/16 5920 19536 0.093 3 26.46 

TN 40 54   1       55   2/16 440 1995 0.091 2 14.05 

TN 39 53   3       56   2/16 448 1420 0.209 2 17.22 

TN 38 47   7       54   1/16 864 2074 0.386 2 13.43 

TN 37 66   2       68   1/16 1088 2640 0.133 2 28.28 

TN 36 182   10       192   1/16 6144 12715 0.205 2 17.45 

TN 35 109   6       115   1/16 1840 4961 0.205 2 27.49 

TN 34 73   2       75   1/16 1200 3137 0.123 2 19.55 

TN 33 136   11       147   1/16 4704 12534 0.266 2 19.44 

TN 32 141 1         142   2/16 1136 3471 0.042 2 22.99 

TN 31 96   1       97   2/16 776 3313 0.057 2 25.26 

TN 30 75 1         76   2/16 608 2139 0.070 2 35.78 

TN 29 168 4 8       180   1/16 5760 15110 0.287 3 29.00 

TN 28 46 4         50   2/16 400 1526 0.279 2 12.43 

TN 27 125 1 1       127   2/16 1016 3973 0.092 3 14.73 

TN 26 19           19   2/16 152 756 0.000 2 10.07 

TN 25 189   1       190   2/16 1520 4488 0.033 2 40.09 

TN 24 173 2 1       176   2/16 1408 5844 0.097 3 26.87 

TN 23 258           258   1/16 4128 12973 0.000 2 45.27 

TN 22 58   5       63   1/16 1008 3297 0.277 2 23.05 

TN 21 60   1       61   2/16 488 2076 0.084 2 10.60 

TN 20 103   3       106   2/16 848 3578 0.129 2 37.32 

TN 19 129 3         132   2/16 1056 2896 0.108 2 12.85 

TN 18 53           53   2/16 424 1355 0.000 1 21.66 

TN 17 137   2       139   1/16 4448 13725 0.075 2 28.58 

TN 16 122   7       129   1/16 2064 7434 0.211 2 15.42 

TN 15 88           88   2/16 704 2610 0.000 1 33.03 

TN 14 218 1 2       221   2/16 1768 6906 0.080 3 22.59 

TN 13 128       1   129   1/16 2064 6351 0.045 2 8.37 

TN 12 229           229   1/16 3664 12056 0.000 1 43.94 

TN 11 135 4         139   4/16 556 1743 0.130 2 40.75 

TN 10 156 1         157   2/16 1256 5294 0.039 2 13.38 

TN 9 46 1 1       48   1/16 768 2695 0.202 3 11.66 

TN 8 31           31   1/16 496 2202 0.000 1 31.19 

TN 7 106 1 1       108   1/16 1728 6348 0.105 3 16.41 

TN 6 29           29   4/16 116 554 0.000 1 5.35 

TN 5 34           34   2/16 272 995 0.000 1 19.69 

TN 4 88 1         89   2/16 712 2623 0.062 2 26.24 

TN 3 70 1         71   1/16 1136 3655 0.074 2 24.22 

TN 2 59 3   20     82   2/16 656 3918 0.702 3 32.17 

TN 1 23 2         25   1/16 400 1181 0.279 2 11.87 

 

Supplementary Table 5: Benthic foraminiferal census counts in the Tah North outcrop section, Tarfaya Basin (250-630 µm size 

fractions). 
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Samples / species Tisf 28 Tisf 27 Tisf 26 Tisf 25 Tisf 24 Tisf 23 Tisf 22 Tisf 21 Tisf 20 Tisf 19 Tisf 18 

B
en

th
ic

 F
o

ra
m

in
if

er
a 

Gavelinella dakotensis 12 11 32 22 8 5 3 10 2 7 15 

Lingulogavelinella sp. 45 20 25 15 13 26 29 23 6 31 8 

Gyroidinoides nitidus 33 16 22 24 8 17 16 30 14 2 2 

Lenticulina articulata    44 15 18 8 15 14 17 29 

Globulina prisca    2   3     

Flabellina sp. 4 6 1 5 1  3 1 2 4 1 

Pyramidulina sp. 3 7 2 8   1 3  2 3 

Stilostomella alexanderi 1 3 3  3 2 2 15 7 5 2 

Osangularia cordieriana  5 4  20 27      

Lenticulina sp. 30 11 12         

Frondicularia lanceola 1 2  3 1  1 1   1 

Siphogenerinoides sp. 2 6 11  1 8 11 10 5 14 4 

Marginulinopsis curvisepta          1  

Marginulina bullata 3 3  1 1  3  1  2 

Spiroplectammina cretosa 4  5 38 26 26 32 17 8 2 4 

Ramulina sp. 3 3 6 4 1 1 2 5 1 11 4 

Pseudonodosaria humilis 1   3        

Laevidentalina spp.    8   3 3 2 1  

Lingulonodosaria sp.           1 

Pleurostomella subnodosa           1 

Pseudoclavulina sp. 2    1 1 8 3    

Siphonodosaria sp.           1 

Marginulinopsis subrecta      1  1    

Praebulimina sp.        4    

Laevidentalina soluta     1  1     

Pyramidulina obscura     1  1     

Globulina spp. 3 5  1        

Pyramidulina obsolescens   1         

Indeterminate Taxa  3 1  1 1    2  

Number of benthic foraminifera 

picked in fraction 250-630 µm 
147 101 125 178 102 133 127 141 62 99 78 

Split 1/8 1/8 1/8 1/8 1/16 1/8 1/8 1/16 1/8 1/16 1/16 

Reconverted total of benthic 
foraminifera  from fraction 

250-630 µm 

1176 808 1000 1424 1632 1064 1016 2256 496 1584 1248 

Number of benthic foraminifera 

in fraction 250-630 µm per 100 
g of sample 

1195 633 715 1267 1000 1053 1158 1781 694 1309 1257 

Diversity index (Shannon-

Weaver index) 
1.959 2.409 2.072 2.123 2.123 1.998 2.231 2.303 2.077 2.063 2.062 

Number of species 15 14 13 14 16 12 17 15 11 13 15 

% of benthic foraminifera 25.59 28.93 38.04 35.31 19.36 43.63 27.64 22.52 15.73 28.41 12.32 
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Tisf 17 Tisf 16 Tisf 15 Tisf 14 Tisf 13 Tisf 12 Tisf 11 Tisf 10 Tisf 9 Tisf 8 Tisf 7 Tisf 6 Tisf 5 Tisf 4 Tisf 3 Tisf 2 Tisf 1 

8 16 50 26 8 4 18 25 25 38 52 25 30 20 38 24 42 

16 48 82 55 30 4 38 44 42 4   2 4 15 23   22 

  34 68 30 30 21 18 3 8 14 10 17 3 1 5 20   

26 30 47 36 29 26 38 26 29 33 18 27 22 12 18 22 21 

  5 2   1     2   1 1 1   1 6 1 11 

6 4 6 5 5 3 9 7 6 6 11 4 2 7 3 1 2 

  2 2 1   2 6 8 2 2 1 2   1     1 

  1   4       3   2 6     5 1     

      3       13 6 33 15 14 4         

                                  

4   2 1 3 2 3 2   2 2       1 5   

4 8                               

1         1 1                     

  3         1   1                 

  14 7 2 2 9       1         1     

2 1 4 1   1 4 1 4 6 1 3   2 1 1 1 

    1 1           2 1             

1 1 1 3     1   1                 

                                  

    1             1               

        1 3 1 2 1   3             

                                  

    1                             

                                  

                                  

                                  

                                  

                                  

            0     2   2         2 

68 167 274 168 109 76 138 136 125 147 121 97 65 64 97 74 102 

 1/8  1/8  1/8  1/8  1/8  1/2  1/4  1/4  1/8  1/8  1/4  1/8  1/8   1/16  1/8   1/16   1/16 

544 1336 2192 1344 872 152 552 544 1000 1176 484 776 520 1024 776 1184 1632 

456 1228 2469 936 734 183 613 764 1097 1138 599 936 569 733 949 1342 1277 

1.735 1.980 1.748 1.804 1.654 1.846 1.885 1.927 1.787 1.998 1.796 1.816 1.316 1.762 1.642 1.436 1.507 

9 13 14 13 9 11 12 12 11 15 12 10 6 9 10 7 8 

19.85 33.30 34.54 26.51 29.30 21.77 35.23 32.19 30.72 31.04 21.31 22.24 23.20 11.55 27.99 17.65 20.37 

Supplementary Table 6: Benthic foraminiferal census counts in the Tisfourine outcrop section, Tarfaya Basin (250-630 µm size 

fractions). 
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Abstract  

The upper Turonian to Campanian organic-rich successions, deposited in the continuously 

subsiding Tarfaya Atlantic coastal basin (SW Morocco), allow detailed reconstruction of depositional 

environments at the upper edge of an oceanic oxygen minimum zone impinging on a broad 

continental shelf. We present high-resolution X-ray fluorescence (XRF) scanning, bulk carbon and 

oxygen isotope records from two newly drilled sediment cores in the Tarfaya Basin (Tarfaya SN°1 

(27° 57´ 43.1´´N, 12° 48´ 37.0´´W) and Tarfaya SN°2 (27° 42´ 36.6´´N, 12° 56´ 39.0´´W), which 

recovered a continuous upper Turonian to Campanian sedimentary succession of ~290 m thickness. 

The XRF core scanning records show three long-term oscillations in the abundance of terrigenous 

elements (increase of Al, Ti, K, Si and Fe normalized against Ca) during the Coniacian and 

Santonian. This interval, which roughly corresponds to the Coniacian-Santonian Anoxic Event 

(OAE-3), is characterized by overall oxygen depleted to anoxic conditions at the sea-floor (indicated 

by the high organic carbon content, the presence of laminations and by low manganese/sulphur, high 

vanadium/calcium and bromine/calcium ratios in XRF scanning records). A major change in 

environmental conditions during the early Campanian is reflected by enhanced accumulation of fine-

grained carbonate and clay-rich hemipelagic sediments, indicating a substantial improvement in 

bottom water ventilation. Two major unconformities (U1/U2 and U3), which punctuate the upper 

Turonian to lower Campanian succession in Tarfaya SN°1 and 2, are correlative to the base of the 

Merchantville III and Magothy III sequence boundaries of Miller et al., (2004) and Mizintseva et al. 

(2009), respectively. Stable isotope data of bulk carbonates are correlated to the English Chalk, the 

Niobrara Formation (US Western Interior Seaway) and to the stacked carbon isotope reference curve 

of Wendler (2013). The Tarfaya carbon isotope curve reveals in particular the Navigation Event in 

the Coniacian, the Haven Brow, the Horseshoe Bay and the Buckle Events in the Santonian as well as 

the Santonian/Campanian Boundary Event. The early Campanian δ
13

C record exhibits two long-term 

cycles (~2 – 2.4 Myr), which are probably related to variations in the Earth’s eccentricity and are 

associated with a long-term trend of cooling and improving deep-water ventilation in the Tarfaya 

Basin. 

 

Key words: Late Cretaceous, Tarfaya Basin, bulk carbon and oxygen isotopes, high-resolution X-ray 

fluorescence (XRF) scanning, oceanic anoxic event, sea-level. 
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1. Introduction  

The Late Cretaceous was characterized by several Oceanic Anoxic Events (OAEs), marked 

by the widespread deposition of organic-rich black shales in coastal and open ocean areas (Schlanger 

and Jenkyns, 1976). These events have been associated with periods of rising sea-level and positive 

carbon isotope (
13

C) excursions related to global enhanced burial of 
12

C-enriched organic matter 

(OM) (Arthur et al., 1990; Calvert and Pedersen, 1993). The paleoenvironmental conditions during 

these episodes of organic-rich deposition as well as the causes and consequences of attendant 

perturbations in biogeochemical cycles have been the subject of intense, and partly controversial, 

debate over the last decades (e.g., Gautier, 1987; Arthur et al., 1988; Arthur and Sageman, 1994; 

Brumsack, 2006). Unresolved issues include the global character of anoxic events, their 

sensitivity/response to orbital climate forcing, the frequency and amplitude of associated sea-level 

fluctuations, the possible triggering mechanisms such as voluminous volcanic CO2 release and the 

nature of subsequent perturbations in the weathering and nutrient cycles. 

Reconstructions of eustatic sea-level changes during the Cretaceous were initially based on 

global syntheses of sequence-stratigraphic data, which are still widely used as an exploration and 

first-order global correlation tool (Haq et al., 1988; Hardenbol et al., 1998; Haq, 2014). Eustatic 

curves were derived from the analyses and correlation of local and regional relative sea-level changes 

along the world’s continental margins and resulted in the identification of as many as 58 third-order 

eustatic events in the Cretaceous (Haq, 2014). These potentially eustatic fluctuations are mainly 

expressed as relative rapid and large amplitude sea-level falls and most of them are documented in 

several basins, although the precise stratigraphic correlation of many events remains ambiguous 

(Miall, 2009; Haq, 2014). The causes for such rapid sea-level falls during the largely ice-free 

Cretaceous remain a matter of vigorous discussion. However, the buildup of transient ice sheets in 

Antarctica has been proposed as the most likely explanation (Miller et al., 2005; Flögel et al., 2011; 

Haq, 2014). 

The expanded succession of organic-rich marlstones and limestones within the Tarfaya Basin 

provides an excellent opportunity to reconstruct climate evolution and sea-level changes through the 

late Turonian to early Campanian. This marginal basin along the East Atlantic passive continental 

margin was continuously subsiding during the late Albian to early Campanian, resulting in deposition 

of a ~700 m thick series of hemipelagic marlstones and limestones in the distal part of the basin close 



 84 

to the present day coastline near the town of Tarfaya  (Choubert et al., 1966; Wiedmann et al., 1978; 

Aquit et al., 2013). The sedimentary succession can be subdivided in a hierarchy of lithological units, 

from lithological units with thicknesses of several tens of meters, bedding in the scale of decimeter to 

meters to fine lamination on the millimeter scale. Several Upper Cretaceous sequences 

(unconformity-bounded units) were discriminated in outcrop sections (Choubert et al., 1966; Aquit et 

al., 2013), and excellent age control can be achieved with abundant planktonic foraminifers, 

ammonites and calcareous nannoplankton in partly excellent preservation (Choubert et al., 1966; 

Lehman et al., 1966; Wiedmann et al., 1978; Kuhnt et al., 1995, 1997, 2004, 2009). Previous studies 

mainly focused on the intensity of anoxia, the magnitude and nature of the δ
13

C excursion, the biotic 

effects on benthic and planktonic foraminifera, biostratigraphic records and paleo-environmental 

evolution during the Cenomanian/Turonian OAE-2 event (e.g., El Albani et al., 1999 a, b; Holbourn 

et al., 1999; Kuhnt et al., 1997, 2005, 2009; Kolonic et al., 2002, 2005; Mort et al., 2007, 2008; 

Gertsch et al., 2010; Aquit et al., 2013).  

Here, we analyse a 290 m composite record of late Turonian to early Campanian 

sedimentation from two drill cores, recovered in 2009 in the central part of the Tarfaya Basin close to 

the Sebkha Tah and the town of Tarfaya. Our main objectives are (1) to reconstruct the 

paleoenvironmental evolution and sea-level changes of the Tarfaya coastal basin during the late 

Turonian to early Campanian, based on visual core description, bulk carbonate stable isotopes and X-

ray fluorescence scanner derived elemental distribution data; (2) to correlate Upper Cretaceous 

successions in the newly drilled cores with more proximal outcrop sections (Aquit et al., 2013); (3) to 

date and correlate observed unconformities (based on carbon isotope and elemental ratio fluctuations 

and inferred sequence boundaries) to unconfomities in other sedimentary basins, and (4) to compare 

the local sea-level record to other sea-level curves (Hardenbol et al., 1998; Miller et al., 2004; Haq, 

2014)  in order to investigate the influence of eustatic sea-level fluctuations on the sedimentation in 

the Tarfaya Basin. 

2. Material and Methods 

2.1. Drilling of Cores Tarfaya SN°1 and 2 

The East Atlantic passive continental margin and in particular the Tarfaya Basin, with its 

rapid subsidence during the Late Cretaceous provides an excellent location to recover Cretaceous 

deposits, which are affected by minimal regional tectonic influences (Choubert et al., 1966). Two 
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drill cores Tarfaya SN°1 and 2 (approximately 30 km apart) were recovered with the help of 

ONHYM (National Office of Hydrocarbons and Mines of Morocco) during October-December 2009 

(Fig. 1). Core Tarfaya SN°1 is located relatively close to the Sebkha Tah, about 30 km south-east of 

the town of Tarfaya (27° 42´ 36.6´´N, 12° 56´ 39.0´´W). Core Tarfaya SN°2 is located relatively 

close to the coastline, about 10 km East of the town of Tarfaya (27° 57´ 43.1´´N, 12° 48´ 37.0´´W). A 

total of 550 meters of sediment was recovered with a Longyear L44 hydraulic drilling system 

“Sondeuse hydraulique WD3500” from these two drill sites (350 m at Tarfaya SN°1 and 200 m at 

Tarfaya SN°2). Metal core barrels (3.05 m long) were used with a diameter of 8.8 cm in the upper 

part of each hole (from 0 to 147 m for core Tarfaya SN°1 and from 0 to 57.3 m for core Tarfaya 

SN°2) and with a diameter of 6.8 cm in the lower part of each hole. Individual drilled sections of 3.05 

m were divided into segments (80 cm), which were inserted into plastic sleeves and sealed to avoid 

desiccation of shales and stored in wooden boxes for transport. Segments were split into archive and 

working halves with a high precision Kaufmann-Titan diamond rock saw. The cores consist of 

Cretaceous laminated marlstones and bituminous limestones with high organic matter content, 

overlain by poorly consolidated Moghrabien lumachelle and sandstone beds. The depth scale of each 

core is based on the cumulative length of core barrels. Detailed core descriptions made on oriented 

working half segments prior to x-ray fluorescence scanning (XRF) are presented in the 

Supplementary Material (Suppl. Figs. 1a, b and 2a, b). 
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Figure 1: Location of the Tarfaya SN°1 and 2 cores and outcrop sections in the Tarfaya Basin, which form the base for a composite 

late Turonian to early Campanian stratigraphic log. Sections 1, 2 and 3 (Coniacian to Santonian and early Campanian, respectively) 

were previously studied by Aquit et al. (2013) and section 4 (early Campanian) by Holbourn et al. (1999). Geological map modified 

after Choubert et al. (1966). 

2.2. Micropaleontology  

A total of 73 (42 samples from core Tarfaya SN°1 and 31 samples from core Tarfaya SN°2) 

micropaleontological samples from bituminous marls with high organic matter content were crushed 

and processed using an alcoholic solution of anionic tensides (REWOQUAT by REWO-Chemie, 

Steinau, Germany), which helped to break down indurated samples. Around 50 g of dry sediments 

from each sample were washed and sieved into 150, 250 and 630 µm fractions. Planktonic 

foraminifera from the 250-630 µm fraction were picked and a biostratigraphic zonation of planktonic 

foraminifera was established, based on the zonation of Robaszynski and Caron (1995). A total of 18 

subsamples were taken for nannofossil investigation to support and refine the biostratigraphy, using 

the Late Cretaceous (UC) zonation of Burnett et al. (1998). 
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2.3. Line-scanning and core photography 

Line scan measurements and photographs were acquired with a Ja CVL 1073 CCD color line 

scan camera with 3 sensors of 2048 pixels and Dichroic RGB beam splitter prism (RGB channels at 

630 nm, 535 nm and 450 nm) at the Institute of Geosciences, Christian-Albrechts-University in Kiel. 

Color measurement in L*a*b* units are from RGB digital images. Scanning was performed 

(resolution of 143 pixel per 1 centimeter) on the polished surface of oriented cores.  

2.4. X-ray fluorescence (XRF) core scanning  

Elemental composition of the sediment was analyzed on the working half core surfaces, using 

the second generation Avaatech X-ray fluorescence core scanner at the Institute of Geosciences, Kiel 

University. The core surface was covered with 4 m thickness Ultralene plastic film to avoid 

contamination and to protect the detector. Measurements were taken continuously over the entire 

spliced core length at 1 cm intervals with a downcore slit size of 10 mm over a 1 cm
2
 area. A few 

short intervals, mainly in the clay-rich upper part of SN°1, which were too disturbed to obtain smooth 

surfaces, could not be scanned and appear as gaps in the plots. Tube voltage settings of 10, 30 and 50 

kV were used with a sampling time of 10 s to analyze the following elements: Al, Si, Ti, Fe, Mn, S, 

K, Ba, Zr, Sr, Br and Ca.  Raw data spectra were processed by the analysis of X-ray spectra with the 

iterative least square software (WIN AXIL) package from Canberra Eurisys. Results are reported in 

the logarithms of elemental ratios, which provide the most easily interpretable signals of relative 

changes in chemical composition downcore and minimize the risk of measurement artifacts from 

variable signal intensities and matrix effects (Weltje and Tjallingii, 2008). 

Variations in the abundance of the major elements K, Fe, Ti, Si and Al are commonly used to 

reconstruct abundance changes in the terrigenous component of marine sediments (Peterson et al., 

2000; Haug et al., 2001; Jaeschke et al., 2007; Mulitza et al., 2008; Tisserand et al., 2009; Govin et 

al., 2012). We normalized these records against Ca, mainly derived from the biogenic carbonate of 

marine organisms and expressed the ratio of terrestrial derived elements vs. marine carbonate as 

log((Al+Ti+Fe+K+Si)/Ca).  

We used the relative abundance of vanadium (expressed as log(V/Ca)) as a proxy for 

enhanced organic matter accumulation and reducing conditions in the sediments, since V is 

commonly associated with organic matter in marine sediments either by direct incorporation in 
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organic complexes or absorption on particulate organic matter during scavenging (Lewan and 

Maynard, 1982; Prange and Kremling, 1985). Vanadium in deposited particulate organic matter is 

also more stable under anoxic conditions and, thus, indicates not only enhanced accumulation of 

organic matter but also oxygen-depleted conditions at the sea-floor making V a useful paleoredox 

proxy (Shaw et al., 1990; Tribovillard et al., 2006).  

Log(Mn/S) additionally provides information about deep-water oxygenation, as the 

sedimentary Mn content in organic-rich environments is almost entirely dependent upon redox 

conditions.  Minerals containing reduced Mn are rare in marine sediments (Calvert and Pedersen, 

1996; Tribovillard et al., 2006) and modern and Cretaceous upwelling deposits are commonly 

depleted in Mn (Brumsack, 1986). Sulfur can be used to evaluate the degree of pyritization in 

sediments, which is related also to the TOC content. Low pyritization associated with low TOC 

content indicates well oxygenated conditions during sedimentation (Rachold and Brumsack, 2001), 

thus higher log(Mn/S) indicate more oxygenated bottom waters. 

Log(Zr/Rb) is related to the distance of the clastic source and grain size variation in the 

sediments. Liu et al., 2004 and Chen et al., 2006 were using the Zr/Rb-ratio as grain size proxy in the 

Loess sequence in China. Zirconium is bound to zircon, a heavy mineral, generally transported over 

short distances, whereas Rb represents a light element derived from biotite and transported in clay 

minerals over long distances. High log(Zr/Rb) values indicate an increase in grain size and/or a 

proximal source and sediment transport over a reduced distance. 

2.5. Stable isotope analysis of bulk carbonate  

A total of 800 samples (500 samples from core Tarfaya SN°1 and 300 samples from core 

Tarfaya SN°2) were analyzed for stable isotopes of bulk carbonates. Measurements were made with a 

Finnigan MAT 251 or MAT 253 mass spectrometer at the Leibniz Laboratory for Radiometric 

Dating and Stable Isotope Research at the Christian-Albrechts University in Kiel. The instruments 

are coupled online to a Carbo-Kiel device for automated CO2 preparation of carbonate samples. 

Samples were reacted by individual acid addition. The system has an accuracy (on the delta scale) of 

± 0.05‰ for carbon and ± 0.08‰ for oxygen isotopes. The results were calibrated using the National 

Institute Bureau of Standards and Technology (Gaithersburg, Maryland) carbonate isotope standard 

NBS 20, internal standards and NBS 19 and are reported as 
13

Ccarb on the PeeDee belemnite (PDB) 

scale.  
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3. Results  

3.1. Chronostratigraphy 

The chronostratigraphy of cores Tarfaya SN°1 and 2 is primarily based on plankton 

foraminiferal zonation, which was supplemented by calcareous nannoplankton datums. We adapted 

the zonation of Robaszynski and Caron (1995), which defines the four global planktonic 

foraminiferal zones between the early Campanian to late Turonian that can be clearly discriminated 

in cores Tarfaya SN°1 and SN°2 (Fig. 2): 

1. Globotruncanita elevata Zone (lower Campanian) 

2. Dicarinella asymetrica Zone (late Coniacian to the Santonian/Campanian boundary) 

3. Dicarinella concavata Zone (early Coniacian to late Coniacian) 

4. Marginotruncana sigali Zone (late Turonian to early Coniacian) 

The top of the G. elevata zone is not reached in SN°1, as the youngest sediment was 

deposited in calcareous nannoplankton Zone UC15c. The first occurrence of typical lower 

Campanian planktonic foraminiferal assemblages with Globotruncanita elevata and G. stuartiformis 

in SN°1 is observed at 158.24 mcd, the last occurrence of D. asymetrica is at 158.80 m, the first 

occurrence of G. elevata (in association with D. asymetrica) at 159.03 mcd, and the last sample 

without early Campanian Globotruncanita and common D. asymetrica is at 159.41 mcd, which 

places the Santonian-Campanian boundary between 159.03 mcd and 159.41 mcd. This position of the 

Santonian-Campanian boundary, as defined by the FO of G. elevata, is located in the upper part of 

the positive carbon isotope shift, at or very close to a distinct sediment change at approx. 159.20 mcd 

(Fig. 2). On the basis of nannoplankton zones this interval lies within Zone UC14a, which 

corresponds to the early Campanian. Based on calcareous nannoplankton, the Santonian-Campanian 

boundary, placed at the base of nannoplankton Zone UC13, is located around 179.30 mcd in the 

Tarfaya cores, ~20 m deeper than the base of the G. elevata Zone (Fig. 2). This discrepancy may 

have two possible explanations: (1) a delayed first occurrence of the deep-dwelling G. elevata in the 

Tarfaya Basin, in analogy to similar late occurrences of H. helvetica and D. concavata or (2) 

inconsistencies in the existing correlation of Tethyan planktonic foraminiferal zones and boreal 

calcareous nannoplankton zones at the base of the Campanian (Gale et al., 1995). 

The base of the Dicarinella asymetrica Zone is commonly used to define the 

Coniacian/Santonian boundary (Robaszynski and Caron, 1995; Gradstein et al., 2012). However, the 



 90 

exact placement of this event may vary due to the continuous evolution from D. concavata into D. 

asymetrica and the relatively rare occurrence of D. asymetrica in the early part of its range. We 

previously defined the base of this zone by the first occurrence of typical specimens of D. asymetrica 

with five or more chambers in the last whorl, a wide umbilicus and distinct umbilical ridges (Aquit et 

al., 2013). However, these typical D. asymetrica are very rare in the lower part of the D. asymetrica 

Zone, where D. concavata and intermediate forms between D. concavata and D. asymetrica 

dominate the assemblages of umbilicoconvex Dicarinella. Using the first rare occurrences of D. 

asymetrica, the base of the D. asymetrica Zone in cores Tarfaya SN°1 (204.38 m) and SN°2 (57.20 m 

= 210.45 mcd) falls into the nannoplankton zone UC11a, above the base of L. grillii, which 

corresponds to a late Coniacian age. We placed the Coniacian/Santonian boundary above this datum. 

The lower boundary of the Dicarinella concavata Zone is well defined by the first appearance 

of D. concavata at 104.16 m in core Tarfaya SN°2. However, the first occurrence of D. concavata in 

the Tarfaya Basin appears somewhat later than its global first appearance in the late Turonian. In 

outcrop sections of the Tarfaya Basin, D. concavata first occurs above the early Coniacian “astarte-

lumachelle” marker beds (Aquit et al., 2013), which were dated by ammonites as early Coniacian 

(Choubert et al., 1966; Wiedmann et al., 1978). An early Coniacian first occurrence of D. concavata 

in the Tarfaya Basin is supported by our correlation to the calcareous nannofossil zonation, which 

indicates that the base of the D. concavata Zone is above the first occurrence of M. staurophora 

within nannoplankton Zone UC10 (lower to middle Coniacian).  
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Figure 2: Correlation of the Tarfaya SN°1 and 2 cores based on bulk carbon isotope (13C), XRF-scanning Al/Ca and Zr/Rb and 

planktonic foraminiferal biostratigraphy. Red dashed lines correspond to the unconformities in cores Tarfaya SN°1 and 2, black dashed 

line corresponds to the tie point for correlation at 191.6 m in Tarfaya SN°1 and at 38.85 m in Tarfaya SN°2. Late Cretaceous (UC) 

nannoplankton Zones from Burnett et al., (1998). N. Z.: nannoplankton Zone; F. Z. foraminiferal Zone; D.c. Z.: D. concavata Zone; 

Sant.: Santonian. 

3.2. Correlation of cores Tarfaya SN°1 and SN°2  

The correlation of cores Tarfaya SN°1 and SN°2 is based on elemental ratios Al/Ca and Zr/Rb 

derived from XRF scanning, lithological descriptions, line-scan records, bulk carbonate stable 

isotopes and planktonic foraminiferal biostratigraphy (Fig. 2 and Suppl. Fig. 3). We define the tie 

point for correlation at 191.6 m in Tarfaya SN°1 and at 38.85 m in Tarfaya SN°2. This corresponds 

to a lithological change from laminated black shale with nodular limestones to light brown 

marlstones in both cores. This correlation is further supported by a decrease in lightness (L*), a major 

increase in Zr/Rb and a long-term decrease in Al/Ca, at the base of the D. asymetrica Zone in both 

cores. The negative excursion in the bulk carbonate stable isotopes at 39.49 m in core Tarfaya SN°2 

is further correlated to the first negative excursion at 192.73 m in core Tarfaya SN°1, supporting the 

lithological correlation. Both negative excursions have values ~ -4‰.  
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We constructed a composite depth scale (referred to as mcd) for the two cores using the depth 

scale of core Tarfaya SN°1 for the upper 191.6 m and the part below 38.85 m in core Tarfaya SN°2 

for the lower part of the composite section. Thus, composite depths in core Tarfaya SN°2 can be 

calculated as:  

 

Composite depth (mcd) = depth in SN°2 (m) - 38.85 m + 191.6 m.  

 

The total composite length of the two cores is 290 mcd. Downcore depths are given as mcd, when 

referring to the composite section between the two cores, whereas downcore depths in individual 

cores are given in m. 

3.3. Lithology and regional unconformities 

Cores Tarfaya SN°1 and 2 are divided into lithological units, based on visual core 

descriptions and XRF-derived elemental data. Detailed lithological descriptions are provided in the 

supplementary material (Suppl. Figs. 1 and 2). The upper 14 m in core Tarfaya SN°1 and the upper 

24.6 m in core Tarfaya SN°2 consist of Plio-Pleistocene (“Moghrabien”) sediments, including 

sandstones, limestones and lumachelles along with shell fragments. Core Tarfaya SN°1 is not 

described between 14 and 30 m due to intense fragmentation.  

