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Kieker‘s Software Architecture
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• Low monitoring overhead

• Fast Pipe-and-Filter-based analyses
(migration currently in progress)



Software Performance Anti-Patterns

Software Performance Anti-Patterns Observed and Resolved in Kieker

• Problem solutions which have a negative impact 
on the performance

• Pattern: 
– name
– problem description of the solution
– better solution
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Excerpt of 14 anti-patterns (Smith et al. [3])
• “god” Class
• Unnecessary Processing
• Excessive Dynamic Allocation



Agenda

Software Performance Anti-Patterns Observed and Resolved in Kieker

• Introduction
• PAA #1: Parallelizing Sequential Dependencies
• PAA #2: Reflection-based Record Reconstruction
• PAA #3: Exception-based Buffer Underflow Detection
• Conclusion
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PAA #1: Parallelizing Sequential Dependencies
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Issues:
• Two TCP connections

=> higher maintenance effort and higher security risk
• Thread synchronization (via string registry)

=> higher communication effort
• (Blocking) wait if a monitoring record arrives before its string registry records

=> reduced throughput

Context (Kieker 1.12 and below):



PAA #1: Parallelizing Sequential Dependencies
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Our solution:

Approach:
• First, serializes all string registry records
• Then, serializes the record

Benefits:
• Only one TCP connection
• No thread synchronization required

=> Unsynchronized string registry is sufficient
• No waits required



PAA #2: Reflection-based Record Reconstruction
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Context (Kieker 1.10 and below):

int classId = buffer.getInt();
recordClassName = stringRegistry.get(classId);
record = AbstractMonitoringRecord.createFromByteBuffer(

recordClassName, buffer, stringRegistry);

Major issue:
• Reflective invocation of the record’s constructor

=> Slow, especially due to the frequent invocations1

1 http://docs.oracle.com/javase/tutorial/reflect/index.html



PAA #2: Reflection-based Record Reconstruction
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Our solution:

Approach:
• Introduction of a record factory per record type
• Reflective search only once for each record factory

⇒ Caches subsequent accesses in a map

int classId = buffer.getInt();
recordClassName = stringRegistry.get(classId);
recordFactory = cachedRecordFactoryCatalog.get(recordClassName);
record = recordFactory.create(buffer, stringRegistry);

Benefits:
• Direct invocation via Java’s keyword new

=> Fast record construction

return new ConcreteRecord(..)



PAA #3: Exception-based Buffer Underflow Detection
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Context (Kieker 1.12 and below):

Issues:
• Creation of a new exception object
• Resolution of the current stacktrace

=> Slow and not used at all

try {
// save buffer's current position
reconstruct(buffer);

} catch (BufferUnderflowException e) {
// refill buffer
// reset buffer's position

}



PAA #3: Exception-based Buffer Underflow Detection
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Our solution:

Approach:
• Check whether the buffer has enough bytes left for the next record
• Return a boolean value indicating a buffer refill

// save buffer's current position
boolean success = reconstruct(buffer);
if (!success) {

// refill buffer
// reset buffer's position

}

Benefits:
• No creation of an exception
• No stacktrace resolution Fast buffer underflow detection



Conclusion
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• PAA #1: Parallelizing Sequential Dependencies
• PAA #2: Reflection-based Record Reconstruction
• PAA #3: Exception-based Buffer Underflow Detection
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Future work:
• Avoid redundant information in before/after record
• Avoid frequent record construction/destruction scenarios (reduce GC time)

http://kieker-monitoring.net http://teetime.sourceforge.net
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