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Summary

Prior to industrial times, the global carbon cycle is considered to have been roughly in a steady state,

with no major net carbon fluxes between the different compartments of the Earth system. As a result of

anthropogenic carbon emissions, fluxes as well as reservoirs have changed, and the ocean is now considered

an important sink of carbon. Photosynthesis by phytoplankton constitutes the principal supply route of

carbon into the marine ecosystem. Phytoplankton, hence, act as a major regulator of the carbon sink in the

ocean. The main aim of this thesis is to evaluate the constraints of phytoplankton growth in the global ocean

through a combination of satellite-based and novel physiological models. The broader goal of this work is to

better describe and project biogeochemical cycles affected by the physiological regulation of phytoplankton

elemental composition.

Chapter 1 of this thesis describes a global analysis of nutrient and light limitation of phytoplankton growth

inferred from an optimality-based model. This analysis indicates strong nutrient limitation in the tropical

and subtropical ocean, and light limitation in high latitudes, particularly in the Southern Ocean. Nutrient

limitation is mainly due to nitrogen, while phosphorus acts as a secondary, co-limiting nutrient. Motivated by

these results, a satellite- and model-based method to predict global surface nitrate variations was developed

and is detailed in Chapter 2. This method is able to reproduce seasonal and interannual variations of in

situ nitrate observations at four different stations: the Bermuda Atlantic Time Series, the Hawaii Ocean

Time series, the California coast, and the southern New Zealand region. Chapter 3 combines the studies

above to estimate global vertically integrated primary production rates and surface phytoplankton carbon

concentration from an optimality-based model. Global patterns from this carbon-based model study show

highest production rates in low latitudes, particularly in the Equatorial Pacific. Phytoplankton contribution

to total particulate organic matter is also highest in tropical and subtropical regions (∼ 50 %), and decreases

towards higher latitudes (∼ 15 %). Chapter 4 presents a study of nitrogen loss processes in the eastern

tropical South Pacific oxygen minimun zone. The relevance of this work within the context of this thesis

is the estimation of production and export rates combining bio-optical and satellite-based algorithms. The

main conclusion from this work is that organic matter export regulates the lateral distribution and cycling

of nitrogen in this oxygen minimun zone.

The results presented in this thesis show that optimality-based formulations can describe much of the vari-

ability in phytoplankton stoichiometry. Moreover, formulations of phytoplankton physiological acclimation

can produce distinct global marine primary production patterns according to different nutrient and light

colimitation regimes. Ongoing work evaluates the effects of coupling an optimality-based formulation into
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an Earth system model. This work will permit to assess the sensitivity of marine biogeochemical cycles to

changes in phytoplankton elemental composition, and its consequences on marine primary production and

carbon export.
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Zusammenfassung

In vorindustrieller Zeit war der globale Kohlenstoffkreislauf überwiegend im Gleichgewicht, ohne dass es sig-

nifikante netto Kohlenstoffflüsse zwischen den verschiedenen Bereichen des Erdsystems gab. In heutiger Zeit

haben sich die Kohlenstoffflüsse und -reservoirs als Folge anthropogener Kohlenstoffemissionen verändert;

der Ozean wird nunmehr als wichtige Senke für Kohlenstoff angesehen. Kohlenstoff wird grötenteils durch die

Photosynthese von Phytoplankton in das marine Ökosystem eingebracht. Marines Phytoplankton reguliert

somit einen Groteil der ozeanischen Kohlenstoffsenke. Das Hauptziel der vorliegenden Dissertation ist es,

die Wachstumsbedingungen von Phytoplankton im globalen Ozean durch eine Kombination von satelliten-

basierten und neuen, physiologischen Modellen zu analysieren, und dadurch die biogeochemischen Kreisläufe,

die durch die phytoplanktische Elementzusammensetzung beeinflusst werden, besser zu beschreiben und vo-

rauszuberechnen.

Kapitel 1 der Dissertation analysiert die globalen Nährstoff- und Lichtlimitierungen auf das Phytoplank-

tonwachstum abgeleitet von einem optimalitätsbasierten Modell. Die Analyse deutet auf starke Nährstofflimi-

tierung im tropischen und subtropischen Ozean, sowie Lichtlimitierung in den hohen Breitengraden, ins-

besondere im Antarktischen Ozean, hin. Die Nährstofflimitierung resultiert dabei primär aus limitierter

Stickstoffverfügbarkeit, während Phosphor als sekundärer, co-limitierender Nährstoff fungiert. Basierend auf

diesen Ergebnissen wurde in Kapitel 2 eine satelliten- und modelbasierte Methode entwickelt, welche global

die Variationen von Nitrat im Oberflächenwasser berechnet. Die Methode vermag es, die in situ Nitrat

Beobachtungen von vier verschiedenen Messstationen vorherzusagen: von der Bermuda Atlantik Zeitreihe,

der Hawaii Ozean Zeitreihe, der Kalifornischen Küste, sowie der Region südlich von Neuseeland. Kapitel

3 kombiniert die genannten Studien, um global die vertikal-integrierten Primärproduktionsraten, sowie die

Konzentration des Phytoplanktonkohlenstoffs im Oberflächenwasser mit einem optimalitätsbasierten Mod-

ell abzuschätzen. Diese kohlenstoffbasierte Modellstudie zeigt global den Trend höchster Produktionsraten

in den niederen Breitengraden, insbesondere im äquatorialen Pazifik. Auch der Anteil von Phytoplank-

ton am gesamten partikulären organischen Material ist in den tropischen und subtropischen Regionen am

höchsten ( 50 %) und nimmt in Richtung höherer Breitengrade ab ( 15 %). Kapitel 4 präsentiert eine Un-

tersuchung der Stickstoffverlustprozesse in der Sauerstoffminimumzone des tropischen Südostpazifiks. Die

Bedeutung dieser Untersuchung im Zusammenhang der vorliegenden Dissertation ist die Abschätzung von

Produktions- und Exportraten durch die Kombination von bio-optischen und satellitenbasierten Algorith-

men. Die Hauptaussage ist, dass der Export von organischem Material die laterale Verteilung von Prozessen

des Stickstoffkreislaufs in der Sauerstoffminimumzone reguliert.

9



Die Ergebnisse dieser Dissertation zeigen, dass optimalitätsbasierte Modelle einen Teil der Variabilität in

Phytoplankton-Stöchiometry beschreiben können. Darueberhinaus können Modelle der physiologischen An-

passung des Phytoplanktons an verschiedene Nährstoff- und Lichtverhältnisse bestimmte globale Trends

mariner Primärproduktion, entsprechend der gegebenen Co-Limitierung, produzieren. Eine noch laufende

Studie bewertet den Effekt der Eingliederung einer optimalitätsbasierten Modelle in ein Erdsystem-Modell.

Diese Arbeit wird es erlauben, die Empfindlichkeit mariner biogeochemischer Kreisläufe auf Veränderungen

in phytoplanktischer Elementzusammensetzung, sowie deren Folgen für die marine Primärproduktion und

den Kohlenstoffexport abzuschätzen.
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1 Introduction

Over the last decades, there has been an increasing interest in understanding the fluxes and distribution

of the major elements that regulate life on Earth. A great part of this interest is due to the realization

that global biogeochemical cycles can be altered by human activities, resulting in changes in the balance

of radiative energy of the Earth (Broecker , 1975), and hence global surface temperature (Fig. 1). However,

the flux of elements between the different compartments of the planet (atmosphere, ocean, and land) also

occurs under natural circumstances (i.e., not induced by human activities) (Broecker and Henderson, 1998),

and these cycles regulate the composition of elements of the different compartments of Earth, as well as the

overall temperature of the planet.

Figure 1: Estimated changes in the observed globally and annually averaged surface temperature anomaly
relative to 1961-1990 (in ◦C) since 1950 compared with the range of projections from the previous assess-
ments of the Intergovernmental Panel on Climate Change (IPCC), taken from Cubasch et al. (2013). Values
are harmonized to start from the same value in 1990. Observed global annual mean surface air temperature
anomaly, relative to 1961-1990, is shown as squares and smoothed time series as solid lines (National Aero-
nautics and Space Administration (NASA) (dark blue), National Oceanic and Atmospheric Administration
(NOAA) (warm mustard), and the UK Hadley Centre (bright green) reanalyses). The coloured shading
shows the projected range of global annual mean surface air temperature change from 1990 to 2035 for
models used in the First Assessment Report (FAR), Second Assessment Report (SAR), Third Assessment
Report (TAR). For the Fourth Assessment Report (AR4) results are presented as single model runs of the
third Coupled Model Intercomparison Project (CMIP3) ensemble for the historical period from 1950 to 2000
(light grey lines) and for three scenarios (A2, A1B and B1) from 2001 to 2035 (see Cubasch et al. (2013) for
details). The bars at the right-hand side of the graph show the full range given for 2035 for each assessment
report.
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1.1 The carbon cycle

Carbon dioxide (CO2) is among the most important gases affecting the radiative properties of the atmosphere,

despite only comprising less than 1 % of the Earth’s atmosphere (Cubasch et al., 2013). The global carbon

(C) cycle can be conceptually divided into two domains characterized by the C turnover time of each

domain. The “fast exchange domain” includes carbon stored in the oceans, atmosphere, surface sediments,

land vegetation, as well as freshwater sources, and is characterized by turnover times from years to decades

and millennia. The “slow exchange domain” is the largest one, it includes carbon stored in rocks and deep

sediments, and its turnover times are around 10,000 years or longer (Ciais et al., 2013). Carbon exchange

between the two domains is relatively small (< 0.3 Pg C y−1), and it occurs through volcanism, chemical

weathering, and sedimentation (Ciais et al., 2013). However, due to fossil fuel extraction and combustion,

the amount of carbon released from geological reservoirs into the atmosphere has increased strongly over the

Industrial Era, resulting in an accumulation of CO2 in the atmosphere (Canadell et al., 2007) (Fig. 2).

The oceans constitute the largest reservoir of carbon within the “fast exchange domain”, with about 38,000

Pg C (Sundquist , 1985, 1993). Most of this carbon reservoir (∼ 98 %) is in the form of dissolved inorganic

carbon (DIC), while ∼ 700 Pg C are estimated to be in the form of dissolved organic carbon (DOC) (Hansell

et al., 2009). Prior to industrial times, the carbon cycle was considered to be roughly in a steady state, with

the sum of all fluxes in and out of each reservoir being close to zero. As a result of anthropogenic carbon

emissions, fluxes and reservoir sizes have changed (Seigenthaler and Sarmiento, 1993). The ocean is now

considered to be an important sink of carbon. The average amount of C taken up by the ocean since the

beginning of the industrial revolution has been estimated to be ∼ 1 Pg C y−1 (Tans et al., 1990; Sabine

et al., 2004). Carbon is transported into the ocean by gas transfer, which is mainly regulated by changes in

temperature and salinity of the surface ocean, and the CO2 partial pressure (pCO2). Carbon is then further

carried into the deep ocean through water convection driven by the global oceanic circulation. The overall

mechanism of C sink into the ocean controlled mainly by physical processes is known as the Physical (or

Solubility) Carbon Pump.

1.2 The biological carbon pump

The transport of carbon into the marine environment is also regulated by a set of processes carried out by

living microorganisms, which constitute about 3 Pg C out of the total pool of 38,000 Pg C resident in the

world’s oceans. This rather small amount of biomass represents ∼ 0.2 % of global primary producer biomass,

but is nonetheless responsible for about 50 % of the total C fixed into organic matter in the planet (Field ,
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Figure 2: Simplified schematic of the global carbon cycle. Numbers represent reservoir mass in Pg C and
annual carbon exchange fluxes (in Pg C yr-1). Black numbers and arrows indicate reservoir mass and exchange
fluxes estimated for the time prior to the Industrial Era, about 1750. Red arrows and numbers indicate annual
anthropogenic fluxes averaged over the 2000-2009 time period. These fluxes are a perturbation of the carbon
cycle during Industrial Era post 1750. The uptake of anthropogenic CO2 by the ocean and by terrestrial
ecosystems, often called carbon sinks, are the red arrows part of Net land flux and Net ocean flux. Red
numbers in the reservoirs denote cumulative changes of anthropogenic carbon over the Industrial Period
1750-2011. By convention, a positive cumulative change means that a reservoir has gained carbon since
1750. Uncertainties are reported as 90 % confidence intervals. Taken from Ciais et al. (2013).
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1998). The set of processes by which C is fixed into organic (or inorganic) matter and eventually transferred

to the deeper layers of the ocean is known as the Biological Carbon Pump. This biological pump is divided

into: the organic or soft tissue pump driven by the formation of organic matter through photosynthesis; and

the inorganic carbon pump, which results in the formation of inorganic carbon compounds and is driven

by calcareous organisms. Both pumps have different immediate and long term consequences on the overall

carbon cycle and CO2 in particular. From here on, the term “biological carbon pump” will only refer to the

organic carbon pump.

The biological carbon pump is a key process that transports photosynthetically fixed organic carbon from

the sunlit surface layer to the deep ocean. Photosynthesis by phytoplankton constitutes the principal supply

route of carbon into the marine ecosystem, contributing substantially to global biogeochemical fluxes, and

hence acting as a major regulator of carbon sink in the ocean (Raven and Falkowski , 1999). The efficiency of

the biological pump depends on how much of the carbon fixed by phytoplankton sinks into the deep ocean,

and is prevented from immediate release back to the atmosphere. The efficiency of this carbon pump varies

in different parts of the ocean (Fig. 3), and depends on physical properties as well as the overall trophic

structure of the ecosystem (Martin et al., 1987; Laws et al., 2000; Henson et al., 2012).

The efficiency and strength of the biological pump is believed to have varied over geological time scales,

influencing, for example, the development of glacial/interglacial cycles (Sigman and Boyle, 2000). Part of

this variability is attributed to alterations of phytoplankton primary production (PP) and changes in nutrient

availability and utilization (Sigman and Boyle, 2000; Martin, 1990). In the same manner, simulations of

the future ocean predict a decrease in global primary production induced by changes in the availability of

nutrients and light, mainly as a result of increased stratification of the surface ocean (Sarmiento et al., 2004;

Bopp et al., 2013).

1.3 Modelling phytoplankton growth and marine primary production

1.3.1 Satellite-based models

Global marine primary production is ∼ 50 Pg C y−1 (Chavez et al., 2011). Global estimates of marine PP are

mainly obtained through satellite-based models. These models are founded on either idealized relationships

between net photosynthesis and irradiance or measurements of net primary production (Behrenfeld and

Falkowski , 1997a). These algorithms depend on remotely sensed global observations of chlorophyll (Chl)

and irradiance. The spatial and temporal resolution obtained from remote sensing methods has not yet

been achieved by any other observation system. Satellite-based algorithms have been used to estimate

14



Dissertation, Lionel Arteaga Introduction

(a) (b)

Figure 3: Global patterns in carbon export efficiency as shown in Henson et al. (2012). a) Particule export
efficiency, defined as the ratio of particulate organic carbon (POC) at 100m to primary production (PP)
(POC at 100m:PP). b) Transfer efficiency, defined as the fraction of exported organic carbon that reaches
the deep ocean (flux of organic C at 2000m:POC export at 100 m).

global marine production rates from Coastal Zones Color Scanner data (CZCS) (Longhurst et al., 1995;

Antoine et al., 1996; Behrenfeld and Falkowski , 1997b), the Sea-viewing Wide Field-of-view Sensor data

(SeaWiFS) (Behrenfeld et al., 2001), and recently also from Moderate Resolution Imaging Spectroradiometer

data (Behrenfeld et al., 2005; Westberry et al., 2008).

There is a wide range of bio-optical algorithms. The various models differ in the number and kind of

environmental variables that they employ to estimate PP, the description of the vertical distribution of these

properties within the euphotic zone, the number of parameters they use, and the general complexity of the

models (Campbell et al., 2002). However, satellite-based models of marine PP are overall constrained by

five main variables: surface phytoplankton biomass (Csurf), a photoadaptive variable (P b
opt), euphotic depth

(Zeu), an irradiance dependent function (I), and daylenght or photoperiod (D) (Behrenfeld and Falkowski ,

1997a). Beyond this general structure, there is no clear difference in the ability of models to estimate PP,

independently of the mathematical construction or complexity of the algorithms (Campbell et al., 2002).

One of the most commonly used PP satellite algorithms is the Vertical Generalized Production Model

(VGPM, Behrenfeld and Falkowski , 1997b). The VGPM serves as a good example of a general bio-optical

model. The VGPM estimates primary production integrated over the euphotic depth (PPeu) via,

PPeu = P b
opt · 0.66125 ·

E0

E0 + 4.1
· Zeu · Copt ·D (1)

where E0 is the sea surface daily photosynthetic active radiation (PAR) (mol quanta m−2), and Copt is the
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Chl concentration (mg Chl m−3) at P b
opt (mg C mg Chl−1 h−1) (commonly taken as surface concentration).

Zeu has units of meters (m), and D is the photoperiod in decimal hours. Behrenfeld and Falkowski (1997b)

reached the conclusion that expanding the VGPM to explain PPeu at each vertical level does not significantly

increase the explanatory power of the model, and that the algorithm performance in estimating PPeu is

critically dependent on the ability to accurately represent spatial (i.e., horizontal) and temporal variability

in P b
opt. Once Zeu, Chl concentration, and D were accounted for, PP could be adequately modeled with a

simple formulation of an empirically determined, variable, light-dependent term ( E0

E0+4.1 ) (Behrenfeld and

Falkowski , 1997b).

A key variable characteristic of each bio-optical algorithm is the description of how light-saturated pho-

tosynthetic efficiency varies in the environment (Campbell et al., 2002; Carr et al., 2006). In the VGPM,

this is described by P b
opt, which represents the maximum C fixation rate in the water column. P b

opt varies

exclusively as a function of sea surface temperature (SST) (Fig. 4). As P b
opt is mechanistically related to the

Chl-normalized maximun rate of C fixation P b
max (mg C mg Chl−1 h−1), the dependence of P b

opt on SST

is justified from a physiological perspective. Maximum photosynthetic rates are controlled by the capacity

of Calvin cycle reactions and proportional to the number of functional photosynthetic reaction centers and

their turnover rates (Falkowski , 1980; Sukenik et al., 1987; Orellana and Perry , 1992). However, the relation

between P b
opt and SST also describes the global general connection between warmer waters, shallower surface

mixing depths and higher surface radiation. These conditions favor high-light acclimated phytoplankton,

leading to higher photosynthetic rates as SST increases. There is nonetheless a countering effect, as warm

ocean areas are also generally accompanied by low surface nutrient concentrations, inducing nutrient limi-

tation of phytoplankton growth. P b
opt starts to decrease beyond 20◦C (Fig 4). This decline is attributed to

nutrient stress effects on phytoplankton (Behrenfeld and Falkowski , 1997b).