Based on the XRF-scanning Al/Ca and Zr/Rb and line-scan records (L*) as well as on 

lithological changes, three major unconformities are identified at 156.6 m (U1), 158.8 m (U2) in core 

Tarfaya SN°1 and at 134 m (U3) in core Tarfaya SN°2. These unconformities occur at 156.6 mcd 

(U1), 158.8 mcd (U2) and 286.75 mcd (U3) in the composite record. Detailed lithological logs 

showing the position of the unconformities are provided in Suppl. Figs. 1-2 and 4. Unconformities 

U1 to 3 occur in the lowermost G. elevata Zone (early Campanian, U1), at the boundary between the 

D. asymetrica and G. elevata Zones (Santonian-Campanian boundary, U2) and in the uppermost M. 

sigali Zone (latest Turonian, U3), respectively.  

Unconformities U1 and U2 correspond to an abrupt lithological change from brown shale to 

gray marl with heavy bioturbation, an increase in lightness (L*) and a decrease in Al/Ca and Zr/Rb 

(Suppl. Figs. 1, 2 and 4). In contrast, unconformity U3 in core Tarfaya SN°2 forms an erosive 

horizon at the base of a light olive green siltstone, characterized by oblique laminations (Suppl. Fig. 

4). This unconformity occurs above an interval with alternating laminated black shales and nodular 
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limestones. Unconformity U3 in core Tarfaya SN°2 is characterized by a marked increase in lightness 

(L*), a major decrease in Al/Ca and a slight decrease in Zr/Rb. 

3.4. Bulk carbonate δ
18

O curve 

Stable oxygen isotope values (δ
18

O) of 800 upper Turonian to lower Campanian bulk carbonate 

samples from Tarfaya SN°1 and SN°2 range largely between –2‰ and –5‰ (Fig. 3). Oxygen isotope 

data overall reflect Late Cretaceous sea surface temperatures with a robust cooling trend in the lower 

Campanian (mean -4.19‰, standard deviation 0.59 for the upper Turonian-Santonian below 160 m, 

mean -3.12‰, standard deviation 0.83 for the lower Campanian, 28.5 – 160 m). Cross-plots of 

carbon and oxygen isotope values do not show any significant correlation (Fig. 4), which would 

indicate the addition of a late diagenetic cement to the primary skeletal calcite. We estimated sea 

surface temperatures from the bulk (mainly coccolith) δ
18

O using the equation of Epstein et al. 

(1953):  

T (°C) = 16.5 – 4.3 (δ
18

Ocalcite - δ
18

Owater) + 0.14 (δ
18

Ocalcite - δ
18

Owater)
2
 

 where δ
18

Ocalcite is the oxygen isotopic composition on the PDB-scale and δ
18

Owater the isotope 

composition of the water, in which the calcite was secreted, using a δ
18

Owater of -1‰ (SMOW) for an 

ice-free world (Shackleton and Kennett, 1975), which corresponds to -1.27‰ on the PDB scale used 

in the paleotemperature equation. The resulting sea surface paleotemperature estimates of ~30°C 

(36°C) for the late Turonian to Santonian and ~25°C (30°) for the early Campanian (values in 

brackets include vital effect corrections for coccolith δ
18

O by subtracting 1.1‰ for the vital effect of 

coccolithophorid calcite formation (Dudley et al., 1986; Ennyu et al., 2002) are largely in agreement 

with expected sea surface environmental conditions, indicating little influence of burial diagenesis or 

late diagenetic cementation on the isotope record.  
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Figure 3: Comparison of Tarfaya Basin depositional sequences to the eustatic record from the New Jersey margin (Miller et al., 2003, 

2004; Mizintseva et al., 2009). Foraminiferal zonation follows Robaszynski and Caron (1995), except for the base of the G. concavata 

Zone due to the later occurrence of G. concavata in the Tarfaya Basin. Nannoplankton zonation UC from Burnett et al. (1998); CC 

zonation is compiled from Bergen, 1994 and Bralower et al., 1995 in the GT012 timescale. Red dashed lines correspond to the 

unconformities (U1-3) in cores Tarfaya SN°1 and 2 observed in lithology, gray dashed lines correspond to unconformities based on 

log((Al+Ti+Fe+K+Si)/Ca). Sant.: Santonian; L. Tu.: late Turonian; N. Z.: nannoplankton Zone; F. Z. foraminiferal Zone. 
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Figure 4: Cross-plots of carbon- and oxygen isotope values of newly drilled cores (Tarfaya SN°1 and 2). 

3.5. Bulk carbonate δ
13

C curve  

Stable oxygen isotope values of 800 upper Turonian to lower Campanian bulk carbonate samples 

from Tarfaya SN°1 and SN°2 range largely between +1.7‰ and -2.4‰ (Fig. 5). In the upper part of 

the composite section (28.5 - 160 m, early Campanian), mean δ
13

C values (0.28‰, 0.46 standard 

deviation) are lower than in European reference sections (Jarvis et al., 2006) but comparable to 

sections in the Eastern Tethys (Li et al., 2006, Wendler et al., 2009, 2013) or at Demerara Rise 

(MacLeod, 2006). The unusually low values (mean -0.77‰) and high scatter (standard deviation 

0.94) of δ
13

C below 160 m suggest either presence of secondary calcite with a remineralized organic 

carbon component in a large number of samples or growth of biogenic (mainly coccolith) calcite in 

unusually nutrient rich and δ
13

C depleted water masses upwelling from an expanded and intensified 

oxygen minimum zone.  

Previous studies of Turonian and Coniacian outcrop sections in the Tarfaya Basin have shown 

that δ
13

C is considerably lowered to values as low as -11‰ within calcareous nodular concretions (El 

Albani et al., 2001). We avoided these lithologies when sampling cores Tarfaya SN°1 and SN°2 for 

bulk isotopes, and focused sampling on intervals with relatively high clay mineral content. The 
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composite carbon isotope record of cores Tarfaya SN°1 and SN°2 is characterized by a series of five 

low amplitude positive carbon isotope excursions with wavelengths in the range of 30 to 70 m, which 

are separated by transient high amplitude negative excursions. We identify a first maximum (labelled 

1 in Fig. 5) at ~75 mcd. The second maximum at ~155 mcd (labelled 2 in Fig. 5) occurs close to the 

Santonian-Campanian boundary, the third poorly developed maximum with significantly lower 

values at ~175 mcd (labelled 3 in Fig. 5) in the middle Santonian, the fourth maximum at ~215 mcd 

(labelled 4 in Fig. 5) in the late Coniacian and the fifth maximum at ~245 mcd (labelled 5 in Fig. 5) 

in the middle Coniacian. 

The most salient features in the SN°1-2 carbon isotope records are two consistent positive 

shifts in δ
13

C 1) in the middle Coniacian starting at 260 mcd and reaching a first peak at 243 mcd and 

2) at the Santonian-Campanian boundary starting at 168 m and reaching a maximum at 153 m. These 

positive excursions appear also as robust features in other Late Cretaceous δ
13

C records (i.e. 

corresponding to the δ
13

C increase between the Buckle/Foreness and the Santonian-Campanian 

Boundary Event and between the East Cliff to White Fall Events in the English chalk records, Jarvis 

et al., 2006). The amplitude of these events exceeds 1.5 ‰ in the SN°1-2 records, which is more than 

double that in the English chalk and the Niobrara Formation of the US Western Interior (Locklair and 

Sageman, 2008), but similar to records from the eastern Tethys margin in Tibet (Li et al., 2006; 

Wendler et al., 2009; 2013).  
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Figure 5: Correlation of bulk carbon isotope (13C) from the composite section (cores Tarfaya SN°1 and 2) to the 13C records of the 

Niobrara Formation, US Western Interior Seaway (Locklair et al., 2011) and stacked curves from Wendler (2013). Blue line 

corresponds to 5pt smoothed curve. Blue arrows indicate positive shifts in δ13C in the middle Coniacian and at the Santonian-

Campanian boundary. N. Z.: nannoplankton Zone; F. Z. foraminiferal Zone; Sant.: Santonian. 

3.6. XRF-scanning elemental distribution 

3.6.1. Ratio of terrigenous elements to marine carbonate: Log((Al+Ti+Fe+K+Si)/Ca)  

The ratio of terrigenous elements to Ca derived from marine carbonate is highest in the 

Santonian to Coniacian interval of the succession (158.8 - 286.7 mcd) (mean -0.99, standard 

deviation 0.23) and lowest in the upper Turonian between 286.7 and 290 mcd (mean -1.58) (Fig. 6). 

This interval is also characterized by the highest variability in terrigenous elements (standard 

deviation 0.35). The lower Campanian exhibits intermediate values (mean -1.22) with comparatively 

low variability (standard deviation 0.19). A peculiar feature of the log((Al+Ti+Fe+K+Si)/Ca) curve 

are three sequences of stacked carbonate-poor and carbonate-rich intervals, each exhibiting an overall 
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increasing trend in terrigenous elements between 190.5 and 221.5 mcd, between 221.5 and 253.5 mcd 

and between 253.5 and 286.7 mcd (Fig. 6). 

 

3.6.2. Proximity of the clastic source and sorting during transport: Log(Zr/Rb) 

A salient feature of the log(Zr/Rb) curve are considerably higher values in the middle and late 

Santonian (mean 0.48, standard deviation 0.13), which indicate either a more proximal sediment 

source or intense winnowing of fine-grained clastic sediment (clay minerals) on the Tarfaya shelf 

(Fig. 6). Both possibilities are compatible with a significant and persistent lowering of sea-level 

associated with the sequence boundary at 190.5 m in the lower-middle Santonian. Lowest log(Zr/Rb) 

values occur in the upper Turonian between ~ 268 mcd and 290 mcd (mean 0.02, standard deviation 

0.13) probably associated with a distant sediment source and/or reduced fluvial sediment discharge. 

Intermediate values of log(Zr/Rb) prevail in the uppermost lower Campanian (28.5 to 158.8 mcd, 

Sedimentary Unit I) (mean 0.15, standard deviation 0.13) and between ~ 268 and 190.5 mcd in the 

Coniacian and lower Santonian (Fig. 6).   

3.6.3. Geochemical indicators of organic matter accumulation and bottom water oxygenation: 

Log(Mn/S) and Log(V/Ca) 

The lower Campanian interval exhibits the highest log(Mn/S) values (mean -1.33, standard 

deviation 0.23), indicating improved bottom water ventilation, also evident from benthic 

foraminiferal assemblages in outcrop sections (Aquit et al., 2013). Between 190.5 and 158.8 mcd 

(middle to upper Santonian) log(Mn/S) increases from an average of -1.6 to -1.25 in the lower 

Campanian (Fig. 6). The lower Santonian to upper Turonian is characterized by generally low but 

highly variable log(Mn/S) indicating overall oxygen depleted to anoxic conditions at the sea-floor 

punctuated by short ventilation events (mean -1.61, standard deviation 0.18). The most prominent of 

these ventilation events were associated with facies changes that indicate massive regressions in the 

latest D. concavata Zone (above the SB at 221.5 mcd).  

The log(V/Ca) curve generally exhibits an inverse relationship to the log(Mn/S), which 

reflects the affinity of V to accumulated organic matter and concomitant decrease in bottom water 

oxygenation. Lowest values characterize the lower Campanian interval of the section (mean -3.31, 

standard deviation 0.17). The Santonian interval between 158.8 and 190.5 mcd exhibits intermediate 
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values (mean -3.03, standard deviation 0.17) (Fig. 6). Extremely high values occur in the lower 

Santonian to upper Turonian (mean -2.86, standard deviation 0.32), with maxima in the highstand 

sediments below the sequence boundaries at 190.5, 221.5 and 253.5 mcd. The entire interval shows 

high amplitude fluctuations with peaks of high (log(V/Ca)>-2.5) V accumulation in laminated black 

shale intervals. 

 

Figure 6: Composite geochemical and biostratigraphic records of cores Tarfaya SN°1 and 2. a) Elemental log of (Al+Ti+Fe+K+Si)/Ca, 

gray arrows indicate increasing terrigenous flux, blue arrows indicate increases in carbonate flux in the Tarfaya Basin; b) Elemental log 

of Zr/Rb, blue arrows indicate decreases in grain size, black arrow indicates increase in grain size; c) Elemental log of V/Ca, blue 

arrows indicate increases in carbonate flux; d) Elemental log of Br/Ca, blue arrow indicates increases in carbonate flux; e) Elemental 

log of Mn/S, red arrow indicates increasing oxygenation at the sea-floor in the Tarfaya Basin. Red dashed lines correspond to the major 

unconformities (U1-3) in cores Tarfaya SN°1 and 2, black dashed lines correspond to unconformities based on 

log((Al+Ti+Fe+K+Si)/Ca). Late Cretaceous (UC) nannoplankton Zones from Burnett et al. (1998). N. Z.: nannoplankton Zone; F. Z. 

foraminiferal Zone; Sant.: Santonian; L. Tu.: late Turonian. 
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4. Discussion 

4.1. Latest Turonian to early Campanian sedimentary environments of the Tarfaya Basin  

4.1.1. Processes controlling sedimentation of organic-rich and carbonate-rich deposits 

The Upper Cretaceous sediments of the Tarfaya Basin were deposited on an open marine shelf, in 

water depth of ~100 - 150 m (Wiedmann et al., 1978; El Albani et al., 1999a; Kuhnt et al., 2009). 

Following the depositional concept used for the analysis of Cenomanian sequences in the Tarfaya 

Basin (Kuhnt et al., 2009), lowstands and sequence boundaries are characterized by carbonate rich 

sediments, including redeposited shallow water carbonate sands and pebbles. In contrast, 

transgressive system tracts coincide with the onset of organic-rich sediments, which are commonly 

laminated, relatively low in carbonate and enriched in Al, K, S and Si (partly biogenic). The episodic 

occurrence of organic matter-rich sediments has been explained by the impingement of an expanded 

and intensified oxygen minimum zone onto the shelf during transgressive system tracts and 

maximum flooding (Kuhnt et al., 2009). This pattern of relatively coarse-grained lowstand carbonates 

and organic-rich fine clastic transgressive and highstand sedimentation bears similarities to modern 

“shaved shelf” depositional models (James et al., 1994, Brachert et al., 2003). These models, 

developed for modern high productivity temperate carbonate shelves such as the Great Australian 

Bight, indicate that carbonate-rich sediments form during sea-level lowstands, when the wave 

abrasion depth intersect with the sea-floor. Wave abrasion during lowstands then winnow and export 

the fine terrigenous clastic material (clay minerals) into deeper parts of the basin. Thus, the residual 

coarser material on the shelf mainly consists of carbonate grains (foraminiferal tests, shell fragments, 

calcareous dinoflagellate cysts). 

 Sediments rich in organic matter were recovered in cores Tarfaya SN°1 and 2 as laminated or 

homogeneous black, brown or gray marlstones. In the XRF-scanner records, these intervals are 

characterized by high log(V/Ca) and log(Br/Ca) and low log(Mn/S). These elemental ratios exhibit 

significant correlation (Suppl. Fig. 5) to sulfur and total organic carbon weight percentages analyzed 

in core Tarfaya SN°2 (Sachse et al., 2012). The organic matter is mainly derived from marine 

primary producers (phytoplankton and marine algae) with very small contribution from terrestrial 

particles (e.g. vitrinite and inertinite) (Sachse et al., 2012). These intervals of organic matter and 

pyrite-rich, commonly laminated sediments point to oxygen-depleted bottom water conditions with 

enhanced flux and preservation of organic matter, reflecting episodic encroachment of an expanded 



 101 

and intensified oxygen minimum zone on the middle to outer shelf of the Tarfaya Basin during 

intervals of rising and high sea-level. During these transgressive phases and highstands, fine-grained 

terrigenous sediments were remobilized close to the coastline, transported across the shelf, finally 

accumulating on the middle-outer shelf.  Intervals of laminated organic-rich sediments prominently 

occur near the top of stratigraphic sequences, in particular below carbonate-rich lowstand sediments 

near sequence boundaries at 286.7, 253.5, 221.5, 190.5 and 158.8 mcd (Fig. 6, Suppl. Fig. 4). 

The most prominent examples of carbonate-rich intervals, which are depleted in terrigenous 

elements, occur above the unconformity at 286.7 mcd (U3) in the uppermost Turonian. The 

carbonates are characterized by low log(Al/Ca), log((Al+Ti+Fe+K+Si)/Ca) and log(Zr/Rb) (Fig. 6, 

Suppl. Fig. 4), intense bioturbation and high log(V/Ca) and log(Mn/S), indicating improved 

oxygenation at the sea-floor (Fig. 6). Sediment structures (inverse grading, cross lamination) indicate 

the influence of storm induced bottom currents or storm wave-currents. We relate these limestone 

beds, which rest unconformably over organic-rich, fine-grained black shales to major regressive 

events, which brought the sea-floor of the central part of the Tarfaya shelf into the wave abrasion 

zone for the first time since the Cenomanian-Turonian sea-level maximum.  

4.1.2. Evolution of depositional environments  

The depositional environment in the Tarfaya Basin changed during the Late Cretaceous, 

following a major regressive event in the latest Turonian. This regression corresponds to 

unconformity U3, associated with the regional sea-level fall. The uppermost Turonian to lower 

Santonian is generally characterized by oxygen depleted to anoxic conditions at the sea-floor, 

punctuated by short-lived ventilation events (low log(Mn/S) episodes). The impinging of an 

expanded and intensified oxygen minimum zone on the shelf exhibits a periodic pattern with three 

cycles of increasing organic matter and clay to carbonate ratios (286.7 - 253.5 mcd, 253.5 - 221.5 

mcd and 221.5 - 190.5 mcd) (Fig. 6). This period of organic rich sedimentation on the Tarfaya shelf 

corresponds in a very broad sense to the Coniacian-Santonian Anoxic Event (OAE-3), which marks 

an important transition in the long-term global climate evolution from Cretaceous greenhouse 

conditions, characterized by extremely high temperature and reduced equator-to-pole thermal 

gradient, to the Late Cretaceous–Paleogene cooling (Wagner et al., 2004). During OAE-3, several 

marginal basins along the Atlantic margin maintained intense oxygen minimum zones, whereas the 
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deep basins were already well oxygenated (Arthur et al., 1990; Ly and Kuhnt, 1994; Holbourn et al., 

1999; Wagreich, 2012). 

A major environmental change occurred at the Santonian-Campanian boundary 

(unconformities U1 and U2) in the Tarfaya Basin. The early Campanian sedimentary environment is 

characterized by enhanced accumulation of fine-grained carbonate and clay-rich hemipelagic 

sediments. Benthic foraminiferal assemblages in outcrop sections close to core Tarfaya SN°1 indicate 

a depositional environment well below storm wave base (Holbourn et al., 1999; Aquit et al., 2013). 

Although the deepening of the Tarfaya Basin in the early Campanian probably reflects local tectonic 

activity, it may also relate to eustatic transgressive events. The increased water depth is also reflected 

in an improvement of the oxygenation at the sea-floor (increase in log(Mn/S)) and high diversity and 

abundance of benthic foraminiferal assemblages (Holbourn et al., 1999; Aquit et al., 2013). The end 

of the Cretaceous sedimentary succession in the Sebkha Tah and Tisfourine sections as well as in 

Tarfaya SN°1 is marked by a major hiatus, which comprises the entire latest Cretaceous (middle 

Campanian - Maastrichtian) and Paleogene. 

4.2. Comparison of Tarfaya Basin depositional sequences to the eustatic record from the New 

Jersey margin  

Sea-level during the Cretaceous greenhouse world was substantially higher than the present 

and exhibited considerable long- and short-term variability (Miller et al., 2005; Müller et al., 2008). 

Long-term eustatic sea-level changes were probably controlled by plate tectonics. In contrast, 

relatively rapid variations in the order of tens of meters, remain difficult to explain without assuming 

glacio-eustasy and the presence of ephemeral ice sheets punctuating periods of extreme warmth 

(Matthews, 1984; Stoll and Schrag, 2000; Miller et al., 2003; Kominz et al., 2008; Kuhnt et al., 

2009). The Tarfaya Basin provides a rare opportunity for sea-level reconstruction with its 

combination of minimal tectonic overprint at the margin of a stable craton, consistent subsidence and 

continuous deposition of a ~700 m undisturbed Upper Cretaceous sedimentary succession in an open 

marine shelf setting (Leine et al., 1986). The 290 mcd thick composite succession recovered in cores 

Tarfaya SN°1 and 2 allows to discriminate five sedimentary sequences from the latest Turonian to 

early Campanian with boundaries mainly discriminated by XRF data (log(Al/Ca)) (Fig. 6). These 

sedimentary sequences were correlated to the New Jersey Margin (Miller et al., 2003, 2004; 
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Mizintseva et al., 2009) based on biostratigraphy and carbon isotope stratigraphy. A correlation of the 

Tarfaya Basin to the global sea-level is illustrated in figure 7. 

 The sequence boundary at 286.7 mcd (unconformity U3 in SN°2) marks the base of the 

Magothy III sequence of Miller et al. (2004) (Fig. 3) in Zone CC13 within the latest Turonian. This 

sequence boundary separates sediments deposited above the storm wave base following the late 

Cenomanian-Turonian sea-level highstand. As, this part of the Tarfaya Basin remained in an open 

marine middle to outer shelf setting throughout this period, a clear effect of lowered sea-level is not 

evident on the depositional environment, except for the occurrence of common lumachelle beds in 

the earliest Coniacian, probably related to the action of storm waves. 

During the Coniacian, three distinct cycles are recognized in the XRF elemental data (e.g. 

log(Al/Ca)). Sequence boundaries are placed at the abrupt change from organic carbon-rich 

laminated sediments to coarser, carbonate rich sediments at 253.5, 221.5 and 190.5 mcd, which form 

the base of stacked cycles. According to its stratigraphic position, the sequence boundary at 253.5 

mcd in Tarfaya SN°2 corresponds to the base of the Cheesequake Sequence of Miller et al. (2004) 

and Mizintseva et al. (2009) in Zone CC14 within the lower Coniacian (Fig. 3). The sequence 

boundary at 221.5 mcd can be correlated to the boundary between the Cheesequake and 

Merchantville Formations (Miller et al., 2004; Mizintseva et al., 2009) in Zone CC15 close to the 

Coniacian/Santonian boundary. The sequence boundary at 190.5 mcd is traced by XRF data 

(log(Al/Ca)) at 40 m in core Tarfaya SN°2 (Fig. 2) but could not be clearly discerned in core Tarfaya 

SN°1. This boundary corresponds to a regressive phase within the late Santonian and is possibly the 

equivalent of the base of the Merchantville II Formation of Miller et al. (2004) and Mizintseva et al. 

(2009) (base of Zone CC17). 

The stratigraphically highest sequence boundaries at 158.8 and 156.5 mcd in Tarfaya SN°1 

(unconformities U1 and 2) are dated as earliest Campanian. These sequence boundaries correspond to 

repetitive regression phases before the major Campanian transgression phase and are correlative to 

the base of the Merchantville III Sequence of Miller et al. (2004) and Mizintseva et al. (2009) in 

Zone CC18 (Fig. 3). A marked increase in carbonate and related decrease in the concentration of 

terrigenous elements and log(Zr/Rb) occurs in the lower Campanian interval of core Tarfaya SN°1 at 

84.5 mcd. This sedimentary change is also reflected by a 
13

C maximum, similar to the 
13

C 

maximum at the base of the Campanian.  
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Figure 7: Composite geochemical, line-scan and biostratigraphic records at the Santonian/Campanian boundary in the Tarfaya Basin. 

a) Green arrow indicates an increase in light reflectance (L*); b) Bulk carbon isotope data (13C); c) Bulk oxygen isotope data (18O); 

d-e) Elemental log of Al/Ca and Ti/Ca, black arrows indicate increasing terrigenous flux; f) Elemental log of K/Al indicates variation 

of illite and kaolinite in sediments during the Santonian/Campanian boundary; g) Elemental log of Zr/Rb indicates distance of the 

clastic source and grain size variation in the sediments.  

4.3. Correlation to the global carbon isotope curve  

4.3.1. Variability of the δ
13

C record: primary signal or early diagenesis ? 

The general shape of the bulk carbonate δ
13

C curve exhibits marked differences to other high 

resolution Late Cretaceous δ
13

C curves (Wendler, 2013), which show overall higher δ
13

C values and 

lack the rapid high amplitude fluctuations, characterizing the upper Turonian and Coniacian in 

Tarfaya. These high frequency δ
13

C fluctuations are reflected by lithologic changes, as high δ
13

C 

generally occurs within organic carbon-depleted intervals, when no upwelling related oxygen 

minimum zone was impinging on the outer shelf. In contrast, low δ
13

C characterizes laminated 

organic rich intervals, when nutrient-rich water masses upwelled to the sea surface (Fig. 3).   
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A recent compilation of Late Cretaceous δ
13

C records (Wendler, 2013) indicates differences 

in the amplitude of bulk carbonate for late Turonian and Coniacian δ
13

C events in the range 1-2‰ 

between the English chalk reference section, the US Western Interior Niobrara Formation and 

Eastern Tethys sections in Tibet, which nevertheless all preserve the general pattern of the major 

carbon isotope variations. Interbasinal and latitudinal differences in the amplitude of Cretaceous δ
13

C 

variations are likely related to locally different upwelling of nutrient-rich and δ
13

C depleted water 

masses, productivity regimes and efficiency of the biological pump. For example, productivity- and 

pCO2-dependent large latitudinal differences in the amplitude of carbon isotope excursion in the 

range of 1 to 4‰ have been recorded in biomarkers for photosynthetic algae during the OAE-2 

carbon isotope excursion (Van Bentum et al., 2012). Today, in a well ventilated ocean, the dissolved 

inorganic carbon of nutrient-rich upwelling water masses can be depleted by more than 1‰ in δ
13

C 

(Berger and Killingley, 1977) and this value may have been significantly higher in the Late 

Cretaceous Atlantic, when intermediate water masses where strongly depleted in oxygen and 

enriched in nutrients and 
12

C. We, thus, regard the generally lower δ
13

C in the Tarfaya Basin largely 

as a primary signal related to the upwelling of strongly nutrient-enriched and δ
13

C depleted 

intermediate water masses. 

4.3.2. Carbon isotope stratigraphy 

The positive shifts in δ
13

C in the middle Coniacian (starting at 260 mcd and reaching a first 

peak at 243 mcd) and at the Santonian-Campanian boundary (starting at 168 mcd and reaching a 

maximum at 153 mcd) are correlated to the globally recognized δ
13

C increases between the 

Buckle/Foreness and the Santonian-Campanian Boundary Event and between the East Cliff to White 

Fall Events in the English chalk records (Jarvis et al., 2006). Based on these anchoring points, the 

remaining succession of broad δ
13

C maxima can be tentatively correlated to main positive isotope 

events in the English Chalk carbon isotope reference curve (Fig. 5). We relate the second maximum 

at ~155 mcd to the Santonian-Campanian Boundary Event (SCBE), the third maximum at ~175 mcd 

to the Horseshoe Bay Event, the fourth maximum at ~215 mcd to the Kingsdown Event and the fifth 

maximum at ~245 mcd to the Wight Fall Event. In addition, the negative excursions at ~167 mcd, 

~193 mcd and ~270 mcd correspond to the Buckle, Haven Brow and Navigation Events, 

respectively. 



 106 

The correlation of the outcrop sections in the Tarfaya Basin (Aquit et al., 2013) to the 

continuous δ
13

C records from the Tarfaya SN°1 and 2 cores allows to improve this stratigraphic 

assignment within the Late Cretaceous. The Tisfourine section (early Campanian) corresponds to the 

upper part (~30 to 50 mcd) of core Tarfaya SN°1. The Akhfennir (~35 m of Santonian) and Tah 

North (~40 m of Santonian) are found to strongly overlap, resulting in a total thickness of ~ 45 m. 

The strong negative excursion within the D. concavata Zone, originally correlated to the Navigation 

Event in the El Amra Section (Aquit et al., 2013), appears stratigraphically slightly younger and 

probably correlates to the East Cliff Event in the English Chalk succession (Fig. 5). 

The global positive carbon isotope shift of the SCBE (Scholle and Arthur, 1980; Jarvis et al., 

2006) is well developed between ~168 mcd and 156 mcd in core Tarfaya SN°1 (Fig. 7). The total 

amplitude of the shift (~1.5‰) from average background values of -1‰ at the base (168 - 170 mcd) 

to 0.5‰ above the shift (average between 156 and 150 mcd) is substantially higher than in the 

English Chalk (0.6‰) and in the Scaglia limestone at Gubbio, Italy (0.4‰). The expanded 

succession in core Tarfaya SN°1 allows a detailed reconstruction of the δ
13

C curve across this 

interval, which reveals a negative excursion with an amplitude of ~1‰ at the onset of the event 

(168.5 to 167.5 mcd) and a second short-lived negative excursion between 162.5 and 162 mcd (0.9‰ 

amplitude). In general, the variability of the δ
13

C is considerably higher in the lower part (168 to 162 

mcd) than in the upper part (162 to 156 mcd) of the excursion. 

The similarity of the Tarfaya δ
13

C record with the record of the Niobrara Formation in the US 

Western Interior Seaway (Locklair et al., 2011), which has an orbitally tuned chronology (Locklair 

and Sageman, 2008) and global carbon isotope stack of Wendler (2013), which was correlated to the 

GT012 timescale using planktonic foraminiferal zonation, allows a direct integration of the main 

isotopic events into the geological timescale. A comparison of the depth/age relationship for the main 

carbon isotope events in the Niobrara Formation, the global carbon isotope stack and Tarfaya is given 

in Figure 8. According to this compilation, average sedimentation rates in Tarfaya SN°1 and 2 are 

~2.1 cm/kyr in the Coniacian, ~1.6 cm/kyr in the Santonian, and ~2.1 cm/kyr in the early Campanian 

(base of UC15c around 31.6 mcd). In contrast, late Turonian rates are difficult to estimate since the 

only potential tie point is the base of Magothy III sequence at ~90.2 Ma in the GT012 timescale. 

According to this age, late Turonian sedimentation rates would be ~5 cm/kyr.  

The upper part of the stable carbonate isotope record (between 158.8 and 34 mcd) exhibits 

two distinct cycles corresponding to the 2 – 2.4 Myr eccentricity cycle, bearing similarity to long 



 107 

eccentricity cycles in Mesozoic greenhouse sequences (Boulila et al., 2011) and in the third-order 

sequence record of the New Jersey Margin (Miller et al., 2003, 2004, 2005; Van Sickel et al., 2004; 

Browning et al., 2008; Kominz et al., 2008; Mizintseva et al., 2009).  
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Figure 8: Age-depth plot of main carbon isotope events in the Tarfaya SN°1-2 composite section, following the chronology of 

Wendler (2013). 

5. Conclusion 

Two drill holes in the center of the Tarfaya Basin recovered a complete spliced record of 290 

m organic rich marlstones of late Turonian to early Campanian age. High resolution XRF-scanner 

elemental records provide new insights into the sedimentary response of the depositional 

environment in the Tarfaya Basin to Late Cretaceous climate evolution and sea-level changes. 

Fluctuations in the abundance of the terrigenous elements Al, Ti, K, Si and Fe, normalized against Ca 

indicate three major sedimentary cycles of 33.2, 32 and 31 m thickness (286.7 to 253.5 mcd, 253.5 to 

221.5 mcd and 221.5 to 190.5 mcd) during the Coniacian to middle Santonian. This time interval is 

also characterized by recurrent impinging of an expanded oxygen minimum zone onto the Tarfaya 

shelf, which is expressed by low Mn/S and high V/Ca ratios in the XRF-scanner records. The interval 

from 158.8 to 190.5 mcd (late Santonian), corresponds to the transition from anoxic to oxic 
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conditions, which dominate in the early Campanian. An increase of fine-grained carbonate and clay–

rich hemipelagic sediment and increased bulk carbonate 
18

O values (indicating cooler conditions) 

are associated with improved bottom water oxygenation during the early Campanian. 

