
Software Performance Anti-Patterns
Observed and Resolved in Kieker

Symposium on Software Performance 2015

Christian Wulf and Wilhelm Hasselbring

06.11.2015

Software Engineering Group
Kiel University, Germany



Kieker‘s Software Architecture

Software Performance Anti-Patterns Observed and Resolved in Kieker Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 2

• Low monitoring overhead

• Fast Pipe-and-Filter-based analyses
(migration currently in progress)



Software Performance Anti-Patterns

Software Performance Anti-Patterns Observed and Resolved in Kieker

• Problem solutions which have a negative impact 
on the performance

• Pattern: 
– name
– problem description of the solution
– better solution

Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 3

Excerpt of 14 anti-patterns (Smith et al. [3])
• “god” Class
• Unnecessary Processing
• Excessive Dynamic Allocation



Agenda

Software Performance Anti-Patterns Observed and Resolved in Kieker

• Introduction
• PAA #1: Parallelizing Sequential Dependencies
• PAA #2: Reflection-based Record Reconstruction
• PAA #3: Exception-based Buffer Underflow Detection
• Conclusion

Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 4



PAA #1: Parallelizing Sequential Dependencies

Software Performance Anti-Patterns Observed and Resolved in Kieker Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 5

monitoring node analysis node
monitoring records

string registry records

thread

thread

thread

thread

string 
registry

string 
registry

Issues:
• Two TCP connections

=> higher maintenance effort and higher security risk
• Thread synchronization (via string registry)

=> higher communication effort
• (Blocking) wait if a monitoring record arrives before its string registry records

=> reduced throughput

Context (Kieker 1.12 and below):



PAA #1: Parallelizing Sequential Dependencies

Software Performance Anti-Patterns Observed and Resolved in Kieker Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 6

monitoring node analysis node

monitoring records

string registry records

string
registry

thread
string

registry
thread

Our solution:

Approach:
• First, serializes all string registry records
• Then, serializes the record

Benefits:
• Only one TCP connection
• No thread synchronization required

=> Unsynchronized string registry is sufficient
• No waits required



PAA #2: Reflection-based Record Reconstruction

Software Performance Anti-Patterns Observed and Resolved in Kieker Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 7

Context (Kieker 1.10 and below):

int classId = buffer.getInt();
recordClassName = stringRegistry.get(classId);
record = AbstractMonitoringRecord.createFromByteBuffer(

recordClassName, buffer, stringRegistry);

Major issue:
• Reflective invocation of the record’s constructor

=> Slow, especially due to the frequent invocations1

1 http://docs.oracle.com/javase/tutorial/reflect/index.html



PAA #2: Reflection-based Record Reconstruction

Software Performance Anti-Patterns Observed and Resolved in Kieker Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 8

Our solution:

Approach:
• Introduction of a record factory per record type
• Reflective search only once for each record factory

⇒ Caches subsequent accesses in a map

int classId = buffer.getInt();
recordClassName = stringRegistry.get(classId);
recordFactory = cachedRecordFactoryCatalog.get(recordClassName);
record = recordFactory.create(buffer, stringRegistry);

Benefits:
• Direct invocation via Java’s keyword new

=> Fast record construction

return new ConcreteRecord(..)



PAA #3: Exception-based Buffer Underflow Detection

Software Performance Anti-Patterns Observed and Resolved in Kieker Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 9

Context (Kieker 1.12 and below):

Issues:
• Creation of a new exception object
• Resolution of the current stacktrace

=> Slow and not used at all

try {
// save buffer's current position
reconstruct(buffer);

} catch (BufferUnderflowException e) {
// refill buffer
// reset buffer's position

}



PAA #3: Exception-based Buffer Underflow Detection

Software Performance Anti-Patterns Observed and Resolved in Kieker Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 10

Our solution:

Approach:
• Check whether the buffer has enough bytes left for the next record
• Return a boolean value indicating a buffer refill

// save buffer's current position
boolean success = reconstruct(buffer);
if (!success) {

// refill buffer
// reset buffer's position

}

Benefits:
• No creation of an exception
• No stacktrace resolution Fast buffer underflow detection



Conclusion

Software Performance Anti-Patterns Observed and Resolved in Kieker

• PAA #1: Parallelizing Sequential Dependencies
• PAA #2: Reflection-based Record Reconstruction
• PAA #3: Exception-based Buffer Underflow Detection

Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 11

Future work:
• Avoid redundant information in before/after record
• Avoid frequent record construction/destruction scenarios (reduce GC time)

http://kieker-monitoring.net http://teetime.sourceforge.net



References

Software Performance Anti-Patterns Observed and Resolved in Kieker

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
oriented Software. Prentice Hall, 1995.

[2] A. Koenig. Patterns and antipatterns. In The Patterns Handbooks. Cambridge University Press, 1998.

[3] C. U. Smith and L. G. Williams. More new software performance antipatterns: Even more ways to 
shoot yourself in the foot. In Proc. of the Int. CMG Conference, 2003.

[4] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A Framework for Application Performance 
Monitoring and Dynamic Software Analysis. In Proc. of the ICPE, 2012.

[5] J. Waller, F. Fittkau, and W. Hasselbring. Application performance monitoring: Trade-off between 
overhead reduction and maintainability. In Proc. of the Symposium on Software Performance, 2014.

[6] M. Wooldridge and N. R. Jennings. Pitfalls of Agent-oriented Development. In Proc. of the AGENTS, 
1998.

Christian Wulf and Wilhelm Hasselbring ― 06.11.2015 12


	Software Performance Anti-Patterns�Observed and Resolved in Kieker
	Kieker‘s Software Architecture
	Software Performance Anti-Patterns
	Agenda
	PAA #1: Parallelizing Sequential Dependencies
	PAA #1: Parallelizing Sequential Dependencies
	PAA #2: Reflection-based Record Reconstruction
	PAA #2: Reflection-based Record Reconstruction
	PAA #3: Exception-based Buffer Underflow Detection
	PAA #3: Exception-based Buffer Underflow Detection
	Conclusion
	References
	Preliminary Performance Results