Most satellite-based PP models infer phytoplankton biomass from surface Chl concentrations. An important

drawback of these models is that they do not account for the acclimation of phytoplankton to changes

in the environment via the chlorophyll to carbon ratio (Chl:C). This simplification implies that variations

in phytoplankton C biomass can be linearly derived from Chl concentrations, which is not generally true

(Geider et al., 1986; Armstrong , 2006). Chl-based models, like the VGPM, show a global pattern of marine

productivity with high PP rates in high latitudes and upwelling regions (∼ 800 mg C m2 d−1), and low

PP (< 200 mg C m2 d−1) in tropical and subtropical regions, except for the Equatorial Pacific, where

production rates are also high (Fig. 5a). Over recent years, optical models capable of estimating production

rates based on carbon (instead of Chl) have been developed, showing important differences in the global

16



Dissertation, Lionel Arteaga Introduction

Figure 4: Measured (black dots, ± standard deviation) and modeled (continuous line) photoadaptive parame-
ter, P b

opt, as a function of sea surface temperature (as presented in Behrenfeld and Falkowski , 1997b). Dashed
curve indicates the theoretical maximum specific growth rate, µ (d−1), of photoautotrophic unicellular algae
described by Eppley (1972).

distribution of oceanic PP (Behrenfeld et al., 2005; Westberry et al., 2008). These C-based models estimate

higher production rates in low latitudes, particular over the Equatorial Pacific, Atlantic, and Indian Ocean

(Fig. 5b). The differences and implications between the two approaches (Chl and C-based) will be further

discussed in Chapter 3.

Satellite-based models are driven by the understanding of how photosynthetic rates vary as a function of

biomass, temperature, and light. However, these formulations are inherently empirical and do not describe

the physiological processes that lead to phytoplankton growth and carbon fixation. Oceanic primary pro-

duction rates can also be inferred via the mechanistic description of the processes that limit phytoplankton

growth. These kind of formulations are commonly combined with circulation models in order to project

changes and trends in marine primary productivity and the future carbon cycle.
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Figure 5: Global mean PP for 2005 estimated with a Chl-based (VGPM, Behrenfeld and Falkowski , 1997b)
and a C-based model (Westberry et al., 2008).

1.3.2 Mechanistic models of phytoplankton growth

Nutrient limited phytoplankton growth is commonly represented by an hyperbolic function described by the

Monod equation (Eq. 2, Fig. 6) (Monod , 1949),

µ = µmax ·
S

K + S
(2)

K"

S"

μ"

μmax"

μmax/2"

Figure 6: Schematic view of the rate of growth (µ) of phytoplankton as a function of nutrient concentration
(S), as described by the Monod equation (Monod , 1949). µmax is the maximun growth rate under nutrient
replete conditions, and K is the half-saturation constant.

where µ is the growth rate, µmax is the maximun growth rate under nutrient replete conditions, K is the

concentration of the nutrient at which µ is half of µmax (i.e. half-saturation constant), and S is substrate

or extracellular nutrient concentration. The Monod equation is identical the Michaelis-Menten equation
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which describes enzyme kinetics. The Monod equation describes bacterial (and phytoplankton) growth as a

function of one (limiting) nutrient. The treatment of multiple limiting nutrients is commonly dealt with by

additive, multiplicative or threshold functional forms (O’Neill et al., 1989).

The maximum growth rate (µmax) is obtained under replete nutrient and light conditions. In the ocean, the

amount of available light is controlled by diverse factors such as the latitudinal position, time of the day, cloud

coverage, as well as the attenuation of light in the water column caused by the absorption and scattering by

particulates and dissolved organic matter (Sathyendranath and Platt , 1989). The response of photosynthesis

(P ) to irradiance (I) is described by the P–I curve (Fig. 7). The P–I curve looks somewhat similar to the

Monod curve (Fig. 6). The P–I curve has been represented by a number of analytical expressions, some of

which are similar to Eq. 2 (Platt and Jassby , 1976). Nutrient and light limited phytoplankton growth is

commonly described by combining a formulation for P–I and Eq. 2.

I"

P"

Pmax"

Photoinhibi(on)

Figure 7: Schematic view of the rate of photosynthetic activity (P ) as a function of irradiance (I). Pmax is
the maximum photosynthetic rate. The P–I curve is similar to the Monod curve. A noticeable difference in
the P–I curve is the final decrease in P as a product of photoinhibition due to excessive irradiation levels.

Phytoplankton growth is commonly simulated as a function of the most limiting nutrient employing Eq. 2.

Nitrogen (N) is considered the most limiting nutrient in the global ocean, particularly over the tropical

and subtropical areas, seconded by Phosphorus (P) (Moore et al., 2013). Iron has also been identified as a

limiting micronutrient in some marine environments such as the Equatorial Pacific (Behrenfeld et al., 1996)

and the Southern Ocean (Martin et al., 1990). C-fixation rates are simulated by assuming a fixed cellular

stoichiometric ratio among major limiting nutrients N, P, and C (Redfield ratio, Redfield , 1934). While

the inference of constant elemental stoichiometry seems to hold on average for particulate organic matter

(POM) in the global ocean, there is evidence of important variations across different latitudinal regimes

(Martiny et al., 2013a). The assumption of constant stoichiometry is at odds with observed temporal and

regional variations of elemental composition of phytoplankton and associated biogeochemical fluxes (Geider
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and La Roche, 2002; Körtzinger et al., 2001). C:N:P ratios are observed to vary widely among different

groups of phytoplankton (Quigg et al., 2003; Klausmeier et al., 2004) and in response to nutrient and light

limitation (Flynn, 2010). Furthermore, variations in the strength of the biological carbon pump resulting

from phytoplankton acclimation to different nutrient and light regimes, or carbon fertilization induced via

ocean acidification, cannot be assessed with models that do not allow for phytoplankton flexible stoichiometry.

An alternative way of modelling growth and carbon uptake by phytoplankton is employing cell-quota and

optimality-based models. Cell-quota models (e.g., Droop, 1983) are capable of decoupling C, N, and P,

while optimality-based models of phytoplankton growth offer the potential to understand the interrelations

between phytoplankton stoichiometry and primary production in the ocean (Smith et al., 2011).

1.3.3 Optimality-based models

The inclusion of several nutrients commonly uses multiplicative or threshold formulae to combine the re-

spective individual limiting effects on phytoplankton growth. The application of several Michaelis-Menten

equations to describe multiple nutrient limitation tends to overestimate the uptake rate of non-limiting nu-

trients when applied to data from chemostat experiments (Droop, 1974; Rhee, 1974). Most models account

for multiple independent nutrient limitation (Saito et al., 2008), but do not fully describe the physiological

effects of multiple-nutrient colimitation on phytoplankton growth. Several cell-quota and optimality-based

models have been described yielding more accurate uptake rates for non-limiting nutrients, as well as a

better description of the acclimation of photosynthetic cells to diverse light and nutrient regimes (Droop,

1973; Geider et al., 1998; Pahlow , 2005; Armstrong , 2006; Smith and Yamanaka, 2007; Pahlow et al., 2013).

The kinetics of nutrient uptake are thought to resemble enzyme reactions (Lehninger , 1971). K, and the

maximum uptake rate for a given nutrient (Vmax), are often assumed to be meaningful biological parameters

able to describe competitive ability at low nutrient concentrations. Nevertheless, several studies have shown

that nutrient uptake rates vary from nutrient limited (faster uptake) to nutrient replete (slower uptake)

conditions (Syrett , 1956; Goldman et al., 1981). This suggests that phytoplankton can adapt its resource

utilization rate accordingly to alterations in the ambient. Thus, the parameters setting the rate of nutrient

uptake (K and Vmax) must also vary as a function of the environmental conditions.

Nutrient uptake is an active processes that moves a certain nutrient (ion) from the surrounding environment

to inside the cell. This process depends among other factors on the number of uptake sites (n), the area of

uptakes sites (A), the handling time (h), and the velocity of transfer or mass transfer coefficient (v). Aksnes
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and Egge (1991) related some of these factors to K and Vmax through a common parameter, α.

α =
Vmax

K
= n ·A · v (3)

Aksnes and Egge (1991) concluded that the application of the Michaelis-Menten model for nutrient uptake

(Vn) is a particular case of a more elaborate equation (Eq. 4),

Vn =
n · h−1 ·N

(A · v · h)−1 +N
(4)

in which n, A, h and v (and hence K and Vmax) are constant. This new formulation was modified by Pahlow

(2005) in order to include a scheme for the optimal allocation of resources between nutrient uptake and

nutrient turnover within the nutrient uptake apparatus. This optimization is achieved by describing α as

a function of a maximum nutrient uptake affinity (α0) and an allocation parameter, fA, representing the

amount of N-quota employed for nutrient uptake and enzyme activity (1-fA).

α = α0 · fA (5)

The optimality-based model of Pahlow (2005) combines theoretical derivations of nutrient uptake (Aksnes

and Egge, 1991) as well as photosynthesis and photoacclimation (Baumert , 1996) into an unifying theory

where phytoplankton cells maximize their growth rate by optimally allocating their limited nutrient and

energy resources among competing metabolic requirements.

Pahlow and Oschlies (2009) extended the formulations of Pahlow (2005) in order to include nitrogen and

phosphorus colimitation. This new formulation describes the integrated effects of N and P on phytoplankton

physiology and growth. A further allocation level, fV, was later introduced by (Pahlow et al., 2013), which

optimizes resource utilization between the nutrient acquisition and light harvesting apparatus. fV varies

between 0 (all internal N-quota allocated for nutrient uptake) and 1 (internal N-quota fully allocated for

photochemical machinery and enzyme activity). fV is optimized in order to achieve the maximum possible

growth rate under given nutrient and light conditions (Fig. 8). The model of (Pahlow et al., 2013) also

describes a multiple allocation scheme which includes a partition level that subdivides cellular N used for

dissolved inorganic nitrogen (DIN) uptake and N2 fixation (Pahlow et al., 2013) (Fig. 9).
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acquisition (adapted from Pahlow et al., 2013).
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1.4 Thesis overview and author contributions

The motivation of this thesis is the understanding of the physiological regulation of phytoplankton growth

with the goal to better describe and project biogeochemical cycles affected by phytoplankton stoichiometry.

With this aim, the constraints of phytoplankton growth in the global ocean are assessed through a combi-

nation of satellite and model-based analysis. Satellite-derived products are used to drive the physiological

plankton model, and to obtain new products of major biogeochemical significance. Most of the model anal-

yses described in this thesis were carried out using the optimality-based model of Pahlow et al. (2013). This

thesis begins with a novel analysis of nutrient and light colimitation of phytoplankton growth in the global

ocean (Chapter 1). Motivated by the results of this study, a method to infer global surface marine nitrate

concentrations was developed and evaluated against in situ observations and previous methods (Chapter 2).

Chapter 3 merges the results described in the previous chapters in order to estimate global production rates

and C biomass of primary producers by allowing physiological acclimation of phytoplankton stoichiometry.

A study of processes controlling nitrogen loss in the Pacific Ocean is presented in Chapter 4. This study

is based on satellite analyses to estimate production and carbon export and its relation to nitrogen loss in

oxygen minimum zones. The thesis ends with a general discussion of the main results obtained and future

directions, including an initial examination of the integration of optimality-based formulations in an Earth

Sytem Climate model.

Chapter 1. Global patterns of phytoplankton nutrient and light colimitation inferred from an optimality-

based model. Lionel Arteaga, Markus Pahlow, and Andreas Oschlies. The original idea and experimental

design were developed by LA, MP, and AO. Modeling work and data analysis were carried out by LA.

The final manuscript was prepared by LA, with comments and corrections from MP and AO. This chapter

describes the inference of variable phytoplankton cell-quotas employing an optimality-based model. Cell-

quotas are used as a base to calculate nitrogen, phosphorus, and light limitation indices, and obtain global

patterns of phytoplankton nutrient and light colimitation. The main results indicate that nitrogen is the

major limiting nutrient in the tropical and subtropical ocean, with a secondary co-limiting interaction with

phosphorus. Light limitation dominates in high latitudes. Predicted latitudinal patterns of C:P and N:P

ratios agree to some extent with observed trends in stoichiometry of particulate organic matter.

Chapter 2. Global monthly sea surface nitrate fields estimated from remotely sensed sea surface temper-

ature, chlorophyll, and modeled mixed layer depth. Lionel Arteaga, Markus Pahlow, and Andreas Oschlies.
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Original idea was developed by LA. Experimental design was constructed by LA, MP, and AO. Modeling

work and data analysis were carried out by LA. The final manuscript was prepared by LA, with comments

and corrections from MP and AO. This chapter describes a novel method to estimate surface nitrate fields

in the global ocean. Multiple local linear regressions between satellite-inferred Chl, SST and model-derived

mixed layer depth (MLD) are employed on a 1◦ by 1◦ grid to asses the variability of surface nitrate on a

monthly-basis. This method is able to predict nitrate concentrations at four different oceanographic sta-

tions distributed in the Atlantic, Pacific and Southern Ocean, based on independent in situ observations.

This satellite-based approach can be employed for continuous monitoring of surface ocean nutrient variations.

Chapter 3. Contribution of phytoplankton to particulate organic carbon in the global ocean. Lionel Arteaga,

Markus Pahlow, and Andreas Oschlies. Original idea was developed by LA. Experimental design was con-

structed by LA, MP, and AO. Modeling work and data analysis were carried out by LA. The final manuscript

was prepared by LA, with comments and corrections from MP and AO. This chapter describes the estima-

tion of global primary production rates employing an optimality-based model of phytoplankton growth and

satellite-derived estimates of surface ocean Chl and particulate organic carbon. Global production rates are

compared with bio-optical models of PP based on the inference of phytoplankton Chl and C. An assessment

of the contribution of phytoplankton to total carbon biomas in the global ocean is presented. Phytoplankton

contributes to about 60 % of total POC in low latitudes, and about 15 % in higher latitudes.

Chapter 4. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone.

Tim Kalvelage, Gaute Lavik, Phyllis Lam, Sergio Contreras, Lionel Arteaga, Carolin R. Löscher, Andreas

Oschlies, Aurelién Paulmier, and Marcel M. M. Kuypers. TK, GL and MMMK. designed the study. TK,

GL, SC and AP performed 15N-labelling experiments. TK, GL and PL analysed the data. CRL carried out

functional gene analyses. LA and AO modelled export production rates. LS provided CTD and ADCP data.

TK, GL, PL and MMMK. wrote the manuscript with input from all co-authors. This chapter describes an

analysis of anammox and denitrification rates in the oxygen minimum zone of the South Pacific Ocean. The

relation of this study with the overall context of this thesis is the calculation of production and export rates

of organic matter with bio-optical and satellite-based algorithms. This work concludes that export rates of

organic matter regulate nitrogen loss from oxygen minimun zones.
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Abstract The widely used concept of constant ”Redfield” phytoplankton stoichiometry is often applied
for estimating which nutrient limits phytoplankton growth in the surface ocean. Culture experiments, in
contrast, show strong relations between growth conditions and cellular stoichiometry with often substantial
deviations from Redfield stoichiometry. Here we investigate to what extent both views agree by analyzing
remote sensing and in situ data with an optimality-based model of nondiazotrophic phytoplankton growth
in order to infer seasonally varying patterns of colimitation by light, nitrogen (N), and phosphorus (P) in
the global ocean. Our combined model-data analysis suggests strong N and N-P colimitation in the
tropical ocean, seasonal light, and N-P colimitation in the Northern Hemisphere, and strong light limitation
only during winter in the Southern Ocean. The eastern equatorial Pacific appears as the only ocean area
that is essentially not limited by N, P, or light. Even though our optimality-based approach specifically
accounts for flexible stoichiometry, inferred patterns of N and P limitation are to some extent consistent
with those obtained from an analysis of surface inorganic nutrients with respect to the Redfield N:P ratio.
Iron is not part of our analysis, implying that we cannot accurately predict N cell quotas in high-nutrient,
low-chlorophyll regions. Elsewhere, we do not expect a major effect of iron on the relative distribution of N,
P, and light colimitation areas. The relative importance of N, P, and light in limiting phytoplankton growth
diagnosed here by combining observations and an optimal growth model provides a useful constraint for
models used to predict future marine biological production under changing environmental conditions.

1. Introduction

Attempts to construct a synthesis of global marine production and its impacts on global biogeochemi-
cal cycles often rely on the assumption of constant elemental stoichiometry of phytoplankton (Redfield
stoichiometry, [Redfield, 1934]). While convenient and roughly consistent with globally averaged relations
inferred from biogeochemical tracer distributions [Fanning, 1992], the assumption of constant elemen-
tal stoichiometry is at odds with observed temporal and regional variations of elemental composition of
phytoplankton and associated biogeochemical fluxes [Geider and LaRoche, 2002; Körtzinger et al., 2001].
Carbon:nitrogen:phosphorus (C:N:P) ratios are observed to vary widely among different groups of phyto-
plankton [Quigg et al., 2003; Klausmeier et al., 2004] and in response to nutrient and light limitation [Flynn,
2010; Healey, 1985; Laws and Bannister, 1980].

There is no clear physiological reason why C:N:P ratios of phytoplankton should strictly adhere to any partic-
ular stoichiometry (e.g., Redfield stoichiometry, [Geider and LaRoche, 2002]). Although the molar Redfield N:P
ratio of 16 is commonly used as a threshold indicating either N or P limitation [Fanning, 1992; Goldman et al.,
1979], we are not aware of any direct evidence that a N:P ratio of 16 separates N and P limitation of phyto-
plankton growth. On the contrary, chemostat experiments suggest that the transition from N to P limitation
occurs at N:P supply ratios of about 30 [Rhee, 1978]. This leads to the conclusion that previous methods for
inferring N or P limitation in the surface ocean may need to be revised.