The bulk carbon isotope record of the Tarfaya Basin exhibits strong similarities to the global 

carbon isotope stack of Wendler (2013). Marked events in the Tarfaya Basin, that are correlative to 

the English Chalk (Jarvis et al., 2006) and the Niobrara Formation in the US Western Interior Seaway 

(Locklair et al., 2011) are the Navigation Event in the earliest Coniacian, the Haven Brow, the 

Horseshoe Bay and the Buckle Events in the Santonian and the Santonian/Campanian Boundary 

Event. The comparison of the depth/age relationship of the main carbon isotope events indicates an 

average of sedimentation rate of ~2.1 cm/kyr during the Coniacian, ~1.6 cm/kyr during the Santonian 

and 2.1 cm/kyr during the early Campanian.  

The sea-level record imprinted in the depositional sequences of the Tarfaya Basin is 

correlative to regional sea-level variations in the New Jersey Margin record (Miller et al., 2004; 

Mizintseva et al., 2009). In particular, we correlate the major unconformities U1/U2 and U3 in the 

Tarfaya Basin to the base of the Merchantville III and the base of Magothy III sequence of Miller et 

al. (2004) and Mizintseva et al. (2009). The unconformities at 253.5 mcd, 221.5 mcd and 190.5 mcd 

are correlated to the Cheesequake, Merchantville I and Merchantville II Sequences of Miller et al., 

(2004) and Mizintseva et al. (2009), respectively. 

The Santonian/Campanian Boundary Event exhibits a positive carbon isotope excursion of 

1.5‰, followed by a long-term cooling trend in the bulk 
18

O through the early Campanian. This 

climatic change is associated with an increase in terrigenous flux and cooler and drier conditions in 

the source area (indicated by an increase in the K/Al ratio related to a change from kaolinite to illite-

dominated clay mineral assemblages) as a first step in the Campanian-Maastrichtian climate 

transition towards a cool greenhouse state. 

Acknowledgements 

This research was funded by RWE-DEA and ONHYM in the framework of the Atlantic 

Margin Integrated Basin Analysis Project and by the German Research Council (DFG) in the 

framework of SFB 754, TPA7. We thank Mohammed El Mallali for helping with sawing the cores in 

Rabat. We thank Dr. Nils Andersen (Leibniz Laboratory for Radiometric Dating and Stable Isotope 

Research) for stable isotope measurements, Dr. Dieter Garbe-Schönberg for advice with the XRF 

scanner and Wolfgang Reimers, Samuel Müller and Moritz Kuest for technical help.  



 109 

 Supplementary Material of Chapter III. A complete archive of late Turonian to 

Campanian sedimentary deposition in newly drilled cores from the Tarfaya 

Basin, SW Morocco 
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Supplementary Figure 1a and b: Generalized lithostratigraphic units of core Tarfaya SN°2 with the position of studied samples and 

log(Al+/Ca). Foraminiferal zonation follows Robaszynki and Caron (1995), except for the base of the G. concavata Zone due to the 

later occurrence of G. concavata in the Tarfaya Basin. 
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Supplementary Figure 2a and b: Generalized lithostratigraphic units of core Tarfaya SN°1 with the position of studied samples and 

log(Al/Ca). Foraminiferal zonation follows Robaszynki and Caron (1995), except for the base of the G. concavata Zone due to the later 

occurrence of G. concavata in the Tarfaya Basin. 
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Supplementary Figure 3: Core photograph, line-scan (L*), geochemical (Al/Ca and Zr/Rb) and bulk carbon isotopes (13C) records of 

the correlation interval in the cores Tarfaya SN°1 and 2.  
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Supplementary Figure 4: Core photograph, line-scan (L*) and composite geochemical (Al/Ca and Zr/Rb) records of the unconformity 

U3 in the core Tarfaya SN°2. 



 114 

 
Supplementary Figure 5: Cross-plots of elements in the core Tarfaya SN°2 with linear regression lines. a) Cross-plot of CaCO3 

content (%) vs. Ca counts (XRF); b) Cross-plot of Corg (%) vs. log(Mn/S) (XRF); c) Cross-plot of Corg (%) vs. log(V/Ca) (XRF); d) 

Cross-plot of TS (%) vs. log(Mn/S) (XRF); e) Cross-plot of Corg (%) vs. log(Ba/Ca) (XRF); f) Cross-plot of Corg (%) vs. δ13C (‰ vs. 

VPDB). CaCO3 content (%), Total Sulfur (%) and Total Organic Carbon (%) are used as reference from Sachse et al. (2012). 
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Chapter IV. XRF core scanning techniques and its application in the Tarfaya 

Basin 

1. Introduction  

High-resolution stratigraphic and environmental information plays a major role in modern 

palaeoceanographic and sedimentological research. Various geochemical records are used as the 

basis of climate and environmental interpretation. The acquisition of these geochemical records is 

generally time consuming and also leads to loss of sediments. In contrast, the X-ray fluorescence 

(XRF) core scanner offers an economic way to estimate the chemical composition of the rocks and 

sediments. The XRF core scanner allows non-destructive, near continuous and relatively fast analysis 

of major and some minor elements from Aluminum (Al) through Uranium (U). The first prototype 

XRF core scanner was produced by the Netherlands Institute of Sea Research (NIOZ) in 1988 

(Jansen et al., 1998). Since then, in many recent scientific publications XRF core scanner records of 

sediment cores are used to support the interpretation of paleo-environment and paleoclimate (Table 

1).  

A computer-controlled XRF that is able to perform high-resolution measurements within a 

short time (few seconds). The system used for the XRF core scanner has important advantages such; 

a very high resolution can be achieved to produce nearly continuous records, XRF measurements can 

be carried out rapidly, which can help to adapt coring and sampling programs and provides data 

about the actual composition of the sediment. Results obtained by XRF core scanner is usually 

presented in the form of count rates (expressed as counts per unit time per unit area), or intensities of 

elements (Richter et al., 2006; Rothwell et al., 2006; Thomson et al., 2006). 

In this work, we present more result of the XRF core scanner on the cores of Tarfaya SN°1 

and 2, and to develop a basic technique to normalize the data for further geochemical study. XRF 

studies of biogeochemical elements e.g. Ca, Si, Ba, V, Br, P can be used to understand changes in 

productivity (e.g., Brumsack, 1986, 2006; Scopelliti et al., 2006; Tribovillard et al., 2006; Mayer et 

al., 2007; Ziegler et al., 2008). XRF scanning measured elements Al, K, Ti and Fe elements which 

allow to constrain terrigenous input in the basin. Whereas, the elements as Fe, Mn and S can be used 

to depict the redox environment and oxygenation in the basin. Our objectives in this study are to 

illustrate changes in elements (Al, Ti, Fe, S, Mn, Ca, Ba, Br, Si, K, Br, P), in carbonate content, in 

organic carbon total sulfur and to reconstruct the paleo-environment changes during the Upper 
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Cretaceous in the Tarfaya Basin from the XRF scanning. 

Author  Publication 

date  

Scientific objectives Age of sediments 

Peterson et al. 2000 Rapid Changes in the Hydrologic Cycle of 

the Tropical Atlantic, Fe and Ti proxy of 

terrigenous input. 

Past 90,000 years 

Haug et al. 2001 Ti and Fe data from the anoxic Cariaco Basin 

can be used to infer variations in the 

hydrological cycle over northern South 

America. 

Holocene 

Arz et al. 2003 Influence of Northern Hemisphere climate 

and global sea level rise on the restricted Red 

Sea marine environment, Fe and Ti proxy of 

terrigenous input. 

Late Holocene 

Jaccard et al. 2005 Glacial/Interglacial Changes in Subarctic 

North Pacific Stratification, Ba/Al ratio 

proxy of productivity. 

Ice ages 

Thomson et al.  2006 A geochemical application of the ITRAX 

scanner to a sediment core containing eastern 

Mediterranean sapropel units 

 

Rothwell et al.  2006  Turbidite emplacement on the southern 

Balearic Abyssal Plain (western 

Mediterranean Sea) 

Marine Isotope Stages 1–

3 

Yancheva et al. 2007 Ti content of the sediments of Lake Huguang 

Maar in coastal southeast China used as 

proxies for the strength of the winter 

monsoon winds. 

Middle and late 

Holocene 

Löwemark et al. 2008 

  

Arctic Ocean manganese contents and 

sediment colour cycles 

 

Diekmann et al. 2008 Variations in the modes and sources of 

detrital sediment input. 

Northwestern Taiwan 

between 28 and 19.5 ka 

BP and from East China 

sources between 19.5 

and 11.2 ka BP. 

 

 

Tjallingii et al. 2010 Infilling and flooding of the Mekong River 

incised valley during deglacial sea-level rise 

 

Löwemark et al. 2011 Paleoproxy data from organic-rich lake 

records 

The last 4 ky 

 

Hennekam and de 

Lange 

 

2012 Paleoclimatic studies 

 

 

Ma et al.  2014  Lithogenic, biogenic, and syngenetic-

authigenic proxies through the uppermost 

Lincoln Limestone Member, the Hartland 

Shale Member, and the Bridge Creek 

Limestone Member, including oceanic 

anoxic event 2 (OAE 2) 

Cenomanian/Turonain 

(Upper Cretaceous) 

 
Table 1. Overview of using XRF core scanner records of sediment cores to support the interpretation of paleo-environment and 

paleoclimate. 
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2. X-ray fluorescence (XRF) 

2.1. XRF analytical technique 

The principle of XRF, for the first time, was discussed by Jenkins and De Vries (1970). XRF 

analysis is based on excitation of electrons by incident X-radiation. Incident X-rays eject an electron 

from an inner shell of an atom. The resulting vacancy is then filled by an electron from an outer shell 

(Fig. 1). The electron gives up its surplus energy in the form of electromagnetic radiation. The 

surplus energy, which is equal to the energy difference between the two electron shells, appears as X-

rays. So, each couple of shells produces a characteristic radiation and, therefore, every atom emits its 

own characteristic energy and wavelength spectra. The detector detected every atom emits and store 

it as elements intensity indicated by a spectrum. This spectrum (with *.spe file or *.wax files) is built 

up by dividing the energy spectrum into discrete bins and counting the number of pulses registered 

within each energy bin. The radiation is transmitted within a Helium (He) flushed chamber to 

minimize scatter and absorption of radiation between source and detector. The intensity of the 

fluorescence from a sample can be used to determine the abundance of different elements. Jenkins et 

al., 1995 used the theoretical calculations (e.g., the method of fundamental parameters) and/or the 

known standards to determine the elemental concentrations from the intensities (count rates) of the X 

rays at each energy level. 

The XRF Core Scanner measures the intensity of elements in multiple runs depending on the 

generator settings; voltage and count rate can be adjusted by changing the power (mA) and or 

measurement duration (time). Filters are used during high-energy runs (e.g. 30 and 50 kV) to reduce 

the background, which originates predominately from scatter of the initial radiation. Overview of the 

recommended settings (kV) for the most common elemental range analyses with the XRF core 

scanner are presented in Table 2. The optimed source power (mA) can best be found by a test run on 

the lightest and the darkest part of the sediment core.  

 

Tube voltage (kv) Filter Elements analysed 

10 None Al, Si, P, S, Cl, K, Ca, Ti, Mn, Fe, Cu, Zn 

20 None K, Ca, Ti, Mn, Fe, Br, Rb, Sr 

30 Pd thick Br, Rb, Sr, Zr 

50 Cu Ba, Pb, U 

Table 2: Instrumental settings of the Avaatech XRF core scanner for specific sets of elements after Richter et al. (2006). 
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The XRF Core Scanner obtains a spectrum of element unique fluorescence lines at each 

position. WinBatch is software applies background subtraction, sum- and escape-peak corrections 

and peak integration. The peak integration procedure uses an iterative least-square fitting procedure 

of Gaussian functions to approximate the area under the fluorescence lines of the spectrum (yellow 

area in Figs. 2 and 3). A MS Excel file produced from WinBatch indicates the peak integration 

results as the initial element intensities (Area) and a goodness of fit parameter (chi-square) that 

should ideally be < 3. The WinAxil application (package from Canberra Eurisys) allows one to create 

or modify a processing model. Additional K- and L-line can be add to *.spe file or *.wax files and 

can be save as a processing model *.mod. The model should identify as much spectral lines as 

possible and for the Tarfaya Samples we use the Kiel model.  

 
 

Figure 1: a) Schematic overview of excitation geometry of the X-ray fluorescence analysis of the elements Si, Ca, and Fe by the XRF 

core scanner after Richter et al., 2006. Elements in the sediment are ionized by the primary X-rays and emit an element-specific 

fluorescence radiation, which is registered by the detector. b) Schematic overview of excitation of atoms by the X-ray fluorescence 

analysis. 
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Figure 2: XRF core scanner spectra of 10, 30 and 50 kV run and the element intensities as area in yellow at position 10 cm in section 

15 (segment 1) at Tarfaya SN°1. 

 

 
Figure 3: XRF core scanner spectra of 10, 30 and 50 kV run and the element intensities as area in yellow at position 10 cm in section 

25 (segment 1) at Tarfaya SN°2. 
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2.2. Sample preparation   

The sediments recovered from two drilled cores Tarfaya SN°1 and 2 were split into two 

halves with a high precision Kaufmann-Titan diamond rock saw in order to produce a smooth surface 

for analyses. Sediments were cleaned with normal water before logging. The core surface was 

covered with 4 m thickness Ultralene plastic film to avoid contamination and to protect the detector. 

Measurements were taken continuously over the entire spliced core length at 1 cm intervals with a 

downcore slit size of 10 mm over a 1 cm
2
 area. 

2.3. Applicability of XRF scanner derived elemental ratios in cores Tarfaya SN°1 and 2 for 

paleoenvironmental reconstruction  

2.3.1. Iron normalized S, Br and Mn 

An enrichment of sulfur in sediments is related to pyrite formation under dysoxic or anoxic 

bottom or pore water conditions and is associated with enhanced accumulation of organic matter 

(OM) (e.g., Leventhal, 1983; Arthur and Dean, 1998; Canfield et al., 1996; Raiswell and Canfield, 

1998; Anderson and Raiswell, 2004). The OM in the black shales is significantly enriched in sulfur 

when compared to marine planktonic material due to the reaction of reduced sulfur species with OM 

during early diagenesis (François, 1987; Aizenshtat et al., 1983, 1995; Passier et al., 1999; Werne et 

al., 2004). Geochemical analysis of discrete samples from Tarfaya SN°2 indicates that the total sulfur 

(TS) and total organic carbon (TOC) contents are positively correlated and controlled by the redox 

status of the environment and the intensity of microbial sulfate reduction during deposition (Sachse et 

al., 2012). In Tarfaya SN°2, XRF-scanner derived log(S/Ca) and log(S/Fe) exhibit weak correlations 

with TS (r=0.54 and r=0.10) and TOC (r=0.32 and r=0.11) (Fig. 4) only correlations with r > 0.5 are 

regarded as significant but closely match TOC and TS cyclicity during intervals where intermediate-

high resolution discrete measurements are available (i.e. between 135 and 145 m).  

 The geochemistry of bromine in marine sediments is mainly controlled by the organic fraction 

of marine sediments and by diagenetic reactions involving organic matter degradation (Bojanowski 

and Paslawska, 1970; Calvert and Pedersen, 1993).  Bromine in the particulate phase of sediments is 

associated with marine organic matter (Price et al., 1970; Harvey, 1980) since marine primary 

producers and heterotrophic organisms commonly produce brominated compounds (Fenical, 1975; 

Gribble, 1998; Van Pée, 1996). The ratio of bromine to TOC is constant in most marine evironments 
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(i.e. Ten Haven et al., 1987) and thus bromine can be used as a proxy for organic matter 

accumulation. Recently, Ziegler et al. (2008) demonstrated a strong correlation of XRF-scanner 

derived bromine values to marine organic carbon content of late Pleistocene organic-rich sediment 

cores from the Arabian Sea. However, the concentration of bromine in terrestrial organic matter is 

significantly lower than in the oceans and the ratio of bromine to organic carbon has been even used 

to distinguish marine from terrigenous organic matter (Mayer et al., 1981 and 2007; Malcolm and 

Price, 1984; Upstill-Goddard and Elderfield, 1988). In the Late Cretaceous Tarfaya Basin, where the 

flux of terrestrial organic matter was almost neglible, the ratio of bromine counts and log(Br/Ca) to 

TOC remained constant (r=0.59 and 0.54, Fig. 4) and XRF-scanner derived bromine provides thus a 

robust tool for high-resolution estimates of marine organic matter accumulation.  

 The accumulation of manganese in marine sediments is highly sensitive to fluctuations in 

bottom water oxygen conditions (Hem, 1972; Dickens et al., 1994; Calvert and Pedersen, 1993; De 

Lange et al., 1994). Under oxic conditions, Mn precipitates predominantly as insoluble Mn 

oxyhydroxides with only a relatively small amount present as dissolved Mn
2+

 (Martin and Whitfield, 

1983). The solubility of Mn oxyhydroxides largely increases under oxygen deficient bottom water or 

pore water conditions within oxygen minimum zones (OMZ) (Saager et al., 1989; Johnson et al., 

1992; Dickens et al., 1994) and Mn is generally depleted in sediments deposited under OMZ 

conditions (Hetzel et al., 2009). Surprisingly, in the Tarfaya SN°2 record higher Mn concentrations 

correlate to intervals of higher S and TOC accumulation during periods of an expanding OMZ. 

Similar trends of increased Mn accumulation despite decreasing basin oxygenation were observed in 

other sedimentary environments and have been related to enhanced input of Mn from hydrothermal 

activity, gas hydrate dissociation, rapid re-oxygenation events at the margins of the OMZ, or 

redistribution of Mn within the basin during the intensification of the OMZ (Renard et al., 2005; 

Schenau et al., 2002).  

2.3.2. Iron normalized Ba and P 

The Ba content in the sediments is a residue from dissolution and oxidation of hard and soft 

parts of carbonate and siliceous organisms, thus directly related to primary productivity during 

deposition and can be used as a proxy of paleoproductivity (Dymond et al., 1992). The strong 

correlation of particulate organic carbon with barium fluxes over broad areas of the modern ocean 

indicates a connection between barium removal in the oceans and biological processes (Dymond et 
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al., 1992). It is thus somewhat surprising, that our records from Tarfaya SN°2 indicate no significant 

correlation of Ba measurements with TOC (Fig. 4). A possible explanation would be early diagenetic 

remobilization of biogenic barium.  Arndt et al. (2006) show in a transport-reaction model that OM 

degradation and anaerobic oxidation of methane above the black shales of Demerara Rise influence 

sulfate availability and therefore favor the remobilization of biogenic barium. 

 Phosphorus (P) is one of the essential elements for life on Earth and plays an important role in 

the biological productivity in oceans and on continents. The changes in the oceanic P-cycle may 

considerably affect the chemistry of the oceans and atmosphere throughout geological time (Van 

Cappellen and Ingall, 1994, 1996). The main input of organic and inorganic P compounds into the 

oceans is by riverine transport (Benitez-Nelson, 2000). The major part of this input is trapped in 

estuarine and coastal shelf areas (Ruttenberg, 1993), and the remaining particulate and dissolved P is 

transported to the deep ocean. During transport, the predominant portion of P, which is associated 

with organic compounds, is decomposed microbially within the water column (Heggie et al., 1990; 

Baturin, 2003; Paytan and McLaughlin, 2007). In the Tarfaya Basin, log-ratios of (P+4000)/Ca and 

(P+4000)/Fe show a good linear correlation with log((Ba+5500)/Ca) and log((Ba+5500)/Fe) (linear 

correlation factor of r = 0.856 and r = 0.933, respectively (Fig. 4) indicating that P and Ba 

accumulations are useful proxies of productivity in the Tarfaya Basin and can be used to evaluate 

changes in nutrient availability and primary production. 

2.3.3. Calcium-normalized Si, Fe, Ti, Al and K 

Terrigenous materials are transported into the oceans via fluvial and eolian pathways, which 

are both sensitive to climate changes (Milliman and Meade, 1983; Miller and Russell, 1992; Rea, 

1994) and/or to the variations in sea-level (Milliman et al., 1975). A number of studies used the 

major element (Fe, Ti and Al) composition of marine sediment cores to trace changes in terrigenous 

input into the basins (Peterson et al., 2000; Yarincik et al., 2000; Haug et al., 2001; Zabel et al., 2001; 

Adegbie et al., 2003; Jaeschke et al., 2007; Mulitza et al., 2008; Tisserand et al., 2009). Increases in 

Fe and Ti can be interpreted as enhanced input of siliciclastic material of fluvial origin (Peterson et 

al., 2000; Haug et al., 2001). The ratios of Ti/Ca, Al/Ca and Fe/Ca are most commonly used for 

paleoclimate reconstructions. For instance, Fe/Ca and Ti/Ca ratios have been used to trace changes in 

terrigenous input of fluvial origin in particularly offshore northeastern Brazil (Arz et al., 1998 and 

1999; Jaeschke et al., 2007) and western Africa (Adegbie et al., 2003; Pierau et al., 2010). Ti is 
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enriched in the coarse sediment fractions of marine sediments (Schütz and Rahn, 1982; Shiller, 

1982), while Al is associated with fine-particle clay minerals (Biscaye, 1965). In Tarfaya SN°2, 

log(Fe/Ca), log(Ti/Ca), log(Al/Ca) as well as log(Si/Ca) and log(K/Ca) (not shown) exhibit similar 

trends, reflecting changes in riverine terrigenous flux. Biogenic Si and Fe coated eolian grains are 

present, but do not constitute a significant component of the sediment accumulated during the Late 

Cretaceous in the Tarfaya Basin (unpublished thin section analysis of outcrop sections). 

 

 
 

Figure 4: Cross-plots of elements in the Tarfaya SN°2 core with linear trend lines. a) Cross-plot of CaCO3 content (%) vs Ca counts 

(XRF); b) Cross-plot of Corg (%) vs log((Mn+220)/S) (XRF); c) Cross-plot of Corg (%) vs log(V/Ca) (XRF); d) Cross-plot of TS (%) 

vs log((Mn+220)/S) (XRF); e) Cross-plot of Corg (%) vs δ13C (‰ vs. VPDB). CaCO3 content (%), Total Sulfur (%) and Total Organic 

Carbon (%) are used as reference from Sachse et al. (2012). 
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2.4. XRF-scanning elemental distribution in cores Tarfaya SN°1 and 2 

Although, we presented most significant elemental ratios in the previous chapter. However, in 

this chapter we will concentrate individual element behavior against Ca and Fe in more detail to 

display terrigenous sediment flux, oxygenation, and productivity within the basin. In a first approach, 

we plotted (Figs. 5 and 7) log-ratios of the elements Al and Ti (major components of detrital 

sediments), Mn and S (oxygenation), Br, P and Ba (productivity) versus Ca (carbonate-rich 

sediments) to visualize the relationship of these elements with Ca. log(Fe/Ti) ratio was also used 

which allows to depict source of the iron (terrigenous or marine). Lack of variability in the log(Fe/Ti) 

curve indicates that both iron and titanium have a similar origin e.g. terrigenous. Therefore in a 

second approach, we plotted (Figs. 6 and 8) log-ratios of elements (Ti, Mn, S, Ba and P) against Fe to 

investigate their relative variability, independent from Ca because log-ratios of all elements against 

Ca, which represents a major element in sediments, show generally a similar trend and also to 

visualize the other proxy of oxygenation, productivity and productivity in the basin. 

The log(Al/Ca) and log(Ti/Ca) curves exhibit similar trend as log((Al+Ti+Fe+K+Si)/Ca) 

curve, which is a proxy for the terrigenous flux. The log(Mn/Ca) and log(S/Ca) cures show similar 

trend due to influence of Ca. High Mn related to increased oxygenation. In contrast, high S indicates 

an increase degree of pyritization, which indicate low oxygenation. Log(Mn/Fe) and log(S/Fe) have 

same influence of Fe. To solve this issue, we use log(Mn/S) in the previous chapter to illustrate the 

oxygenation in the basin. The log(Ba/Ca) and log(P/Ca) cores exhibit a similar trend to log(Br/Ca), 

which are presented in the previous chapter. These log-ratios show good correlation with log(Br/Ca) 

(linear correlation factor of r = 0.70 and r = 0.60, respectively). The log(Ba/Fe) and log(P/Fe) also 

exhibit a similar trend to log(Br/Fe). In contrast, similar trend to log(Br/Fe) show a weak correlation 

to Corg (%) (linear correlation factor of r = 0.03) (Fig. 4). 

2.4.1. Tarfaya SN°1 

The ratios of terrigenous elements Al and Ti against Ca (log(Al/Ca) and log(Ti/Ca)) are 

relatively higher in the upper Turonian to Santonian interval (158.8-273 m) with mean values of -

2.432 and -2.305, respectively (Fig. 5). This interval exhibits also high variability in log(Al/Ca) and 

log(Ti/Ca) (standard deviation of 0.181 and 0.224). In the lower Campanian (30-158.8 m), 

log(Al/Ca) and log(Ti/Ca) exhibit a low value (mean values of -2.625 and 2.519 of Al/Ca and Ti/Ca) 



 125 

and relatively low variability in comparison to the upper Turonian to Santonian interval. The 

log(Fe/Ti) shows major decrease at 190 m (middle Santonian) with values drop from 1 to 0.7.  

The log(Mn/Ca) and log(S/Ca) exhibit a highest values in the upper Turonian to Santonian 

interval (158.8-273 m) with mean values of -2.868 and -1.375 and lowest in the lower Campanian 

with mean values of -3.175 and -1.848, respectively. The upper Turonian to Santonian interval is 

characterized by relative high variability with standard deviation of 0.283 and 0.269 of log(Mn/Ca) 

and log(S/Ca), respectively. Whereas, log(Mn/Fe) and log(S/Fe) indicate no major change in the core 

Tarfaya SN°1 (mean values of -1.437 and -0.020), except in the Santonian which the log(Mn/Fe) and 

log(S/Fe) an increases in trends. The log(Mn/Fe) and log(S/Fe) show a relatively high variability in 

upper Turonian to Santonian interval (standard deviation of 0.314 and 0.301) than lower Campanian 

(standard deviation of 0.284 and 0.218, respectively) (Figs. 5 and 6). 

The log(Br/Ca), log(Ba/Ca) and log(P/Ca) show a higher values in the Santonian interval 

(158.8-200 m) (mean values of -3.449, -1.988 and -2.167, respectively) and lowest values in the 

lower Campanian (30-158.8 m) (mean values of -3.822, -2.176 and -2.390, respectively), lower 

Conacian (245 m) and late Turonian (240-273 m) (mean values of 3.434, -2.105 and -2.364, 

respectively). The upper Turonian to Santonian interval exhibits a high variability with standard 

deviation of 0.228, 0.125 and 0.141 of the log(Br/Ca), log(Ba/Ca) and log(P/Ca), respectively. The 

log(Ba/Fe) and log(P/Fe) exhibit relatively lower values in the upper Turonian to lower Santonian 

interval (200-273 m) (mean values of -1.955 and -0.626) and higher in middle and upper Santonian 

and in the lower Campanian (mean values of -2.114 and -0.469, respectively). Log(Ba/Fe) and 

log(P/Fe) exhibit a high variability in the upper Turonian to lower Santonian interval with standard 

deviation of 0.242 and 0.200, respectively. The log(Br/Fe) shows no major changes in the cores 

Tarfaya SN°1 (Figs. 5 and 6). 
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Tarfaya SN°2 

The ratios of terrigenous elements against Ca (log(Al/Ca) and log(Ti/Ca)) are relatively high 

in the Coniacian to Santonian interval (24-134 m) with the mean of -2.452 and -2.313, respectively. 

This interval exhibits also a high variability in log(Al/Ca) and log(Ti/Ca) with standard deviation of 

0.197 and 0.250, respectively. The upper Turonian (134-190 m) exhibits a low value (mean values of 

-2.88 and -2.935 of Al/Ca and Ti/Ca) and relatively low variability in comparison to the Coniacian to 

Santonian interval. The high values of the log(Al/Ca) and log(Ti/Ca) characterized the base of the 

core Tarfaya SN°2 (190-200 m) with mean values of -2.55 and -2.349 and standard deviation of 

0.199 and 0.217, respectively (Fig. 7).  

The log(Mn/Ca) and log(S/Ca) exhibit no clear trend in the core Tarfaya SN°2 with mean 

values of -2.932 and -1.353, respectively. Log(Mn/Ca) and log(S/Ca) exhibits a high variability in the 

upper Turonian (134-200 m) with standard deviation of 0.393 and 0.508, respectively. In contrast, 

log(Mn/Fe) and log(S/ Fe) are higher in the upper Turonian (134-190 m) with mean values of -0.845 

(±0.276) and 0.745 (±0.319), respectively. These high variation in standard deviations indicate higher 

variability in log(Mn/Fe) and log(S/ Fe) ratios and hence productivity. On the other hand, lower mean 

values with less standard deviation during the Coniacian to Santonian suggest low productivity in the 

Tarfaya basin. These log-ratios exhibit lowest values (mean values of -1.506 and 0.073) and 

relatively low variability (standard deviation of 0.276 and 0.319) (Figs. 7 and 8).  

The log(Ba/Ca) and log(P/Ca) show a lowest values in the upper Turonian interval (134-190 

m) (mean values of -2.233 and -2.567) and high values in the upper Turonian (190-200 m) (mean 

values of -2.059 and -2.263) and Conacian to Santonian (24-134 m) (mean values of -2.074 and -

2.341) intervals. The upper Turonian interval (134-190 m) exhibits a high variability in the log(P/Ca) 

(standard deviation of 0.163) and low variability in the log(Ba/Ca) (standard deviation of 0.092). The 

log(Br/Ca) exhibits no major change in the core Tarfaya SN°2. In contrast, the log(Br/Fe), log(Ba/Fe) 

and log(P/Fe) are higher in the upper Turonian interval (134-190 m) (mean values of -2.031, -0.163 

and -0-497, respectively) with also high variability (standard deviation of 0.265, 0.276 and 0.219, 

respectively) and lowest in the Coniacian to Santonian interval (24- 130 m). The base of the core 

Tarfaya SN°2 (190-200 m) exhibits intermediate values (mean values of -2.546, -0.585 and -0.789) 

with relatively low variability (standard deviation of 0.172, 0.176 and 0.232) (Figs. 7 and 8).  
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3. Carbonate content (CaCO3) based on Ca counts 

The correlation of cores Tarfaya SN°1 and 2 is defined and presented in the Chapter III 

(Aquit et al., in prep) based on elemental Al/Ca and Zr/Rb ratios (XRF scanning results), lithological 

descriptions, line-scan records, bulk carbonate stable isotopes and planktonic foraminiferal 

biostratigraphy. The tie point for correlation is encountered at 191.6 m in Tarfaya SN°1 and at 38.85 

m in Tarfaya SN°2. A total composite depth scale is constructed for the two cores by using the 

following equation: 

Composite depth (mcd) = depth in SN°2 (m) - 38.85 m + 191.6 m.  

The carbonate content was measured for the core Tarfaya SN°2 (not for core Tarfaya SN°1) 

by using CaCO3=Cinorg*8.333 formula after Sachse et al. (2012). These measurements were taken at 

3 m intervals and over short disturbed intervals at 30 cm intervals. The carbonate content (CaCO3) 

shows a good linear correlation with Ca-counts (linear correlation factor of r = 0.7429) in the core 

Tarfaya SN°2. We further interpolated a new CaCO3 (%) curve for the cores Tarfaya SN°1 and 2 

using the mathematical equation of linear correlation:  

Y (CaCO3 %) = 10.652 + 5.4813 * 10
-5 

* X (Ca-count) 

The carbonate content interpolated for the cores Tarfaya SN°1 and 2 is highest in the upper 

Turonian interval between 286.7 mcd and 342.7 mcd (mean value of 68.497 and standard deviation 

of 10.638) and lowest in the Coniancian to Santonian interval of the succession (158.8-286.7 mcd) 

(mean value of 50.344 and high variability with standard deviation of 10.470) (Fig. 9). This interval 

also shows three successive decreases trend from 286.7 to 253.5 mcd, 253.5 to 221.5 mcd and 221.5 

to 190.5 mcd depth intervals. In the lower Campanian (30-158.8 mcd), CaCO3 indicates relatively 

intermediate values with mean value of 63.105 and relatively high variability with standard deviation 

of 8.715. The base of the core Tarfaya SN°2 below 342.7 mcd exhibits a low values with mean value 

of 51.161 and standard deviation of 8.033 (Fig. 9).  

Also we interpolated a new organic carbon Corg (%) and Total Sulfur (TS) (%) curves for the 

cores Tarfaya SN°1 and 2 using the mathematical equations of linear correlations. The Corg (%) were 

measured at Tarfaya SN°1 by Sachse et al. (2014) and at Tarfaya SN°2 by Sachse et al. (2012):  

 

Y (Corg %) = -4.1683 - 6.3621 * X (log(Br/Ca)) 

Y (TS %) = -1.5635 - 1.7617 * X (log((Mn+220)/S)) for core Tarfaya SN°2 
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Y (TS %) = -1.4052 - 1.5796 * X (log((Mn+220)/S)) for core Tarfaya SN°1 

 

The organic carbon (Corg) and Total Sulfur interpolated for the cores Tarfaya SN°1 and 2 are 

highest in the upper Turonian to middle Santonian (interval between 352 mcd and 190.5 mcd) with 

mean value of 6.618 and 1.253 and standard deviation of 12.570 and 0.349, respectively, and lowest 

in the lower Campanian (30-158.8 mcd) with mean value of 3.042 and 0.775 and standard deviation 

of 0.366 and 0.398, respectively (Fig. 9). In the upper Santonian (158.8-190.5 mcd), the Corg and TS 

exhibit decreases values from highest (upper Turonian) to lowest (lower Campanian).  
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4. Identification of sequences  

The high-resolution XRF-scanning record of Tarfaya SN°2 core reveals several sequences of 

carbonate-rich intervals with distinct basal contacts, which subsequently grade into organic-rich 

laminated marlstones. We interpret the onset of carbonate-rich, commonly coarse-grained 

sedimentation as sequence boundaries above a regressive system tract, which may be truncated and 

overlies carbonates as lowstand and early trangressive sediments (Fig. 10). The following organic-

rich, often laminated sediments, which dominate the Late Cretaceous sedimentation in the Tarfaya 

Basin were deposited during elevated sea-level, favoring impingement of an upwelling-related 

Oxygen Minimum Zone (OMZ) onto the shelf (Kolonic et al., 2005; Kuhnt et al., 2004, 2009 etc.). 

These organic-rich are representing the later part of the transgressive system and the highstand 

system tracts (Fig. 10).  

The major sequences identified in the cores Tarfaya SN°1 and 2 based on changes in the log-

ratios of the elements (log(Al/Ca)), Ca-counts, and the lithological evidence, which presented in 

sediment as erosive horizon and correspond to the unconformities shown in the Chapter III (Aquit et 

al., in prep). 
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Figure 10: Core photograph and log(Al/Ca) and Ca (counts) of idealized sequence in the Tarfaya cores. LS-lowstand sediments, TST-

transgressive systems tract, HST-highstand systems tract, RST-regressive systems tract, SB-sequence boundary (transgressive surface 

of erosion), although sequence boundaries are still marked by erosional unconformities. 

5. Line-scanning and core photography 

The sediment colour records are one of sediment properties that can be measured by relatively 

fast and non-destructive techniques on marine and lacustrine cores. High-resolution colour records 

are helpful for cross-correlation of overlapping cores (e.g. Kroon et al., 1998), as a proxy for 

sediment composition (Balsam et al., 1999; Helmke et al., 2002) or for wiggle-matching with other 

palaeoclimate records (e.g. Hughen et al., 1998).  

Line scan measurements and photographs were acquired with a Ja CVL 1073 CCD color line 

scan camera. Camera resolution is specified as total number of pixels in the final image. A single 
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pixel in the final image consists of three values, one for each of the three colour channels, red, green 

and blue. The raw image data are generally processed within the camera before they were transferred 

to a storage medium.  

Original colour data, which are linearly proportional to the amount of light received by the 

camera, are transformed into a non-linear version of RGB. The most commonly used colour co-

ordinate system to describe sediment colour is meanwhile the CIE L*a*b* system (defined by the 

Commission Internationale de l'Éclairage). L* is lightness, and ranges from 0 to 100 (black to white). 

The actual colour (hue) is expressed in a* (negative values are red, positive is green) and b* 

(negative for blue and positive values for yellow). Translation from linear RGB into the L*a*b* 

system is by definition done via an intermediate step, the XYZ tristimulus system (Nederbragt et al., 

2006). 

Line scan measurements and photographs were taken with a Ja CVL 1073 CCD color line 

scan camera with 3 sensors of 2048 pixels and Dichroic RGB beam splitter prism (RGB channels at 

630 nm, 535 nm and 450 nm) at the Institute of Geosciences, Kiel University. Scanning was 

performed (resolution of 143 pixel per 70 micron) on the polished surface of oriented cores. Line 

scan measurements and photographs were used in the previous chapter to correlate the cores Tarfaya 

SN°1 and 2 and lithological changes at the unconformities (Fig. 11).  
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Figure 11: Core photograph and l*, a* and b* from line Scan of idealized sequence in the Tarfaya cores. 
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Abstract 

In addition to previously analyzed sediments of Cenomanian to Santonian age in the Tarfaya 

Sondage No. 2 well, this study presents the results of a stratigraphically younger interval of 

Santonian to early Campanian age in the adjacent well Tarfaya Sondage No. 1. This interval is part of 

the oceanic anoxic event 3 (OAE3), which occurred mainly in the Atlantic realm. Due to known high 

quality source rocks related to OAEs (i.e. Cenomanian-Turonian), the investigated sample section 

was tested for the quality, quantity and kind of organic matter (OM), describing also the depositional 

environment. The study was carried out by means of (i) elemental analysis (Corg, CaCO3, TS), (ii) 

Rock-Eval pyrolysis, (iii) vitrinite reflectance measurements, (iv) gas chromatography-flame 

ionization detection (GC-FID) and (v) GC-mass spectrometry (GC-MS). Total content of organic 

carbon (Corg), values for the hydrogen index (HI) (mainly in the range 500 to 700 mg/g Corg) and S2 

values (10 to 40 mg/g rock), support the assumption of a high petroleum generation potential in these 

Upper Cretaceous sediments. TS/Corg ratios as well as pristane/phytane ratios indicate variable 

oxygen contents during sediment deposition, representing a typical depositional setting for the Late 

Cretaceous and are in good agreement with previously analyzed data in the Tarfaya Basin. Phyto- 

and zooplankton were identified as marine sourced. All of the investigated early Campanian and 

Santonian samples are immature with some tendencies to early maturation. These results are based on 

vitrinite reflectance (0.3 to 0.4 % VRr), Tmax values (409 to 425 °C), production indices (PI; S1/(S1 + 

S2)< 0.1) and n-alkane ratios (i.e. carbon preference index). As the deposition of these sediments is 

time related to OAE3, the depositional environment was characterized by oxygen-deficiency or even 

anoxic bottom water conditions. This situation was favored during the Cretaceous greenhouse climate 

by limited oxygen solubility in the then warmer ocean water. Furthermore, local factors related to 

nutrient supply and primary bioproductivity led to the exceptionally thick, Upper Cretaceous organic 

matter-rich sedimentary sequence of the Tarfaya Basin. 

 

Keywords: Petroleum source rocks; Tarfaya Basin, Morocco; Late Cretaceous; Depositional 

environment; Thermal maturity; Kerogen type; Ocean anoxic event 
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1. Introduction 

Oceanic anoxic events (OAEs) have been widely discussed in literature (i.e., Schlanger and 

Jenkyns, 1976; Hofmann et al., 2003; Sageman et al., 2006; Locklair et al., 2011). Ocean wide anoxia 

have been considered as key mechanism for organic carbon burial for specific time intervals (Arthur 

et al., 1990; Wagreich, 2012) and are characterized by the occurrence of organic matter-rich pelagic 

sediments, such as black shales. Wagreich (2012) noted three factors to qualify for an OAE: (1) 

organic- rich strata must be widespread, (2) correlation in time to qualify as a supra-regional single 

event and (3) accompanied by a significant carbon isotope excursion.  OAE 3 (Coniacian-Santonian) 

is known as the last Cretaceous oceanic anoxic event (Arthur et al., 1990). In contrast to the global 

extents of the early Aptian OAE 1a and the Cenomanian-Turonian OAE 2, Arthur and Schlanger 

(1979) describe the occurrence of OAE 3 as regionally more restricted. 

The influence of oceanic anoxic events (OAEs) and especially of the OAE 2 on the quality 

and quantity of organic matter and the depositional environment was previously described by Sachse 

et al. (2012) for the Sondage No.2 (Turonian to Santonian), closely located to the Sondage No.1 

(Santonian to early Campanian) presented in this study (Fig. 1). In addition different Cenozoic and 

Mesozoic sedimentary sequences in the Tarfaya Basin (TB) were tested for their petroleum 

generation potential (Sachse et al., 2011), focusing mostly on the Cenomanian/Turonian sequence 

(e.g. Lüning et al., 2004; Kolonic et al., 2002; Kuhnt et al., 2001, 2005b, 2009; Sachse et al., 2012).  

The TB in Morocco was highly affected by different phases of OAE, but the possible 

influence of OAE3 on type, quality and quantity of organic matter is still poorly investigated. Thus, 

the main objective of this study was to determine conditions of sedimentation based on a 

geochemical study on a newly drilled core. Indicators which give further insight to the depositional 

environment are discussed and a detailed overview on organic matter (OM) type, quantity and quality 

is presented to improve the overall geochemical information available for the Tarfaya Basin. In 

addition, the relation to the OAE3 can help to improve the knowledge about the extent of this event, 

its duration and quality with respect to source rock deposition. Furthermore, geochemical analysis 

can give evidence on the source rock quality of the Santonian and Campanian sediments, which 

might be of interest for the Moroccan offshore petroleum system. 
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Figure 1: Overview of the geology of Tarfaya Basin and adjacent areas including well Tarfaya Sondage No. 1 and previous 

investigated well Sondage No. 2 (Sachse et al., 2012). Overview map based on Michard et al. (2008) showing the geological zones of 

Morocco and its location in Africa (small map in the upper left). Green dots represent key wells with respect to the petroleum system. 

1.1. Geological Background 

The TB is located in the south of Morocco/Western Sahara and covers an area of 170,000 km² 

both on- and offshore. The basin is surrounded by the Mauretanides thrust belt in the south, the 

Precambrian Reguibat Massif in the southeast, and the Paleozoic outcrops of the northern Anti- Atlas 

as well as the Zag/Tindouf Basin to the northeast (Fig. 1). To the west the East Canary Ridge limits 

the basin. Northern African basin evolution started with rift phases due to the opening of the 

North/Central Atlantic during the Permian until the Triassic. During the development of the sag 

phase the TB showed phases of thermal relaxation and subsidence (Wenke et al., 2011). Open marine 

sediments were deposited since the Early Jurassic (Davison, 2005) while the Late Jurassic presents 

carbonate platforms (Michard et al., 2008).  
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In the Early Cretaceous, the reorganization of the African and South American plates led to 

changes in the oceanic and atmospheric circulation. The Lower Cretaceous carbonates and clastic 

were deposited in a mainly deltaic (e.g. the Tan Tan delta, northern margin of the TB) or paralic 

environment (Kolonic et al., 2002; Lüning et al., 2004). A major reorganization of deep-water 

circulation culminated in the Late Cretaceous, now circulating equatorward to poleward and thus heat 

transporting to high latitude oceans (Hay, 1995; Wagner, 2002). Furthermore, the constant opening of 

the Atlantic close to the Equator led to the establishment of full water exchange, influencing also the 

sedimentary and geochemical record (i.e. Hay, 1995; Jones et al., 2007; Wagner and Pletsch, 1999).  

Late Cretaceous (Cenomanian to Coniacian) sediments are highly influenced by oceanic 

anoxic events (Thurow et al., 1992) and represented by organic-rich clays and marlstones. Global 

sea-level rises and transgressional events were detected for the late Aptian, Turonian and Campanian. 

Especially the Turonian led to the deposition of black shales in the TB (Kolonic et al., 2002; Kuhnt et 

al., 2009; Sachse et al., 2011, 2012). The Cenomanian to Santonian sediments reach a thickness of 

approx. 800 m in the TB (Leine, 1986; Kolonic et al., 2002). During Santonian and upper Paleogene 

a first major unconformity occurred (Davison, 2005), truncating these sediments at the shelf edge. 

This highly erosive unconformity is related to Atlasian uplift (Michard et al., 2008). During the 

Cenozoic, the Alpine deformation resulted in inversion of former rift systems as the Atlas Gulf and 

leading to the formation of the Atlas Mountains (Lüning et al., 2004). Since the late Oligocene, 

erosion took place mainly in the northern shelf of the TB, representing a second major unconformity. 

In most parts of the Basin, thin Paleocene-Eocene sediments are overlain by a thick Miocene 

sequence (Davison, 2005). The geological history is described in more detail by Choubert et al. 

(1966, 1972), Davison (2005), Michard et al. (2008), Wenke et al. (2011) and Sachse et al. (2011). 

1.2. Petroleum Systems in Morocco 

Various potential source rocks are assumed to occur in the Tarfaya Basin. The main 

petroleum system in Morocco is of Jurassic age (Essaouira Basin, Tarfaya Basin, Prerif Basin), but 

older Paleozoic systems are also known (Morabet et al., 1998). Although Paleozoic sediments are 

eroded in the northern Tarfaya Basin, these Ordovician/Silurian and Devonian sediments were drilled 

in the southern Tarfaya area and may have charged Triassic reservoirs in shelf areas (El Mostaine, 

1991). 
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Triassic source rocks were drilled in wells Cap Juby and Chebeika-1, possibly related to 

lacustrine anoxic settings (El Mostaine, 1991).  

Jurassic source rocks (Toarcian; type II/III kerogen), also known from Fuerteventura (Steiner et al., 

1998; Davison, 2005) were drilled in wells Cap Juby and Tan Tan and may have charged the MO-2 

reservoir (Morabet et al., 1998). Younger Jurassic source rocks (Callovian/Oxfordian) were drilled in 

well Puerto Cansado, containing type II/III kerogen.   

The earliest Cretaceous source rock is of Berriasian age, containing type III kerogen. It was 

drilled in the Tan Tan Delta. Valanginian to Hauterivian type I kerogen bearing source rocks were 

drilled in well MO-7 (Ellouz et al., 1998). As described in i.e. Sachse et al. (2011, 2012), younger 

Cretaceous potential source rocks are outcropping along the Moroccan coast, whilst 

Cenomanian/Turonian black shales are prominent at Oued Ma Fatma (Kuhnt et al., 2001; Kuhnt et 

al., 2009). Most of these potential source rocks are immature or in an early stage of maturity (Sachse 

et al., 2011, 2012). In addition, the thickness of the Cretaceous sediments is highly variable and 

probably small in the slope and deep offshore areas of the Tarfaya Basin (Arthur et al., 1979). 

Consequently, source rock thickness poses a high risk for a potential petroleum system. 

Several potential reservoirs are assumed for the Tarfaya Basin (i.e. Davison, 2005; Wenke et 

al., 2011): 1) Triassic sandstones, 2) Early Jurassic sandstones and fractured carbonates, 3) Middle to 

Late Jurassic shelf reef sequences and dolomitized, fractured shelf units, 4) Berriasian to Valanginian 

basin floor and lowstand fans, 5) late Valanginian to Aptian stacked mouth bars and channel systems 

of the Tan Tan and Boujdour delta complexes, and 6) Eocene to Oligocene coarse-grained mass 

transport complexes.  

Possible seals might be Late Triassic/Early Jurassic evaporites, Jurassic impermeable shales, 

Aptian mud flows, Late Cretaceous marls and shales and late Eocene/larly Oligocene/Miocene 

shales.  

Mature Upper Cretaceous source rocks are not proven in Morocco, but are believed to occur 

in the Dakhla-Laayoune Basin to charge Maastrichtian carbonate reservoirs (Morabet et al., 1998). 

Furthermore, mature Cretaceous source rocks might occur in the Agadir-Essaouira offshore basin, in 

the Tadla Basin and are active in the Prerif (Morabet et al., 1998). Up to now, the petroleum system 

of the offshore Tarfaya Basin is believed to be charged by Liassic source rocks filling Upper Jurassic 

reservoirs (Morabet et al., 1998). However, the oil shows in well Cap Juby (offshore Tarfaya Basin) 

cannot be clearly attributed to a specific source (Morabet et al., 1998).  
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2. Methods 

Tarfaya Sondage No 1 (coordinates: N 27°42`36.6``, W 12°56`39.0``) was drilled in October-

December 2009 northwest of the Sebkha Tah to a final depth of 350 m. This well was part of a 

drilling campaign, with the overall goal to recover the Miocene to Albian sequence. Therefore four 

wells were drilled, finally revealing four overlapping core sequences. Tarfaya Sondage No.1 covers 

the uppermost part of the succession. The drilling was successful and core recovery was at nearly 

100%. The well is located approx. 25 km southeast of Tarfaya village, approximately 220 m east of 

the main road to Laayoune, and approximately 30 km from Tarfaya Sondage No. 2 (Sachse et al., 

2012). The stratigraphic differentiation is based on planktic foraminiferal biostratigraphy and detailed 

lithological descriptions (Aquit, Kuhnt and Holbourn, unpub. data; Fig. 2). Pleistocene to Pliocene 

(Mohgrabien) white/grayish to yellow sandstones and lumachelles occur from the surface down to a 

depth of 25 m. Lower Campanian sediments (Globotruncanita elevata Zone) between 25 and 159.2 

m consists of brown marl with intercalations of gray and light green olive marls (generally 

bioturbated) and silty layers. The Santonian interval (Dicarinella asymetrica Zone) between 159.2 

and 199-201 m is comprised of laminated black shales with occasional nodular limestones. The 

Coniacian (Dicarinella concavata Zone) between 199-201 and 253 m and the upper Turonian 

(Marginotruncana sigali Zone) from 253 m to the base of the core are characterized by intercalations 

of laminated black, gray and dark brown shales with silty intervals and nodular limestones.  

One hundred and twenty-three fresh core samples were taken from this well, covering only 

the lower Campanian and Santonian (between 20 and 180 m depth). The lower part of the well (upper 

Turonian and Coniacian) was not sampled because these intervals were partially covered by samples 

from Tarfaya Sondage No. 2 (Sachse et al., 2012). The sampling approach was two-fold (Fig. 2A). 

First, samples were taken approximately every 3 m in the depth range between 22 and 180 m to 

provide an overview on the evolution of thick black shale sequences within the entire succession. In 

addition two intervals within black shales were selected for denser sampling (20 - 30 cm) to assess 

the geochemical variability within black shales. The first of these intervals is located within the upper 

part of the core (92 to 97 m; lower Campanian; Fig. 2B), while the second interval represents the 

lower Campanian to Santonian transition (155 to 170 m; Fig. 2C). 

Total inorganic carbon (Cinorg) and Corg were measured on all samples of the Tarfaya Sondage 

No. 1 using a LECO multiphase C/H/H2O analyzer (RC-412) via IR absorption in a two stage 
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measurement process (Corg between 350°C and 520°C; Cinorg between 520 and 1050°C). With this 

method Corg and Cinorg can be determined in a single analytical run without previous removal of 

carbonates by acid treatment. Total carbon (Ctotal) concentration was determined using 

Ctotal=Cinorg+Corg. The CaCO3 proportion (%) was calculated using CaCO3=Cinorg*8.333. If dolomite 

is present instead of calcite, this leads to a slight overestimation of carbonate content. Dolomite 

rhomboeders could indeed be identified in some samples.  

Furthermore, total sulfur concentration (TS) was measured using a Leco S 200 sulfur 

analyzer. For this method precision is <5% and the lower limit of determination is 0.001 %.  

Rock-Eval analysis (Espitalié et al., 1985) was performed with a DELSI INC Rock-Eval II 

instrument on 44 samples that showed Corg contents >1.0 %. Parameters determined include hydrogen 

index [HI, mg hydrocarbon (HC) equivalents per g Corg), oxygen index (OI, mg CO2 per g Corg) and 

Tmax (temperature of maximum pyrolysis yield). A modified van Krevelen diagram (HI/OI) and a 

cross plot of S2 and Corg were used for kerogen classification. Production index (PI) was calculated 

based on S1 and S2.  

Vitrinite reflectance (VRr) was measured on samples with Corg > 0.5 %. For microscopic 

studies, samples were embedded in an epoxy resin and a section perpendicular to bedding was 

polished according to the procedure described by Sachse et al. (2012). The polished blocks were 

investigated at a magnification of 500x in incident white light and in incident light fluorescence 

mode, excited by ultraviolet (UV) and violet light. VRr measurements were obtained using a Zeiss 

Axioplan incident light microscope at ʎ=546 nm with a Zeiss Epiplan-NEOFLUAR 50x/0.85 oil 

objective. An yttrium aluminium garnet (YAG) standard was used, with a reflectance of 0.889% (in 

oil). For samples rich in vitrinite or solid bitumen particles, at least 50 measurements were made. 

Mean vitrinite reflectance and standard deviation values were calculated using the DISKUS Fossil 

software (Technisches Büro Carl H. Hilgers). In total, 27 samples were studied by way of reflected 

light microscopy. 

For aliphatic hydrocarbons aliquots of 10 g were extracted twice, each with 40 mL 

dichloromethane and hexane, respectively, using ultrasonic treatment. The extracts were fractionated 

by silica gel-based liquid chromatography into subfractions of (I) aliphatic hydrocarbons (5 mL 

pentane), (II) aromatic hydrocarbons (5 mL pentane: dichloromethane, 4:6 v:v) and (III) polar 

compounds (5 mL MeOH). Gas chromatographic analyses of aliphatic hydrocarbons were performed 

with a Fisons Instruments GC 8000 series equipped with split/splitless injection, using a ZB-1 HT 
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fused silica capillary column (30 m x 0.25 mm i.d., film thickness 0.25 µm). Detection was done with 

a flame ionization detector (FID). H2 was used as carrier gas with 40 mL/s gas velocity. 

Chromatographic conditions were: 270 °C injector temperature, 1 µL split- splitless injection with a 

splitless time of 60 s, temperature program: 80°C for 3 min, then programmed at 10°C/min to 300°C 

and held for 20 min. GC-MS analyses were performed on a Finnigan MAT 95 mass spectrometer 

linked to a Hewlett Packard Series II 5890 gas chromatograph, equipped with a 30 m x 0.25 mm i.d. 

(0.25 µm film thickness) Zebron ZB-1 fused silica column. The mass spectrometer was operated in 

electron ionization (EI
+
) mode with ionization energy of 70 eV and a source temperature of 260 °C, 

scanning from m/z 35 to 700 at 1.0 s/decade with an interscan time of 0.1 s. He was used as carrier 

gas with a gas velocity of 60 mL/s. The analytic procedure started with 3 min isothermal at 80 °C, 

then programmed from 80 to 310°C at 5°C/min. The identification of hopanes and steranes was based 

on the comparison of EI
+
-mass spectra with reference material such as the comparison with 

compound identification pattern of i.e. Kolonic et al. (2002), Sachse et al. (2011) and Sachse et al. 

(2012). All molecular ratios were calculated on the base of integration of peak areas of specific ion 

chromatograms (i.e. m/z 57, 191, 217). 
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Figure 2: Elemental analysis data of Corg, CaCO3, TS and TS/Corg plotted versus depth for (a) the whole Sondage No. 1; (b) 1st 

interval (92-97 m) with focus on early Campanian samples and (c) 2nd interval (155-170 m) showing the transition between early 

Campanian and Santonian samples. 
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3. Results 

3.1. Elemental analysis 

Results of the elemental analysis are compiled in the appendix. Corg values are high in the 

entire sample set varying between 1.5 and 5.5% (Fig. 2A). Highest values were measured for the 

deepest and oldest sediments (approx. 150 to 180 m) and Santonian samples have in general higher 

Corg values than those of the early Campanian. Another pattern is obvious for the total sulfur (TS) 

content and Corg which are positively correlated (Figs. 2, 3). TS values vary between 0.4 and 1.6%. 

Especially samples from a depth between 150 to 180 m show a high content of TS. Enhanced TS was 

also measured for sections between 30 to 50 m and 90 to 100 m (Fig. 2A). TS increases with 

increasing Corg in the lowermost section (Fig. 2C; 160 to 180 m), whereas such a correlation is not 

observed at a depth and 100 m (Fig. 2B). TS/Corg ratios vary between 0.17 and 0.46. 

In general CaCO3 content shows high values, varying between 37.7 and 86.8% (Fig. 2). A 

negative correlation exists between CaCO3 and Corg and CaCO3 and TS (Fig. 2A).  

 
Figure 3: TS and Corg values for the early Campanian and Santonian samples. 

3.2. Rock Eval pyrolysis 

HI values for the early Campanian vary between 395 and 712 mg HC/g Corg, while Santonian 

samples show constantly high values between 482 and 653 mg HC/g Corg. An average value of 

578 mg HC/g Corg was calculated for both stratigraphic units. Tmax values are in the range of 409 to 

425°C, with PI values < 0.04 for all samples. Highest PI values were calculated for the Santonian 
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section between 160 and 180 m, but also for one early Campanian sample (depth 46.30 m). S2 values 

increase with increasing Corg, being in the range of 9 and 38 mg HC/g rock, with highest values for 

the Santonian. Pyrolysis results are compiled in Figures 4, 5 and in Table 1. 
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Figure 4: Rock-Eval pyrolysis data for the well samples: (a) HI vs. Tmax, (b) S2 vs. Corg, and (c) S1 vs. Corg. 

3.3. Organic Petrography 

An overview on maturity distribution is provided by vitrinite reflectance (VRr) measurements 

(Fig. 5), characteristic microscopic observations are shown in Fig. 6. Early Campanian and Santonian 

samples revealed values between 0.28 and 0.31%VRr, showing no distinct depth trend. Several 

samples contain only resedimented vitrinites; resulting in a (much) too high mean value.  

Besides vitrinites, also liptinites and inertinites (inertodetrinite) were detected. Liptinite is 

clearly most abundant with volume percentages of up to 6.2% and percentages of total visible 

macerals being consistently greater than 90%. The bulk of the OM was classified as fluorescing 

amorphous OM. Liptinite consists mainly of alginite and alginite fragments (liptodetrinite). In 

addition sporinite and resinite were rarely observed. Terrestrial derived OM such as vitrinite and 

inertinite occur in similar, low abundance. High amounts of foraminifera and small pyrites were 

detected in most samples, as well as dolomite rhomboeders in some samples. It should be noted, that 

less and smaller pyrites were detected than in Cenomanian/Turonian samples, which is in agreement 

with lower sulfur contents. Alginite occurs as brightly fluorescing, elongated particles in sections 

perpendicular to bedding, usually less than 30 µm in length (Fig. 6). Liptodetrinite has a similar 

fluorescence and small size, but no distinct elongate shape. It is possibly derived from marine 

plankton, such as alginate. Whereas these types of macerals are common, an even greater part of the 

OM consists of structureless fluorescing groundmass. Fluorescence is weaker than that of alginate 
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and liptodetrinite. Such amorphous organic matter occurs commonly in upwelling- related sapropelic 

marine sediments (Littke and Sachsenhofer, 1994).  

 
Figure 5: Maturity parameters plotted versus depth: (a) VRr; (b) Tmax and (c) PI (S1/S1+S2) for the well samples. 

 

 
Figure 6: Microscopic observations in incident light fluorescence mode (a-d) and in reflected white light (e, f). Photograph a, c, d and 

e show a Santonian sample, b and f present the amorphous OM, pyrite and foraminifera in an early Campanian sample. 

3.4. Organic Geochemistry  

Biomarker ratios were used in order to identify the depositional environment as well as the 

maturation range of potential source rocks. For the early Campanian and Santonian samples n- and 
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isoalkane patterns revealed a clear dominance of short chain (C15 to C19) relative to long chain n-

alkanes (C27-C31) (Fig. 7).  

The ratios of pristane (Pr) and phytane (Ph) over the adjacent n-alkanes was moderate to high 

(Table 2). For the early Campanian samples a dominance of pristane is typical, while Santonian 

samples show a dominance of phytane. Pr/Ph ratios vary for the early Campanian samples between 

0.87 and 1.32 and for Santonian samples between 0.8 and 0.9. A dominance of Pr vs. nC17 and of Ph 

vs. nC18 was calculated for all samples, with ratios varying for the early Campanian between 1.74 and 

2.92 and for the Santonian samples between 1.76 and 3.05 (Fig. 8). The ratio of nC17/nC27 is in most 

samples >1 except for one sample correlated to early Campanian with a value of 0.96. For the 

Santonian samples, the ratio is slightly higher (1.99 to 3.91) then for the early Campanian (0.96 to 

3.53).  

The odd-even predominance (OEP) after Scalan and Smith (1970), calculated with the 

formula (nC21+6*nC23+nC25)/(4*nC22+4*nC24), revealed early Campanian ranging between 0.72 and 

1.56 and Santonian samples between 0.7 and 2.07. The values of the modified carbon preference 

index (CPI), calculated after Bray and Evans, (1961) with the formula (2xnC27)/(nC26+nC28) vary 

from 0.74 to 2.96, with slightly higher values for the early Campanian (0.84 to 2.96; Santonian 0.74 

to 2.37; see Table 2). 

Tricyclic and tetracyclic terpanes in the range of C21 to C29 are detectabel in most samples but 

under the limit of quantification. Also Pentacyclic terpanes of the hopane series from C27 to C37 are 

not quantifiable. 

Steranes are much more abundant than hopanes. Relative contributions of cholestane (C27), 

ergostane (C28) and stigmastane (C29) were quantified (Figs. 9, 10). Cholestane contents are highest 

in samples of early Campanian and vary between 11.5 and 76.5%, while Santonian samples show 

ranges in between 11.9 and 57.9%. The ergostane contents are higher in Santonian samples (31.1 to 

61.9%; early Campanian 16.2 to 44.8%). Stigmastane shows the lowest contents in both sample 

series: early Campanian samples vary between 6.9 and 27.2%, Santonian samples between 7.2 and 

26.2%.  



 155 

 
Figure 7: Chromatogram showing distribution of n- and iso- alkanes. 