The ratio of dissolved inorganic N:P (DIN:DIP) in the ocean (mainly NO−
3 , NH+

4 , and PO3−
4 ) results from the

balance of nutrient supply from below and differential utilization by phytoplankton and bacteria within the
euphotic zone. Shifts in phytoplankton optimal N:P will likely induce alterations in the DIN:DIP ratio [Weber
and Deutsch, 2012]. Empirical cell quota models [Droop, 1983] are capable of decoupling C, N, and P, while
optimality-based models of phytoplankton growth offer the potential to help understand the interrelations
between phytoplankton stoichiometry and primary production in the ocean [Smith et al., 2011]. Recently,
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Table 1. Model Parameters Values and Settings for the Sensitivity Experiments

Symbol Default Case I Case II Description

A0 0.7 1 0.06 Potential nutrient affinity (m3 mmol C−1 d−1)
𝛼 0.7 0.5 3.7 Chl-specific light absorption

coefficient (m2 mol C E −1 g Chl −1 )
QN

0 0.046 0.1 0.026 Subsistence N:C (mol N mol C −1)

QP
0 0.0016 0.0008 0.0027 Subsistence P:C (mol P mol C −1)

RChl
M 0.1 0.1 0.1 Cost of Chl maintenance (d−1)

𝜁Chl 0.4 0.3 0.6 Cost of photosynthesis coefficient (mol C g Chl−1)
𝜁N 0.6 1 0.7 Cost of DIN uptake (mol C mol N−1)
VC

0 , VN
0 , VP

0 Potential C, N, and P acquisition rates dependent on
temperature: 1.4 × 1.066TEMP (mol C, N, P mol C−1)

the behavior of Droop’s cell quota model [Droop, 1983] could be related to that of optimality-based models
[Pahlow and Oschlies, 2013].

Here we use an optimality-based model of phytoplankton growth [Pahlow et al., 2013] as a mechanistic
foundation for the physiological regulation of nutrient acquisition and light harvesting to diagnose N, P, and
light limitation, based on field and satellite data of nutrients, light, and temperature in the surface ocean.
One aim of this study is to investigate to what extent the results of this combined model-data analysis are
consistent with earlier more pragmatic attempts [Fanning, 1992] that infer limiting factors from an analysis
of surface DIN:DIP with respect to the Redfield ratio.

2. Methods

In order to estimate N, P, and light colimitation in the global ocean, we calculated the light-limited steady
state solution of the optimality-based chain model of Pahlow et al. [2013], modified to allow for temper-
ature dependence (see Appendix A). The model was forced with nutrient, light, and temperature data of
the surface mixed layer derived from the World Ocean Atlas 2009 (WOA09) database (http://www.nodc.
noaa.gov/OC5/WOA09/pr_woa09.html) and satellite observations from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) (at http://oceancolor.gsfc.nasa.gov/), using the Default parameters in
Table 1. Temperature, surface nitrate, and phosphate concentrations were obtained as monthly means from
WOA09 on a 1◦ resolution spatial grid. While there are other sources of bioavailable N and P, nitrate and
phosphate are the dominant forms and we believe they can serve to describe the general picture of nondia-
zotrophic phytoplankton growth (co)limitation by N and P in the global ocean. Mixed layer depth (MLD) was
defined as the depth at which density exceeds surface density by 0.125 kg m−3 [Levitus, 1982]. Density was
calculated from global gridded (1◦) monthly temperature and salinity data from WOA09.

Light was estimated as “median mixed layer light level” (Ig) [Behrenfeld et al., 2005],

Ig = 1
D

⋅ PAR ⋅ e−K490⋅ MLD
2 (1)

Ig depends on the day-length-fraction (D, given by the time of the year), surface photosynthetically active
radiation (PAR)(E m−2 d−1), the diffusive light attenuation coefficient estimated at 490 nm (K490) (m−1) and
MLD (m) [Behrenfeld et al., 2005]. Surface PAR and K490 were obtained from MODIS and regridded to a 1◦

resolution spatial grid. Owing to the saturation of photosynthesis at relatively low light intensities compared
to surface PAR, Ig yields a better representation of light limitation of photosynthesis (see Si below) than the
mean mixed layer light level, which strongly overestimates average mixed layer photosynthesis. The WOA09
compilation represents monthly mean values of data collected over many years, whereas satellite data were
obtained as monthly means specifically for the period between January 2005 and December 2010 and
averaged into a monthly “climatology” in order to match the temporal resolution of the WOA09 data set.

2.1. Optimality-Based Chain Model
The chain model of Pahlow et al. [2013] is a phytoplankton cell quota growth model. The model defines
the physiological roles of N and P based on their association with specific functional cellular compartments
[Sterner and Elser, 2002], whereby net C fixation (phytoplankton growth) is directly limited by cellular N. N
is associated with enzyme activity, thus controlling major cellular metabolic processes and limiting growth
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Figure 1. (a) Chain model compartments and associated partial nutrient quotas for N and P: P is associated with the
nucleus (QP

0) and the biosynthetic apparatus (QP − QP
0). N is associated with the nutrient uptake apparatus (fV QN) and

the photosynthetic apparatus ((1 − fV)(QN − QN
s )). In the model dynamics P limits N acquisition, while N limits Chl syn-

thesis and C fixation. (b) Optimal allocation of N maximizes nutrient (N and P) assimilation: A greater N quota fraction
(fV) is allocated for nutrient acquisition under low extracellular nutrient concentration. Under high-nutrient conditions a
greater N fraction is preferentially allocated for carbon fixation. (c) Net cell growth (𝜇) is maximized via optimization of fV
(see Appendix A for details).

rate via C fixation and light harvesting. In the case of nitrate and nitrite, inorganic N first has to be reduced
to ammonium before it is assimilated into protein. N assimilation occurs in the biosynthetic apparatus
(ribosomes) and is constrained by P, which is a major component of ribosomes. In this way P limits N acquisi-
tion and N limits C fixation [Ågren, 2004]. The model optimizes the allocation of cellular N and energy among
requirements for nutrient acquisition and light harvesting to maximize growth rate for the given inorganic
nutrient concentrations and light availability (Figure 1) (see Appendix A for details). The present analysis
aims to describe N, P, and light (co)limitation of a nondiazotrophic phytoplankton.

2.2. Cell Quota, Nutrient and Light Limitation Estimates
Limitation is here defined as the effect of light and nutrients on phytoplankton growth rate. Nutrient lim-
itation is estimated from phytoplankton cell quotas of N (QN = N:C) and P (QP = P:C) in the surface mixed
layer as diagnosed from the model and the relative difference with respect to the N and P subsistence
quotas QN

0 and QP
0 (i.e., the lowest N:C and P:C ratios that the cells can assume in the model (Table 1)).

N:C molar ratios can vary from about 0.04 (C:N = 25 mol mol−1) in low nutrient conditions to over 0.2 (C:N =
5 mol mol−1) in nutrient replete conditions [Geider and LaRoche, 2002], while P:C can vary between roughly
0.002 and 0.01 (C:P = 500 and 10 mol mol−1) [Terry et al., 1985; Healey, 1985].

Photosynthetically active radiation is represented here by the median mixed layer light level (Ig,
equation (1)). In the model Ig is used as the light intensity reaching the photosynthetic apparatus in the
chloroplast. The effect of light limitation is then quantified by the degree of light saturation of the cellular
light-harvesting apparatus [SI, Pahlow, 2005],

SI = 1 − e
−

𝛼Ig 𝜃̂
c

Vc
0 (2)

where 𝛼 is the light absorption coefficient, Vc
0 is the potential C fixation rate, and 𝜃̂c is the chlorophyll to

carbon ratio of the chloroplast.

In order to obtain a quantitative assessment of nutrient (N and P) and light colimitation, we define lim-
itation indices based on nutrient cell quotas and light saturation. The nutrient limitation index (Lnutrient)
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is defined by the relative difference between actual cell quota Qnutrient and subsistence cell quota
Qnutrient

0 via

Lnutrient = 1 −
Qnutrient − Qnutrient

0

Qnutrient
=

Qnutrient
0

Qnutrient
(3)

with Lnutrient = 1 for Qnutrient = Qnutrient
0 indicating strong limitation and zero growth, and Lnutrient declines for

large cell quotas under nutrient replete conditions. The light limitation index (LI) is defined in an analogous
manner as one minus the degree of light saturation of the cellular light-harvesting apparatus, i.e.,

LI = 1 − SI (4)

and serves as an indicator of light limitation experienced by the cells in the mixed layer.

2.3. Estimation of the Chlorophyll to Carbon Ratio
The chlorophyll to carbon (Chl:C) ratio combines the effects of nutrient and light limitation driven by the
growth requirements of the cell [Cullen and Lewis, 1988]. The Chl:C ratio is regulated to maximize the energy
available for N assimilation [Pahlow et al., 2013]. First, the Chl:C ratio of the chloroplast (𝜃̂c) is obtained via

𝜃̂c = 1
𝜁Chl

+
VC

0

𝛼Ig

{
1 − W0

[(
1 +

RChl
m

DVC
0

)
e

𝛼Ig

VC
0 𝜁Chl

+1
]}

if Ig > Ig0
(5)

𝜃̂c = 0 if Ig ≤ Ig0

where 𝜁Chl is the cost of photosynthesis, RChl
m is the cost of Chl maintenance, and W0 is the 0 branch of the

Lambert W function, and

Ig0
=

𝜁ChlRChl
m

D𝛼
(6)

is the threshold irradiance for chlorophyll synthesis.

The Chl:C ratio of the entire cell is then obtained as a direct result of N and light limitation, represented by
QN and 𝜃̂c, respectively,

Chl:C = 𝜃̂c

(
1 −

QN
s

QN
− fv

)
(7)

where QN
s is the partial N quota bound in structural protein, and fv is the fraction of QN allocated for nutrient

acquisition [Pahlow et al., 2013].

3. Results and Discussion
3.1. Nitrogen and Phosphorus Cell Quota
To be consistent with the literature on biogeochemical fluxes, we report our global model-based results as
C:N and C:P ratios. The phytoplankton C:N ratio inferred from our seasonally resolved data model analysis
(Figures 2a–2d) shows permanently relatively high values of about 20 mol mol−1 in the subtropical ocean
between 40◦N and 40◦S. The eastern equatorial Pacific, however, shows lower C:N ratios throughout all sea-
sons, of about 10 mol mol−1. High Northern Hemisphere latitudes display stronger seasonal variability, with
relatively low C:N (∼5 mol mol−1) between January and March. C:N ratios increase in April–June and are
highest in July–September approaching values close to 10 mol mol−1 (Figures 2a–2d). In autumn, nitrate
concentrations increase and light declines, and phytoplankton C:N ratios at high northern latitudes decrease
again during October–December. The Southern Ocean shows much less clear seasonality, with permanently
low C:N ratios of around 5 mol mol−1. Overall, there is a clear latitudinal gradient of low to high C:N ratios
from high to low latitudes, which is consistent with recent observations [Martiny et al., 2013a].

Patterns of diagnosed phytoplankton C:P ratios also show a clear latitudinal trend with low C:P ratios at
high latitudes and high C:P in low latitudes (Figures 2e–2h). Nonetheless, our predicted C:P ratios display
also stronger longitudinal variability, with high values in the western North Pacific and particularly the
North Atlantic, where the highest C:P is around 450 mol mol−1 during July–September (Figure 2g), reflect-
ing essentially depleted phosphate concentrations in this area [Wu et al., 2000]. The remaining tropical

ARTEAGA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 4

Dissertation, Lionel Arteaga Chapter 1

37



Global Biogeochemical Cycles 10.1002/2013GB004668

Figure 2. Global patterns of the model-derived phytoplankton cellular (a–d) C:N, (e–h) C:P, and (i–l) N:P ratio (mol mol−1) in the ocean. Each image is a 3 month
average composite: (Figures 2a, 2e, and 2i) January–March, (Figures 2b, 2f, and 2j) April–June, (Figures 2c, 2g, and 2k) July-September, and (Figures 2d, 2h, and 2l)
October-December.

and subtropical ocean shows C:P ratios of about 200 mol mol−1. Higher latitudes show the lowest C:P of
∼100 mol mol−1 (Figures 2e–2h), which is close to the Redfield ratio of 106 mol mol−1.

Figure 3a compares our modeled C:P latitudinal pattern to observations. Black asterisks in Figure 3a show
the lognormal average of the observations of particulate organic carbon:particulate organic phosphorus
(POC:POP) ratios for each latitudinal band from Martiny et al. [2013b]. To make our results more comparable
with observations, modeled C:P in Figure 3a are also calculated as lognormal longitudinal averages. There
is a close agreement between model and observations, showing low C:P at high latitudes, and vice versa,
with the lowest C:P located in southern high latitudes. The agreement in the C:P trend is an encouraging
result, as Martiny et al. [2013b] indicate that the contribution of living phytoplankton and bacteria to
the POP pool in their data set was around 98%, suggesting that the C:P diagnosed from the bulk particulate
organic matter (POM) data could be viewed as representative of phytoplankton C:P.
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Figure 3. Annual lognormal (a) C:P and (b) N:P latitudinal patterns. Black asterisks show lognormal averages of POC:POP
and PON:POP observations for each latitudinal band, presented in Figure 2 of Martiny et al. [2013b].
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Figure 4. Diagnosed seasonal oceanic N, P, and light colimitation of marine phytoplankton. The maps are red-green-blue
(RGB) composites of N limitation (red), P limitation (green), and light (L) limitation (blue). Colimitation is reflected by
the combination of colors: purple (N-light colimitation), yellow (N-P colimitation), and cyan (P-light colimitation). Bright
colors indicate limitation, whereas dark colors indicate saturation (no limitation). Seasonal images are 3 month average
composites: (a) January–March, (b) April–June, (c) July–September, and (d) October–December.

Our simulated N:P ratio (Figures 2i–2l) shows relatively weak seasonal and spatial trends. In general, the
lowest N:P are found in oligotrophic areas due to the effect of N limitation, while highest N:P is found in
the eastern north Atlantic and western north Pacific, during January–March (Figure 2i). The latitudinal dis-
tribution of our modeled N:P (lognormal averages) across all seasons is shown in Figure 3b, together with
bulk POM data from Martiny et al. [2013b]. Modeled N:P ratios show a rather unclear latitudinal trend when
compared with observations, varying between 12 and 22. The lowest longitudinally averaged N:P values are
obtained at high latitudes around 80◦N (N:P∼12), followed by an increase between 60◦N and 30◦N, and a
decrease between 30◦N and 30◦S, where the phytoplankton N:P stays close to 16 (the Redfield N:P ratio).
Between 40◦S and 80◦S our predicted N:P increases to 22 and decreases again to 16. The POM-derived
observations present a much wider range of variation in the N:P ratios, between 10 and 30, with lowest
values at high latitudes and vice versa. Our modeled phytoplankton N:P presents some features that are sim-
ilar to those of Martiny et al. [2013b], such as low values in higher northern latitudes, and a slight increase
toward lower latitudes. However, the main discrepancy between model and observations is the high N:P
values obtained at subtropical regions in PON:POP data, which results in a much clearer low-to-high N:P lat-
itudinal pattern. A possible explanation for this mismatch could be that data on particulate organic matter
(POM) might not accurately represent the stoichiometry of phytoplankton, which is what our model analysis
describes. In fact, Martiny et al. [2013a] analyzed phytoplankton and bulk particulate C:N ratios and found
that the phytoplankton C:N was almost twice the bulk value in the western North Atlantic. This implies a
relatively low N content of the phytoplankton compared to bulk POM, so that at least part of the N:P dis-
crepancy between our model and the observations of Martiny et al. [2013b] might reflect true differences
between phytoplankton and bulk POM composition.

Further model development and inclusion of other processes and relevant limiting nutrients in the model
physiological dynamics could further reconcile the model and in situ observations. For example, we expect
the inclusion of diazotrophy to increase the predicted N:P ratio [Krauk et al., 2006] in midlatitude regions,
where nitrogen fixation may be important [Gruber and Sarmiento, 1997]. Accounting for other nitrogen
sources not represented in the climatology, such as ammonium, could also affect nitrogen uptake [Dortch,
1982] in low latitudes and hence phytoplankton N:P ratios. Iron can also limit nitrogen assimilation and
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Figure 5. Seasonal oceanic DIN:DIP ratio calculated from WOA09. Each image is a 3 month average composite: (a)
January–March, (b) April–June, (c) July–September, and (d) October–December.

carbon fixation, which can potentially alter our predicted cell quotas in high-nutrient, low-chlorophyll
(HNLC) regions (see below).

3.2. Light and Nutrient Colimitation
Using LI together with the N and P limitation indices LN and LP diagnosed from the model, we produced sea-
sonal light and nutrient colimitation maps on a 1◦ × 1◦ grid for the global ocean (Figure 4). These composite
maps of N (red), P (green), and light (blue) (co)limitation identify the roles of each of these factors in con-
trolling phytoplankton growth according to our model. Red and blue areas indicate N and light limitation,
respectively, while green areas indicate P limitation. The combination of red and blue (purple areas) indi-
cates nitrogen-light colimitation; red and green (yellow areas) indicates nitrogen-phosphorus colimitation,
while green and blue (cyan areas) indicates phosphorus-light colimitation. Brighter colors indicate strong
(co)limitation, while dark colors suggest absence of limitation (by either N, P, or light).

The colimitation maps (Figure 4) indicate a dominance of N limitation and N-P colimitation (red and
yellow areas respectively) over large parts of the tropical oceans between 40◦N and 40◦S. Strong N limita-
tion appears over the north and south eastern subtropical Pacific. The Atlantic Ocean, particularly above
the equator, shows strong N-P colimitation, which is most severe during the period of July–September
(Figure 4c). The eastern equatorial Pacific displays a general lack of limitation, resulting from increased DIN
and DIP concentrations due to the equatorial upwelling, which injects nutrients into the surface ocean. The
strongest seasonality in limitation patterns is observed at high latitudes, especially over the Pacific Ocean.
Here light limitation is present in winter in January–March, followed by generally low light, N, and P limita-
tion in April–June. Nutrient (N-P) colimitation appears in July–September, particularly north of 40◦N, while
slight light limitation occurs again during October–December.

Contrary to northern latitudes, there is no sign of clear N or P limitation for the Southern Ocean in our col-
imitation maps. No limitation is observed during the austral summer (January–March), while clear light
limitation is present during winter (July–September). Over the periods April–June and October–December,
the Southern Ocean appears in general not limited, except for some areas showing exclusive light
limitation (Figure 4).