 

 
Figure 8: Pr/nC17 vs. Ph/nC18 for well samples indicating oxygen depleted but anoxic environment during deposition (after 

Shanmugam, 1985). 
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Figure 9: Characteristic ion spectra for steranes. 

 
 
Figure 10: Relative composition of C27, C28 and C29 steranes in early Campanian and Santonian samples. 

 

4. Discussion 

4.1. Depositional environment and organic matter preservation 

Prominent examples for cyclic black shale deposition during OAE 3 coupled with anoxic to 

dysoxic conditions were described i.e. offshore Ivory Coast- Ghana (Wagner, 2002; Hofmann et al., 

2003), the Demerara Rise offshore Suriname (Friedrich and Erbacher, 2006), the Caribbean, the 
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Western Interior (Locklair et al., 2011), the Maracaibo Basin (Rey et al., 2004) and northwest Africa 

(i.e. Rusk, 2001). Although this data indicates a wide distribution of OAE 3 black shales, occurrence 

is mainly restricted to the Atlantic, possibly as a consequence of the opening of the Equatorial 

Atlantic Seaway (i.e. Wagner, 2004; Wagreich, 2009; Hofmann and Wagner, 2011), and correlation 

in time with sites outside the Atlantic is doubtful (Wagreich, 2012). Thus, the impact of local factors 

is more likely than a global event, controlling the deposition of organic- rich layers (Wagreich, 

2012).  

The organic-rich sediments on both sides of the Atlantic (Demerara Rise and Ivory Coast-

Ghana) were described as more or less continuous succession of cyclic black shales (up to 14% Corg 

on the Demarara Rise), representing precession and eccentricity orbital cycles (Wagner et al., 2004; 

Friedrich and Erbacher, 2006; Wagreich, 2009) from upper Cenomanian up to upper Santonian or 

even lower Campanian. It is assumed that anoxic water conditions proceeded from these sites into the 

Caribbean, the Western Interior and the Maracaibo Basin, depositing organic carbon-rich sediments 

during Coniacian-Santonian up to the lower Campanian (Locklair et al., 2011; Rey et al., 2004).   

Petters and Ekweozor (1982) described black shales of Coniacian to early Santonian in the 

Benue trough, Nigeria. These fine laminated shales have Corg contents up to 1%, but show dominance 

of terrestrial organic matter. The sediments were deposited under oxygen depleted conditions, based 

on TS, TS/Corg values, and Pr/Ph ratios. The authors assume deposition during global mid-Cretaceous 

marine transgressions and fed by nutrient-rich, oxygen-depleted waters in the northern parts of the 

South Atlantic Ocean. 

Apart from Atlantic sites, black shales of Coniacian to Santonian age have only limited 

distribution, but a recent description was carried out for the northern Lebanon. Here, highest Corg 

values were measured for the lower Campanian (up to 6%, type II kerogen; Bou Daher et al., 2014), 

decreasing through the upper Campanian. The succession consists mainly of lime-mudstones to 

wackestones. Bou Daher et al., (2014) described variable, dysoxic depositional environments, whilst 

the study area was only marginally affected by the Santonian phase of transgression.  A further 

compilation of OAE3 related sediments is given by Wagreich (2009). 

For the samples of the Tarfaya Sondage No.1, high variations in Corg, TS and CaCO3 content are 

characteristic. For the TB variations in sea-level and upwelling intensity have been proposed 

(Holbourn et al., 1999), influencing sediment composition and productivity of carbonate and organic 

matter and thus explaining differences in sedimentary compositions. Based on the relationship 
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between Corg and TS, the original sediment composition before sulfate reduction (silicate, original 

OM, carbonate) was calculated (Fig. 11). This procedure is based on the fact that (almost all) sulfur 

in the system is of early diagenetic origin, derived from microbial sulfate reduction under 

consumption (oxidation) of reactive organic matter. The underlying equations and assumptions are 

discussed in Littke et al. (1991) for ancient source rock systems and in Lückge et al. (2002) for recent 

upwelling systems. The depositional system studied here is carbonate dominated (Fig. 11), but a 

slight increase of OM with an increase of silicate is obvious and probably related to enhanced 

nutrient supply. This would also point to advanced productivity/preservation and give an explanation 

for the high OM contents.  

Moderate TS/Corg ratios are characteristic for nearly all samples. After Berner (1984) high 

TS/Corg values indicate that a high amount of OM was consumed via bacterial sulfate reduction under 

diagenetic and anoxic marine conditions. In these sediments most sulfur occurs in the form of iron 

sulfides. Thermochemical sulfate reduction (Michard et al., 2008) did never happen in the TB due to 

low diagenetic temperature; hence the sulfur is related to bacterial sulfate reduction processes. This is 

also evident from the presence of pyrite, often as microcrystals of framboidal pyrite. Large pyrite 

crystals are missing. TS/Corg ratios are not uniform within the well, but there are some depth levels, 

where quite high ratios indicate oxygen-deficiency in bottom waters. Most of the Santonian and early 

Campanian samples plot below the normal marine line, suggesting an oxygenated water column. In 

general the data indicate a high bioproductivity and no or only periodically anoxic water column. The 

pattern of the Santonian samples resembles the one established for Santonian samples of Sondage 

No. 2 (Sachse et al., 2012) where most samples plot close or below the normal marine line, indicating 

suboxic conditions and enhanced productivity. TS/Corg ratio vs. HI and TS vs. S2 (Fig. 12) support 

these conclusions on the depositional environment. High HI values, moderate TS/Corg and (Ph/nC18)/ 

(Pr/nC17) (Figs. 8, 12) ratios indicate preservation of the OM in oxygen-depleted but not anoxic 

waters. This holds true especially for the Santonian samples.  

Organic geochemical results reveal a dominance of short chain n-alkanes (<C20) which are 

typical for nearly all samples, and are typical for phytoplankton sources (Cranwell, 1977). Due to low 

maturity a cracking of long chain hydrocarbons can be ruled out here. Higher abundance of long-

chain n-alkanes indicates contribution of terrestrial input (Peters et al., 2005), but is not observed 

here.   



 159 

The dominance of C27 and C28 steranes supports the conclusion on predominant marine OM 

contribution (Figs. 9, 10). The high amounts of ergostane and cholestane point to phytoplankton and 

zooplankton as source for the OM. The low abundance of hopanes leads to the assumption of a minor 

bacterial contribution to the organic matter and/or a bad preservation of the precursor 

bacteriohopanetetrol. Hopanes as minor components were also described, for instance by Kolonic et 

al. (2002) for black shales of Cenomanian-Turonian age from the TB and by Sachse et al. (2011, 

2012) for sediments of various stratigraphic ages in the TB. 

The observation of alginite and liptodetrinite supports the marine contribution, while the 

occurrence of sporinite also shows a minor terrigenous influence. Minor vitrinite and inertinite 

contents also represent land-derived plant material in the samples. In summary, the high abundance 

of algae/phytoplankton derived liptinite, the high ratio of short chain over long chain n-alkanes and 

the high concentration of iso-alkanes pristane and phytane indicate phytoplankton (algae) as primary 

source of OM. 

Based on the presented results it can be concluded that during the early Campanian and 

Santonian the investigated sediments were deposited in a shallow marine nutrient-rich upwelling 

influenced continental margin basin. The nutrient-rich environment depends on the flooding of the 

Atlas Gulf resulting in a connection of the Atlantic Ocean with the stagnant/nutrient-rich Tethys 

during the Cenomanian developing a major upwelling zone along the Central and North African 

Atlantic margin (Jarvis et al., 1999). Mid-Cretaceous was one of the hottest periods in earth history 

with elevated sea-levels and shelf areas twice as large as today. During that time, a series of major 

transgressive cycles caused a widespread flooding and intermittent regressive phases led to sea-level 

changes with heaving and sinking of the oxygen minimum zone and changing of bottom water 

conditions (Lüning et al., 2004).  

These palaeo sea-level changes coincide with deposition of sediments with high Corg content, 

possibly reflecting strong bioproductivity and a strong oxygen minimum zone. Along modern 

continental margins, organic matter flux to the seafloor is strongly controlled by intensity, depth and 

lateral extent of the oxygen minimum zone. As described in Littke et al. (1998) Corg and kerogen 

quality tend to decrease at continental margins from the proximal to the distal (pelagic) realm.  

However, turbidity currents and mass flows can transport large volumes of organic matter-rich 

sediment into deep marine areas outside and below the intense oxygen-minimum zone as described in 

Lückge et al. (1996).  In the case of the Cretaceous Tarfaya Basin the zone of intense oxygen 
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minimum extended far to the proximal parts of the margin or even onto the shelf, leading to 

exceptionally thick and stratigraphically extended source rocks on the present day coast. The 

exceptional character of the Tarfaya deposits will be additionally controlled by the paleo-bathymetry 

along the northwestern African margin. In analogy to sapropel deposition at present-day, organic 

matter deposition depends not only on bioproductivity (and upwelling intensity), but also on the 

presence of mini-basins (Reimers and Suess, 1983, Spaulding, 1991). 

Moreover, Late Cretaceous oceans were possibly more sensitive than present day oceans, 

reacting considerably to minor climate or hydrographic chances (Holbourn et al., 1999). These sea-

level changes are reflected in the change of the depositional environment, i.e. the variable Corg, TS, 

CaCO3, HI and Pr/Ph values. Transgressive and regressive phases of sea-level changes during the 

Late Cretaceous can be related to orbital Milankovitch-cycles (Holbourn et al., 1999; Kuhnt et al., 

1997). Furthermore the cause of organic matter-rich sedimentation in the Atlantic is not only related 

to global warming conditions or sea-level changes, but also driven by the configuration of the 

Atlantic and the shelf basins and continents. Wind-driven upwelling of nutrient rich seawater might 

be related to an estuarine circulation with respect to the Pacific from where nutrient-rich seawater 

derived. In this case, the low-latitudinal Atlantic served as a nutrient trap for a prolonged time 

interval (Wagner, 2002; Trabucho Alexandre et al., 2010) leading to sedimentation and preservation 

of large amounts of organic matter under oxygen depleted conditions.  

Wind-induced upwelling of nutrient rich waters and correlated productivity and preservation 

were also suggested for the black shale deposits offshore Ivory Coast-Ghana, while cyclicity was 

explained by fluctuations in preservation and productivity (Hofmann et al., 2003; Beckmann et al., 

2005, 2008), coupled with freshwater availability and climate conditions, and thus influencing the 

water circulation. However, compared to the Demerara Rise, for the Ivory Coast-Ghana a more 

regional control is assumed. More permanent anoxic conditions were suggested for the Demerara rise 

(Flögel et al., 2008), where various authors (i.e. Meyers et al., 2006 and citations therein) assume a 

long-lived upwelling system and thus high primary production. As described by Beckmann et al. 

(2008), during early to mid Coniacian times stronger oxygenation occurred, while oxygen depleted 

conditions were present during most times. In contrast, variations in the monsoonal system triggering 

precipitation, freshwater runoff and nutrient discharge occurred offshore Ivory Coast-Ghana. 

It should be noted that organic matter deposition and preservation was much more intense 

during the Cenomanian and Turonian oceanic anoxic event (OAE 2) than during the Campanian and 
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Santonian (OAE 3) with Corg values more than twice as high (Arthur and Schlanger, 1979; Sachse et 

al., 2011, 2012). In strong contrast to the widespread OAE 2, OAE 3 may be divided into several 

short-term events (Arthur et al., 1990), whilst no clear OAE 3 level that applies to most of the sites 

can be defined (Wagreich, 2012). In addition, the Coniacian-Santonian black shales are more 

restricted than the Cenomanian-Turonian shales and limitation to shallow water settings and Atlantic 

and Caribbean regions was noted by Jenkyns (1980). According to calculations from Locklair and 

Sageman (2008; Western Interior) for Coniacian-Santonian orbital time scale, the duration of the 

Coniacian (86.3-89.8 Ma) event ranges from 3.26 to 3.50 My, the Santonian (83.6-86.3 Ma) from 

2.24 to 2.53 My, giving a total duration for the Coniacian–Santonian event of 5.5 to 6 My. Although 

this was calculated for an American locality, this is much longer than assumed for the OAE 2, for 

which a duration of only 0.3 to 0.7 My has been calculated (Sageman et al., 2006) with high-

productivity events therein being even of shorter duration (Adams et al, 2010). Meyers et al. (2006) 

gave a compilation of the duration of the different OAEs, calculating a time span of approx. 300 ky 

for OAE2 and 2.7 My for OAE3. The absolute age durations are based on Ogg et al. (2004).  It 

should be noted, however, that organic matter-rich sedimentation lasted much longer in the TB 

(Sachse et al., 2011, 2012). Thus not only the climate changes (seasonal dry wet cyclicity) are 

responsible for the differences of deposition of OM during OAE 2 and 3, but also ocean circulation.  

 
Figure 11: Original sediment compositions of early Campanian and Santonian samples. The lower part of the Santonian drilled in well 

Sondage No.2 has clearly higher organic matter content than the younger units drilled in well Sondage No.1. 
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Figure 12: Anoxic parameters: (a) TS/Corg ratio vs. HI (mg/g Corg) and (b) TS (%) vs. S2 (mg/g rock). 

4.2. Petroleum potential and maturity 

According to their high HI and S2 values, the early Campanian and Santonian samples of this 

180 m thick sequence have a very high petroleum generation potential (Peters, 1986).  Although the 

different plots used for kerogen classification (Fig. 4 A and B) do not perfectly coincide, a 
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phytoplankton derived kerogen type II or maybe a mixture of type I/II can be assumed. However, the 

sediments are at an immature stage, as proven by a variety of parameters, e.g. occurrence of brightly 

fluorescing particles, low vitrinite reflectance and persistently low Tmax values.  

In this case, the odd-even predominance (OED) does not reflect maturity stages very well. 

Assuming a thermally mature stage with an OED between 0.9 and 1.3, two samples (sample 575 and 

634) represent an immature stage, seven samples even a mature stage and six reach an overmature 

stage (Table 2). A tendency over depth is not clearly obvious, and this parameter should be handled 

with care if it does not coincide with other parameters (Hunt, 1995). In contrast, the CPI after Bray & 

Evans (1961) supports an immature or possibly early mature stage of the samples. Pr/nC17 and 

Ph/nC18 ratios also prove an immature to early mature stage (Fig. 8; Table 2). In conclusion, the 

biomarker ratios based on the n-alkanes point to an immature or early mature stage and Rock-Eval 

parameters and organic petrology indicate an immature stage. Oil generation from these source rocks 

can only be expected in (offshore) areas, where deeper burial has occurred leading to higher 

temperatures. In the onshore area, the very thick organic matter-rich Upper Cretaceous sequence 

might by economically interesting for oil shale retorting purposes in future. However, a Late 

Cretaceous source rock contribution is unlikely also in offshore areas due to thinning or absence of 

sediments (Wenke et al., 2011).  

5. General discussion and conclusions 

Our data confirm the presence of early Campanian and Santonian high quality source rock 

intervals in the coastal area of the TB. The high Corg contents of the early Campanian and especially 

of the Santonian samples are related to high bio-productivity of marine organisms 

(algae/phytoplankton) and favorable conditions of preservation. Import or upwelling of nutrient-rich 

waters during the Late Cretaceous may be one of the key mechanisms for deposition and preservation 

of organic material, similar as described for the Cenomanian/Turonian sequences. Another important 

factor seems to be the local hydrographic and topographic situation during the Late Cretaceous 

explaining the variations between the sample sites (outcrops, Sondage No.1 and No. 2). Small scale 

variations in primary production and Corg-content are also known from recent upwelling areas 

(Reimers and Suess, 1983) and other prominent examples of Coniacian-Santonian organic-rich 

deposits. The higher amount of organic matter and its preservation in the Santonian samples in 

contrast to the early Campanian can be explained by the relative rise of the sea-level (Fig. 13C), 
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whilst during the early Campanian a slight sea-level fall was noted (Haq et al., 1987; Fig. 13C). In 

addition, preservation is related to relative high temperatures of the sea water during the Late 

Cretaceous (Fig. 13B). During the Cenomanian/Turonian, sea surface temperatures reached values of 

30°C, followed by a cooling towards the Campanian with still high values of about 23°C. This affects 

the solubility of oxygen in sea water as shown in Figure 14 as warmer climates have smaller 

temperature gradients and thus affecting the concentration of water vapor increases with temperature 

(Pierrehumbert, 2002). High temperatures were typical for the Cretaceous greenhouse climate and 

especially for the Cenomanian/Turonian period leading to lower oxygen concentration at several 

hundred meters depth below sea-level and thus to better preservation of organic matter due to more 

expanded oxygen minimum layers. This situation was present in all oceans during the Mid-

Cretaceous, but most pronounced at low latitudes. This might be an explanation for the occurrence of 

black shales around this time interval, especially in the Atlantic. However, further parameters should 

also be considered (i.e. continental run off, salinity, water circulation). As shown in Figure 14, 

oxygen concentration rises with decreasing water temperature leading to a stronger degradation of 

phytoplankton and other organic material in the oceans. Thus, highest Corg contents were measured 

for times of or close after temperature maxima as for the Cenomanian/Turonian with a maximum at 

93 Ma. Santonian and Campanian (85 to 75 Ma) also represent periods of high temperatures, though 

somewhat lower than during the Cenomanian and Turonian (Friedrich et al., 2012). This fact 

indicates and supports the assumption of various authors (Wagreich, 2012) that OAE 3 might not be a 

single short-term event as OAE 2, but distributed over a long-time span. The negative feedback of 

organic carbon burial and preservation in contrast to Cenomanian/Turonian is thus related to decrease 

of global hothouse conditions during the Late Cretaceous and the better solubility of O2. Following 

this approach, changes in continent/ocean configuration as the opening of the Atlantic, climate, water 

circulation (as result of Atlantic opening) and sea-level fluctuation (Erbacher et al., 1996; Beckmann 

et al., 2005; Fig. 13C) ultimately control the production and deposition of organic matter in the 

Atlantic Ocean. 

The presence of oxygen depleted but not completely anoxic conditions is supported by redox 

parameters such as Pr/Ph ratio and TS/Corg and support the assumption of a third widespread oceanic 

anoxic event of Coniacian to Santonian age (OAE 3) affecting the southern North Atlantic. A 

comparison with previous investigated samples (outcrops and Sondage No.2) and literature 

information for the Demerara Rise, the offshore area of the Ivory Coast-Ghana, the Lebanon and 
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Nigeria shows clearly that not all OAEs record similar depositional conditions as shown here for the 

temperature dependence of preservation and more regional controls and models should be 

considered, especially with respect to organic matter productivity and preservation.  

Within the TB, the sediments were never deeply buried and organic matter remained 

immature, as supported by a variety of petrological and geochemical data discussed above.  The 

Upper Cretaceous sequence does not act as active petroleum source rock in this area, but a potential 

for petroleum generation should be considered in areas of deeper burial and adequate thickness, 

particularly because the assumed Jurassic oil shows in well Cap Juby are not finally proven.  

 

 
Figure 13: Stratigraphic ages plotted vs (a) Corg content for all samples of Sondage No. 1 and Sondage No. 2 and (b) temperature 

evolution against stratigraphic age based on Haq et al., 1987 and c) the eustatic sea-level curve (Haq et al., 1987). 

 

 
 

Figure 14: Temperature depending oxygen solubility for different pressure ranges in sea-water, based on Geng and Duan, 2010. 
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Table 1: Overview of Rock-Eval pyrolysis data. 

Sample 

No. 
Depth (m) Stratigraphy Corg (%) 

S1 

(mg/g rock) 

S2 

(mg/g rock) 

Tmax 

(°C) 

HI 

(mg/g 

Corg) 

PI 

(S1/S1+S2) 

513 28.5 Early Campanian 3.29 0.2 12.1 424 367 0.016 

514 31.6 Early Campanian 4.4 0.96 29.1 417 661 0.032 

516 37.8 Early Campanian 3.71 0.7 22.03 419 593 0.03 

517 40.8 Early Campanian 3.74 0.46 17.59 423 470 0.025 

519 46.3 Early Campanian 2.81 1.03 27.1 420 964 0.036 

522 54.8 Early Campanian 3.21 0.2 15.7 416 489 0.012 

530 77.5 Early Campanian 2.27 0.1 9.8 419 431 0.01 

535 92.3 Early Campanian 2.4 0.2 16.1 418 651 0.012 

539 92.98 Early Campanian 2.49 0.1 9.5 416 381 0.01 

547 94.39 Early Campanian 2.66 0.2 16 425 601 0.012 

555 95.94 Early Campanian 2.21 0.1 11.2 418 506 0.008 

556 96.14 Early Campanian 2.41 0.38 14.87 419 617 0.024 

561 97.07 Early Campanian 2.21 0.2 13.6 424 615 0.014 

563 98.4 Early Campanian 3.27 0.2 19 422 581 0.01 

567 109.0 Early Campanian 2.66 0.39 17.38 422 653 0.021 

570 118.0 Early Campanian 2.28 0.2 14.4 418 631 0.013 

572 124.3 Early Campanian 2.2 0.36 15.3 418 695 0.022 

574 130.6 Early Campanian 1.61 0.23 11.15 422 692 0.02 

575 133.7 Early Campanian 3.3 0.2 20.3 422 615 0.009 

577 139.8 Early Campanian 2.18 0.1 9.2 420 422 0.01 

579 145.8 Early Campanian 3.8 0.2 20.5 416 539 0.009 

586 156.67 Early Campanian 2.61 0.2 13.5 415 517 0.014 

590 157.58 Early Campanian 2.11 0.28 14.21 421 673 0.019 

591 157.72 Early Campanian 3.02 0.2 18.3 419 606 0.01 

593 158.3 Early Campanian 2.04 0.27 12.25 420 600 0.021 

595 158.69 Early Campanian 2.42 0.49 15.14 425 625 0.031 

597 158.99 Early Campanian 4 0.3 25.2 413 616 0.011 

601 160.11 Santonian 3.4 0.3 19.8 416 572 0.014 

605 161.3 Santonian 4.24 0.4 25.6 419 603 0.015 

610 163.12 Santonian 3.86 0.3 16.8 417 435 0.017 
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612 163.81 Santonian 4.14 1.09 27.88 415 673 0.037 

613 164.11 Santonian 4.44 1.1 28.6 417 644 0.037 

614 164.32 Santonian 5.85 1.26 35.29 416 603 0.034 

615 164.4 Santonian 5.64 0.6 33 417 585 0.017 

616 164.63 Santonian 4.55 1.2 27.72 413 609 0.041 

621 165.86 Santonian 3.4 0.3 18.6 409 547 0.015 

625 166.84 Santonian 3.67 0.85 23.05 415 628 0.035 

629 168.11 Santonian 4.8 1.64 32.94 414 686 0.047 

633 169.32 Santonian 5.58 0.5 35 418 627 0.014 

634 169.54 Santonian 5.07 0.5 31.2 413 615 0.015 

638 173.5 Santonian 5.45 0.6 32.6 412 598 0.018 

639 176.4 Santonian 4.15 1.21 27.37 413 659 0.042 

640 179.3 Santonian 1.93 0.5 13.51 414 700 0.035 

641 182.4 Santonian 6.17 0.6 38.2 417 619 0.015 

 

 



 168 

Table 2: n- and isoalkane ratios. 

Sample 

No. 
Stratigraphy 

Depth 

(m) 

OEP 

(Scalan&Smith, 

1970) 

CPI 

(Bray&Evans, 

1961) 

Pr/Ph Pr/nC17 Ph/nC18 nC17/nC27 

513 
Early 

Campanian 
28.5 1.4 3.0 1.0 1.5 1.7 1.0 

530 
Early 

Campanian 
77.5 1.0 0.8 1.2 2.6 2.5 1.4 

539 
Early 

Campanian 
92.98 1.4 1.0 1.1 2.6 2.9 1.1 

555 
Early 

Campanian 
95.94 1.3 0.9 1.2 2.3 2.6 1.5 

563 
Early 

Campanian 
98.4 1.5 1.9 1.1 2.0 2.8 2.2 

570 
Early 

Campanian 
118 1.3 1.2 0.9 2.1 3.5 1.5 

575 
Early 

Campanian 
133.7 0.7 1.0 0.9 2.7 4.3 2.1 

579 
Early 

Campanian 
145.8 1.6 0.7 1.0 2.9 4.4 3.5 

586 
Early 

Campanian 
156.67 1.4 1.4 1.3 2.2 2.1 1.1 

597 
Early 

Campanian 
158.99 1.4 1.8 1.2 1.8 2.6 1.5 

605 Santonian 161.3 1.8 0.7 0.8 2.4 5.3 3.6 

615 Santonian 164.4 2.1 2.4 0.8 3.0 5.6 3.9 

621 Santonian 165.86 1.3 1.5 0.9 3.0 5.3 n.d. 

634 Santonian 169.54 0.7 1.0 0.9 3.1 5.9 2.0 

641 Santonian 182.4 1.5 1.2 0.8 1.8 2.9 4.3 
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Chapter VI.  General Conclusions 

In contrast to previous studies that mainly concentrated on the Cenomanian-Turonian 

sediments of the Tarfaya basin, this study provides new insights into the late Turonian to Campanian 

successions of the basin. In this context, the paleoenvironmental evolution and sea-level history are 

tentatively reconstructed. The study combines outcrop and core records. Outcrops allowed the 

observation of lateral development of sedimentary features. The oldest sediments occur in the 

northern part of the basin at Mohammed Plage (Cenomanian) and En Naila section (early Turonian), 

whereas the youngest sediments are located more to the south at Tisfourine and Tah West sections 

(early Campanian) due to regional tectonics (uplift events in the Atlas system (Frizon de Lamotte et 

al., 2009; Ruiz et al., 2010)) which affected the Tarfaya Basin. Core records enabled a high-

resolution reconstruction of the depositional variability and thus allowed us to conduct sequence 

analyses. These cores recovered the organic-rich sediments from the uppermost late Turonian to early 

Campanian in core Tarfaya SN°1 and from late Turonian to middle Santonian in core Tarfaya SN°2. 

Planktonic foraminiferal and nannofossil biostratigraphy allowed us to construct the age models of 

these two cores. The sedimentation rate was calculated in the Tarfaya Basin on the comparison of the 

depth/age relationship of the main carbon isotope events and indicates an average of sedimentation 

rate of ~2.1 cm/kyr during the Coniacian, ~1.6 cm/kyr during the Santonian and ~2.1 cm/kyr during 

the early Campanian. In constract, the end of the Cretaceous sedimentary succession in the Sebkha 

Tah and Tisfourine sections as well as in core Tarfaya SN°1 was marked by a major hiatus, which 

comprises the entire latest Cretaceous (middle Campanian-Maastrichtian) and Paleogene. 

The depositional environmental in the Tarfaya Basin was reconstructed based on elemental 

distributions measured by XRF core scanner and benthic foraminifera assemblages. Fluctuations in 

the abundance of the terrigenous elements Al, Ti, K, Si and Fe, normalized against Ca indicate three 

major sedimentary cycles of 33.2, 32 and 31 m thickness (286.7 to 253.5 mcd, 253.5 to 221.5 mcd 

and 221.5 to190.5 mcd) during the Coniacian to middle Santonian. This time interval is also 

characterized by recurrent impinging of an expanded oxygen minimum zone onto the Tarfaya shelf, 

which is expressed by low Mn/S and high V/Ca ratios in the XRF-scanner records. These periods of 

organic matter-rich sedimentation on the Tarfaya shelf correspond in a very broad sense to the 

Coniacian-Santonian Anoxic Event (OAE-3). The interval from 158.8 to 190.5 mcd (late Santonian), 

corresponds to the transition from anoxic to oxic conditions, which dominate in the early Campanian. 



 170 

The early Campanian sedimentary environment is characterized by enhanced accumulation of fine-

grained carbonate and clay-rich hemipelagic sediments, which may indicate a major regional climate 

change towards wetter conditions. This time interval also experienced an improvement of the 

oxygenation at the sea floor as recorded by an increase in log(Mn/S) and a high diversity and 

abundance of benthic foraminiferal assemblages in the Tisfourine and Tah West sections.  

The benthic foraminiferal assemblages exhibit, during the early Turonian, an installation of an 

oxygen minimum zone (OMZ) reflected by the absence or low abundance of benthic foraminifera 

(>250 microns) at the base of El Amra and En Naila sections. This OMZ was linked to the 

intensification of upwelling along the margin of the Tarfaya Basin. The presence of relatively well-

preserved planktonic foraminifera throughout the sections (El Amra and En Naila sections) indicated 

that the lack of benthic foraminifera does not reflect poor preservation in these intervals. During the 

middle Turonian, the appearance of shelf benthic foraminifera tolerant of low-oxygen conditions in 

the El Amra section reflects an improvement in bottom water oxygenation, possibly related to a 

seaward shift and/or decrease in the intensity of the oxygen minimum zone due to lowering of the 

sea-level. From the late Turonian to Santonian, the presence of benthic foraminiferal with low 

diversity in the El Amra, Akhfennir and Tah North sections suggests relatively impoverished 

oxygenation in bottom water along the shelf. In contrast, lack of benthic foraminifera in the upper 

part of the Tah North section (late Santonian) reflects again an intensification and/or expansion of the 

oxygen minimum zone. During the early Campanian, high diversity and abundance of benthic 

foraminifera at the Tisfourine and Tah West sections indicate an overall improvement in bottom 

water oxygenation.  

Sea-level change reconstructed in the Tarfaya Basin is correlated to regional sea-level 

variations in the New Jersey Margin record (Miller et al., 2004; Mizintseva et al., 2009). In 

particular, we correlate the major unconformities U1/U2 and U3 in the Tarfaya Basin to the base of 

the Merchantville III and the base of Magothy III sequence of Miller et al. (2004) and Mizintseva et 

al. (2009). The unconformities based on XRF records at 253.5 mcd, 221.5 mcd and 190.5 mcd are 

correlated to the Cheesequake, Merchantville I and Merchantville II Sequences of Miller et al., 

(2004) and Mizintseva et al. (2009), respectively. 

The Upper Cretaceous (Turonian to Campanian) bulk carbonate isotope records from outcrop 

sections were tentatively correlated to the English Chalk carbon isotope reference curve of Jarvis et 

al. (2006) but showed only a few major events (Hitch Wood Event, Navigation Event and the 
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Santonian/Campanian Boundary Event) due to low resolution sampling and difficulties in correlation 

of outcrop sections. In contrast, high resolution records from the cores Tarfaya SN°1 and 2 exhibits 

strong similarities to the global carbon isotope stack of Wendler (2013). Marked events in the 

Tarfaya Basin, that are correlative to the English Chalk (Jarvis et al., 2006) and the Niobrara 

Formation in the US Western Interior Seaway (Locklair et al., 2011) are the Navigation Event in the 

earliest Coniacian, the Haven Brow, the Horseshoe Bay and the Buckle Events in the Santonian and 

the Santonian/Campanian Boundary Event. The Santonian-Campanian Boundary Event has an 

overall carbonate isotope (δ
13

C) amplitude of ~1.5‰ which is higher than in the English chalk 

(0.6‰) and in the Gubbio Scaglia limestone (0.4‰). The bulk carbonate isotope records (δ
18

O) 

exhibit a long-term increasing trend in the early Campanian (following the Santonian-Campanian 

Boundary Event), which indicates the establishment of cooler intermediate water conditions along the 

NW African Margin.  

 

Further investigation will focus on a sedimentary core (Tarfaya SN°4), drilled in the Tarfaya 

Basin, which provides a continuous and expanded record of shelf sedimentation from the Aptian to 

the Turonian. High resolution XRF core scanning data and bulk stable isotopes will allow to closely 

track short- and long-term variations in elemental composition and in 
13

C and 
18

O, thus providing 

an essential dataset to better understand the paleoceanographic evolution and the sea-level history of 

this marginal shelf basin during the early part of the Late Cretaceous. This study will also help to 

better understand the underlying mechanisms driving the onset and spread of Oceanic Anoxic Event 

2. 
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Diekmann, B., Hofmann, J., Henrich, R., Fütterer, D.K., Röhl, U., Wei, K-Y., 2008. Detrital sediment supply in the 

southern Okinawa Trough and its relation to sea-level and Kuroshio dynamics during the late Quaternary. Marine 

Geology 255, 83–95. 

Dudley, W.C., Blackwelder, P.L., Brand, L.E., Duplessy, J.C., 1986. Stable isotope composition of coccoliths. Marine 

Micropaleontology 10, 1–8. 

Dymond, J., Suess, E., Lyle, M., 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. 

Paleoceanography 7, 163–181. 

El Albani, A., Kuhnt, W., Luderer, F., Caron, M., 1999a. Palaeoenvironmental evolution of the Late Cretaceous sequence 

in the Tarfaya Basin (southwest of Morocco), in: Cameron, N.R., Bate, R.H., Clure, V.S. (Eds.), The Oil and Gas 

Habitats of the south Atlantic. Geological Society Special Publication 153, London, pp. 223–240. 

El Albani, A., Vachard, D., Kuhnt, W., Chellai, H., 1999b. Signature of hydrodynamic activity caused by rapid sea level 

changes in pelagic organic-rich sediments, Tarfaya Basin (southern Morocco). Comptes Rendus de l´Académie des 

Sciences de Paris II 329, 397–404. 

El Albani, A., Vachard, D., Kuhnt, W., Thurow, J., 2001. The role of diagenetic carbonate concretions in the preservation 

of the original sedimentary record. Sedimentology 48, 875-886.  

El Khatib, J., Ruellan, E., El Foughali, A., El Morabet, A., 1995. Évolution de la marge atlantique sud-marocaine: bassin 

de Tarfaya-Laâyoune. Comptes Rendus de l´Académie des Sciences de Paris IIa 320, 117–124. 

El Khatib, J., El Foughali, A., Ruellan, E., El Morabet, A., 1996. Évolution post-rift des secteurs NE et SW du bassin 

Tarfaya-Laâyoune. Mines, Géologie et Energie 55, 57–72. 

El Mostaine, M., 1991. Evaluation du Potentiel Petrolier du Bassin de Tarfaya-Laayoune onshore. ONAREP Internal 

report 31526, 92 p. 

Ellouz, N., Muller, C., Faure, J.L., 1998. Datations et Etude Geochemique des Forages BTS 1 et MO-7 du Bassin de 

Tarfaya – Maroc. Unpublished report of ifp, EAP and ONAREP, ONAREP 41016, 83 p. 

Ennyu, A., Arthur, M.A., and Pagani, M., 2002. Fine-fraction carbonate stable isotopes as indicators of seasonal shallow 

mixed-layer paleohydrography. Marine Micropaleontology 46, 317–342.  

Epstein, S., Buchsbaum, R., Lowenstam, H., Urey, H., 1953. Revised carbonate-water isotopic temperature scale. 

Geological Society of America Bulletin 64, 1315–1326.  

Erbacher, J., Thurow, J., Littke, R., 1996. Evaluation patterns of radiolarian and organic matter variations: a new 

approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24, 499–502. 

Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Revue de l`Institut Français du 

Petrole 40, 563–579. 

Fenical, W., 1975. Halogenation in the Rhodophyta: areview. Journal of Phycology 11, 245–259. 

Flögel, S., Beckmann, B., Hofmann, P., Bornemann, A., Westerhold, T., Norris, D.R., Dullo, C., Wagner, T., 2008. 

Evolution of tropical watersheds and continental hydrology during the Late Cretaceous greenhouse; impact on marine 

carbon burial and possible implications for the future. Earth Planetary Science letters 274, 1–13. 

Flögel, S., K.; Wallmann, K., Kuhnt, W., 2011. Cool episodes in the Cretaceous - Exploring the effects of physical 

forcings on Antarctic snow accumulation. Earth and Planetary Science Letters 307, 279-288. 

Fox, S.K., Jr., 1954. Cretaceous Foraminifera from the Greenhorn, Garlile, and Gody Formations, South Dakota, 

Wyoming. Geological Survey Professional Paper 254-E, 97–124. 

François, R., 1987. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis. 

Geochimica et Cosmochimica Acta 51, 17– 27. 

Friedrich, O., Erbacher, J., 2006. Benthic foraminifera assemblages from Demerara Rise (ODP Leg 207, western tropical 

Atlantic): Possible evidence for a progressive opening of the Equatorial Atlantic Gateway. Cretaceous Research 27, 

377–397. 



 177 

Friedrich, O., Norris, R.D., Erbacher, J., 2012. Evolution of middle to Late Cretaceous oceans – A 55 my record of 

Earth’s temperature and carbon cycle. Geology 40, 107–110. 

Frizon de Lamotte, D.F., Leturmy, P., Missenard, Y., Khomsi, S., Ruiz, G., Saddiqi, O., Guillocheau, F., Michard, A., 

2009. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): an overview. 

Tectonophysics 475, 9–28. 

Gale, A.S., Montgomery, P., Kennedy, W.J., Hancock, J.M., Burnett, J.A., and McArthur, J.M., 1995. Definition and 

global correlation of the Santonian-Campanian boundary. Terra Nova, 7, 611-622. 

Gautier, D.L., 1987. Isotopic composition of pyrite: relationship to organic matter type and iron availability in some 

North American Cretaceous shales. Chemical Geology 65, 293–303. 

Gebhardt, H., Kuhnt, W., Holbourn, A., 2004. Foraminiferal response to sea level change, organic flux and oxygen 

deficiency in the Cenomanian of the Tarfaya Basin, Southern Morocco. Marine Micropaleontology 53, 133–157. 

Geng, M., Duan, Z., 2010. Prediction of oxygen solubility inpure waters and brines up to high temperatures and 

pressures. Geochimica and Cosmochimica Acta 74, 5631–5640. 

Gertsch, B., Adatte, T., Keller, G., Tantawy, A.A.A.M., Berner, Z., Mort, H.P., Fleitmann, D., 2010. Middle and late 

Cenomanian oceanic anoxic events in shallow and deeper shelf environments of western Morocco. Sedimentology 57, 

1430–1462. 

Gooday, A.J., 1994. The biology of deep-sea foraminifera: a review of some advances and their applications in 

paleoceanography. Palaios 9, 14–31. 

Govin, A., Holzwarth, U., Heslop, D., Ford Keeling, L., Zabel, M., Mulitza, S., Collins, J.A., Chiessi, C.M., 2011. 

Distribution of major elements in Atlantic surface sediments (36°N–49°S): Imprint of terrigenous input and 

continental weathering. Geochemistry, Geophysics, Geosystems 13, 1525–2027. 

Gradstein, M. F., Ogg, J., Schmitz, M., Ogg, G., 2012. The Geologic Time Scale 2012. 2-Volume, first ed. Elsevier, 

p.1176. 

Gribble, G.W., 1998. Naturally Occurring Organohalogen Compounds. Accounts of Chemical Research 31, 141–152. 

Hafid, M., Tari, G., Bouhadioui, D., El Moussaid, I., Echarfaoui, H., Ait Salem, A., Nahim, M., Dakki, M., 2008. Atlantic 

basins, in: Michard, A., Saddique, O., Chalouan, A., Frizon de Lamotte, D. (Eds.), The Atlas System, Continental 

Evolution, The Geology of Morocco, Springer, Heidelberg, pp 303–328. 

Haq, B.U., Hardenbol, J., Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–

1167. 

Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, in 

Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., et al. (Eds.), Sea-Level Changes: An Integrated Approach. 

Economic Paleontologists and Mineralogists, Special Publication Society 42, p. 71–108. 

Haq, B., 2014. Cretaceous eustaxy revisited. Global and Planetary Change 113, 44-58. 

Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T., De Graciansky, P.C., Vail, P.R., 1998. Mesozoic and Cenozoic 

sequence chronostratigraphic framework of European basins, in: Graciansky, P.C., Hardenbol, J., Jacquin, T., Vail, 

P.R. (Eds.), Mesozoic and Cenozoic sequence stratigraphy of European basins. SEPM Special Publication 60, Tulsa, 

pp. 3–13. 

Harvey, G.R., 1980. A study of the chemistry of iodine and bromine in marine sediments. Marine Chemistry 8, 327–332. 

Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., Rohl, U., 2001. Southward migration of the Intertropical 

Convergence Zone through the Holocene. Science 293, 1304–1308. 

Hay, W.W., 1995. Cretaceous paleoceanography. Geologica Carpathica 46, 257–266.  

Heggie, D.T., Skyring, G.W., O’brien, G.W., Reimers, C., Herczeg, A., Moriarty, D.J.W., Burnett, W.C., Milnes, A.R., 

1990. Organic carbon cycling and modern phosphorite formation on the East Australian continental margin, in: 

Notholt, A.J.G., Jarvis, I. (Eds), Phosphorite Research and Development. Geological Society Special Publication 52, 

London, pp. 87–117. 



 178 

Helmke, J.P., Schulz, M., Bauch, H.A., 2002. Sediment-color record from the Northeast Atlantic reveals patterns of 

millennial-scale climate variability during the past 500,000 years. Quaternary Research 57, 49–57. 

Hem, J.D., 1972. Chemical Factors that Influence the Availability of Iron and Manganese in Aqueous Systems. 

Geological Society of America Bulletin 83, 443–450. 

Hennekam, R., de Lange, 2012. G., X-ray fluorescence core scanning of wet marine sediments: methods to improve 

quality and reproducibility of highresolution paleoenvironmental records. Limnology and Oceanography 10, 991–

1003. 

Hermanni, F., 1962. Zur Artfassung von Osangularien aus der Oberkreide (Foraminiferen). Neues Jahrbuch für Geologie 

und Paläontologie, Abhandlungen 115, 279–280. 

Hetzel, A., Böttcher, M.E., Wortmann, U.G., Brumsack, H.J., 2009. Paleo-redox conditions during OAE 2 reflected in 

Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeography, Palaeoclimatology, Palaeoecology 273, 

302–328. 

Hofmann, P., Wagner, T., Beckmann, B., 2003. Millenial- to centennial-scale record of African climate variability and 

organic carbon accumulation in the Coniacian- Santonian eastern tropical Atlantic (Ocean Drilling Program Site 959, 

off Ivory Coast and Ghana). Geology 31, 135–138.   

Hofmann, P., Wagner, T., 2011. ITCZ controls on Late Cretaceous black shale sedimentation in the tropical Atlantic 

Ocean. Paleoceanography 26, PA4223, doi:10.1029/2011PA002154. 

Holbourn, A., Kuhnt, W., El Albani, A., Pletsch, T., Luderer, F., Wagner, T., 1999. Upper Cretaceous 

palaeoenvironments and benthonic foraminiferal assemblages of potential source rocks from the western African 

margin, Central Africa.  In: Cameron, N.R., Bate, R.H., Clure, V.S. (Eds.) The Oil and Gas Habitats of the South 

Atlantic. Geological Society, London, Special Publications, 153, 195–222. 

Holbourn, A., Kuhnt, W., Soeding, E., 2001. Atlantic paleobathymetry, paleoproductivity and paleocirculation in the late 

Albian: the benthic foraminiferal record. Palaeogeography, Palaeoclimatology, Palaeoecology 170, 171–196. 

Huber, B.T., Norris, R.D., MacLeod, K.G., 2002. Deep-sea paleo-temperature record of extreme warmth during the 

Cretaceous. Geology 30, 123–126. 

Hughen, K.A., Overpeck, J.T., Lehman, S.J., Kashgarian, M., Southon, J., Peterson, L.C., Alley, R., Sigman, D.M., 1998. 

Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391, 65–68. 

Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York, pp. 743. 

Jaccard, S.L.,  Haug, G.H., Sigman, D.M., Pedersen, T.F., Thierstein, H.R.,  Röhl, U., 2005. Glacial/Interglacial Changes 

in Subarctic North Pacific Stratification. Science 308, 1003–1006. 

Jaeschke, A., Rühlemann, C., Arz, H., Heil, G., Lohmann, G., 2007. Coupling of millennial-scale changes in sea surface 

temperature and precipitation off northeastern Brazil with high-latitude climate shifts during the last glacial period. 

Paleoceanography 22, doi: 10.1029/2006PA001391. 

James, N.P., Boreen, T.D., Bone, Y., Feary, D.A., 1994. Holocene carbonate sedimentation on the west Eucla Shelf, 

Great Australian Bight: a shaved shelf. Sedimentary Geology 90, 161–177. 

Jansen, J.H.F., Van Der Gaast, S.J., Koster, B., Vaars, A.J., 1998. CORTEX, a shipboard XRF-scanner for element 

analyses in split sediment cores. Marine Geology 151, 143–153.  

Jarvis, J., Fish, P.,Garwood, T., 1999. Morocco`s Tarfaya deepwater prospects encouraging. Oil and Gas Journal 16, 90–

94. 

Jarvis, I., Gale, A., Jenkyns, H.C., Pearce, M.A., 2006. Secular variation in Late Cretaceous carbon isotope: a new 
13

C 

carbonate reference curve for the Cenomanian- Campanian (99.6-70.6 Ma). Geological Magazine 143, 561–608. 

Jenkins, R., De Vries, J.L., 1970. Practical X-Ray Spectrometry. 2nd edition. Macmillan, London. Chapter 5, 90–107. 

Jenkins, R., Gould, R.W., Gedcke, D., 1995. Quantitative X-Ray Spectrometry. Second Edition, Marcel Dekker, Inc: 

New York, 439-460. 

Jenkyns, H. C., 1980. Cretaceous anoxic events: from continents to oceans. Geological Society of London 137, 171–188. 



 179 

Johnson, K.S., Berelson, W.M., Coale, K.H., Coley, T.L., Elrod, V.A., Fairey, W.R., Iams, H.D., Kilgore, T.E., Nowicki, 

J.L., 1992. Manganese Flux from Continental Margin Sediments in a Transect Through the Oxygen Minimum. 

Science 257, 1242–1245. 

Jones, E.J.W., Bigg, G.R., Handoh, I.C., Spathopoulos, F., 2007. Distribution of deep- sea black shales of Cretaceous age 

in the eastern Equatorial Atlantic from seismic profiling. Paleogeography, Paleoclimate 248, 233–246. 

Keller, G., Adatte, T., Berner, Z., Chellai, E.H., Stüben, D., 2008. Oceanic events and biotic effects of the Cenomanian-

Turonian anoxic event, Tarfaya Basin, Morocco. Cretaceous Research 29, 976–994. 

Kolonic, S., Sinninghe Damsté, J.S., Böttcher, M.E., Kuypers, M.M.M., Kuhnt, W., Beckmann, B., Scheeder, G., 

Wagner, T., 2002. Geochemical Characterization of Cenomanian/Turonian Black Shales from the Tarfaya Basin (SW 

Morocco). Journal of Petroleum Geology 25, 325–350. 

Kolonic, S., Wagner, T., Firster, A., Sinninghe Damsté, J.S., Walsworth-Bell, B., Erba, E., Turgeon, S., Brumsack, H.J., 

Chellai, E.H., Tsikos, H., Kuhnt, W., Kuypers, M.M.M., 2005. Black shale deposition on the northwest African Shelf 

during the Cenomanian-Turonian oceanic anoxic event: Climate coupling and organic carbon burial. 

Paleoceanography 20, doi:10.1029/2003PA000950. 

Kominz, M.A., 1984. Oceanic ridge volumes and sea level change an error analysis, in: Schlee, J. (Ed.), Interregional 

Unconformities and Hydrocarbon Accumulation. American Association of Petroleum Geologists Memoir 36, Tulsa, 

pp. 109–127. 

Kominz, M. A., Browning, J. V., Miller, K. G., Sugarman, P. J., Mizintsevaw, S., Scotese, C. R., 2008. Late Cretaceous 

to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin 

Research 20, 211–226. 

Kroon, D., Norris, R.D., Klaus, A., et al., 1998. Proceedings of the Ocean Drilling Program, Initial Reports, 17lB. Ocean 

Drilling Program, College Station, TX. 

Kuhnt, W., Thurow, J., Wiedmann, J., Herbin, J.P., 1986. Oceanic anoxic conditions around the Cenomanian/Turonian 

Boundary and the response of the biota, in: Degens, E.T., Meyers, P.A., Brassell, S.C. (Eds.), Biogeochemistry of 

Black Shales, Mitteilungen aus dem Geologischen Institut der Universität Hamburg 60, Hamburg, pp. 205–246. 

Kuhnt, W., Herbin, J.P., Thurow, J., Wiedmann, J., 1990. Distribution of Cenomanian-Turonian Organic Facies in the 

Western Mediterranean and along the Adjacent Atlantic Margin, in: Huc, A.Y. (Ed.), Deposition of Organic Facies. 

American Association of Petroleum Geologists Studies in Geology 30, Tulsa, pp. 133–160. 

Kuhnt, W., Wiedmann, J., 1995. Cenomanian-Turonian source rocks: paleobiogeography and paleoenvironmental 

aspects, in: Huc, A.Y. (Ed.), Paleogeography, Paleoclimate and source Rocks. American Association of Petroleum 

Geologists Studies in Geology 40, Tulsa, pp. 213–232.  

Kuhnt, W., Nederbragt, A., Leine, L., 1997. Cyclicity of Cenomanian-Turonian organic-carbon-rich sediments in the 

Tarfaya Atlantic Coastal Basin (Morocco). Cretaceous Research 18, 587–601. 

Kuhnt, W., Chellai, H., Holbourn, A., Luderer, F., Thurow, J., Wagner, T., El Albani, A., Beckmann, B., Herbin, J. P., 

Kawamura, H., Kolonic, S., Nederbragt, S., Street, C., Ravilious, K., 2001. Morocco Basin's sedimentary record may 

provide correlations for Cretaceous paleoceanographic events worldwide. Eos, 82, 33, 361–368. 

Kuhnt, W., Luderer, F., Nederbragt, S., Thurow, J., Wagner, T., 2004. Orbital-scale record of the late Cenomanian-

Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). International Journal of Earth Sciences 94, 

147–159. 

Kuhnt, W., Hess, S., Holbourn, A., Paulsen, H., Salomon, B., 2005. The impact of the 1991 Mt. Pinatubo eruption on 

deep-sea foraminiferal communities: A model for the Cretaceous-Tertiary (K/T) boundary?. Palaeogeography, 

Palaeoclimatology, Palaeoecology 224, 83–107. 

Kuhnt, W., Holbourn, A., Gale, A., Chellai, E.H., Kennedy, W.J., 2009.  Cenomanian sequence stratigraphy and sea-level 

fluctuations in the Tarfaya Basin (SW Morocco). Bulletin of the Geological Society of America 121, 11–12. 

Lehman, U., 1966. Dimorphismus bei Ammoniten der Ahrensburger Lias Geschibe.- Ibidem, 40, 1/2, 26-55, Stuttgart. 

Leine, L., 1986. Geology of the Tarfaya oil shale deposit, Morocco. Geologie en Mijnbouw 65, 57–74. 

http://gsabulletin.gsapubs.org/content/121/11-12/1695.abstract
http://gsabulletin.gsapubs.org/content/121/11-12/1695.abstract


 180 

Leventhal, J.S., 1983. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of envi-

ronments of deposition. Geochimica et Cosmochimica Acta 47, 133–37. 

Lewan, M.D., Maynard, J.B., 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic 

sedimentary rocks. Geochimica et Cosmochimica Acta 46, 2547–2560. 

Li, X., Jenkyns, H.C., Wang, C., Hu, X., Chen, X., Wei, Y., Huang, Y., Cui, J., 2006. Upper Cretaceous carbon-and 

oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. Journal of the Geological 

Society 163, 375–382. 

Littke, R., Baker, D.R., Leythaeuser, D., Rullkötter, J., 1991. Keys to the depositional history of the Posidonia Shale 

(Toarcian) in the Hils Syncline, northern Germany. Geological Society Special Publications 58, 311–333. 

Littke, R., Sachsenhofer, R.F., 1994. Organic petrology of deep sea sediments: a compilation of results from the Ocean 

Drilling Program and the Deep Sea Drilling Project. Energy and Fuels 8, 1498–1512. 

Littke, R., Lückge A., Wilkes, H., 1998. Organic matter in Neogene sediments of the southern Canary Channel, Canary 

Islands (Sites 955 and 956), in: Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., Duffield, W. (Eds.), Proceedings of the 

Ocean Drilling Program. scientific Results 157, pp. 361–372. 

Liu, L., Chen, J., Ji, J., Chen, Y., 2004. Comparison of paleoclimatic change from Zr/Rb ratios in Chinese loess with 

marine isotope records over the 2.6-1.2 Ma BP interval. Geophysical Research Letters 31, 4–7. 

Locklair, R.E., Sageman, B.B., 2008. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, western interior, 

USA: a Coniacian–Santonian orbital timescale. Earth and Planetary Science Letters 269, 540–553. 

Locklair, R., Sageman, B., Lerman, A., 2011. Marine carbon burial flux and the carbon isotope record of Late Cretaceous 

(Coniacian–Santonian) Oceanic Anoxic Event III. Sedimentary Geology 235, 38–49. 

Löwemark, L., Jakobsson, M.,  Mörth, M., Backman, J., 2008. Arctic Ocean manganese contents and sediment colour 

cycles. Polar Research 27, 105–113.  

Löwemark, L., Chen, H.F., Yang, T.N., Kylander, M., Yu, E.F., Hsu, Y.W., Lee, T.Q., Song, S.R., Jarvis, S., 2011. 

Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich 

lakes. Journal of Asian Earth Sciences 40, 1250–1256. 

Lückge, A., Boussafir M., Lallier-Vergès, Littke, R., 1996.  Comparative study of organic matter preservation in 

immature sediments along the continental margins of Peru and Oman. Organic Geochemistry 24, 437–451. 

Lückge, A., Horsfield, B., Littke, R., Scheeder, G., 2002. Organic matter preservation and sulfur uptake in sediments 

from the continental margin off Pakistan. Organic Geochemistry 33, 477–488. 

Lüning, S., Kolonic, S., Belhadj, E.M., Belhadj, Z., Cota, L., Baric, G., Wagner, T., 2004. Integrated depositional model 

for the Cenomanian-Turonian organic-rich strata in North Africa. Earth-Science Reviews 64, 51–117. 

Ly, A., Kuhnt, W., 1994. Late Cretaceous benthic foraminiferal assemblages of the Casamance Shelf (Senegal, NW 

Africa)-indication of a late Cretaceous oxygen minimum zone. Revue de Micropaléontologie 37, 49–74. 

Ma, C., Meyers, S.R., Sageman, B.B., Singer, B.S., Jicha, B.R., 2014. Testing the astronomical time scale for oceanic 

anoxic event 2, and its extension into Cenomanian strata of the Western Interior Basin (USA). Geological Society of 

America Bulletin, doi:10.1130/B30922.1. 

MacLeod, K.G., 2006. Data report: stable isotopic ratios in bulk carbonate from upper Campanian and Maastrichtian 

samples (Demerara Rise, western tropical North Atlantic), in: Mosher, D.C., Erbacher, J., and Malone, M.J., 

(Eds.), ODP Scientific Results, v. 207, College Station, TX (Ocean Drilling Program), 1–9. 

doi:10.2973/odp.proc.sr.207.110.2006. 

Malcolm, S.J., Price, N.B., 1984. The behaviour of iodine and bromine in estuarine surface sediments. Marine Chemistry 

15, 263–271. 

Martin, J.M., Whitfield, M., 1983. The significance of the river input of chemical elements to the oceans, in: Wong, C.S., 

Boyle, E., Binland, K.W., Burton, J.D., Goldberg, E.D. (Eds), Trace Metals in Sea Water. Plenum Press, New York, 

pp. 265–296. 

Matthews, R.K., 1984. Dynamic Stratigraphy. 2nd Edition. Prentice-Hall, Englewood Cliffs, New Jersey, p. 489. 



 181 

Mayer, L.M., Macko, S.A., Mook, W.H., Murray, S.M., 1981. The distribution of bromine in coastal sediments and its 

use as a source indicator for organic matter. Organic Geochemistry 3, 37–42. 

Meyers , P.A., Bernasconi, S.M., Forster, A., 2006. Origins and accumulation of organic matter in expanded Albian to 

Santonian black shale sequences on the Demerara Rise, South American margin. Organic Geochemistry 37, 1816–

1830. 

Mayer, L.M., Schick, L.L., Allison, M.A., Ruttenberg, K.C., Bentley, S.J., 2007. Marine vs. terrigenous organic matter in 

Louisiana coastal sediments: The uses of bromine:organic carbon ratios. Marine Chemistry 107, 244–254. 

Miall, A.D., 2009. Correlation of Sequences and the Global Eustasy Paradigm: A Review of Current Data. AAPG Search 

and Discovery Article #90171 CSPG/CSEG/CWLS GeoConvention 2009, Calgary, Alberta, Canada, May 4-8, 2009. 

Michard, A., Saddiqi, O., Chalouan, A., Frizon de Lamotte, D., 2008. Continental Evolution: The Geology of Morocco. 

Structure, Stratigraphy, and Tectonics of the Africa-Atlantic-Mediterranean Triple Junction. Lecture Notes in Earth 

Sciences, Springer-Verlag, Berlin, Heidelberg, 424 pp. 

Miller, J.R., Russell, G.L., 1992. The impact of global warming on river runoff.  Journal of Geophysical Research 97, 

2757–2764. 

Miller, K.G., Sugarman, P.J., Browning, J.V., Kominz, M.A., Hernández, J.C., Olsson, R.K., Wright, J.D., Feigenson, 

M.D., Van Sickel, W., 2003. Late Cretaceous chronology of large, rapid sea level changes: Glacioeustasy during the 

greenhouse world. Geology 31, 585–588. 

Miller, K.G., Sugarman, P. J., Browning, J. V., Kominz, M. A., Olsson, R. K., Feigenson, M. D., Hernández, J. C., 2004. 

Upper Cretaceous sequences and sea-level history, New Jersey coastal plain. Geological Society of America Bulletin 

116, 368–393. 

Miller, K.G., Wright, J.D., Browning, J.V., 2005. Visions of ice sheets in a greenhouse world. Marine Geology 217, 215–

231. 

Milliman, J.D., Summerhayes, C.P., Barretto, H.T., 1975. Quaternary Sedimentation on the Amazon Continental Margin: 

A Model. Geological Society of America Bulletin 86, 610–614.  

Milliman, J.D., Meade, R.H., 1983. World-wide delivery of river sediment to the oceans. Journal of Geology 91, 1–21. 

Mizintseva, S. F., Browning, J. V., Miller, K. G., Olsson, R. K., Wright, J.D., 2009. Integrated Late Santonian-Early 

Campanian sequence stratigraphy, New Jersey Coastal Plain: Implications for global sea-level studies. Stratigraphy 6, 

45–60. 

Morabet, A. M., Bouchta, R., Jabour, H. 1998. An overview of the petroleum systems of Morocco, in: Mac- Gregor, D. 

S., Moody, R. T. J., Clark-Lowes, D. D. (Eds.), 1998. Petroleum Geology of North Africa. Geological Society, 

London, Special Publication 132, pp. 283–296. 

Mort, H.P., Adatte, T., Foellmi, K.B., Keller, G., Steinmann, P., Matera, V., Berner, Z. Stueben, D., 2007. Phosphorus 

and the roles of productivity and nutrient recycling during Oceanic Event 2. Geology 35, 483–486. 

Mort, H.P., Adatte, T., Keller, G., Bartels, D., Follmi, K.B., Steinmann, P., Berner, Z. Chellai, E.H., 2008. Organic 

carbon deposition and phosphorus accumulation during Oceanic Anoxic Event 2 in Tarfaya, Morocco. Cretaceous 

Research 29, 1008–1023. 

Mulitza, S., Prange, M., Stuut, J.B.W., Zabel, M., von Dobeneck, T., Itambi, A.C., Nizou, J., Schulz, M., Wefer, G., 

2008. Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23, 

doi: 10.1029/2008PA001637. 

Müller, R. D., Sdrolias, M., Gaina, C., Steinberger, B., Heine, C., 2008. Long-Term Sea-Level Fluctuations Driven by 

Ocean Basin Dynamics. American Association for the Advancement of Science 319, 1357–1362.  

Nederbragt, A.J., Dunbar, R.B., Osborn, A.T., Palmer, A., Thurow, J.W., Wagner, T., 2006. Sediment colour analysis 

from digital images and correlation with sediment composition, in: Rothwell, R.G. (Ed.), New Techniques 01 

Sediment Core Analysis. Geological Society, London, Special Publications, 267, 113–128. 

Niebuhr, B., 2005. Geochemistry and time-series analyses of orbitally forced Upper Cretaceous marl–limestone 

rhythmites (Lehrte West Syncline, northern Germany). Geological Magazine 142, 31–55. 



 182 

Nzoussi-Mbassani, P., Khamli, N., Disnar, J.R., Laggoun-Défarge, F., Boussafir, M., 2005. Cenomanian–Turonian 

organic sedimentation in North-West Africa: A comparison between the Tarfaya (Morocco) and Senegal 

basins. Sedimentary Geology 177, 271–295. 

Ogg, J.G., Agterberg, F.P., Gradstein, F.M., 2004. The Cretaceous Period, in: Gradstein, F.M.,  Agterberg, F.P., Smith, 

A.G. (Eds.), A Geological Time Scale 2004. Cambridge University Press, Cambridge, pp. 344–383. 

Olsen, P.E., 1999. Giant lava flows, mass extinctions, and mantle plumes, Science 284, 604–605. 

Passier, H.F., Bosch, H., Lourens, L.J., Böttcher, M.E., Leenders, A., Damste, J.S.S., de Lange, G.J., de Leeuw, 

J.W., 1999. Sulfidic Mediterranean surface waters during Pliocene sapropel formation. Nature 397, 146–149. 

Paytan, A., McLaughlin, K., 2007. The oceanic phosphorus cycle. Chemical Review 107, 563–576. 

Perner. J., 1892. Foraminifery Ceskeh Cenomanu, Trida 2. Ceska Akademie Cisare Frantiska Josefa, Paleontographica 

Bohemiae, Praha. 

Peters, K.E., 1986. Guidelines for evaluating petroleum source rocks using programmed pyrolysis. The American 

Association of Petroleum Geologists Bulletin 70, 318–329.  

Peters, K.E., Walters, C.C., Moldowan, J.M., 2005. The Biomarker Guide, Volume 2 Biomarkers and Isotopes in 

Petroleum Exploration and Earth History, 2nd ed., Cambridge University Press, Cambridge. 

Peterson, L.C., Haug, G.H., Hughen, K.A., Rohl, U., 2000. Rapid changes in the hydrologic cycle of the tropical Atlantic 

during the last glacial. Science 290, 1947–1951. 

Peterson, L.C., Haug, G.H., Hughen, K.A., Rohl, U., 2000. Rapid changes in the hydrologic cycle of the tropical Atlantic 

during the last glacial. Science 290, 1947–1951. 