Low C:N and C:P ratios diagnosed for the Southern Ocean (Figure 2) suggest absence of N or P limitation,
which is consistent with our expectation for the real ocean for which iron is well established as the primary
limiting nutrient in this region [Martin et al., 1990; Boyd et al., 2007]. Light limitation is only clearly evident
during austral winter, as expected due to low irradiance and deep mixed layers. Iron regulates the assimi-
lation of nitrate and is an important constituent of the photosynthetic electron transport chain [Geider and
LaRoche, 1994]. As iron limitation interferes with the ability of phytoplankton cells to photoacclimate [Greene
et al., 1992], and our model does not explicitly account for the effects of iron, the results presented here
should actually underestimate true light limitation under iron-limited conditions. Hence, following the idea
of a chain of (co)limitations, light could be a strongly limiting factor of phytoplankton growth in this region
[Mitchell et al., 1991; Nelson and Smith, 1991] even if iron dynamics are considered.
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Figure 6. Global patterns of the model-based phytoplankton Chl:C ratio in the ocean. Each image is a 3 month average
composite: (a) January–March, (b) April–June, (c) July–September, and (d) October–December.

Another important factor to take into account is the effect of iron on the nitrogen cell quota and thus
phytoplankton cellular stoichiometry. As discussed above, the neglect of iron in the current version of the
chain model [Pahlow et al., 2013], likely results in an overestimation of the N:P ratio in areas where iron is an
important limiting agent of phytoplankton growth, such as the Southern Ocean. Nitrate utilization can be
limited by low ambient iron concentrations, as iron compounds serve as co-factors in the reduction from
nitrate via nitrite to ammonium [Timmermans et al., 1994]. Hence, we expect that the inclusion of iron in the
model cellular dynamics should result in a reduction of the N:P ratio, particularly south of 40◦S, where also
the lowest N:P ratios are found in the POM data.

The results of our model-derived colimitation analysis can be compared against a traditional analysis of
inorganic nutrient ratios in the surface layer. Shown in Figure 5 are seasonal global maps of DIN:DIP ratios
extracted from WOA09. The DIN:DIP maps are similar to our colimitation maps in that both show a domi-
nance of N as the main limiting nutrient, particularly in low latitudes. However, while indicating the relative
proportion of dissolved N and P in the water, the DIN:DIP ratio does not allow assessing the absolute inten-
sity of the individual nutrient limitation or colimitation. Conversely, our analysis is able to show that P does
have a significant importance as a colimiting nutrient for nondiazotrophic phytoplankton, particularly in
the Atlantic Ocean. Changes in seasonal colimitation at high latitudes are not evident in the DIN:DIP maps,
while our colimitation analysis shows a clear transition from light to N-P colimitation from winter to summer.
For the Southern Ocean, both maps suggest neither N nor P limitation (DIN:DIP ∼ 16), but our model-based
analysis is able to detect strong light limitation during winter. If iron was considered, it would likely turn
out as another strong limiting factor in the Southern Ocean. As iron limitation interferes with photoaccli-
mation, we expect that light limitation could be stronger than that shown in Figure 4. Iron limitation also
prevents nitrate assimilation, which in turn, should increase C:N ratios and thereby cause N limitation in this
region. Consequently, we expect the net effect of iron limitation in terms of our analysis to be enhanced N
light colimitation.

Our global patterns generally agree with previous model studies of nutrient limitation in the ocean. Aumont
et al. [2003] showed that N or P limitation is mainly restricted between 40◦N and 40◦S for nanophytoplank-
ton and diatoms. However, Aumont et al. [2003] cannot differentiate between N and P limitation, thus, a
direct comparison with our results is not possible. Moore et al. [2002] employed a similar approach based
on cellular quotas, but noted that nutrient limitation was difficult to assess during times of strong light
limitation due to its effect on cell quotas. This shortcoming is overcome in our analysis by diagnosing
the effect of light limitation independently (1-SI, where SI quantifies the degree of light saturation of the
cellular light-harvesting apparatus), and comparing it with N and P limitation. Nevertheless, Moore et al.
[2002] also find strong N limitation in midocean gyres and substantial P limitation in the north Atlantic and
western north Pacific. An important difference between previous model-based nutrient limitation analyses
and our model is that most previous models are based on static formulations of the Michaelis-Menten
equation applied to different nutrients in order to identify the limiting nutrient. In the chain model used
here, colimitation exists in the sense that P availability in the cell directly affects the cell’s ability to assimi-
late N, which in turn limits carbon fixation. Furthermore, and perhaps more relevant in terms of future ocean
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Figure 7. Monthly patterns of phytoplankton Chl:C ratio in the (a) Hawaii Ocean Time series (HOT), and (b) English
Channel. Red squares are flow cytometry data for HOT [Winn et al., 1995] scaled to Chl:C [Westberry et al., 2008] and Chl:C
estimations from phytoplankton cell volume through cell geometry analysis for the English channel [Llewellyn et al.,
2005]. Blue circles connected with lines are model results. Model outputs are obtained using the Default parameter set.

escenarios, our optimality-based approach allows for variable nutrient affinity, which depends on both the
intracellular and external nutrient concentration. This permits the representation of more flexible nutrient
acquisition dynamics and allows for acclimation of phytoplankton to different environmental conditions.

3.3. Chlorophyll to Carbon Ratio
Our model-based colimitation maps predict N limitation and N-P colimitation in midlatitudes and a seasonal
succession of light limitation and N-P colimitation in northern latitudes. The eastern equatorial Pacific and
the Southern Ocean show a general absence of limitation, except for the austral winter, where the Southern
Ocean appears clearly light limited. Considering N and P limitation, our results are in agreement with
recently reviewed experimental evidence [Moore et al., 2013]. These spatial and temporal environmental
patterns are also reflected in the modeled chlorophyll to carbon ratio (Chl:C) ratio, which serves as a physio-
logical indicator of phytoplankton (Figure 6). The Chl:C ratio integrates the combined effects of N, P, and light
limitation, driven by the requirements of N for CO2 fixation and Chl for light harvesting. Low light conditions
together with high-nutrient concentrations produce the highest Chl:C ratios, as cells photo-acclimate by
increasing the Chl cell quota. This is only possible when sufficient nitrogen is available to meet the demand
of the enzymatic machinery that processes the energy acquired through light harvesting [Falkowski and
Raven, 1997]. Nitrogen is also required in pigment-bound proteins and used for pigment synthesis, which is
accounted for in the model as part of the N allocated to the generic light-harvesting compartment. Lowest
Chl:C ratios occur when light levels are high, as cells down-regulate the synthesis of Chl, or when low nitro-
gen concentrations limit Chl synthesis and hence photo-acclimation. Extreme low light conditions, however,
will increase the cost of Chl synthesis significantly, resulting in Chl:C ratios = 0 (equation 5). This occurs in
our model-based results during winter (July–September) in some areas of the Southern Ocean (Figure 6c),
where despite high nutrient availability, light is too low for phytoplankton growth. The range of predicted
Chl:C ratios is then the result of a balance between the need and the possibility for photoacclimation as
driven by the availability of nutrients and light.

As the chlorophyll to carbon ratio reflects phytoplankton cellular physiology under nutrient and/or light
limitation [Geider et al., 1998], we evaluate our model-based results against available observations of
seasonal Chl:C variations. We chose Chl:C ratios to validate our results because it appears to be more directly
linked to phytoplankton growth than other cellular ratios (e.g., N:P) [Terry et al., 1983, 1985]. Also, obser-
vations on Chl:C found in the literature are more directly related to phytoplankton cellular components
and not total POM, as is often the case for N:P measurements. Data were obtained from fluorescence mea-
surements at the Hawaii Ocean Time series (HOT) [Winn et al., 1995], scaled to Chl:C [Westberry et al., 2008]
and cell volumes estimated from cell geometry in the English Channel [Llewellyn et al., 2005]. At both sites,
the temporal evolution of the observed Chl:C ratios can be reproduced reasonably well, although the model
slightly underestimates the Chl:C at the English Channel location, particularly during the first months of the
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Table 2. Model Symbols in Appendix A

Symbol Description

fN Fraction of fV QN allocated for N
fV Fraction of QN allocated for nutrient acquisition
Ig Median mixed layer light level (E m−2 d−1)
𝜇 Net growth rate (d−1)
PAR Photosynthetically active radiation (E m−2 d−1)
QN N:C ratio (mol N mol C −1)
QN

s Partial N quota bound in structural protein (mol N mol C −1)
R Respiration (d−1)
RChl Cost of photosynthesis (d−1)
SI Light saturation
TEMP Temperature (◦C)
VC C fixation rate (mol C mol C−1 d−1)
VN N assimilation rate (mol N mol C−1 d−1)
VP P assimilation rate (mol P mol C−1 d−1)
VC

0 Potential C fixation rate (mol C mol C−1 d−1)

VN
∗ Local potential N assimilation rate (mol N mol C−1 d−1)

VP
∗ Local potential P assimilation rate (mol P mol C−1 d−1)

𝜁N Cost of DIN uptake (mol C mol N−1)

year (Figure 7). The parameter set used for this validation exercise is the same as for all the modeled cell
quotas and limitation indices outputs presented above (parameter set “Default,” Table 1).

3.4. Model Sensitivity
All model results presented here have been obtained from the chain model using the Default parameters in
Table 1. In order to examine the sensitivity of our model predictions to different parameter settings, model
outputs were also obtained for two additional parameter sets, Case I and Case II, which were selected to
cover much of the range of parameters in Table 2 of Pahlow et al. [2013]. For these sensitivity experiments
a regional breakdown of the results similar to that of Behrenfeld et al. [2005] was used. Monthly model out-
puts were produced for different regions of the global ocean, characterized by five variance levels based
on standard deviations of seasonal Chl, calculated from Chl satellite data (mg m−3) obtained from MODIS
(http://oceancolor.gsfc.nasa.gov/), from January 2005 to December 2010 (Figure 8). The variance levels
are defined as: L0 = 0 < SDChl <0.004 mg Chl m−3, L1 = 0.004 <SDChl <0.007 mg Chl m−3, L2 = 0.007<

Figure 8. Map of 17 areas of the global ocean divided according to their
geographical position. The resulting areas were subdivided based on their
seasonal variability of surface Chl (levels L0 to L4), estimated from the satel-
lite sensor MODIS (http://oceancolor.gsfc.nasa.gov/) between 2005 and
2010. The subdivision of the 17 geographical areas produced 12 areas of
high Chl variability that only have Chl variance levels L2, L3, and L4: North
Pacific West (NPW), North Pacific East (NPE), Central Pacific West (CPW),
Central Pacific East (CPE), South Pacific West (SPW), South Pacific East (SPE),
North Atlantic (NA), Central Atlantic (CA), South Atlantic (SA), Benguela
Upwelling Zone (BUZ), North Indian Sea (NIS), and South Indian Sea (SIS);
and five areas of low Chl variability that only have levels L0 and L1: North
Pacific Sub-Tropical Gyre (NPSTG), South Pacific Sub-Tropical Gyre (SPSTG),
North Atlantic Sub-Tropical Gyre (NASTG), South Atlantic Sub-Tropical Gyre
(SASTG), and Indian Subtropical Gyre (ISTG).

SDChl <0.03 mg Chl m−3,
L3 = 0.03<SDChl <0.3 mg Chl m−3,
L4 = SDChl >0.3 mg Chl m−3. The pre-
cise cutoff values of these regions
are not critical and were simply
chosen to yield regions consistent
with large-scale ocean circulation
and pigment features [Behrenfeld
et al., 2005].

Figure 9 contrasts differences
between the three parameter sets
Default (blue), Case I (red), and Case
II (green) with differences between
geographical areas for Chl:C, LN,
LP, and LI. Figures 9a–9d show two
selected areas of the Atlantic Ocean
(L3-North Atlantic and L0-North
Atlantic Sub-Tropical Gyre), while
Figures 9e–9h present two selected
areas of the Pacific Ocean (L3-North
Pacific East and L2-Central Pacific
East). Differences between model
results obtained with the distinct
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Figure 9. Model sensitivity experiments for parameter settings “Default” (blue), “Case I” (red), and “Case II” (green). Plotted oceanic areas in the Atlantic ocean
(a–d): L3-North Atlantic (squares and continuous line) and L0-North Atlantic Sub-Tropical Gyre (circles and dashed line). Plotted oceanic areas in the Pacific ocean
(e–h): L3-North Pacific East (squares and continuous line) and L2-Central Pacific East (circles and dashed line). Chl:C (Figures 9a and 9e) is the chlorophyll to car-
bon ratio of phytoplankton. (Figures 9b and 9f) LN, (Figures 9c and 9g) LP, and (Figures 9d and 9h) LI are the nitrogen, phosphorus, and light limitation indices,
respectively.

parameter sets are generally smaller than differences between geographical regions in each model simula-
tion. For the Chl:C ratio, lower values are obtained for the Case II simulation due to a higher carbon cost for
photosynthesis (𝜁Chl) and a significantly higher light absorption coefficient (𝛼). LN shows relatively small dif-
ferences between runs. Case II presents overall the highest N limitation due to a significantly lower nutrient
affinity (A0) with respect to Case I and Default. For LP, Case II appears again as the most limited simulation, as
a result of the combination of a low A0 and the highest phosphorus subsistence quota (QP

0) of all three simu-
lations. Stronger light limitation is found in the Default and Case I simulations due to lower light absorption
coefficients (𝛼), which reduce the phytoplankton efficiency of C assimilation. In general, changes in the
parameters mostly affect the magnitude of the limitation indices and Chl:C ratio, but not the seasonal trend
of the results. The model’s seasonal behavior is in all cases determined by the variability of the forcing (nutri-
ent and light) data. Overall spatial patterns of nutrient and light colimitation remain unaltered regardless of
which set of parameters is used.

4. Conclusions

Our combined model-data analysis suggests strong N limitation and N-P colimitation in the tropical and
subtropical ocean, and seasonal light limitation and N-P colimitation in Northern Hemisphere high latitudes.
The eastern equatorial Pacific shows an overall lack of limitation by either N, P, or light, while the Southern
Ocean appears strongly light limited during winter. Our colimitation analysis is able to describe the com-
bined effects of N, P, and light (co)limitation, which cannot be achieved with a traditional inspection of
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DIN:DIP ratios. However, our model-based results yield to some extent similar patterns as limitation esti-
mates inferred from oceanic DIN:DIP ratios with respect to the Redfield ratio. This comes as a surprising
result, given that our mechanistic model allows for flexible rather than Redfield phytoplankton stoichiome-
try. There is no clear reason why optimality-derived cell quotas should approach the Redfield N:P ratio (∼16).
However, while our predicted N:P varies widely globally (around 5 to 40 mol mol−1), a pointwise average
among all seasons of our predicted phytoplankton N:P ratios yields a global N:P of 16. This could suggest
that although optimality-derived individual phytoplankton cell quotas do not approach any particular com-
mon stoichiometry, the present distribution of available dissolved N and P in the surface ocean induces the
optimality-derived N:P ratio of global phytoplankton to have a mean value close to Redfield stoichiometry.

A shortcoming of our current model is the neglect of iron limitation. Including iron dynamics in our analysis
could have an important effect on N:P ratios in HNLC regions such as the Southern Ocean. Currently we
are not aware of experimental data suitable for including iron (co)limitation in our optimality-based model
concept. Apart from these HNLC regions, we believe that the neglect of iron limitation should not induce
major changes in the relative distribution of N, P, and light colimitation areas, as these are estimated from
cell quotas relative to phytoplankton biomass (and not from N:P ratios). The relative importance of N, P, and
light in limiting phytoplankton growth diagnosed here by combining observations and an optimal-growth
model, thus provides a useful constraint on models used to predict future marine biological production
under changing environmental conditions.

Appendix A: Supplementary Material

S.1 Overview of the Chain Model
In the optimality-based phytoplankton growth model of Pahlow et al. [2013], growth (𝜇) is described as the
difference between C fixation (Vc) and respiration (R),

𝜇 = Vc − R (S.1)

Vc is a function of N cell quota (QN), the potential CO2 fixation rate (Vc
0), and PAR. PAR in this work is used to

quantify Ig (equation (1)). The effect of light limitation is then estimated by the degree of light saturation of
the cellular light-harvesting apparatus, SI (equation (2)). The C-fixation rate is then defined as,

Vc = Vc
0

(
1 −

QN
s

QN
− fV

)
SI (S.2)

where fV is the fraction of cellular N allocated for nutrient acquisition, and QN
s represents cellular N bound

in structural protein. Respiration comprises the cost of photosynthesis (RChl) and the cost of N assimilation
(𝜁NVN) assumed to be proportional to N assimilation (VN),

R = 𝜁NVN + RChl (S.3)

N allocated for nutrient acquisition (fvQN) is further divided between DIN and DIP acquisition via another
allocation factor (fN):

VN = fVfNVN
∗ VP = fV(1 − fN)VP

∗ (S.4)

where VN
∗ and VP

∗ are potential rates of N and P uptake as functions of potential uptake rates, VN
0 , VP

0 , and
affinity, A0.

The allocation factors fV and fN are calculated to maximize net balanced growth rate.
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S.2 Temperature Dependence
Since the original model [Pahlow et al., 2013] does not include temperature, we introduced a temperature
dependence [Eppley, 1972] of the maximum rate parameters as follows:

VC
0 , VN

0 , VP
0 = 1.4 ∗ 1.066TEMP
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Abstract Information about oceanic nitrate is crucial for making inferences about marine biological
production and the efficiency of the biological carbon pump. While there are no optical properties that
allow direct estimation of inorganic nitrogen, its correlation with other biogeochemical variables may
permit its inference from satellite data. Here we report a new method for estimating monthly mean surface
nitrate concentrations employing local multiple linear regressions on a global 1◦ by 1◦ resolution grid, using
satellite-derived sea surface temperature, chlorophyll, and modeled mixed layer depth. Our method is able
to reproduce the interannual variability of independent in situ nitrate observations at the Bermuda Atlantic
Time Series, the Hawaii Ocean Time series, the California coast, and the southern New Zealand region.
Our new method is shown to be more accurate than previous algorithms and thus can provide improved
information on temporal and spatial nutrient variations beyond the climatological mean at regional and
global scales.