Petters, S.W., Ekweozor, C.M., 1982. Petroleum Geology of Benue Trough and Southeastern Chad Basin, Nigeria. 

AAPG Bulletin, 66, 1141–1149. 

Pierau, R., Hanebuth, T.J.J., Krastel, S., Henrich R., 2010. Late Quaternary climatic events and sea-level changes 

recorded by turbidite activity, Dakar Canyon, NW Africa. Quaternary Research 73, 385–392. 

Pierrehumbert, R.T. 2002. The Hydrologic Cycle in Deep Time Climate Problems. Nature 419, 191–198. 

Prange, A., Kremling, K., 1985. Distribution of dissolved molybdenum, uranium and vanadium in Baltic Sea waters. 

Marine Chemistry 16, 259–274.  

Price, N.B., Calvert, S.E., Jones, P.G.W., 1970. The distribution of iodine and bromine in the sediments of the South 

Western Barents Sea. Journal of Marine Research 28, 22–34. 

Rachold, V., Brumsack, H.J., 2001. Inorganic geochemistry of Albian sediments from the Lower Saxony basin, NW 

German: paleoenvironmental constraints and orbital cycles. Palaeogeography, Palaeoclimatology, Palaeoecology 174, 

123–144 . 

Raiswell, R., Canfield, D. E., 1998. Sources of iron for pyrite formation. American Journal of Science 298, 219–245. 

Rank, U., Von Rad, U., Wissman, G., 1982. Stratigraphy, facies and tectonic development of the On- and Offshore 

Aaiun-Tarfaya Basin, in: von Rad, U., Hinz, K., Sarnthein, M., Seibold, E. (Eds.), Geology of the Northwest African 

Continental Margin. Springer, Heidelberg, pp. 87–105. 

Ratschiller, L.K., 1970. Lithostratigraphy of the northern Spanish Sahara. Memorie Museo Tridentino Sci Trento 18, 1–

18. 

Rea, D.K., 1994. The paleoclimatic record provided by eolian deposition in the deep sea: The geologic history of wind. 

Reviews of Geophysics 32, 159–195. 

Reimers, C.E., Suess, E., 1983. Spatial and temporal patterns of organic matter accumulation on the Peru continental 

margin, in: Thiede, J. and Suess, E. (Eds.), Coastal Upwelling. Part B: Sedimentary records of ancient coastal 

upwelling, New York, Plenum Press, pp. 311-346. 

Renard, M., Rafélis de, M., Emmanuel, L., Moullade, M., Masse, J.P., Kuhnt, W., Bergen, J.A., Tronchetti, G., 2005. 

Early Aptian δ
13

C and manganese anomalies from the historical Cassis-La Bédoule stratotype sections (S.E. France): 



 183 

relationship with a methane hydrate dissociation event and stratigraphic implications. Notebooks on Geology, 

CG2005_A04. 

Reuss, A.E., 1844. Geognostische Skizzen aus Böhmen. II-Die Kreidgebilde des Westlichen Böhmens, ein 

monographischer Versuch, Prague: C. W. Medau, p.214. 

Reuss, A.E., 1863. Die Foraminiferen des norddeutschen Hils und Gault. Sitzungberichte der Mathematische-

Naturwissenschaftliche Klasse der Kayserliche Akademie der Wissenschaften in Wien 46, 5–100. 

Rey, O., Simo, J.A., Lorente, M.A., 2004. A record of long- and short- term environmental and climatic change during 

OAE3: La Luna Formation, Late Cretaceous (Santonian- early Campanian), Venezuela. Sedimentary Geology 170, 

85–105.  

Richter, T.O., Van Der Gaast, S., Koster, B., Vaars, A., Gieles, R., De Stigter, H.O., De Haas, H., Van Weering, T.C.E., 

2006. The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments, in: 

Rothwell, R.G. (Ed.), New Techniques in Sediment Core Analysis. Geological Society Special Publication 267, 

London, pp. 39–50. 

Robaszynski, F., Caron, M., 1995. Foraminifères planctoniques du Crétacé: commentaire de la zonation Europe-

Méditerranée. Bulletin de la Société Géologique de France 166, 681–692. 

Rothwell, R.G., Hoogakker, B., Thomson, J., Croudace, I.W., Frenz. M., 2006. Turbidite emplacement on the southern 

Balearic Abyssal Plain (western Mediterranean Sea) during Marine Isotope Stages 1–3: an application of ITRAX XRF 

scanning of sediment cores to lithostratigraphic analysis. In R.G. Rothwell (ed.), New techniques in sediment core 

analysis. Geological Society Special Publication, p. 39-50. 

Ruiz, G., Sebti, S., Negro, F., Saddiqi, O., Frizon de Lamotte, D., Stockli, D., Foeken, J., Stuart, F., Barbarand, J., Schaer, 

J.P., 2010. From central Atlantic continental rift to Neogene uplift – western Anti-Atlas (Morocco). Terra Nova 23, 

35–41. 

Rusk, D.C., 2001. Lybia: petroleum potential of the underexplored basin centers- a twenty- first- century challenge, in: 

Downey, M.W., Threet, J.C., Morgan, W.A. (Eds.), Petroleum provinces of the twenty-First-Century. AAPG Memoirs 

74, pp. 429–452. 

Ruttenberg, K.C., 1993. Reassessment of the oceanic residence time of phosphorus. Chemical Geology 104, 405–409. 

Saager, P.M., De Baar, H.J.W., Burkill, P.H., 1989. Manganese and iron in Indian Ocean waters. Geochimica et 

Cosmochimica Acta  53, 2259– 2267. 

Sachse, V.F., Littke, R., Heim, S., Kluth, O., Schober, J., Boutib, L., Jabour, H., Perssen, F., Sindern, S., 2011. Petroleum 

source rocks of the Tarfaya Basin and adjacent areas, Morocco. Organic Geochemistry 42, 209–227. 

Sachse V.F., Littke, R., Jabour, H., Schümann, T., Kluth, O., 2012. Late Cretaceous (Late Turonian, Coniacian and 

Santonian) petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Marine and Petroleum Geology 29, 

35–49. 

Sageman, B.B., Meyers, S.R., Arthur, M.A., 2006. Orbital time scale and new C-isotope record for Cenomanian-Turonian 

boundary stratotype. Geology 34, 125–128. 

Sahagian, D., Pinous, O., Olferiev, A., Zakaharov, V., and Beisel, A., 1996. Eustatic curve for the middle Jurassic-

Cretaceous based on Russian platform and Siberian stratigraphy: Zonal resolution. American Association of 

Petroleum Geologists Bulletin 80, 1433–1458. 

Scalan, R.S, Smith, J.E., 1970. An improved measure of the odd-to-even predominance in the normal alkanes of sediment 

extracts and petroleum. Geochimica et Cosmochimica Acta 34, 611–620. 

Schenau, S.J., Reichart, G.J., De Lange, G.J., 2002. Oxygen minimum zone controlled Mn redistribution in Arabian Sea 

sediments during the late Quaternary. Paleoceanography 17, doi: 10.1029/2000PA000621. 

Schlanger, S.O., Jenkyns, H.C., 1976. Cretaceous anoxic events: Causes and consequences. Geologie en Mijnbouw 55, 

179–184. 

Scholle, RA., Arthur, M.A., 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic 

and petroleum exploration tool. American Association of Petroleum Geologists bulltian Bulletin 64, 67–87. 



 184 

Schütz, L., Rahn K.A., 1982. Trace-element concentrations in erodible soils. Atmospheric Environment 16, 171–176. 

Scopelliti, G., Bellanca, A., Neri, R., Baudin, F., Coccioni, R., 2006. Comparative high-resolution chemostratigraphy of 

the Bonarelli Level from the reference Bottaccione section (Umbria–Marche Apennines) and from an equivalent 

section in NW Sicily: Consistent and contrasting responses to the OAE2. Chemical Geology 228, 266 – 285. 

Shackleton, N.J., Kennett, J.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: 

Oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281, in, Kennett, J.P., Houtz, R.E., et al., Init. Repts. 

DSDP, 29. Washington  (U.S. Govt. Pr int ing Office), 801–808. 

Shanmungam, G., 1985. Significance of coniferous rain forests and related organic matter in generating commercial 

quantities of oil, Gippsland Basin, Australia. The American Association of Petroleum Geologists Bulletin 69, 1241–

1254. 

Shannon, C.E., Weaver, W., 1949. The Mathematical Theory of Communication. University of Illinois Press, 1-125. 

Shaw, T.J., Gieskes, J.M., Jahnke, R.A., 1990. Early diagenesis in differing depositional environments: the response of 

transition metals in pore water. Geochimica et Cosmochimica Acta 54, 1233–1246. 

Shiller, A.M., 1982. The geochemistry of particulate major elements in Santa Barbara Basin and observations on the 

calcium carbonate-carbon dioxide system in the ocean. PhD thesis, pp. 197, University of California, San Diego. 

Spaulding, S., 1991. Neogene nannofossi biostratigraphy of Sites 723 through 730, Oman continental margin; 

northwestern Arabian Sea, in: Prell, W.L., Niitsuma, N., et al. (Eds.), proceedings of the Ocean Drilling Program, 

Scientific Results 117, 5–36. 

Stoll, H.M., Schrag, D., 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: 

Glacial episodes in a greenhouse planet?. Geological Society of America Bulletin 112, 308–319. 

Taylor, G.H., Teichmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., 1998. Organic Petrology. Borntraeger, 

Stuttgart. 

Ten Haven H.L., De Leeuw, J.W., Schenck, P.A., Klaver, G.T., 1987. Geochemistry of Mediterranean sediments. 

Bromine/organic carbon and uranium/organic carbon ratios as indicators for different sources of input and post-

depositionai oxidation, respectively. Organic Geochemistry 13, 255–261. 

Thomson, J., Croudace, I.W., Rothwell, R.G., 2006. A geochemical application of the ITRAX scanner to a sediment core 

containing eastern Mediterranean sapropel units, in: Rothwell, R.G. (Ed.), New Techniques in Sediment Core 

Analysis. Geological Society, London, Special Publications, 267, pp. 65–77. 

Thurow, J., Brumsack, H.J., Littke, R., Meyers, P., Rullkötter, J., 1992. The Cenomanian/Turonian boundary event in the 

Indian Ocean – a key to understand the global picture. Geophysical Monograph 70, 253–273. 

Tisserand, A., Malaizé, B., Jullien, E., Zaragosi, S., Charlier, K., Grousset F., 2009. African monsoon enhancement 

during the penultimate glacial period (MIS 6.5-170 ka) and its atmospheric impact. Paleoceanography 24, 

doi: 10.1029/2008PA001630. 

Tjallingii, R., Stattegger, K., Wetzel, A., Van Phach P., 2010. Infilling and flooding of the Mekong River incised valley 

during deglacial sea-level rise. Quaternary Science Reviews 29, 1432–1444. 

Trabucho Alexandre, J., Tuenter, E., Henstra, G.A., van der Zwan, K.J., van de Wal, R.S.W., Dijkstra, H.A., de Boer, 

P.L., 2010. The mid-Cretaceous North Atlantic nutrient trap: Black shales and OAEs. Paleoceanography 25, PA4201, 

doi:10.1029/2010PA001925. 

Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: 

an update. Chemical Geology 232, 12–32. 

Upstill-Goddard, R.C., Elderfield, H., 1988. The role of diagenesis in the estuarine budgets of iodine and bromine. 

Continental Shelf Research 8, 405–430. 

Vail, P.R., MItchum, J.R.M., Thompson, S., 1977. Global cycles of relative changes of sea level, in: Vail, P.R. et al. 

(Eds.), Seismic Stratigraphy and global changes of sea level. American Association of Petroleum Geology Memoir 

26, 83–98. 



 185 

Van Bentum, E.C., Reichart, G.-J., Forster, A., Sinninghe Damste, J.S., 2012. Latitudinal differences in the amplitude of 

the OAE-2 carbon isotopic excursion: pCO2 and paleo productivity. Biogeosciences 9, 717–731. 

Van Cappellen, P., Ingall, E.D., 1994. Benthic phosphorus regeneration, net primary production, and ocean anoxia: A 

model of the coupled marine biogeochemical cycles of carbon and phosphorus. Paleoceanography 9, 677–692.  

Van Cappellen, P., Ingall, E.D., 1996. Redox stabilizations of the atmosphere and oceans by phosphorus-limited marine 

productivity. Science 271, 493–496. 

van der Zwaan, G.J., Duijnstee, I.A.P., den Dulk, M., Ernst, S.R., Jannink, N.T., Kouwenhoven, T.J., 1999. Benthic 

foraminifers: proxies or problems? A review of paleocological concepts. Earth-Science Reviews 46, 213–236. 

Van Pée, K.H., 1996. Biosynthesis of halogenated metabolites by bacteria. Annual Review of Microbiology 50. 375–399. 

Van Sickel, W.A, Kominz, M.A., Miller, K.G., Browning, J.V., 2004. Late Cretaceous and Cenozoic sea-level estimates 

backstripping analysis of borehole data, onshore New Jersey. Basin research 16, 451–465.  

Wagner, T., 2002. Late Cretaceous to early Quaternary organic sedimentation in the eastern equatorial Atlantic. 

Palaeogeography, Palaeoclimatology, Palaeoecology 179, 113–147. 

Wagner, T., Pletsch, T., 1999. Tectono- sedimentary controls on Cretaceous black shale deposition along the opening 

Equatorial Atlanttic Gateway (ODP Leg 159), in: Cameron, N.R., Bate, R.H., Clure, V.S. (Eds.), The Oil and Gas 

Habitats of the South Atlantic. Geological Society, Special Publication 153, London, pp. 241–265. 

Wagner, T., Sinninghe Damsté, J., Hofmann P., Beckmann, B., 2004. Euxinia and primary production in Late Cretaceous 

eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales. 

Paleoceanography 19, doi: 10.1029/2003PA000898. 

Wagreich, M., 2009. Coniacian- santonian oceanic red beds and their link to Oceanic Anoxic Event 3, in: Hu, X., Wang, 

C., Scott, R.W., Wagreich, M., Jansa, L. (Eds.), Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins, 

and Paleoceanographic and Paleoclimatic Significance. SEPM Special Publications 91, pp. 235–242. 

Wagreich, M., 2012a. " OAE 3"–a low-to mid-latitude Atlantic oceanic event during the Coniacian-Santonian. Climate of 

the Past Discussions 8, 1209–1227. 

Wagreich, M., 2012b. “OAE 3” regional Atlantic organic carbon burial during the Coniacian- Santonian. Climate of the 

Past 8, 1447–1455. 

Weltje, G.J., Tjallingii, R., 2008. Calibration of XRF core scanners for quantitative geochemical logging of sediment 

cores: Theory and application. Earth and Planetary Science Letters 274, 423–438. 

Wendler, I., 2013. A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late 

Cretaceous global correlation. Earth-Science Reviews 126, 116–146. 

Wendler, I., Wendler, J., Gräfe, K.-U., Lehmann, J., Willems, H., 2009. Turonian to Santonian carbon isotope data from 

the Tethys Himalaya, southern Tibet. Cretaceous Research 30, 961–979. 

Wenke, A., Zühlke, R., Jabour, H., Kluth, O., 2011. High-resolution sequence stratigraphy in basin reconnaissance: 

example from the Tarfaya Basin, Morocco. First break 29, 85–96. 

Werne, J.P., Hollander, D.J., Lyons, T.W., Sinninghe Damsté, J.S., 2004. Organic sulfur biogeochemistry: recent 

advances and future research directions, in: Amend, J., Edwards, K., Lyons, T. (Eds.), Sulfur Biogeochemistry: Past 

and Present. Geological Society of America, Special Paper 379, pp. 135–150. 

Wiedmann, J., Butt, A., Einsele, G., 1978. Vergleich von marokkanischen Kreide-Küstenaufschlüssen und 

Tiefseebohrungen (DSDP): Stratigraphie, Paläoenvironment und Subsidenz an einem passiven Kontinentalrand. 

Geologische Rundschau 67, 454–508. 

Wiedmann, J., Butt, A., Einsele, G., 1982. Cretaceous Stratigraphy, Environment, and Subsidence History at the 

Moroccan Continental Margin, in: von Rad, U., Hinz, K., Sarnthein, M., Seibold, E. (Eds.), Geology of the Northwest 

African Continental Margin. Springer, Berlin, pp. 366–395. 

Wiedmann, J., Kuhnt, W., 1996. Biostratigraphy of Cenomanin/Turonian organic carbon-rich sediments in the Tarfaya 

Atlantic coastal basin (Morocco). Berichte-Reports, Geologisch-Paläontologisches Institut Kiel 76, 195–200. 



 186 

Wonders, A.A.H., 1980. Middle and Late Cretaceous planktonic foraminifera of the Western Mediterranean area. Bulletin 

of Utrecht Micropaleontology 24, 1–157. 

Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., 

Peterson, L.C., Haug, G.H., 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature 

445, doi:10.1038.  

Yarincik, K.M., Murray, R.W., Peterson L.C., 2000. Climatically sensitive eolian and hemipelagic deposition in the 

Cariaco Basin, Venezuela, over the past 578,000 years: Results from Al/Ti and K/Al. Paleoceanography 15, doi: 

10.1029/1999PA900048. 

Zabel, M., Schneider, R.R., Wagner, T., Adegbie, A.T., de Vries, U. Kolonic, S., 2001. Late Quaternary climate changes 

in Central Africa as inferred from terrigenous input to the Niger Fan. Quaternary Research 56, 207–217. 

Ziegler, M., Jilbert, T., De Lange, G.J., Lourens, L.J., Reichart, G.J., 2008. Bromine counts from XRF scanning as an 

estimate of the marine organic carbon content of sediment cores. Geochemistry, Geophysics, Geosystems 9, 1525–

2027. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 187 

Appendices  

 

Appendix 1. Depth scale adopted for the core Tarfaya SN1. 
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12 3 60                       

  4 69       69     0     69   

  5 55       55           55   

13 1 66   28.5   66   28.5   28.5   66 28.5 

  2 63   29.16   63   29.16       63 29.16 

  3 72   29.79   72   29.79       72 29.79 

  4 71   30.51   70   30.51 1     70 30.51 

  5 23 31.45 31.22 15 23 31.44 31.21 0   31.45 23 31.22 

14 1 77   31.6   35   31.6 42 31.6   35 31.6 

  2 70   32.37   70   31.95       70 31.95 

  3 54   33.07   54   32.65       54 32.65 

  4 65   33.61   64   33.19 1     64 33.19 

  5 40   34.26   33   33.83 7     33 33.83 

  6 37 35.03 34.66 -33 37 34.53 34.16 0   34.53 37 34.16 

15 1 67   34.7   67   34.7 0 34.7   67 34.7 

  2 62   35.37   61   35.37 1     61 35.37 

  3 67.5   35.99   67   35.98 0.5     67 35.98 

  4 67.5   36.665   66   36.65 1.5     66 36.65 

  5 49 37.83 37.34 -3 49 37.8 37.31 0   37.8 49 37.31 

16 1 75   37.8   75   37.8 0 37.8   75 37.8 

  2 59   38.55   59   38.55 0     59 38.55 

  3 69   39.14   69   39.14 0     69 39.14 

  4 77 40.6 39.83 20 77 40.6 39.83 0   40.6 77 39.83 

17 1 81.5   40.8   80   40.8 1.5 40.8   77 40.8 

  2 71   41.615   70   41.6 1     67 41.57 

  3 83 43.155 42.325 -25.5 69 42.99 42.3 14   43.89 66 42.24 

18 1 65.5   42.9   65.5   42.9 0 42.9   65.5 42.9 

  2 79   43.555   79   43.555 0     79 43.555 

  3 75   44.345   75   44.345 0     75 44.345 

  4 67   45.095   67   45.095 0     67 45.095 

  5 13   45.765   13   45.765 0     13 45.765 

  6 10 45.995 45.895 30.5 10 45.995 45.895 0   45.995 40.5 45.895 

19 1 18   46.3   18   46.3 0 46.3   18 46.3 

  2 19   46.48   19   46.48 0     19 46.48 

  3 18.5   46.67   28   46.67 -9.5     28 46.67 

  4 66   46.855   66   46.95 0     66 46.95 
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  6 62   48.14   61   48.23 1     61 48.23 

  7 71 49.47 48.76 13 71 49.55 48.84 0   49.55 76 48.84 
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  2 41   50.12               35 50.07 
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  4 76 52 51.24 -5200   49.6       51.76 68 51.08 

21 1 58   52               52 51.76 

  2 78   52.58   77     1     77 52.28 

  3 70.5   53.36   69     1.5     69 53.05 

  4 71   54.065   70     1     70 53.74 

  5 36 55.14 54.775 -34           54.8 36 54.44 

22 1 79   54.8   78   54.8 1 54.8   79 54.8 

  2 65   55.59   64   55.58 1     65 55.59 

  3 73.5   56.24   70   56.22 3.5     73.5 56.24 

  4 63.5   56.975   61   56.92 2.5     63.5 56.975 

  5 23.5 57.845 57.61 5.5 24 57.77 57.53 -0.5   57.845 24 57.61 

23 1 77   57.9   78   57.9 -1 57.9   77 57.9 

  2 79   58.67   79   58.68 0     79 58.67 

  3 78   59.46   75   59.47 3     78 59.46 

  4 66 60.9 60.24 10 65 60.87 60.22 1   60.9 76 60.24 

24 1 62   61   62   61 0 61   62 61 

  2 78   61.62   78   61.62 0     78 61.62 

  3 81   62.4   70   62.4 11     81 62.4 

  4 64   63.21   54   63.1 10     64 63.21 
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  4 69   65.96   69   65.88 0     69 65.92 

  5 38.5 67.035 66.65 -3.5 38 66.95 66.57 0.5   67 39 66.61 

26 1 73 67.73 67 97 37 67.37 67 36 67 67.73 67 67 

27 1 69   68.7   60   68.7 9 68.7   60 68.7 

  2 45   69.39   38   69.3 7     38 69.3 

  3 27   69.84   26   69.68 1     26 69.68 

  4 44   70.11   42   69.94 2     42 69.94 

  5 19   70.55   14   70.36 5     14 70.36 

  6 74   70.74   64   70.5 10     64 70.5 

  7 11 71.59 71.48 -39 6 71.2 71.14 5   71.2 6 71.14 

28 1 72   71.2   72   71.2 0 71.2   72 71.2 
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  2 61   71.92   41   71.92 20     61 71.92 

  3 69   72.53   69   72.33 0     67 72.53 

  4 58   73.22   57   73.02 1     58 73.2 

  5 51 74.31 73.8 -1 50 74.09 73.59 1   74.31 52 73.78 
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  2 75   78.06   75   78.05 0     75 78.06 
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  4 71   79.52   70   79.52 1     71 79.52 

  5 32 80.55 80.23 5 30 80.52 80.22 2   80.55 37 80.23 

31 1 74   80.6   73   80.6 1 80.6   74 80.6 

  2 68   81.34   67   81.33 1     68 81.34 

  3 69   82.02   68   82 1     69 82.02 

  4 16 82.87 82.71 83 16 82.84 82.68 0   82.87 16 82.71 

32 1 77.5   83.7   74   83.7 3.5 83.7   74 83.7 

  2 69.5   84.475   58   84.44 11.5     58 84.44 

  3 75   85.17   75   85.02 0     75 85.02 

  4 75   85.92   73   85.77 2     73 85.77 

  5 17.5 86.845 86.67 -4.5 26 86.76 86.5 -8.5   86.845 26 86.5 

33 1 61   86.8   60   86.8 1 86.8   60 86.8 

  2 71   87.41   53   87.4 18     53 87.4 

  3 81   88.12   81   87.93 0     81 87.93 

  4 76   88.93   54   88.74 22     54 88.74 

  5 16 89.85 89.69 -55 16 89.44 89.28 0   89.44 0   

34 1 70   89.3   66   89.3 4 89.3   70 89.3 

  2 76   90   50   89.96 26     76 90 

  3 73   90.76   69   90.46 4     68 90.76 

  4 47   91.49   46   91.15 1     47 91.44 

  5 38 92.34 91.96 -4 38 91.99 91.61 0   92.34 39 91.91 

35 1 67.5   92.3   67   92.3 0.5 92.3   67.5 92.3 

  2 66   92.975   64   92.97 2     66 92.975 

  3 75   93.635   72   93.61 3     75 93.635 

  4 73 95.115 94.385 18.5 72 95.05 94.33 1   95.115 73 94.385 

36 1 64   95.3   63   95.3 1 95.3   64 95.3 

  2 72.5   95.94   71   95.93 1.5     72.5 95.94 

  3 69.5   96.665   69   96.64 0.5     69.5 96.665 

  4 72   97.36   67   97.33 5     67 97.36 

  5 40 98.48 98.08 -8 37 98.37 98 3   98.48 37 98.03 

37 1 60   98.4   55   98.4 5 98.4   55 98.4 

  2 72 99.72 99 -12 65 99.6 98.95 7   99.72 65 98.95 

38 1 76   99.6   76   99.6 0 99.6   76 99.6 

  2 76   100.36   42     34     76 100.36 

  3 42   101.12   41     1     42 101.12 

  4 75   101.54   75     0     75 101.54 

  5 48 102.77 102.29 13 22 102.16   26   102.77 48 102.29 

39 1 13   102.9   13   102.9 0 102.9   13 102.9 

  2 72   103.03   50   103.03 22     72 103.03 

  3 71   103.75   69   103.53 2     71 103.75 

  4 64   104.46   63   104.22 1     64 104.46 

  5 69 105.79 105.1 21 68 105.53 104.85 1   105.79 69 105.1 

40 1 70   106   60   106 10 106   60 106 

  2 66   106.7   54   106.6 12     54 106.6 

  3 77   107.36   76   107.14 1     76 107.14 

  4 73   108.13   59   107.9 14     59 107.9 

  5 50 109.36 108.86 -36 50 108.99 108.49 0   108.99 51 108.49 

41 1 71   109   63   109 8 109   63 109 

  2 69   109.71   62   109.63 7     62 109.63 

  3 54   110.4   46   110.25 8     46 110.25 

  4 75   110.94   75   110.71 0     75 110.71 

  5 57 112.26 111.69 -26 55 112.01 111.46 2   112.01 56 111.44 

42 1 14   112   14   112 0 112   13 112 

  2 67   112.14   67   112.14 0     62 112.13 

  3 83   112.81   82   112.81 1     77 112.75 

  4 78   113.64   77   113.63 1     72 113.52 

  5 81 115.23 114.42 -23 81 115.21 114.4 0   115 76 114.24 

43 1 54   115   53   115 1 115   54 115 

  2 66   115.54   65   115.53 1     66 115.54 

  3 65   116.2   64   116.18 1     65 116.2 

  4 67   116.85   66   116.82 1     67 116.85 

  5 46 117.98 117.52 2 46 117.94 117.48 0   117.98 48 117.52 

44 1 79   118   79   118 0 118   79 118 

  2 77   118.79   76   118.79 1     77 118.79 

  3 75   119.56   75   119.55 0     75 119.56 

  4 75.5   120.31   75   120.3 0.5     75.5 120.31 

  5 12 121.185 121.065 1.5 12 121.17 121.05 0   121.185 12 121.065 

45 1 74   121.2   50   121.2 24 121.2   50 121.2 

  2 50   121.94   74   121.7 -24     74 121.7 

  3 77   122.44   75   122.44 2     75 122.44 

  4 77   123.21   77   123.19 0     77 123.19 

  5 33 124.31 123.98 -1 33 124.29 123.96 0   124.29 33 123.96 

46 1 18   124.3   18   124.3 0 124.3   18 124.3 

  2 70   124.48   70   124.48 0     70 124.48 

  3 70   125.18   70   125.18 0     70 125.18 

  4 81   125.88   64   125.88 17     81 125.88 

  5 75 127.44 126.69 6 63 127.15 126.52 12   127.44 75 126.69 
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47 1 66   127.5   66   127.5 0 127.5   66 127.5 

  2 71   128.16   70   128.16 1     71 128.16 

  3 76.5   128.87   76   128.86 0.5     76.5 128.87 

  4 81 130.445 129.635 15.5 80 130.42 129.62 1   130.445 81 129.635 

48 1 58   130.6   58   130.6 0 130.6   58 130.6 

  2 76   131.18   76   131.18 0     76 131.18 

  3 75   131.94   73   131.94 2     75 131.94 

  4 72   132.69   72   132.67 0     72 132.69 

  5 30 133.71 133.41 -1 30 133.69 133.39 0   133.71 29 133.41 

49 1 31   133.7   31   133.7 0 133.7   31 133.7 

  2 80   134.01   82   134.01 -2     80 134.01 

  3 70   134.81   74   134.83 -4     70 134.81 

  4 71   135.51   70   135.57 1     71 135.51 

  5 51 136.73 136.22 7 51 136.78 136.27 0   136.73 51 136.22 

50 1 78   136.8   78   136.8 0 136.8   78 136.8 

  2 77   137.58   77   137.58 0     77 137.58 

  3 71   138.35   71   138.35 0     71 138.35 

  4 73 139.79 139.06 1 72 139.78 139.06 1   139.79 73 139.06 

51 1 67   139.8   67   139.8 0 139.8   67 139.8 

  2 67.5   140.47   67   140.47 0.5     67.5 140.47 

  3 61.5   141.145   61   141.14 0.5     61.5 141.145 

  4 75.5 142.515 141.76 28.5 75 142.5 141.75 0.5   142.515 75.5 141.76 

52 1 73   142.8   73   142.8 0 142.8   73 142.8 

  2 28 143.81 143.53 -1 22 143.75 143.53 6   143.81 27 143.53 

53 1 77   143.8   76   143.8 1 143.8   77 143.8 

  2 74.5   144.57   63   144.56 11.5     75 144.57 

  3 62   145.315   62   145.19 0     62 145.32 

  4 61   145.935   60   145.81 1     60.5 145.94 

  5 22 146.765 146.545 23.5 28 146.69 146.41 -6   146.765 28 146.545 

54 1 66   147   66   147 0 147   66 147 

  2 71   147.66   71   147.66 0     71 147.66 

  3 50   148.37   50   148.37 0     50 148.37 

  4 62 149.49 148.87 61 62 149.49 148.87 0   149.49 62 148.87 

55 1 _ 4 68   150.1   55   150.1 13 150.1   55 150.1 

  5 _ 8 71   150.78   61   150.65 10     61 150.65 

  9 82.5   151.49   82   151.26 0.5     82 151.26 

  10 58   152.315   58   152.08 0     58 152.08 

  11 44 153.335 152.895 -23.5 44 153.1 152.66 0   153.1 44 152.66 

56 1 13   153.1   13   153.1   153.1   13 153.1 

  2 15   153.23   15   153.23       15 153.23 

  3 74.5   153.38   74   153.38 0.5     74.5 153.38 

  4 77   154.125   76   154.12 1     77 154.125 

  5 79   154.895   78   154.88 1     79 154.895 

  6 43   155.685   42   155.66 1     43 155.685 

  7 8 156.195 156.115 0.5 8 156.16 156.08 0   156.195 8 156.115 

57 1 76.5   156.2   76   156.2 0.5 156.2   76.5 156.2 

  2 75.5   156.965   75   156.96 0.5     75.5 156.965 

  3 55.5 158.275 157.72 2.5 55 158.26 157.71 0.5   158.275 55.5 157.72 

58 1 69   158.3   68   158.3 1 158.3   69 158.3 

  2 73.5   158.99   73   158.98 0.5     73.5 158.99 

  3 75   159.725   74   159.71 1     75 159.725 

  4 74 161.215 160.475 8.5 74 161.19 160.45 0   161.215 74 160.475 

59 1 73   161.3   72   161.3 1 161.3   72 161.3 

  2 70   162.03   70   162.02 0     70 162.02 

  3 71   162.73   69   162.72 2     69 162.72 

  4 71   163.44   70   163.41 1     70 163.41 

  5 29 164.44 164.15 -4 29 164.4 164.11 0   164.4 29 164.11 

60 1 74   164.4   73   164.4 1 164.4   74 164.4 

  2 71.5   165.14   71   165.13 0.5     71.5 165.14 

  3 80.5   165.855   69   165.84 11.5     80.5 165.855 

  4 75 167.41 166.66 -1 74 167.27 166.53 1   167.41 74 166.66 

61 1 70.5   167.4   70   167.4 0.5 167.4   70.5 167.4 

  2 71.5   168.105   71   168.1 0.5     71.5 168.105 

  3 72   168.82   72   168.81 0     72 168.82 

  4 66   169.54   65   169.53 1     65 169.54 

  5 33 170.53 170.2 -3 31 170.49 170.18 2   170.49 31 170.19 

62 1 81.5   170.5   80   170.5 1.5 170.5   74 170.5 

  2 64   171.315   64   171.3 0     60 171.24 

  3 71.5   171.955   71   171.94 0.5     66 171.84 

  4 76.5   172.67   76   172.65 0.5     70 172.55 

  5 22 173.655 173.435 -15.5 22 173.63 173.41 0   173.5 20 173.2 

63 1 69.5   173.5   69   173.5 0.5 173.5   69.5 173.5 

  2 70.5   174.195   70   174.19 0.5     70.5 174.195 

  3 73   174.9   73   174.89 0     73 174.9 

  4 57.5 176.205 175.63 19.5 57 176.19 175.62 0.5   176.205 57.5 175.63 

64 1 78   176.4   77   176.4 1 176.4   76 176.4 

  2 78   177.18   77   177.17 1     75 177.16 

  3 70   177.96   69   177.94 1     67 177.91 

  4 75 179.41 178.66 -11 74 179.37 178.63 1   179.3 72 178.58 

65 1 19.5   179.3   19   179.3 0.5 179.3   19 179.3 

  2 74   179.495   73   179.49 1     73 179.49 

  3 70   180.235   69   180.22 1     69 180.22 

  4 73.5   180.935   73   180.91 0.5     73 180.91 

  5 77 182.44 181.67 -4 76 182.4 181.64 1   182.4 76 181.64 

66 1 67   182.4   67   182.4 0 182.4   67 182.4 

  2 58.5   183.07   58   183.07 0.5     58.5 183.07 

  3 59   183.655   59   183.65 0     59 183.655 

  4 75   184.245   74   184.24 1     75 184.245 

  5 50 185.495 184.995 0.5 50 185.48 184.98 0   185.495 50 184.995 

67 1 63.5   185.5   63   185.5 0.5 185.5   63.5 185.5 
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  2 69   186.135   69   186.13 0     69 186.135 

  3 64.5   186.825   65   186.82 -0.5     64.5 186.825 

  4 71   187.47   66   187.47 5     71 187.47 

  5 29.5 188.475 188.18 2.5 29 188.42 188.13 0.5   188.475 29.5 188.18 

68 1 71   188.5   71   188.5 0 188.5   69 188.5 

  2 70   189.21   70   189.21 0     68 189.19 

  3 73.5   189.91   73   189.91 0.5     71 189.87 

  4 71   190.645   70   190.64 1     68 190.58 

  5 25.5 191.61 191.355 -11 25 191.59 191.34 0.5   191.5 24 191.26 

69 1 63.5   191.5   63   191.5 0.5 191.5   63 191.5 

  2 70   192.135   70   192.13 0     70 192.13 

  3 69   192.835   69   192.83       69 192.83 

  4 68   193.525   68   193.52       68 193.52 

  5 32 194.525 194.205 -2.5 32 194.52 194.2     192.52 30 194.2 

70 1 76   194.5   76   194.5   194.5   76 194.5 

  2 80   195.26   80   195.26       80 195.26 

  3 71.5   196.06   71.5   196.06       71.5 196.06 

  4 71 197.485 196.775 1.5 71 197.485 196.775     197.485 71 196.775 

71 1 76   197.5   76   197.5   197.5   73 197.5 

  2 79.5   198.26   79.5   198.26       76 198.23 

  3 75   199.055   75   199.055       72 198.99 

  4 82.5 200.63 199.805 -13 82.5 200.63 199.805       79 199.71 

72 1 74   200.5   74   200.5   200.5   72 200.5 

  2 69.5   201.24   69.5   201.24       67 201.22 

  3 84   201.935   84   201.935       82 201.89 

  4 81 203.585 202.775 -8.5 80 203.575 202.775 1     78 202.71 

73 1 75.5   203.5   75   203.5 0.5 203.5   74 203.5 

  2 76   204.255   76   204.25 0     75 204.24 

  3 77.5   205.015   77   205.01 0.5     75 204.99 

  4 78.5 206.575 205.79 -7.5 78 206.56 205.78 0.5   206.5 76 205.74 

74 1 78.5   206.5   78   206.5 0.5 206.5   78 206.5 

  2 76.5   207.285   76   207.28 0.5     76 207.28 

  3 76.5   208.05   76   208.04 0.5     76 208.04 

  4 71.5 209.53 208.815 -3 71 209.51 208.8 0.5   209.53 70 208.8 

75 1 76   209.5   75   209.5 1 209.5   75 209.5 

  2 76   210.26   75   210.25 1     75 210.25 

  3 77   211.02   76   211 1     76 211 

  4 75 212.54 211.79 -4 74 212.5 211.76 1   212.5 74 211.76 

76 1 74.5   212.5   74   212.5 0.5 212.5   74.5 212.5 

  2 76.5   213.245   76   213.24 0.5     76.5 213.245 

  3 74.5   214.01   74   214 0.5     74.5 214.01 

  4 72 215.475 214.755 2.5 71 215.45 214.74 1   215.475 72 214.755 

77 1 77   215.5   77   215.5 0 215.5   75 215.5 

  2 76   216.27   75   216.27 1     73 216.25 

  3 78   217.03   77   217.02 1     74 216.98 

  4 81.5 218.625 217.81 -12.5 81 218.6 217.79 0.5   218.5 78 217.72 

78 1 75   218.5   74   218.5 1 218.5   75 218.5 

  2 74.5   219.25   74   219.24 0.5     74.5 219.25 

  3 72   219.995   72   219.98 0     72 219.995 

  4 67 221.385 220.715 11.5 67 221.37 220.7 0   221.385 67 220.715 

79 1 80   221.5   82   221.5 -2 221.5   81 221.5 

  2 78   222.3   78   222.32 0     78 222.31 

  3 81.5   223.08   81   223.1 0.5     81 223.09 

  4 60.5 224.5 223.895 0 60 224.51 223.91 0.5   224.5 60 223.9 

80 1 80   224.5   79   224.5 1 224.5   78 224.5 

  2 76   225.3   75   225.29 1     74 225.28 

  3 72   226.06   71   226.04 1     71 226.02 

  4 79 227.57 226.78 -7 78 227.53 226.75 1   227.5 77 226.73 

81 1 74   227.5   73   227.5 1 227.5   73 227.5 

  2 74.5   228.24   74   228.23 0.5     74 228.23 

  3 71.5   228.985   71   228.97 0.5     71 228.97 

  4 77.5   229.7   77   229.68 0.5     77 229.68 

  5 6 230.535 230.475 -3.5 5 230.5 230.45 1   230.5 5 230.45 

82 1 72.5   230.5   72   230.5 0.5 230.5   72.5 230.5 

  2 81.5   231.225   81   231.22 0.5     81.5 231.225 

  3 69   232.04   68   232.03 1     69 232.04 

  4 76 233.49 232.73 1 76 233.47 232.71 0   233.49 76 232.73 

83 1 78   233.5   77   233.5 1 233.5   77 233.5 

  2 29   234.28   28   234.27 1     28 234.27 

  3 70.5   234.57   70   234.55 0.5     70 234.55 

  4 75.5   235.275   75   235.25 0.5     75 235.25 

  5 49.5 236.525 236.03 -2.5 49 236.49 236 0.5   236.49 49.5 236 

84 1 76   236.5   75   236.5 1 236.5   75 236.5 

  2 75.5   237.26   75   237.25 0.5     75 237.25 

  3 78   238.015   77   238 1     77 238 

  4 78 239.575 238.795 -7.5 70 239.47 238.77 8   239.47 73 238.77 

85 1 76   239.5   76   239.5 0 239.5   76 239.5 

  2 78   240.26   78   240.26 0     78 240.26 

  3 77   241.04   56   241.04 21     73 241.04 

  4 73 242.54 241.81 -4 72 242.32 241.6 1   242.5 73 241.77 

86 1 67.5   242.5   67   242.5 0.5 242.5   67.5 242.5 

  2 63.5   243.175   63   243.17 0.5     63.5 243.175 

  3 65.5   243.81   65   243.8 0.5     65.5 243.81 

  4 71.5   244.465   71   244.45 0.5     71.5 244.465 

  5 24.5 245.425 245.18 7.5 24 245.4 245.16 0.5   245.425 24.5 245.18 

87 1 76   245.5   75   245.5 1 245.5   75 245.5 

  2 76.5   246.26   76   246.25 0.5     76 246.25 

  3 75.5   247.025   75   247.01 0.5     75 247.01 

  4 74 248.52 247.78 -2 73 248.49 247.76 1   248.49 74 247.76 

88 1 72   248.5       248.5   248.5     248.5 
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  2 74   249.22   73     1     73 249.22 

  3 77.5   249.96   76     1.5     77.5 249.96 

  4 76.5 251.5 250.735 0 76 250.75   0.5   250.78 76.5 250.735 

89 1 66   251.5   66   251.5 0 251.5   62 251.5 

  2 83.5   252.16   83   252.16 0.5     78 252.12 

  3 83   252.995   83   252.99 0     78 252.9 

  4 82.5   253.825   83   253.82 -0.5     78 253.68 

  5 6 254.71 254.65 -21 4 254.69 254.65 2   254.5 4 254.46 

90 1 66   254.5   65   254.5 1 254.5   65 254.5 

  2 78   255.16   77   255.15 1     77 255.15 

  3 76.5   255.94   76   255.92 0.5     76 255.92 

  4 83 257.535 256.705 -3.5 82 257.5 256.68 1   257.5 82 256.68 

91 1 68   257.5   67   257.5 1 257.5   68 257.5 

  2 72   258.18   71   258.17 1     72 258.18 

  3 79   258.9   78   258.88 1     79 258.9 

  4 73 260.42 259.69 8 76 260.42 259.66 -3   260.42 76 259.69 

92 1 69   260.5   68   260.5 1 260.5   69 260.5 

  2 69   261.19   68   261.18 1     69 261.19 

  3 79   261.88   78   261.86 1     79 261.88 

  4 78 263.45 262.67 5 77 263.41 262.64 1   263.45 78 262.67 

93 1 70.5   263.5   70   263.5 0.5 263.5   70.5 263.5 

  2 70   264.205   69   264.2 1     70 264.205 

  3 80   264.905   79   264.89 1     80 264.905 

  4 79 266.495 265.705 0.5 78 266.46 265.68 1   266.495 79 265.705 

94 1 74   266.5   74   266.5 0 266.5   74 266.5 

  2 80   267.24   79   267.24 1     80 267.24 

  3 73   268.04   75   268.03 -2     73 268.04 

  4 73 269.5 268.77 0 73 269.51 268.78 0   269.5 73 268.77 

95 1 72   269.5   72   269.5 0 269.5   72 269.5 

  2 79   270.22   78   270.22 1     79 270.22 

  3 72.5   271.01   72   271 0.5     72.5 271.01 

  4 70 272.435 271.735 6.5 60 272.32 271.72 10   272.435 70 271.735 

96 1 72.5   272.5   72   272.5 0.5 272.5   72.5 272.5 

  2 56.5   273.225   55   273.22 1.5       273.225 

  3             273.77           

  4                         

  5   273.79       273.77       273.79     

              

              

              

     Depth(m) given by ONHYM for the top of each section      

              

     Final depth(m) for the top of each section       

 

 

 

 

 

 

 

 

Appendix 2. Depth scale adopted for the core Tarfaya SN2. 
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13 1 77   24.6   75   24.6 2 24.6   77 24.6 

  2 70   25.37   70   25.35 0     70 25.37 

  3 73   26.07   73   26.05 0     73 26.07 

  4 62 27.42 26.8 -18 46 27.24 26.78 16   27.42 62 26.8 

14 1 76   27.6   76   27.6 0 27.6   76 27.6 

  2 74   28.36   74   28.36 0     74 28.36 

  3 64.5   29.095   64   29.1 0.5     64.5 29.095 

  4 81 30.555 29.74 -4.5 81 30.55 29.74 0   30.555 81 29.74 

15 1 68   30.6   68   30.6 0 30.6   68 30.6 

  2 67.5   31.28   67   31.28 0.5     67.5 31.28 

  3 68.5   31.955   68   31.95 0.5     68.5 31.955 

  4 62 33.26 32.64 -4 62 33.25 32.63 0   33.26 62 32.64 

16 1 76   33.3   76   33.3 0 33.3   76 33.3 

  2 75   34.06   74   34.06 1     75 34.06 

  3 78   34.81   79   34.8 -1     78 34.81 

  4 78 36.37 35.59 7 78 36.37 35.59 0   36.37 78 35.59 

17 1 49   36.3   49   36.3 0 36.3   49 36.3 

  2 34   36.79   34   36.79 0     34 36.79 

  3 34   37.13   34   37.13 0     34 37.13 

  4 22   37.47   21   37.47 1     22 37.47 

  5 31   37.69   31   37.68 0     31 37.69 

  6 69 38.69 38 -1 69 38.68 37.99 0   38.69 69 38 

18 1 59   38.7   59   38.7 0 38.7   59 38.7 

  2 59   39.29   59   39.29 0     59 39.29 

  3 77   39.88   77   39.88 0     77 39.88 

  4 74 41.39 40.65 -11   40.65 40.65 74   41.39 74 40.65 

19 1 65.5   41.5   64   41.5 1.5 41.5   65.5 41.5 

  2 55.5   42.155   55   42.14 0.5     55.5 42.155 
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  3 77   42.71   77   42.69 0     77 42.71 

  4 78.8   43.48   78   43.46 0.8     78.8 43.48 

  5 8 44.348 44.268 -5.2   44.24 44.24 8   44.348 8 44.268 

20 1 60.8   44.4   59   44.4 1.8 44.4   60.8 44.4 

  2 76   45.008   75   44.99 1     76 45.008 

  3 62.5   45.768   62   45.74 0.5     62.5 45.768 

  4 30 46.693 46.393 -20.7 31 46.67 46.36 -1   46.693 30 46.393 

21 1 36   46.9   36   46.9 0 46.9   36 46.9 

  2 71   47.26   70   47.26 1     71 47.26 

  3 64.5   47.97   64   47.96 0.5     64.5 47.97 

  4 76   48.615   76   48.6 0     76 48.615 

  5 40 49.775 49.375 -12.5 40 49.76 49.36 0   49.775 40 49.375 

22 1 67.5   49.9   67   49.9 0.5 49.9   67.5 49.9 

  2 74.5   50.575   74   50.57 0.5     74.5 50.575 

  3 77.8   51.32   77   51.31 0.8     77.8 51.32 

  4 66.6 52.764 52.098 -13.6 66 52.74 52.08 0.6   52.764 66.6 52.098 

23 1 71   52.9   71   52.90 0 52.90   71 52.9 

  2 69   53.61   69   53.61 0     69 53.61 

  3 53.5 54.835 54.3 3.5 53 54.83 54.3 0.5   54.83 53 54.3 

24 1 15   54.8   15   54.80 0 54.80   15 54.8 

  2 78   54.95   78   54.95 0     78 54.95 

  3 75   55.73   75   55.73 0     75 55.73 

  4 70.5   56.48   70   56.48 0.5     70 56.48 

  5 21.2 57.397 57.185 9.7 21 57.39 57.18 0.2   57.39 21 57.18 

25 1 57   57.3   57   57.30 0 57.30   57 57.3 

  2 70   57.87   70   57.87 0     70 57.87 

  3 62   58.57   62   58.57 0     62 58.57 

  4 44 59.63 59.19 -57 44 59.63 59.19 0   59.63 44 59.19 

26 1 71   60.2   71   60.20 0 60.20   71 60.2 

  2 75   60.91   75   60.91 0     75 60.91 

  3 75   61.66   73   61.66 2     73 61.66 

  4 63.5 63.045 62.41 -25.5 69 63.08 62.39 -5.5   63.08 69 62.39 

27 1 77.5   63.3   75   63.30 2.5 63.30   77.5 63.3 

  2 70   64.075   60   64.05 10     70 64.075 

  3 80.5   64.775   81   64.65 -0.5     80.5 64.775 

  4 71   65.58   71   65.46 0     71 65.58 

  5 10 66.39 66.29 -1   66.17 66.17 10   66.39 10 66.29 

28 1 76   66.4   77   66.40 -1 66.40   76 66.4 

  2 63   67.16   64   67.17 -1     63 67.16 

  3 70   67.79   69   67.81 1     70 67.79 

  4 77.5 69.265 68.49 -13.5 76 69.26 68.5 1.5   69.265 77.5 68.49 

29 1 72   69.4   72   69.40 0 69.40   72 69.4 

  2 71   70.12   70   70.12 1     71 70.12 

  3 73   70.83   72   70.82 1     73 70.83 

  4 87   71.56   61   71.54 26     87 71.56 

  5 39 72.82 72.43 32   72.15 72.15 39   72.82 39 72.43 

30 1 71   72.5   71   72.50 0 72.50   71 72.5 

  2 61   73.21   60   73.21 1     60 73.21 

  3 74   73.82   74   73.81 0     74 73.81 

  4 79.5   74.56   79   74.55 0.5     79 74.55 

  5 26 75.615 75.355 1.5 26 75.6 75.34 0   75.6 26 75.34 

31 1 55   75.6   55   75.60 0 75.60   55 75.6 

  2 67   76.15   67   76.15 0     67 76.15 

  3 77.5 77.595 76.82 -0.5 41 77.23 76.82 36.5   77.595 77.5 76.82 

32 1 59.5   77.6   59   77.60 0.5 77.60   59.5 77.6 

  2 72   78.195   70   78.19 2     72 78.195 

  3 30.5   78.915   30   78.89 0.5     30.5 78.915 

  4 84 80.06 79.22 -14 84 80.03 79.19 0   80.06 84 79.22 

33 1 76.5   80.2   76   80.20 0.5 80.20   76.5 80.2 

  2 67   80.965   67   80.96 0     67 80.965 

  3 66 82.295 81.635 -0.5 67 82.3 81.63 -1   82.3 66 81.635 

34 1 82   82.3   81   82.30 1 82.30   81 82.3 

  2 80   83.12   78   83.11 2     78 83.11 

  3 64.5   83.92   64   83.89 0.5     64 83.89 

  4 28 84.845 84.565 4.5 27 84.8 84.53 1   84.8 27 84.53 

35 1 76   84.8   77   84.80 -1 84.80   76 84.8 

  2 71   85.56   71   85.57 0     71 85.56 

  3 79   86.27   72   86.28 7     79 86.27 

  4 83 87.89 87.06 -1 83 87.83 87 0   87.89 83 87.06 

36 1 77   87.9   77   87.90 0 87.90   77 87.9 

  2 72.5   88.67   72   88.67 0.5     72.5 88.67 

  3 81   89.395   80   89.39 1     81 89.395 

  4 79 90.995 90.205 -0.5 79 90.98 90.19 0   90.995 79 90.205 

37 1 80.5   91   80   91.00 0.5 91.00   80.5 91 

  2 80   91.805   80   91.8 0     80 91.805 

  3 71   92.605   70   92.6 1     71 92.605 

  4 75.5 94.07 93.315 -3 75 94.05 93.3 0.5   94.07 75.5 93.315 

38 1 75   94.1   72   94.10 3 94.10   75 94.1 

  2 76.5   94.85   76   94.82 0.5     76.5 94.85 

  3 77   95.615   77   95.58 0     77 95.615 

  4 76.5 97.15 96.385 -5 76 97.11 96.35 0.5   97.15 76.5 96.385 

39 1 81   97.2   81   97.20 0 97.20   81 97.2 

  2 73.7   98.01   73   98.01 0.7     73.7 98.01 

  3 74   98.747   73   98.74 1     74 98.747 

  4 77 100.257 99.487 -4.3 76 100.23 99.47 1   100.257 77 99.487 

40 1 77.5   100.3   78   100.30 -0.5 100.30   77.5 100.3 

  2 75   101.075   75   101.08 0     75 101.075 

  3 71   101.825   71   101.83 0     71 101.825 

  4 77 103.305 102.535 -9.5 64 103.18 102.54 13   103.305 77 102.535 
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41 1 76   103.4   75   103.40 1 103.40   75 103.4 

  2 75   104.16   75   104.15 0     75 104.15 

  3 54.5   104.91   54   104.9 0.5     54 104.9 

  4 56.5   105.455   56   105.44 0.5     56 105.44 

  5 56 106.58 106.02 8 56 106.56 106 0   106.56 56 106 

42 1 82   106.5   80   106.50 2 106.50   82 106.5 

  2 81   107.32   81   107.3 0     81 107.32 

  3 74   108.13   74   108.11 0     74 108.13 

  4 69.5 109.565 108.87 -3.5 70 109.55 108.85 -0.5   109.565 69.5 108.87 

43 1 75   109.6   72   109.60 3 109.60   75 109.6 

  2 78.5   110.35   78   110.32 0.5     78.5 110.35 

  3 76.5   111.135   76   111.1 0.5     76.5 111.135 

  4 80 112.7 111.9 0 79 112.65 111.86 1   112.7 80 111.9 

44 1 74   112.7   74   112.70 0 112.70   74 112.7 

  2 76.5   113.44   76   113.44 0.5     76.5 113.44 

  3 71   114.205   71   114.2 0     71 114.205 

  4 75 115.665 114.915 -13.5 75 115.66 114.91 0   115.665 75 114.915 

45 1 74   115.8   77   115.80 -3 115.80   77 115.8 

  2 78   116.54   78   116.57 0     78 116.57 

  3 71   117.32   71   117.35 0     71 117.35 

  4 78 118.81 118.03 -9 78 118.84 118.06 0   118.84 78 118.06 

46 1 77   118.9   77   118.90 0 118.90   77 118.9 

  2 74   119.67   76   119.67 -2     74 119.67 

  3 76.5   120.41   76   120.43 0.5     76.5 120.41 

  4 78 121.955 121.175 -4.5 78 121.97 121.19 0   121.97 78 121.175 

47 1 80.8   122   80   122.00 0.8 122.00   80.8 122 

  2 75   122.808   75   122.8 0     75 122.808 

  3 75.5   123.558   75   123.55 0.5     75.5 123.558 

  4 78 125.093 124.313 -0.7 78 125.08 124.3 0   125.093 78 124.313 

48 1 75   125.1   75   125.10 0 125.10   75 125.1 

  2 72   125.85   72   125.85 0     72 125.85 

  3 53   126.57   64   126.57 -11     53 126.57 

  4 78   127.1   78   127.21 0     78 127.1 

  5 14 128.02 127.88 -18   127.99 127.99 14   128.02 14 127.88 

49 1 70   128.2   70   128.20 0 128.20   70 128.2 

  2 57   128.9   57   128.9 0     57 128.9 

  3 62   129.47   62   129.47 0     62 129.47 

  4 42.5   130.09   42   130.09 0.5     42.5 130.09 

  5 48.5 131 130.515 -30 52 131.03 130.51 -3.5   131.03 48.5 130.515 

50 1 52.5   131.3   52   131.30 0.5 131.30   52.5 131.3 

  2 11   131.825   12   131.82 -1     11 131.825 

  3 59.5   131.935   59   131.94 0.5     59.5 131.935 

  4 61   132.53   60   132.53 1     61 132.53 

  5 50   133.14   50   133.13 0     50 133.14 

  6 57 134.21 133.64 -19 56 134.19 133.63 1   134.21 57 133.64 

51 1 36   134.4   36   134.40 0 134.40   36 134.4 

  2 53   134.76   54   134.76 -1     54 134.76 

  3 76.5   135.29   77   135.3 -0.5     77 135.29 

  4 70   136.055   70   136.07 0     70 136.055 

  5 72 137.475 136.755 -2.5 72 137.49 136.77 0   137.49 72 136.755 

52 1 61   137.5   61   137.50 0 137.50   61 137.5 

  2 55   138.11   55   138.11 0     55 138.11 

  3 71   138.66   71   138.66 0     71 138.66 

  4 65   139.37   65   139.37 0     65 139.37 

  5 46 140.48 140.02 8 46 140.48 140.02 0  140.48 46 140.02 

53 1 68   140.4   68   140.40 0 140.40   68 140.4 

  2 76   141.08   75   141.08 1     76 141.08 

  3 74   141.84   74   141.83 0     74 141.84 

  4 70 143.28 142.58 -12 70 143.27 142.57 0   143.28 70 142.58 

54 1 74   143.4   74   143.40 0 143.40   74 143.4 

  2 75   144.14   75   144.14 0     75 144.14 

  3 75.5   144.89   75   144.89 0.5     75.5 144.89 

  4 68 146.325 145.645 -17.5 68 146.32 145.64 0   146.325 68 145.645 

55 1 78   146.5   78   146.50 0 146.50   78 146.5 

  2 73   147.28   73   147.28 0     73 147.28 

  3 74   148.01   73   148.01 1     74 148.01 

  4 71 149.46 148.75 -4 71 149.45 148.74 0   149.46 71 148.75 

56 1 75   149.5   75   149.50 0 149.50   75 149.5 

  2 79   150.25   79   150.25 0     79 150.25 

  3 78   151.04   78   151.04 0     78 151.04 

  4 66 152.48 151.82 -2 66 152.48 151.82 0   152.48 66 151.82 

57 1 78   152.5   78   152.50 0 152.50   78 152.5 

  2 78   153.28   79   153.28 -1     78 153.28 

  3 72   154.06   72   154.07 0     72 154.06 

  4 74.5 155.525 154.78 2.5 74 155.53 154.79 0.5   155.525 74.5 154.78 

58 1 74.5   155.5   74   155.50 0.5 155.50   74.5 155.5 

  2 77   156.245   77   156.24 0     77 156.245 

  3 75.5   157.015   76   157.01 -0.5     75.5 157.015 

  4 67.5 158.445 157.77 -5.5 67 158.44 157.77 0.5   158.445 67.5 157.77 

59 1 80.5   158.5   80   158.50 0.5 158.50   80 158.5 

  2 69   159.305   69   159.3 0     69 159.3 

  3 71   159.995   71   159.99 0     71 159.99 

  4 81 161.515 160.705 1.5 80 161.5 160.7 1   161.5 80 160.7 

60 1 73   161.5   73   161.50 0 161.50   73 161.5 

  2 69   162.23   69   162.23 0     69 162.23 

  3 76   162.92   76   162.92 0     76 162.92 

  4 73   163.68   73   163.68 0     73 163.68 

  5 13 164.54 164.41 4 13 164.54 164.41 0   164.54 13 164.41 

61 1 64   164.5   64   164.50 0 164.50   64 164.5 
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  2 70   165.14   70   165.14 0     70 165.14 

  3 81.5   165.84   76   165.84 5.5     76 165.84 

  4 72.5   166.655   72   166.6 0.5     72 166.6 

  5 16 167.54 167.38 4 16 167.48 167.32 0   167.48 16 167.32 

62 1 46   167.5   46   167.50 0 167.50   46 167.5 

  2 70   167.96   70   167.96 0     70 167.96 

  3 74   168.66   74   168.66 0     74 168.66 

  4 66   169.4   66   169.4 0     66 169.4 

  5 36 170.42 170.06 -8 36 170.42 170.06 0   170.42 36 170.06 

63 1 78   170.5   78   170.50 0 170.50   78 170.5 

  2 75   171.28   75   171.28 0     75 171.28 

  3 75   172.03   75   172.03 0     75 172.03 

  4 70 173.48 172.78 -2 70 173.48 172.78 0   173.48 70 172.78 

64 1 76   173.5   76   173.50 0 173.50   76 173.5 

  2 74   174.26   74   174.26 0     74 174.26 

  3 75   175   75   175 0     75 175 

  4 68 176.43 175.75 -7 67 176.42 175.75 1   176.43 68 175.75 

65 1 77   176.5   77   176.50 0 176.50   77 176.5 

  2 76   177.27   76   177.27 0     76 177.27 

  3 68   178.03   68   178.03 0     68 178.03 

  4 70 179.41 178.71 -9 70 179.41 178.71 0   179.41 70 178.71 

66 1 70   179.5   70   179.50 0 179.50   70 179.5 

  2 75   180.2   75   180.2 0     75 180.2 

  3 74.7   180.95   74   180.95 0.7     74.7 180.95 

  4 72 182.417 181.697 -8.3 61 182.3 181.69 11   182.417 72 181.697 

67 1 78   182.5   78   182.50 0 182.50   78 182.5 

  2 66   183.28   66   183.28 0     66 183.28 

  3 73   183.94   73   183.94 0     73 183.94 

  4 59.5 185.265 184.67 -23.5 59 185.26 184.67 0.5   185.265 59.5 184.67 

68 1 36   185.5   36   185.50 0 185.50   36 185.5 

  2 51   185.86   51   185.86 0     51 185.86 

  3 78   186.37   78   186.37 0     78 186.37 

  4 70   187.15   70   187.15 0     70 187.15 

  5 67 188.52 187.85 2 66 188.51 187.85 1   188.51 66 187.85 

69 1 64   188.5   63   188.50 1 188.50   64 188.5 

  2 49   189.14   44   189.13 5     49 189.14 

  3 74   189.63   74   189.57 0     74 189.63 

  4 68   190.37   68   190.31 0     68 190.37 

  5 44 191.49 191.05 -1 43 191.42 190.99 1   191.49 44 191.05 

70 1 32   191.5   32   191.50 0 191.50   32 191.5 

  2 68   191.82   68   191.82 0     68 191.82 

  3 68.5   192.5   68   192.5 0.5     68.5 192.5 

  4 58   193.185   58   193.18 0     58 193.185 

  5 70 194.465 193.765 -3.5 47 194.23 193.76 23   194.465 70 193.765 

71 1 70   194.5   69   194.50 1 194.50   69 194.5 

  2 67   195.2   64   195.19 3     64 195.19 

  3 75   195.87   73   195.83 2     73 195.83 

  4 71.5   196.62   70   196.56 1.5     70 196.56 

  5 21 197.545 197.335 4.5 20 197.46 197.26 1   197.46 20 197.26 

72 1 52   197.5   51   197.50 1 197.50   52 197.5 

  2 57   198.02   56   198.01 1     57 198.02 

  3 69   198.59   69   198.57 0     69 198.59 

  4 82 200.1 199.28   81 200.07 199.26 1   200.1 82 199.28 

              

      Depth(m) given by ONHYM for the top of each section     

              

      Final depth(m) for the top of each section      
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Appendix 3. Core photograph of some selected interval in the core Tarfaya SN1. 
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Appendix 4. Core photograph of some selected interval in the core Tarfaya SN2. 
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