1. Introduction
Monitoring and estimating primary production (PP) in marine environments rely heavily on satellite
ocean-color observations due to their tremendously high spatial and temporal coverage not reached by
any other current observing system. Many ocean color-based models that estimate PP depend on variables
that can be retrieved from satellite observations using empirically derived algorithms (e.g., sea surface
temperature (SST), photosynthetically active radiation, and chlorophyll (Chl)). PP is also estimated using
ecosystem models, which often require the formulation of interactions among various agents, such as
phytoplankton, zooplankton, and inorganic nutrients, representing the main ecosystem functions
[Pahlow et al., 2008]. Mechanistic models of phytoplankton growth offer the potential to provide further
understanding of the physiological principles that regulate phytoplankton growth rates [e.g., Geider et al.,
1998; Pahlow et al., 2013]. However, this kind of model commonly requires information on the availability of
inorganic nutrients. Remote sensing tools offer synoptic information at the global level beyond the mean
climatological state of different oceanic variables. Nevertheless, global estimations of sea surface nutrient
concentrations are difficult to obtain from remote sensing, as there are no optical properties that allow their
direct inference from satellite observations.

First attempts to indirectly assess nutrient availability in the surface ocean were based on nutrient-
temperature-density relationships [Kamykowski and Zentara, 1986; Garside and Garside, 1995]. Most of
the efforts have been directed at estimating dissolved inorganic nitrogen, which is regarded as the most
immediate limiting nutrient in the ocean [Falkowski, 1997; Tyrrell, 1999; Moore et al., 2013; Arteaga et al.,
2014]. More recently, nitrate concentrations have been diagnosed using satellite or in situ data of SST
and mixed layer depth (MLD) [Steinhoff et al., 2010] or SST and Chl [Goes et al., 2000, 2004]. Goes et al. [2000,
2004] employed global relationships between surface nitrate concentration and SST and Chl, which are
applicable to specific ocean basins. The methods developed by Kamykowski et al. [2002] and Switzer et al.
[2003] used regional relationships based on 10◦ by 10◦ averages but provided only a relative assessment of
nitrate availability. While Steinhoff et al. [2010] used a much finer (1◦ by 1◦) grid for deriving their model, their
algorithm is of regional nature and is based on a single multiple-regression function for the North Atlantic.

Despite these previous attempts, there is not yet an established product of nitrate concentrations in the
surface layer of the ocean derived from remotely sensed data. Here we present a simple method to estimate
monthly surface nitrate concentrations on a global scale by employing local multiple linear regressions
using SST and Chl data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled
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MLD. A major difference to previous methods, which are of an either regional or indirect nature, is that our
approach is inherently local, i.e., it is applied on the same 1◦ by 1◦ resolution grid as the data on which it is
based and thereby avoids the loss of information associated with averaging on a coarser grid.

2. Methods

In order to estimate surface nitrate concentration, we employ local multiple linear regressions using SST,
MLD, and surface Chl as predictors of nitrate. Global surface Chl concentrations and SST are obtained
from MODIS available from The Ocean Color site (http://oceancolor.gsfc.nasa.gov). To assess the general
robustness of our method, we pragmatically employ different MLD models for the calibration and prediction
periods. As the aim of our method is to provide monthly estimates of ocean surface nitrate concentrations
in a semioperational mode, for the prediction period we choose to employ always the most recent—and
presumably most accurate—available MLD model output. All MLD model outputs are obtained from the
Ocean Productivity site of Oregon State University (http://science.oregonstate.edu/ocean.productivity/
index.php): Monthly MLD outputs for 2003–2004 are from the SODAS model [Clancy and Sadler, 1992].
For the period January–June 2005, monthly MLD data were produced by an Isothermal Layer Depth (ILD)
model of the Thermal Ocean Prediction System (TOPS), which is a model of the Fleet Numerical Meteorology
and Oceanography Center (FNMOC), Monterey, California [Clancy and Martin, 1981; Clancy and Pollak,
1983; Clancy and Sadler, 1992] (ILD-TOPS). MLD for the period July 2005 to Sept 2008 is from a FNMOC
high-resolution MLD criteria model. Finally, monthly MLD between October 2008 and December 2010 is
from the Hybrid Coordinate Ocean Model [Bleck, 2002].

Since a sufficient seasonal coverage of remotely sensed Chl data could be obtained only for latitudes
between 45◦N and 45◦S, we use only SST and MLD as predictors for higher latitudes. The coefficients of the
linear regression are obtained for each 1◦ by 1◦ grid cell using the World Ocean Atlas 2009 (WOA09) monthly
interpolated climatology of nitrate, and a training climatological data set of SST, Chl, and MLD. WOA09
is the only globally available training data set, and its temporal resolution is restricted to the monthly
scale. Thus, it is currently not feasible to use a higher temporal resolution at the global scale. The training
climatology is composed of average monthly SST and Chl MODIS data, and modeled MLD for January 2003
to December 2004: (

!SST, !MLD, !Chl, C
)
= regress

(
NitWOA09, SST03−04,MLD03−04,Chl03−04

)
(1)

where !SST, !MLD, and !Chl are the coefficients produced by the linear regression (regress) for monthly SST,
MLD, and Chl respectively, and C is a local constant for each 1◦ by 1◦ grid cell (available as supporting
information to this paper). NitWOA09, SST03−04, MLD03−04, and Chl03−04 are the monthly mean data sets
employed to obtain the local regression coefficients.

Once the coefficients of the linear regression for each 1◦ by 1◦ grid cell are obtained, we force the multilinear
model with an independent monthly data set of MODIS SST, Chl, and modeled MLD obtained for the period
between January 2005 and December 2010:

Nitest = !SST ⋅ SST05−10 + !MLD ⋅ MLD05−10 + !Chl ⋅ Chl05−10 + C (2)

where Nitest is the estimated nitrate. As a result, monthly global maps of estimated surface nitrate
concentration are obtained on a 1◦ by 1◦ resolution grid for the period 2005–2010.

3. Results and Discussion
3.1. Global Patterns
Our predicted 1◦ by 1◦ temporally averaged surface nitrate concentration map for the period 2005–2010
is shown in Figure 1a. The spatial patterns of our modeled nitrate are consistent with the WOA09 nitrate
climatology (Figure 1b). High nitrate concentrations are obtained at high latitudes, particularly the Southern
Ocean, while tropical and subtropical areas show low concentrations, with the exception of the eastern
Equatorial Pacific. The similarity of the spatial patterns of surface nitrate is encouraging given that the data
set used to obtain the nitrate predictions (January 2005–December 2010) is independent from the data set
used to derive the regression coefficients of the linear model (January 2003 to December 2004), and since
we implicitly assume the general surface nitrate distribution in the global ocean for 2005–2010 to be similar
to the climatology (WOA09).
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Figure 1. (a) Global surface nitrate concentration average for the period 2005–2010, estimated from SST, Chl, and MLD. (b) Global surface nitrate concentration
climatology from World Ocean Atlas 2009 (WOA09). (c) Local correlation coefficient between our predicted nitrate concentrations and WOA09. (d) Variance
coefficient of our 6 year predicted nitrate fields (SDmonthly05−10∕meanmonthly05−10). (e) Local correlation coefficient between WOA09 and our predicted nitrate
concentrations estimated from SST. (f ) Local correlation coefficient between WOA09 and our predicted nitrate concentrations estimated from SST and MLD.

The local correlation coefficients (r) between our predicted monthly mean nitrate concentrations and
WOA09 are highest at high latitudes, particularly in the northern North Atlantic and North Pacific, where r
is close to 0.8 (Figure 1c). The correlation decreases toward the tropics, with very few scattered areas
showing a negative correlation. The relative local monthly variance for our 6 years of predicted nitrate fields
is calculated as the standard deviation of the whole monthly time series divided by its mean at each 1◦ by
1◦ grid point (Variance coefficient vc = SDmonthly05−10∕meanmonthly05−10, Figure 1d). This relative temporal
variance is highest in tropical regions (vc ≈ 2) and decreases at midlatitudes (vc ≈ 1), and toward the poles
(vc ≈ 0).

The relation between SST, MLD, Chl, and nitrate is not the same at all points of the ocean. Seasonal variations
in stratification, and the concomitant changes in SST and MLD, are much stronger at higher latitudes in
comparison with middle and tropical latitudes. Thus, biotic factors can potentially have a stronger influence
on nitrate availability in low latitudes. In order to analyse the effect of including or excluding our individual
predictor variables, we also performed univariate (one factor) and bivariate (two factors) linear regressions
to evaluate the predictive capacity of employing only SST and/or MLD. Interestingly, when compared
against the climatology, nitrate estimated only from SST as a predictor shows a relatively high global
pointwise correlation coefficient (r = 0.46) (Figure 1e) compared to the multiple linear regression shown
above (including SST, MLD, and Chl, r = 0.51, Figure 1c). The bivariate regression using both SST and MLD as
predictors results in a global average r of 0.51 (Figure 1f ), which is the same as for the regression including
also Chl. The lack of improvement of the global correlation when Chl is added as a factor could be due to the
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small magnitude of the variations in monthly surface nitrate concentrations over tropical and subtropical
regions relative to the average concentrations. Nevertheless, Chl appears to contribute substantially to
the predictive power of our method with respect to interannual variations, e.g., revealed in time series
observations, as we discuss below.

3.2. Interannual and Seasonal Variabilities
The fact that our results replicate the spatial and monthly patterns of the climatology quite well is an
encouraging result. However, as our aim is to obtain interannually varying rather than climatological mean
monthly nitrate estimations, we compare our predicted monthly surface nitrate concentrations for
2005–2010 with available independent nitrate data obtained for the top 100 m of the ocean from the
Bermuda Atlantic Time-series Study (BATS) (http://bats.bios.edu), the Hawaii Ocean Time series (HOT)
(http://hahana.soest.hawaii.edu), the California Cooperative Oceanic Fisheries Investigations program
(CalCOFI) (http://www.calcofi.org), and the Munida Time Series in the South Pacific Ocean, maintained by
the National Institute of Water and Atmospheric Research of New Zealand (http://cdiac.ornl.gov/oceans/
Moorings/Munida.html), for the same period. Our predicted nitrate estimations are obtained for 1◦ by
1◦ grid boxes at 29◦N, 60◦W for BATS, 24◦N, 158◦W for HOT, 38◦N, 123◦W for CalCOFI, and 48◦S, 173◦E for
Munida. Our 1◦ by 1◦ estimates agree favorably with the interannual variability of the four ocean time series
(Figures 2a–2d). The seasonal variability is predicted to a somewhat lesser degree by the model. For HOT
and BATS, estimated nitrate values are somewhat higher than the in situ data, while for CalCOFI the opposite
occurs. This is partly due to differences in nitrate concentrations at the selected locations (HOT, BATS, and
CalCOFI) between the climatological data (WOA09) used to obtain the linear regression coefficients and the
in situ data (Figure 2). The correlation coefficient between model outputs and monthly averaged in situ data
for 2005–2010 is relatively good for BATS (r = 0.53), CalCOFI (r = 0.73), and Munida (r = 0.60), but not very
high for HOT (r = 0.16). The root-mean-square error (RMSE) is relatively high for BATS (0.24 "mol L−1) and
HOT (0.044 "mol L−1), due to their inherently low average nitrate concentration. The RMSE for Munida is
low (1.76 "mol L−1) and similar to the RMSE obtained by Sherlock et al. [2007] with a basin-scale model for
the same area. For CalCOFI the RMSE is also relatively low (2.50 "mol L−1) and similar to that obtained by
Palacios et al. [2013] for the northern region of the CalCOFI sampling program with a regional model.

The seasonality in the WOA09 climatology is markedly different from that in the in situ observations for
BATS (Figure 2a). Nevertheless, the model output follows both the seasonal and interannual variability of the
in situ data, despite the slight overestimation, which indicates a strong local coupling between SST, MLD,
surface Chl, and nitrate, essentially allowing a reliable prediction of surface nitrate from satellite-derived
observations of those variables. In particular, the extremely high nitrate concentration at BATS in the winter
2009–2010 is well captured by our regression approach (Figure 2a). This underlines the predictive capability
of our method since these concentrations are well outside the range of nitrate concentrations in the training
data set (Figure 2a).

The observed relationship between nitrate, MLD, and temperature is due to the vertical transport of
nutrients and cold water caused by deepening of the surface mixed layer [Garside and Garside, 1995].
Nutrient utilization and depletion by phytoplankton is the main process responsible for the correlation
between nitrate and surface Chl. The relative contribution of each of these processes on the control
of surface nitrate variations could be considerably different in the distinct areas of the global ocean. A
comparison of in situ nitrate observations with nitrate estimations using only MLD as a predictor shows
that MLD by itself is a poor predictor of nitrate at BATS (Figure 3a, MLD). The same occurs when only SST
is employed in the linear regression (Figure 3a, SST). However, using Chl as the only predictor (Figure 3a,
Chl) yields the highest correlation with the observations (r = 0.55, Table 1). Furthermore, the correlation
between observed and modeled nitrate at BATS is high and positive only when Chl is included as a variable
in the regression analysis (Table 1). This points to the importance of biological controls of nitrate at BATS and
probably oligotrophic regions in general. Goes et al. [2000] reached similar conclusions by including Chl in
their model for the Pacific Ocean. While our model shows the highest r when Chl is used as a single factor,
the high nitrate concentrations observed in the in situ data during 2009 are replicated only when SST and
MLD are also included in the regression (Figure 2a). The importance of employing all three variables in the
regression analysis is visually clear, however, this does not appear to be reflected in the RMSE, due to (slight)
mismatches in the predicted and observed timing of the nitrate peak. When SSTs or Chls are used as the
only predictors of nitrate at HOT, the correlation with the observations is negative (Figure 3b, SST and Chl).
MLD as the only predictor results in a low positive correlation (Figure 3b, MLD). This suggests that nitrate
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Figure 2. (left) Monthly predicted (green continuous line) and in situ measured (blue dashed line) surface nitrate concentrations for the period 2005–2010.
(middle) Scatterplots for modeled and in situ nitrate concentrations and one-to-one (dashed) line. (right) Average monthly nitrate concentrations from
January 2005 to December 2010. Model: green continuous line; In situ: blue dots connected with line; WOA09 climatology: red dots connected with line. Model
predictions and observations are presented for (a) BATS, (b) HOT, (c) CalCOFI, and (d) Munida. (e) Nitrate prediction obtained for HOT with the model from
Goes et al. [2000].

concentrations at HOT might also be strongly influenced by other physical or biogeochemical processes not
captured by either SST, MLD, or Chl. While our approach is based on the idea that nitrate is either controlled
by vertical mixing or phytoplankton consumption, other mechanisms, such as horizontal advection, have
been suggested as important contributors of nutrient supply in the Pacific Ocean [Dave and Lozier, 2013].

SST and Chl are also poor single predictors of nitrate at CalCOFI. Similarly, as for HOT, MLD appears to be the
best predictor in this region (Figure 3c). While combining MLD and SST results in the highest r for this region
(r = 0.77, Table 1), the right magnitude of nitrate variations is only replicated when Chl is also included in
the regression (Figure 2c). The obtained r for the regression with MLD, SST, and Chl (r = 0.73, Table 1) is only
slightly lower than for only MLD and SST. Palacios et al. [2013] reached similar conclusions in their study,
where the addition of physical and biological related variables such as temperature, salinity, and oxygen
increased the explanatory power of their regional model for the CalCOFI area. Station Munida is located
beyond 45◦S; therefore, Chl cannot be included as part of the multiple regression. However, employing the
available abiotic predictors SST and MLD individually results in high correlation coefficients (Table 1). For
this station, using MLD or SST as the only predictor of nitrate results in a higher correlation coefficient than
including both variables in the regression (r = 0.75 for MLD, r = 0.66 for SST, r = 0.60 for SST and MLD),
which is likely due to a mismatch between WOA09 and in situ data at this site. As the difference between the
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Figure 3. Monthly predicted (green continuous line) and in situ measured (blue dashed line) surface nitrate concentrations from January 2005 to December 2010
along with scatterplots for modeled and in situ nitrate concentrations and one-to-one (dashed) line, for (a) BATS, (b) HOT, (c) CalCOFI, and (d) Munida. Modeled
nitrate was obtained with single linear regressions using only MLD (left), SST (middle), and Chl (right) as individual predictors.

correlations employing all available or individual variables is not very large, and it is impossible to discern
beforehand which variable is the best predictor for nitrate in a particular point in the ocean, we thus stick to
employing all three variables (SST, MLD, and Chl) in the regression analysis as long as they are available.

The use of a 1◦ by 1◦ grid avoids averaging and thereby minimizes information loss, which is a major
distinction to most previous methods for estimating global nitrate distribution from satellite-derived data
[e.g., Goes et al., 2000]. As might be expected, our locally derived relations provide a much improved
local predictive power compared to the basin-scale relationships. Figure 2e compares the model of Goes
et al. [2000] for the nonequatorial Pacific using our forcing SST and Chl data set with observations at
HOT. Although working well on the basin scale, the method of Goes et al. [2000] highly overestimates
nitrate concentrations at HOT between 2005 and 2010, and the predicted nitrate is anticorrelated with the
independent in situ observations (Figure 2e and Table 1).

3.3. Error Analysis
The predictive power of our method depends to a large extent on the accurate estimation of SST and Chl
from remote sensing, and on the quality of the modeled MLD. Since we use linear regressions, systematic

Table 1. Correlation Coefficients (r) and Root-Mean-Square Errors (RMSE) for Nitrate Prediction Using
Different Predictors (SST, MLD, and Chl) and In Situ Observations for 2005–2010 at HOT, BATS, CalCOFI,
and Munidaa

r RMSE

Model variables HOT BATS CalCOFI Munida HOT BATS CalCOFI Munida

SST −0.20 −0.43 0.07 0.66 0.025 0.19 2.50 1.94

MLD 0.10 −0.45 0.52 0.75 0.025 0.18 2.77 1.76

Chl −0.002 0.55 -0.14 - 0.027 0.15 2.76 -

SST MLD 0.06 −0.36 0.77 0.60 0.025 0.18 2.50 1.76

SST Chl −0.04 0.34 0.05 - 0.027 0.16 2.52 -

MLD Chl 0.08 0.52 0.27 - 0.037 0.22 2.81 -

SST MLD Chl 0.16 0.53 0.73 - 0.044 0.24 2.50 -

Goes model (HOT) −0.16 - - - 1.34 - - -

aGoes model (HOT) refers to the model by Goes et al. [2000] evaluated against in situ data from HOT.
Number of sample points for HOT = 55, BATS = 69, Munida = 31, and CalCOFI = 41.
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errors have no effect. Thus, we restrict the error analysis to random errors (noise). To our knowledge, no
method exists to separate systematic and random error components. Instead, we here employ the data
used for validation to estimate the maximum random error which still allows reproducing the nitrate data
in Figure 2. We apply various degrees of noise to the SST, MLD, and Chl data sets and then repeat the above
training and validation procedure with the noisy data sets. The maximum noise level still reproducing the
time series observations is then applied to the global ocean to obtain an estimate of the local uncertainty of
the model prediction.

We introduce random noise to each of the forcing data sets (SST, MLD, and Chl) used in the linear
regression, via,

ns = data + # ⋅ a ⋅ x (3)

where ns is the newly created “noisy signal,” data is the original satellite-derived data (SST, Chl, or MLD for
2003–2004), # is the temporal standard deviation of each grid point of the annual mean map of data, a is
a coefficient determining the overall noise level, and x is a uniformly distributed random number between
0 and 1. We then compare the predictive power our method applied to the noisy data sets (i.e., nssst, nschl,
nsmld), against that resulting from the original (unaltered) data sets.

We employ noise levels obtained with a = 1, 0.25, and 0.1. The main effect of the noise is a reduction in the
predicted amplitude of the seasonal and interannual variations in nitrate concentrations. Only for the lowest
noise level, i.e., a = 0.1, the resulting predicted nitrate is similar to the prediction without noise (Figure S1).
Our method performs much worse with the noisy data sets with respect to the nitrate peak in early 2010,
which is reproduced only with the lowest noise level (Figure S1b).

Our error analysis shows that the accuracy of our method can effectively be hampered by the presence
of large random errors in the predictive data sets. The fact that the maximum random error compatible
with the predictive power indicated in Figure 2 is obtained with a = 0.1 suggests a low random error in
the satellite-based SST and Chl, and modeled MLD, which are used as predictors of nitrate in the linear
regression. Keeping in mind that our artificial noise is added to the actual random error in the modeled
and satellite-derived inputs, this result tells us that increasing the noise level (i.e., reducing the accuracy) by
more than 10% over the current level would strongly interfere with our ability to obtain useful predictions of
surface nitrate concentrations. While some uncertainty remains about the right magnitude of random errors
in the forcing data sets, it appears unlikely that the actual noise level is much higher than our maximum
estimate. For example, our relatively low upper limit of noise in the satellite-derived Chl compared to the
previously estimated 35% [Moore et al., 2009] suggests that either the local error in the satellite-derived and
modeled inputs is lower than currently thought or that most of the error can be considered systematic at
the local scale of our analysis.

To assess the global effect of our maximum error estimate, i.e., equivalent to adding 10 % of # (a = 0.1) to
any possibly existing noise, we compute the relative difference (reldiff ) between the originally predicted
nitrate and the nitrate obtained with a random error induced in the forcing satellite data sets with a = 0.1,
on each 1◦ × 1◦ pixel (Figure S1d):

reldiff =
Nitest − Nitest

a=0.1

0.5(Nitest + Nitest
a=0.1)

(4)

where Nitest is the originally predicted nitrate, Nitest
a=0.1 is the nitrate predicted with the random error for

a = 0.1 applied to the predictive data set. The errors reflect the combined effects of random errors in the
three forcing data sets. The relative error is rather small and varies between ± 20%, with larger errors
generally restricted to low and middle latitudes and very small errors (within ± 2%) found at high latitudes
(Figure S1). Therefore, we conclude that the errors associated with the satellite-derived data sets do not
appear to hamper our satellite-based method of predicting nitrate distributions for the world ocean.

4. Summary and Conclusions

We present a new method to estimate monthly surface nitrate distributions on a global 1◦ by 1◦ resolution
grid. Our method is based on local multiple linear regressions applied at each 1◦ grid cell, employing SST,
Chl, and MLD as predictors for nitrate. We evaluate the predictive power of our method against in situ data
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from the oceanographic time series from stations BATS, HOT, CalCOFI, and Munida. Our modeled nitrate
agrees well with the interannual variability of these stations, while the seasonal variability is reproduced to
a lesser extent. Biological processes, represented by Chl, seem to have an important role controlling nitrate
variations at BATS. While our analysis seems to indicate that the mechanisms controlling nitrate at HOT are
not particularly well represented by either SST, MLD, or Chl, at Munida, nitrate can be well inferred through
SST and MLD. At CalCOFI, MLD seems to be the main determinant of nitrate variations; however, SST and
Chl are also required to reproduce the variability of the in situ observations. Despite a markedly different
seasonality between the WOA09 nitrate and the in situ observations, our method is still able to follow the
variability of the in situ data, indicating strong coupling between SST, MLD, surface Chl, and nitrate. Our
error analysis of the predictive data set suggests that the method is robust as long as the errors in the forcing
data sets do not exceed about 10% of the seasonal variance of the data. This provides some confidence in
the use of satellite-derived SST and Chl and modeled MLD, to predict real surface nitrate concentrations in
the global ocean.

Local and regional nitrate prediction models remain highly valuable to investigate controls of nitrate at the
regional scale. Our nitrate prediction method allows to easily estimate nitrate variations at a global scale
and offers the possibility to employ mechanistic models of marine biological production [e.g., Pahlow et al.,
2013] that require information on dissolved inorganic nitrogen availability. The sensitivity of phytoplankton
growth rates to nutrient variations is an important constraint that needs to be taken into account in the
monitoring and prediction of marine biological primary productivity under changing environmental
conditions.
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Contribution of phytoplankton to particulate organic carbon in the global ocean

(Lionel Arteaga, Markus Pahlow, Andreas Oschlies)

(DRAFT)

Abstract

Primary production by marine phytoplankton essentially drives the oceanic biological carbon pump.

Global productivity estimates are mostly founded on chlorophyll-based primary production models

(Field , 1998). A major drawback of this approach is that variations in chlorophyll concentration do

not necessarily account for changes in phytoplankton biomass resulting from the physiological regula-

tion of the chlorophyll-to-carbon ratio (Chl:C) (Geider , 1987; MacIntyre et al., 2000). Here we present

phytoplankton production rates and C concentrations for the global ocean for 2005–2010 obtained by

combining satellite Chl observations with a mechanistic model for the acclimation of phytoplankton sto-

ichiometry to variations in nutrients, light and temperature. We compare our inferred phytoplankton C

concentrations with an independent estimate of surface particulate organic carbon (POC) to identify for

the first time the global contribution of phytoplankton to total POC in the surface ocean. Our annual

primary production (46 Pg C yr−1) matches the estimate of a C-based model obtained from satellite

observations. We find that most of the oligotrophic ocean is dominated by autotrophic biomass (between

30 and 70% of total carbon). Lower contributions are found in the tropical Pacific POC (10–30% phy-

toplankton) and the Southern Ocean (≈ 10%). Our method provides a novel analytical tool to identify

changes in marine plankton communities and carbon export.
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Marine ecosystems contribute substantially to global biogeochemical fluxes transporting photosynthetically

fixed organic carbon from the sunlit surface layer to the deep sea, and hence acting as a major regulator of the

partitioning of carbon among atmosphere and ocean (Raven and Falkowski , 1999). Photosynthesis by phyto-

plankton constitutes the principal supply route of carbon into the marine ecosystem. While phytoplankton

is often measured as chlorophyll (Chl), productivity is usually determined in carbon units (Cloern et al.,

1995). Global marine primary production (PP) rates are commonly estimated via ocean color-based algo-

rithms using remotely-sensed observations. Early algorithms were generally founded on empirical relations

between irradiance, pigment concentration (i.e., Chlorophyll) and estimates of carbon fixation rates (e.g.,

14C) (Behrenfeld and Falkowski , 1997a). These relations implicitly assume that phytoplankton C (phyto-C)

biomass is proportional to Chl concentration, which is not generally true (Geider et al., 1986; Armstrong ,

2006). Hence, a common drawback of these models is that they do not account for the acclimation of

the phytoplankton chlorophyll to carbon ratio (Chl:C) to changes of light and nutrient conditions in the

environment.

Nutrient and light (co-)limitation induces physiological changes in phytoplankton composition, which is

reflected in the Chl:C ratio (Geider , 1987; MacIntyre et al., 2000; Arteaga et al., 2014). Due to this plasticity,

Chl can be a poor indicator of phytoplankton biomass (Westberry et al., 2008). Among the first global PP

estimates that accounted for variations of the Chl:C ratio, is the model of Behrenfeld et al. (2005). Behrenfeld

et al. (2005) developed a satellite-based PP algorithm that relies on the inference of phytoplankton POC

through the estimation of the particulate beam attenuation coefficient at 660 nm (cp). This carbon-based

model (CbPM) was later improved by Westberry et al. (2008), through accounting for changes in the light

spectrum with depth, and hence giving a more realistic photoacclimation of phytoplankton to vertically

varying light conditions. These modifications led to a lower estimate for global anual production compared

to the CbPM initially formulated by Behrenfeld et al. (2005) of 67 to 52 Pg C yr−1 (Westberry et al., 2008),

much closer to the global mean found for different Chl, C-based, and Global Circulation Models (GCM) of

51 Pg C yr−1 (Carr et al., 2006).

The diverse physiological effects of nutrient and light limitation can be represented in mechanistically founded

phytoplankton models (Geider et al., 1998; Pahlow and Oschlies, 2009; Pahlow et al., 2013). Cell quota mod-

els have the potential to decouple phytoplankton elemental components (e.g. C, nitrogen (N), phosphorus

(P), Chl), while optimality-based models provide the mechanistic foundation to describe physiological ac-

climation of phytoplankton to a variable physico-chemical environment (Smith et al., 2011). We here show

that combining empirically-derived color-based observations and mechanistically-founded biological models
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can provide further insights into the regulating mechanisms and variability of phytoplankton biomass and

associated primary production in the global ocean.

Improved estimates of phytoplankton carbon can also lead to better assessments of carbon export from the

surface ocean. The distinction between carbon associated with primary producers and carbon associated

with heterotrophic organisms provides valuable information on the assemblage of the ecosystem. Its structure

controls the trophic pathways of carbon and eventually the flux of particulate organic carbon that reaches the

deep ocean (Duarte and Cebrin, 1996; Francois et al., 2002). Here, we estimate seasonally and interannually

varying synoptic patterns of phytoplankton carbon biomass in the global ocean. We employ a biological

model that describes phytoplankton acclimation to nutrient and light to calculate phytoplankton Chl:C

ratios and phytoplankton growth rates. When combined with independent satellite-based observations of

surface Chl and POC, we can then quantify global production rates, phytoplankton biomass and, for the

first time, its contribution to total POC.

Primary production

We estimate primary production rates integrated over the euphotic depth (Zeu) using a mechanistic phy-

toplankton physiological model (Pahlow et al., 2013) (Fig. 1). The model defines the physiological roles of

nitrogen and phosphorus via their association with specific functional cellular compartments (Sterner and

Elser , 2002). According to this model, net C fixation is directly limited by cellular N. The model optimizes

the allocation of cellular N and energy among requirements for nutrient acquisition and light availability

(Pahlow et al., 2013; Arteaga et al., 2014). Phosphorus constrains nitrogen assimilation in the ribosomes,

and thereby limits nitrogen acquisition. As phosphorus has been previously identified as a secondary limiting

nutrient with respect to nitrogen (Arteaga et al., 2014), we restrict nutrient limitation in this study only to

nitrogen.

Monthly phytoplankton growth rates and Chl:C ratios are estimated from the model for the period Jan-

uary, 2005–December, 2010. We initially run the optimality-based model with an average parameter set

(Table S.1) obtained for different phytoplankton species (Pahlow et al., 2013). We use the resulting biomass-

normalised nitrogen cell-quota (phytoplankton N:C ratio, QN) and an estimate of light saturation of the

cellular light-harvesting apparatus (SI) to infer nitrogen limitation (Ln) as the relative difference between

QN and the phytoplankton subsistence quota (QN
0 ), and light limitation as one minus the degree of light
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Figure 1: General concept of the optimality-based model: (a) Optimal allocation of nitrogen maximises
growth: A greater nitrogen quota fraction (fV) is allocated for nutrient acquisition when extracellular nutrient
concentration is low (left). For higher nutrient concentrations more nitrogen is allocated for carbon fixation
(right). Hence, fV increases as the extracellular nutrient concentration drops. (b) The Chl:C ratio is
the result of both photoacclimation and nitrogen allocation. With low light and sufficient nitrogen, Chl is
synthesized to enhance light harvesting efficiency, resulting in an increased Chl:C ratio. High light conditions
down-regulate Chl production, decreasing Chl:C. (c) Net cell growth is maximized via optimal allocation of
nitrogen resources. The Chl:C ratio is maximized by high nutrient-low light conditions, and decreases as
light levels increase and/or nutrient concentrations diminish.
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Figure 2: Global distribution of (a) nutrient affinity (A0) and (b) light affinity (α) as functions of nutrient
and light limitation, respectively, estimated by the optimality-based model (Pahlow et al., 2013).

saturation (Arteaga et al., 2014):

Ln = 1− Qn −Qn
0

Qn
=

Qn
0

Qn
(1)

LI = 1− SI (2)

where Ln = 0 and Ll = 0 indicate no limitation, and Ln = 1 and Ll = 1 indicate strong limitation.

We then employ Ln and Li to represent multiple phytoplankton species adapted to different light and nitrogen

limitation regimes across the global ocean. Phytoplankton species are defined by varying their Chl-specific

light affinity (α) and potential nutrient affinity (A0) as a function of light and nutrient limitation via

α = aαLi + bα (3)

A0 = aALn + bA (4)

where the corresponding slopes (a) and offsets (b) are aα = 1, aA = 100, bα = 0.3, and bA = 40, respectively.

This results in a general latitudinal pattern composed of phytoplankton with high α and low A0 in high

latitudes and vice versa in tropical regions (Fig. 2). Finally, we apply the phytoplankton model employing

the α and A0 maps obtained with Eqs. (3) and (4) to obtain our estimate of global phytoplankton growth

rates and Chl:C ratios.

We calculate global vertically integrated production rates using independent monthly observations of phyto-

plankton Chl from the Moderate Resolution Imaging Spectroradiometer (MODIS), and Zeu (m) (Morel and
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Berthon, 1989), using,

PP = rgrm · (C:Chl)m · ChlMODIS · Zeu (5)

where rgrm and (C:Chl)m are the predicted growth rate (d−1) and C:Chl ratio (mol mg−1), and ChlMODIS

is the Chl concentration (mg Chl m−3) estimated from the MODIS sensor.

Our estimated global patterns of PP (Fig. 3a) are similar to those obtained by the CbPM (Westberry et al.,

2008) for the same study period (Fig. 3b), and yield the same annual production rate when both methods

are applied to those regions for which satellite data are available (46 Pg C y−1). Compared to a commonly

used Chl-based PP model (i.e., VGPM, Behrenfeld and Falkowski , 1997b) (Fig. 3c), our C-based estimation

results in higher production rates in tropical regions and lower PP rates in high latitudes. The main reason

for this shift in global production patterns is the compensation effect of the variable Chl:C ratio. High

Chl concentrations are translated into high PP rates in Chl-based models. In our model-data analysis,

high Chl concentrations at high latitudes coincide with high Chl:C ratios resulting from the acclimation of

phytoplankton to high-nutrient, low-light conditions. Our predicted Chl:C ratios are thus the result of a

balance between the need and the feasibility for photoacclimation as driven by the availability of nutrients

and light (Arteaga et al., 2014). Thus, our results suggest that high Chl concentrations at high latitudes

during winter months are mainly due to photoacclimation, and not increase in phytoplankton (C)-biomass.

Overall, our annual PP rate for 2005–2010 is ≈ 15% higher than the Chl-based model (40 Pg C y−1).

Friedrichs et al. (2009) assessed the uncertainties of primary production estimates for a wide range of satellite

ocean color-based and biogeochemical ocean general circulation models. We compare our PP results with

in-situ observations for the tropical Pacific Ocean used by Friedrichs et al. (2009). Our estimations were

obtained by forcing the model with the same environmental data set (Sea Surface Temperature (SST), Chl,

photosynthetically active radiation (PAR)) reported in Friedrichs et al. (2009, Supplementary information).

Nitrogen was calculated for the same geographical positions as the observations using the algorithm of Arteaga

et al. (2015). Zeu was calculated using the Chl concentration reported in the environmental data set. The

correlation coefficient (r) between our modelled and in-situ PP is 0.54 (Fig. 4a), similar to the average

correlation obtained for all models evaluated in Friedrichs et al. (2009) (r = 0.51), and slightly better than

what was obtained for the CbPM with the same validation data set (r = 0.36). Our model performs well

within the range of the best models evaluated by Friedrichs et al. (2009) (Fig. 4 and Table S.2). The skill

assessment of our model is summarized in the Taylor diagram on Fig. 4b and Table S.2 (see Supplementary

information). For this validation exercise we use the same parameter set presented in Table S.1, and global

α and A0 values according to Eqs. (3) and (4) used for our global growth rates and Chl:C estimates
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Figure 3: Global primary production rates obtained with (a) the Optimality-based physiological model
(Pahlow et al., 2013), (b) the Carbon-based production model (Westberry et al., 2008), and (c) the Vertical
Generalized Production Model (Behrenfeld and Falkowski , 1997b). The panels represent averages for the 6
year period 2005–2010.
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Figure 4: (a) Scatter plot of observed vs. modelled primary production (PP) calculated with the optimality-
based physiological model (Pahlow et al., 2013). Observations are for the tropical Pacific Ocean from
Friedrichs et al. (2009). (b) Taylor diagram of log10(PP). The standard deviation is given as the distance
from the origin. The correlation between modelled and observed PP is represented by the azimuth angle
(dashed-blue lines). Dashed green lines are centered-pattern RMSD isolines. The red dots represent observed
(A), and modelled PP: (B) Optimality-based (this work), (C) average of all models evaluated in Friedrichs
et al. (2009), (D) (Westberry et al., 2008). See supplementary information for details of the calculation of
the statistical metrics.
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Phytoplankton carbon

We estimate global phytoplankton carbon as the product of our predicted C:Chl and observations of surface

Chl from the MODIS sensor (Fig. 5a). Satellite-based observations of Chl provide valuable information

on the relative patterns of phytoplankton biomass in the global surface ocean. The incorporation of a

physiologically-derived C:Chl ratio allows a more accurate description of the distribution of phytoplankton

carbon-biomass in the surface ocean.

Estimated phytoplankton C (phyto-C) is highest in coastal regions, where it reaches concentrations of about

30 mg C m−3. The Caribbean and Indian Sea also show high phyto-C concentrations throughout the year.

Despite high production rates, phyto-C concentrations in the tropical Pacific Ocean are not as high as in the

Atlantic and Indian Oceans. During the northern summer (April–September), high phyto-C concentrations

are found in high northern latitudes, particularly over the Atlantic Ocean. The opposite pattern is found

during the austral summer, where phyto-C concentrations are high particularly near New Zealand and the

Atlantic coast of southern South America. This is the result of differences in Chl concentration and the

C:Chl ratio between the two hemispheres (Fig. 5b), with C:Chl being smaller in the winter hemisphere

due to photoacclimation by phytoplankton cells (Geider , 1987; MacIntyre et al., 2000). It is important to

mention that, although our model does not account for the physiological effects of iron on phytoplankton,

iron limitation is implicitly included to some degree by using Chl satellite observations. Iron deprivation

should reduce phytoplankton growth rates and Chl synthesis, hence increasing C:Chl. While accounting for

iron dynamics would result in higher Phytoplankton C concentrations, the net effect of iron limitation on

our modelled PP rates is not entirely clear.

We use independent satellite-based estimates of total surface POC (Dufort-Gaurier et al., 2010) (Fig. 5c) to

assess the contribution of phytoplankton carbon to the total POC pool (Fig. 5d & e). According to these

estimates, phytoplankton comprises between 30 and 70 % of total POC in the tropical ocean, with highest

values in the oligotrophic subtropical gyres.

The derived phytoplankton contribution to POC has an inverse pattern with respect to total POC concentra-

tion. Phytoplankton dominates the oligotrophic areas of the ocean between 40◦ North and South, while its

share to the total POC decreases towards the poles in both hemispheres, where phyto-C constitutes between

10 and 30% of total POC (Fig. 5d & e). The most pronounced seasonal variation in relative phytoplankton

biomass occurs in the Pacific Ocean. Phytoplankton C is higher in the North Pacific during boreal summer

months (April–September), and higher south of the equator during winter months (October–March). The

contribution of phyto-C in the Southern Ocean is fairly constant during both summer and winter. According
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Figure 5: (a) Phytoplankton carbon concentration obtained as the product of monthly global Chl:C (b) as
predicted by the model of Pahlow et al. (2013) and monthly surface Chl observations from MODIS. (c)
Surface POC estimated as in Dufort-Gaurier et al. (2010). (d) Relative contribution of phytoplankton to
total surface POC. (e) Relative contribution of phytoplankton up to 0.3 of total POC. Each panel represents
the average of the 6 year period 2005–2010. Left panels are summer means (April–September) for the period
2005–2010. Right panels are winter means (October–March).
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Figure 6: Latitudinal patterns in modelled phytoplankton C (blue dotted line) and POC surface observations
(top 10 m, black asterisks) from (Martiny et al., 2014).

to our analysis, the Southern Ocean also has the lowest contribution of phytoplankton-C (≈10%) throughout

the global surface ocean. However, this contribution might be higher if iron limitation was considered.

We compare the latitudinal gradient of our phyto-C estimates with in-situ POC observations of the surface

ocean (top 10 m) obtained from (Martiny et al., 2014) (Fig. 6). POC observations and estimates of phyto-C

are larger at high latitudes and decrease towards the equator. Similar to Fig. 5c,d, the relative decrease

of POC towards tropical regions is greater than that of phyto-C, implying that the phyto-C compartment

of total POC is larger in low latitudes. Our modelled phyto-C does not show a strong latitudinal increase

towards southern latitudes, likely as result of the neglect of iron limitation.

The contribution of phytoplankton to total oceanic carbon provides some information about patterns of

the trophic structure of marine ecosystems. Our results suggest that oligotrophic areas of the ocean are

dominated by autotrophs with little biomass contained in heterotrophs (Williams et al., 2013). A data

compilation on zooplankton-C retrieved from the World Ocean Atlas website http://www.nodc.noaa.gov/

OC5/WOA01/1d_woa01.html suggests that the zooplankton contribution to POC is generally anti correlated

to that of phytoplankton (Fig. S.1). While the global coverage of the observations is sparse, there seems to

be an increase in zooplankton-C contribution towards the topical Pacific, which is opposite to the pattern

in phytoplankton biomass. Global rates of POC export tend to be higher in high latitudes and lower in low
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latitudes (Henson et al., 2011). Nutrient limitation of the autotrophic community and temperature controls

on heterotrophic organisms are considered the main drivers of the global patterns in export production rates

(Laws et al., 2000). As global climate change leads to warmer surface waters and changes in the relative

distribution of nutrients and light (Riebesell et al., 2009), POC export patterns might change as result of the

expansion of oligotrophic areas in the ocean (Polovina et al., 2009). Our global estimations of phytoplankton

carbon and relative contribution to total POC present a first-hand approach to identify such changes and

detect shifts in patterns of global marine habitats.

Methods

We employ the optimality-based model of phytoplankton growth to obtain 1◦ global monthly growth rates

and phytoplankton C:Chl estimations for the period January, 2005–December, 2010 (Supplementary in-

formation). The model is forced with monthly sea surface temperature (SST), photosynthetically active

radiation (PAR), and nitrate inputs. Monthly SST inputs are obtained from the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) http://oceancolor.gsfc.nasa.gov. PAR is included as the “Median

Mixed Layer Light Level” (Ig) which approximates the average light intensity experienced by phytoplankton

cells in the surface mixed layer (Ig, Behrenfeld et al., 2005),

Ig =
1

D
· PAR · e−K490·MLD

2 (6)

Ig depends on the day-length-fraction (D, given by the time of the year), surface PAR (E m−2 d−1), the

diffusive light attenuation coefficient estimated at 490 nm (K490) (m−1) and mixed layer Depth (MLD) (m).

Monthly MLD outputs are obtained from the Ocean Productivity site of Oregon State University (http://

science.oregonstate.edu/ocean.productivity/index.php). Monthly nitrate inputs are obtained from

multiple local linear regressions of SST, MLD, and Chl employing the algorithm described in Arteaga et al.

(2015). All inputs variable are re-gridded to a 1◦ spatial resolution grid.

Light and nutrient (nitrogen) limitation is initially derived from the optimality-based model using the pa-

rameter set in Table S.1, following Eqs. (1) and (2). The limitation indices are employ to allocate multi-

ple phytoplankton species adapted to different light and nitrogen conditions using Eqs. (3) and (4). We

run the physiological phytoplankton model one more time employing the α and A0 maps obtained above,

and estimate global phytoplankton growth rates and Chl:C ratio. Primary production is calculated as the

product of modelled growth rates, Chl:C, and satellite-based Chl concentrations from the MODIS sensor,
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using Eq. (5). Monthly estimations of surface Chl are obtained from http://oceancolor.gsfc.nasa.gov.

We compare our PP rates with estimates from the CbPM (Westberry et al., 2008) and VGPM models

(Behrenfeld and Falkowski , 1997b). Monthly VGPM and CbPM PP outputs are obtained from http:

//science.oregonstate.edu/ocean.productivity/index.php.

Phytoplankton carbon (Phyto-C) is estimated as:

Phyto-C = (C:Chl)m · ChlMODIS (7)

where (C:Chl)m is the predicted C:Chl ratio (mol mg−1), and ChlMODIS is the Chl concentration (mg Chl

m−3) estimated from the MODIS sensor. Surface POC estimates are obtained as described in Dufort-Gaurier

et al. (2010) (POCsat) by the average of two methods: Based on an empirical power-law buit between surface

POC and the blue-to-green ratio of the remote-sensing reflectance (Stramski et al., 2008); and based on

deriving surface POC from a remotely sensed inherent optical property (Loisel et al., 2002). The relative

contribution of phytoplankton carbon to total POC (Relaphy-C) is estimated as:

Relaphy-C =
Phyto-C

POCsat
(8)
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Supplementary information

Determination of phytoplankton growth rate

In order to calculate growth rates we employ the optimality-based model of Pahlow et al. (2013). This

model is based on the physiological roles of nitrogen and phosphorus within the internal compartments of a

phytoplankton cell. Nitrogen is associated with enzyme activity and is directly linked with phytoplankton

growth, acting as the main limiting nutrient. Phosphorus constrains nitrogen assimilation in the ribosomes,

and thereby limits nitrogen acquisition. However, a previous study with this optimality-based model carried

out by Arteaga et al. (2014), identified that phosphorus has a secondary limiting effect on phytoplankton

growth in the global ocean. Hence, phosphorus limitation has been shut down in the current analysis, and

nutrient limitation has been restricted only to nitrogen.

Phytoplankton growth is described as the difference between carbon fixation (V C) and respiration (R),

µ = V C −R (S.1)

V C is a function of the nitrogen cell-quota (QN), the potential CO2 fixation rate (V C
0 ), and photosynthetically

active radiation (PAR). PAR is used to quantify the median mixed layer light level, Ig (Eq. 6). The effect of

light limitation is estimated by the degree of light saturation of the cellular light-harvesting apparatus, SI

(Pahlow , 2005).

SI = 1− e
−αIgθ̂C

V C
0 (S.2)

where α is the light absorption coefficient, V C
0 is the potential C fixation rate, and θ̂C is the chlorophyll to

carbon ratio of the chloroplast.

Carbon-fixation rate is then defined as,

V C = V C
0 (1− QN

s

QN
− fV)SI (S.3)

where fV is the fraction of cellular nitrogen allocated for nutrient acquisition, and QN
s represents cellular
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nitrogen bound in structural protein. Respiration comprises the cost of photosynthesis (RChl) and the cost

of nitrogen assimilation (ζNV N) assumed to be proportional to nitrogen assimilation (V N),

R = ζNV N +RChl (S.4)

nitrogen allocated for nutrient acquisition (fvQ
N) is divided between dissolved inorganic nitrogen and dis-

solved inorganic phosphorus acquisition via another allocation factor (fN):

V N = fVfNV
N
∗ V P = fV(1− fN)V

P
∗ (S.5)

where V N
∗ and V P

∗ are potential rates of N and P uptake as functions of potential uptake rates, V N
0 and V P

0 ,

and affinity, A0.

The allocation factors fV and fN are calculated to maximize net balanced growth rate.

Temperature dependence

Since the original model (Pahlow et al., 2013) does not include temperature, we introduced a temperature

dependence (Eppley , 1972) of the maximum rate parameters, in the same manner as in Arteaga et al. (2014):

V C
0 = V N

0 = V P
0 = 1.4 ∗ 1.066TEMP (S.6)

For this study, a temperature dependence has also been included for the respiration cost of Chl maintenance

(RChl
M ):

RChl
M : 0.028 ∗ 1.086TEMP (S.7)

Chlorophyll to carbon ratio

The Chl:C ratio is constrained by the effects of nutrient and light limitation on phytoplankton growth. As

explained in Arteaga et al. (2014), the Chl:C ratio is regulated to maximize the energy available for nitrogen

assimilation. The first step to calculate the Chl:C ratio is the determination of the Chl:C ratio of the

chloroplasts:

θ̂C =
1

ζChl
+

V C
0

αIg

{
1−W0

[(
1 +

RChl
m

DV C
0

)
e

αIg

V C
0 ζChl +1

]}
if Ig > Ig0 (S.8)
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θ̂C = 0 if Ig ≤ Ig0

where ζChl is the cost of photosynthesis, RChl
m is the cost of Chl maintenance, and W0 is the 0-branch the

Lambert-W function, and:

Ig0 =
ζChlRChl

m

Dα
(S.9)

is the threshold irradiance for chlorophyll synthesis.

The Chl:C ratio of the entire cell is then obtained as a direct result of N and light limitation, represented

by QN and θ̂C respectively,

Chl:C = θ̂C
(
1− QN

s

QN
− fv

)
(S.10)

where QN
s is the partial N quota bound in structural protein, and fv is the fraction of QN allocated for

nutrient acquisition (Pahlow et al., 2013).

Skill assessment

The skill of our model is assessed by comparing our PP estimations with observations of the tropical Pacific

Ocean (Friedrichs et al., 2009). We computed the same metrics as in Friedrichs et al. (2009). Total root

mean square difference (RMSD) is calculates as:

RMSD =

√√√√ 1

N

n∑
i=1

∆2(i) (S.11)

Model-data misfit in log10 space (∆) is defined as,

∆(i) = lg(PPm(i))− lg(PPd(i)) (S.12)

RMSD is composed of two components, the bias (B), and the centered-pattern RMSD (RSMDcp),

RMSD2 = B2 +RSMD2
cp, (S.13)

The bias and RSMDcp provide measures of how well the mean and variability are modeled, respectively

(Friedrichs et al., 2009),

B = lg(PPm)− lg(PPd) (S.14)
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RMSD =

√√√√ 1

N

n∑
i=1

{[
lg(PPm(i))− lg(PPm)

]
−
[
lg(PPd(i))− lg(PPd)

]}2

(S.15)

Fmed is a non-dimensional inverse transformed value for bias, used to translate the above quantities obtained

in decades of log10,

Fmed = 10B (S.16)

if Fmed = 2.0 the median value of PPm(i) is a factor of two larger than the median value of PPd(i); if Fmed

= 0.5, the median value of PPm(i) is a factor of two smaller than PPd(i) (Campbell et al., 2002; Friedrichs

et al., 2009).

Sensitivity analysis

General sensitivity

We conducted several sensitivity analyses in order to evaluate the effect of each model parameter presented

in Table S.1 on the estimation of global primary production rates. We performed 12 additional calculations

of global PP for the year 2005, incrementing each of the 6 non-temperature dependent parameters of the

model (Table S.1) by 5 and 50%. The results of these calculations are summarized in Table S.3. Overall,

changes in the parameters have little effect in the computation of global annual PP rates. Only an increase

in the Chl-specific light absorption coefficient (α) has a noticeable effect when it is rose by 50%, resulting

in an increase of 30% in mean global annual PP. This is due to a quadratic effect of α on the carbon-based

production rate. On one hand, an increase in α results in a more efficient photochemical compartment,

which allows the cell to expend less energy on the production of Chl, thus, lowering the Chl:C ratio. On

the other hand, a higher Chl light absorption decreases the overral light limitation experienced by the cell,

increasing SI (Eq. S.2), the carbon fixation rate (Eq. S.3) and net growth rate of the cell (Eq. S.1).

An increase in A0 has opposite effects on the cell. It increases nutrient acquisition, which stimulates the net

growth rate (µ), but at the same time allows for a higher synthesis of Chl, which increases the Chl:C ratio.

Similar dynamics occur with QN
s . As phosphorus limitation is not included in this analysis the effects of QP

0

are negligible. An increment in the cost of photosynthesis (ζChl) results in a lower Chl:C which translates

into higher PP, particularly for a 50% increment in ζChl. ζN has a direct effect on the assimilation of carbon

by accentuating nitrogen limitation, hence the increase of this parameter results in a slight decrease in global

PP.
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Sensitivity of A0 and α parametrization

We performed a second set of analyses in order to determine the sensitivity of global annual PP rates for

2005, to changes in the parameters of the nutrient and light dependent functions of A0 and α. The original

slope and offset of α (aα = 1 and bα = 0.3) were increased by 10% to aα = 1.1 and bα = 0.33, while for A0

we decreased the original slope and increased its offset by 10% (from aA = 100 to aA = 90 and from bA = 40

to bA = 44, respectively). The highest relative changes on PP were obtained when the parameters of α

were altered simultaneously (Table S.4, sensitivity test 1–4). This points to α as the parameter to which the

model is most sensitive, as already evidenced in our initial sensitivity analysis. This change is maximized

when aA is also reduced from 100 to 90, as a lower A0 results in a higher Chl:C ratio. When α is unaltered,

changes in PP are only as high as 0.05 %.

Table S.1: Model parameters values and description.

Symbol Value Description

A0 100 Potential nutrient affinity (m3 mol−1 d−1)
α 0.8 Chl-specific light affinity (m2 E−1 mol (g Chl)−1)
QN

s 0.025 Partial N quota bound in structural protein (mol N mol C−1)
QP

0 0.0018 Subsistence P quota (mol P mol C−1)
ζChl 0.6 Cost of photosynthesis (mol mol−1)
ζN 0.6 Cost of N assimilation (mol mol−1)
V C
0 , V N

0 , V P
0 1.4× 1.066TEMP Potential C, N, and P acquisition rates

RChl
M 0.028× 1.086TEMP Cost of Chl maintenance

Table S.2: Summary of model skill assessment for primary production. Statistical metrics are given for our
optimality-based estimations (Opt-based) using the parameter set in Table S.1, the C-based model from
Westberry et al. (2008) (CbPM), as well as averages and standard deviations for each metric over all models
evaluated in Friedrichs et al. (2009) (All).

Bias Fmed RMSDcp
Total
RMSD

Correlation
Standard
deviation

Opt-based 0.11 1.29 0.25 0.27 0.54 0.25
CbPM 0.25 1.79 0.30 0.39 0.36 0.26
All 0.14±0.02 1.38 0.25±0.01 0.30±0.01 0.51±0.01 0.21±0.01
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Table S.3: Summary of sensitivity experiments: Change in mean anual primary production (PP in Pg C
y−1) for 2005 for an increase in the parameter value by 5 and 50%.

Parameter
Parameter value
increased by 5%

Change in PP
(%)

Parameter value
increased by 50 %

Change in PP
(%)

A0 (m3 mol−1 d−1) 105 -0.03 150 -0.27
α (m2 E−1 mol (g Chl)−1) 0.84 4.0 1.2 28.4
QN

s (mol N mol C-1) 0.03 -0.16 0.04 -1.9
QN

0 (mol P mol C-1) 0.002 7 x 10−4 0.003 0.005
ζChl (mol mol−1) 0.6 0.8 0.9 6.4
ζN (mol mol−1) 0.6 -0.2 0.9 -2.0
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Figure S.1: Relative zooplankton carbon (C) contribution to total surface POC. Zooplankton C concentra-
tion was obtained from the World Ocean Atlas website http://www.nodc.noaa.gov/OC5/WOA01/1d_woa01.
html, as a collection of all observations available. Relative zooplankton-C biomass was calculated using the
mean of the full monthly POC data set(Dufort-Gaurier et al., 2010) for 2005–20210.
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Table S.4: Sensitivity of mean anual primary production (PP in Pg C yr−1) for 2005 as a result of changes
in the slopes (aα and aA) and offsets (bα and bA), respectively, of the light (α) and nutrient affinity (A0)
functions: Both aα and bα were increased by 10%, whereas for aA was decreased and bA was increased by
10%. A total of 15 sensitivity tests were performed covering all posible permutations. The respective 10%
change for each component is indicated by “•”. “−” indicates that the original parameter value was kept
the unaltered.

Sensitivity test α slope α offset A0 slope A0 offset
Change in PP
(%)

Original 1 0.3 0.1 0.04 0
1 • • • • 7.8
2 • • • - 7.9
3 • • - • 7.8
4 • • - - 7.8
5 • - • • 2.9
6 • - • - 2.9
7 • - - • 2.8
8 • - - - 2.9
9 - • • • 5.2
10 - • • - 5.3
11 - • • - 5.3
12 - • - - 5.2
13 - - • • 0.01
14 - - • - 0.05
15 - - - • -0.03
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Nitrogen cycling driven by organic matter export
in the South Pacific oxygen minimum zone
Tim Kalvelage1, Gaute Lavik1, Phyllis Lam1, Sergio Contreras1†, Lionel Arteaga2, Carolin R. Löscher3,
Andreas Oschlies2, Aurélien Paulmier1†, Lothar Stramma2 and Marcel M. M. Kuypers1*

Oxygen minimum zones are expanding globally, and at present account for around 20–40% of oceanic nitrogen loss.
Heterotrophic denitrification and anammox—anaerobic ammonium oxidation with nitrite—are responsible for most nitrogen
loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest
oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here,
we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements
of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export
production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related
nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the
shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including
anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus
the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen
minimum zones.

Coastal upwelling of nutrient-rich deep water fuels
high surface productivity at the eastern boundaries of
(sub)tropical oceans. The resultant export of organic

matter stimulates strong microbial respiration in the subsurface.
Combined with poor ventilation, permanently O2-deficient waters
called oxygen minimum zones (OMZs) develop at mid-depths1,2.
Ongoing global expansion and intensification of OMZs will
expectedly continue as anthropogenic pressures on marine en-
vironments grow3–5.

Although constituting only ∼1% (O2 ≤ 20 µmol kg−1) of global
ocean volume6, OMZs have a profound impact on the oceanic
nitrogen (N) balance as they account for∼20–40%of global oceanic
N loss7. Ocean de-oxygenation might enlarge the ocean volume
subject to N loss8, exacerbate N limitation of phytoplankton,
and reduce the ocean’s capacity to attenuate rising atmospheric
carbon dioxide levels. Assessing the effects of expanding OMZs on
the future ocean’s nutrient balance, however, remains speculative,
as biogeochemical models do not reproduce present-day global
patterns of N loss9–11. A major deficiency of those models seems to
be the poor representation of coastal regions, whereas an increasing
number of studies indicate that N loss in shelf OMZs (refs 12–14),
coastal–offshore OMZ water mass exchange15 and OMZ–sediment
interactions16 playmore important roles in the overall N budget.

On the basis of the observed accumulations of nitrite (NO2
−)

and associated N deficits, most N loss in OMZwaters has tradition-
ally been attributed to heterotrophic denitrification17–19, the step-
wise reduction of nitrate (NO3

−) to gaseous dinitrogen (N2). Recent
studies have, however, often failed to detect significant denitrifying
activity inOMZs; rather, anammox hasmore commonly been iden-
tified as amajorN2-forming pathway in these environments12–14,20.

1Max Planck Institute for Marine Microbiology, 28195 Bremen, Germany, 2GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany,
3Institute for General Microbiology, 24118 Kiel, Germany. †Present addresses: Large Lakes Observatory, University of Minnesota Duluth, Minnesota 55812,
USA (S.C.); Laboratoire d’Etudes en Géophysique et Océanographie Spatiales, UMR 5566, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9, France and
Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle, S/N Chucuito, Lima, Peru (A.P.). *e-mail: mkuypers@mpi-bremen.de.

The regulation of N-loss activity including anammox is not
fully understood. Anammox requires NH4

+ and NO2
−. Sources

and sinks of both compounds have been identified in the
OMZs, including aerobic NH3 and NO2

− oxidation, as well as
anaerobic NO3

− reduction to NO2
− and dissimilatory NO3

−/NO2
−

reduction to NH4
+ (DNRA; refs 14,15,21,22). Surprisingly, O2

sensitivity assays show that these processes in OMZ waters share
a large overlapping range of O2 concentrations (>0–20 µmol l−1)
in which they can co-occur, implying that within this range,
controlling factors other thanO2 aremore important23,24. Enhanced
autotrophic and heterotrophic N-cycling activity in the upper
OMZ (refs 13,14,20,21), and generally elevated anammox rates
usually measured in coastal versus offshore OMZs (ref. 6),
suggest that N loss might ultimately be regulated by export
production of organic matter.

To test this hypothesis, we conducted a large-scale survey of
N-cycling rates, functional gene abundances, chlorophyll, nutrient
and O2 concentrations, as well as modelled export production,
throughout the eastern tropical South Pacific (ETSP), one of the
main OMZs in the world25.

Dissolved inorganic nitrogen in the South Pacific OMZ
Consistent with past observations in the ETSP (refs 18,26), pro-
nounced secondary NO2

− maxima were found in the offshore
OMZ between 10◦ S and 18◦ S (Supplementary Fig. S1), extending
up to hundreds of kilometres westward with maximum concen-
trations of ∼11 µmol l−1. On the basis of the spatial distribution
of measured O2, the lower OMZ boundary occurred at ∼600m
on average near the Peruvian shelf (Supplementary Figs S1 and
S2). Henceforth, this is used as a depth cutoff to differentiate

NATURE GEOSCIENCE | ADVANCE ONLINE PUBLICATION | www.nature.com/naturegeoscience 1

© 2013 Macmillan Publishers Limited.  All rights reserved. 

 

Chapter 4 Dissertation, Lionel Arteaga

86



ARTICLES NATURE GEOSCIENCE DOI: 10.1038/NGEO1739

5° N

5° S

10° S

15° S

20° S

90° W 85° W 80° W 75° W 70° W

0°

5° N

5° S

10° S

15° S

20° S

0°

5° N 750 30

24

18

12

6

0

600

450

300

150

0

5° S

10° S

Peru

15° S

20° S

90° W 85° W 80° W 75° W 70° W

90° W 85° W 80° W 75° W 70° W90° W 85° W 80° W 75° W 70° W

0°

5° N 0.5

0.4

0.3

0.2

0.1

0.0

2.5

2.0

1.5

1.0

0.5

0.0

5° S

10° S

15° S

20° S

0°

5° Na b c

d e f

5° S

10° S

15° S

20° S O
ce

an
 D

at
a 

V
ie

w

O
ce

an
 D

at
a 

V
ie

w

O
ce

an
 D

at
a 

V
ie

w

O
ce

an
 D

at
a 

V
ie

w

O
ce

an
 D

at
a 

V
ie

w
O

ce
an

 D
at

a 
V

ie
w

90° W 85° W 80° W 75° W 70° W

0°

90° W 85° W 80° W 75° W 70° W

5° N

5° S

10° S

15° S

20° S

0°

¬7.5

¬6.0

¬4.5

¬3.0

¬1.5

0.0

Cruise track OMZ thickness NO3
¬

NO2
¬ NH4

+ N∗

Figure 1 |Maps of sampling locations and nutrient distributions in the ETSP OMZ. a, Sampling sites during M77-3 (filled red circles) and M77-4 (filled
yellow circles) and 15N experimental stations (filled blue circles). b, Vertical extent of the OMZ (in m) as defined by O2 ≤ 15 µmol l−1. c–f, Concentrations
of NO3

−, NO2
−, NH4

+ and N∗ (in mol m−2) integrated over the thickness of the OMZ. Red line in a denotes the 600 m isobath that was used to
demarcate the coastal OMZ from the offshore OMZ.

coastal OMZ stations, where the OMZ is in direct contact with
sediments and benthic N fluxes (<600m), from all others that
are defined as offshore OMZ stations. Integrated over the thick-
ness of the OMZ (defined by O2 ≤ 15 µmol l−1 where N-loss
activity remains detectable in O2 sensitivity assays24; Fig. 1b and
Supplementary Fig. S2), depth-integrated NO2

− concentrations
reached >2molm−2 in the offshore region (Fig. 1d). Concentra-
tions of NH4

+ were low (<0.25 µmol l−1) throughout the OMZ,
but could be ≥0.5 µmol l−1 over the shelf and near the upper
OMZ boundary further offshore. Deeper in the offshore OMZ,
plumes of elevated NH4

+ concentrations (≤∼3 µmol l−1) some-
times occurred (Supplementary Fig. S1), resulting in high depth-
integrated values (Fig. 1e).

Offshore OMZs were characterized by severe N deficits,
expressed here as strongly negative N∗ with minima from
−8 µmolN l−1 at 3.58◦ S down to −32 µmolN, l−1 at 16◦ S.
Depth-integrated values of N∗ (Fig. 1f) and NO2

− (Fig. 1d) were
significantly correlated (Spearman R = −0.61, P ≤ 0.001). The
southward intensification of both NO2

− maxima and N∗ min-
ima probably reflects the accumulated effects of time-integrated
microbial activity in OMZ waters that advect poleward along
the continental slope with the Peru–Chile Undercurrent27,28. Over
the Peruvian shelf between 12◦ S and 14◦ S, extreme N deficits
(N∗ down to −60 µmol l−1, Supplementary Fig. S1) were detected
along with the presence of hydrogen sulphide (H2S). These sta-
tions are not further considered in the remaining discussions
unless otherwise indicated, as the resident microbial communi-
ties and processes profoundly differ from typical OMZ scenarios
(Schunck et al. submitted.).

Sources of nitrite
Nitrite in the OMZs can be generated by NH3 oxidation, the first
step of nitrification, or by the reduction of nitrate to nitrite6,21,22.
Ammonia oxidation has been identified as a NO2

− source in the
Peruvian OMZ that is active under near-anoxic conditions21,23,29.
Ourmeasured rates ofNH3 oxidation generally peaked at the base of
the oxycline (∼90 nmolN l−1 d−1), decreased to the detection limit
at the stations furthest offshore, and were not detectable in the core
of the OMZ (Table 1 and Supplementary Table S2). The presence
of both archaeal and bacterial ammonia oxidizers is verified by the
detection of their functional genes encoding ammoniamonooxyge-
nase subunit A (Table 1 and Supplementary Table S3).

Integrated over the thickness of the OMZ, NO2
− production

through NH3 oxidation increased from undetectable at the
westernmost stations to ≤4.7mmol NO2

−m−2 d−1 near the coast
(Fig. 2a and Supplementary Table S1). For the entire OMZ volume
examined (∼5.5×105 km3), NH3 oxidation is estimated to produce
∼3.8 TgN yr−1 of NO2

−, with 24% attributed to coastal OMZ
(≤600m) and 76% offshore (>600m; Fig. 3). Although significant
rates have also been reported for the surface mixed layer in
the ETSP (ref. 30), the mixed layer was not included in the
present OMZ budget.

Overall, NH3 oxidation accounted for only ∼7% of the total
NO2

− production. Most came from NO3
− reduction to NO2

−,
consistent with previous findings in the Peruvian, Namibian and
Arabian Sea OMZs (refs 15,21,22). Apart from its association
with anammox, NO3

− reduction to NO2
− is the first step in

denitrification and DNRA, and NO3
− is the next preferred terminal

electron acceptor afterO2 for the oxidation of organicmatter. NO3
−
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Table 1 |Abundance of selected N-functional genes and N-conversion rates in the ETSP during cruise M77-3.

N-functional gene abundances (102 copies ml−1) N-conversion rates (nmol N l−1 d−1)

arch-
amoA

βββ-amoA γγγ-amoA hzo1 hzo2 den-
nirS*

nrfA NH3

ox.
Anammox Denitri-

fication
DNRA NO2

−

ox.
NO3

−

red.

Coastal OMZ (≤600 m)
N 63 (64) 8 (49) 0 (64) 8 (64) 42 (64) 0 (63) 0 (64) 27 (33) 33 (33) 3 (33) 7 (33) 27 (32) 27 (32)

Range 0.16–
2773

0.05–
1056

– 0.05–
0.09

0.14–
12.8

– – 0.22–
48.8

2.84–
227

2.21–
5.42

0.48–
1.74

8.48–
928

3.79–
1010

Mean 676 135 – 0.07 4.45 – – 8.24 43.4 4.19 1.14 172 203

Median 90 5.0 – 0.06 3.77 – – 3.40 21.2 4.94 1.10 65.4 101

Offshore OMZ (>600 m)
N 67 (71) 2 (33) 0 (72) 4 (71) 43 (72) 2 (72) 1 (72) 17 (40) 33 (40) 0 (40) 3 (40) 27 (40) 25 (34)
Range 0.04–

2332
0.15–
1.36

– 0.01–
0.09

0.06–
14.7

0.06–
1.98

0.11 0.51–
88.8

0.71–
46.9

– 0.33–
1.31

4.58–
186

4.53–
77.4

Mean 352 0.75 – 0.08 3.15 1.02 0.11 20.9 6.14 – 0.82 40.6 32.1

Median 89.5 0.75 – 0.08 1.51 1.02 0.11 5.79 3.01 – 0.83 30.2 22.3

Functional genes and N-conversion rates were not always determined at the same station and/or depths but with a comparable latitudinal and longitudinal as well as vertical resolution. N= number of
samples in which N-functional genes or N processes were detected; in parentheses: number of samples analysed. *denitrifier-nirS.
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Figure 2 |Depth-integrated N-cycling rates in the ETSP OMZ. a,b, The two steps of the aerobic nitrification, NH3 oxidation and NO2
− oxidation. c, NO3

−

reduction to NO2
−. d,e, N loss due to anammox as well as denitrification coupled to the oxidation of H2S during a sulphidic event on the Peruvian shelf.

f, Modelled export of organic N (Norg) from the euphotic zone to the OMZ. All rates are in mmol N m−2 d−1. Black dots represent 15N experimental stations.

reduction was detected throughout the OMZ at all investigated
stations; it reached a maximum (∼1 µmolN l−1 d−1) over the
central shelf, but dropped to∼5 nmolN l−1 d−1 at the westernmost
offshore stations (Table 1).

Depth-integrated rates showed a similarly declining trend
offshore (Fig. 2c and Supplementary Table S1). Integration over
the whole region yields an annual NO3

− reduction of ∼49 TgN, of
which 29% occurs in the coastal OMZ and 71% offshore (Fig. 3).
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Figure 3 |N fluxes and nutrient inventory of the ETSP OMZ. Black numbers indicate inventories of dissolved inorganic nitrogen (in Tg N). They were
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Table 2 | Spearman rank correlation of depth-integrated nutrients and N-cycling rates as well as modelled export production rates.

NH3 oxidation NO2
− oxidation NO3

− reduction Anammox Export production

NH4
+ 0.51* 0.31 0.08 0.30 0.29

NO2
− 0.46* 0.49* 0.71*** 0.64** 0.10

N∗ −0.08 −0.20 −0.05 −0.02 −0.02
Export production 0.56* 0.60** 0.75*** 0.79***
Anammox 0.75*** 0.86*** 0.88***
NO3

− reduction 0.49* 0.75***
NO2

− oxidation 0.73***

Presented values are correlation coefficients with significant values denoted by * (P≤0.05), ** (P≤0.01) and *** (P≤0.001).

Consistent with previous observations from the Peruvian23 and
the Arabian Sea15 OMZs, NO3

− reduction significantly correlated
with depth-integrated NO2

− concentrations (Spearman R= 0.71,
P≤0.001; Table 2), which indicates that NO3

− reduction is a major
contributor to the secondary NO2

−maxima.

Sinks of nitrite
Nitrite oxidation, the second step in nitrification, was most
active in the upper OMZ throughout the ETSP. Its activity was
detected deeper into the OMZ than NH3 oxidation, consistent
with earlier reports23,29. Nitrite oxidation rates were highest
(928 nmolN l−1 d−1) over the Peruvian shelf despite low O2 levels
(Table 1), and declined sharply to ≤∼20 nmolN l−1 d−1 along the
furthest offshore transect. Although NO2

− oxidation is believed
to require O2, this process has been detected at <1–2 µmol O2 l−1
in the Peruvian23,29 and Namibian OMZs (refs 22). O2 sensitivity
assays (∼1–25 µmol l−1) at two stations further demonstrated only
amoderate attenuation by lowO2 (atmost∼50% activity reduction
at <1 µmol l−1; Supplementary Fig. S3), which agrees well with
observations in the Namibian OMZ (ref. 22). Apparently, NO2

−

oxidizers are well adapted toO2-deficient environments.

NO2
− supply from NH3 oxidation, the first step of nitrification,

is thought to constrainNO2
− oxidation rates. Despite the significant

correlation between NH3 and NO2
− oxidation rates (Spearman

R = 0.73,P ≤ 0.001; Table 2), NO2
−oxidation rates in the ETSP

OMZ exceeded those of NH3 oxidation often by more than
tenfold (Fig. 2a,b and Supplementary Tables S1 and S2). Similar
observations in the OMZs off Namibia22 and Peru23,29 indicate a
decoupling of the two steps of nitrification in O2-deficient systems.
A likely alternative NO2

− source is NO3
− reduction.

On the basis of modelled N fluxes, a NO2
− shunt, in which

45–74% of the NO3
− reduced to NO2

− by denitrifying micro-
organisms is re-oxidized by aerobic NO2

− oxidizers, has been
proposed for the ETSP (ref. 31). In agreement, our annual rates
of NO2

− oxidation for the coastal (7 TgN yr−1) and offshore
OMZ (23 TgN yr−1) are equivalent to 51% and 65%, respectively,
of NO3

− reduction (Fig. 3). The strong correlation between the
two processes (Spearman R = 0.75,P ≤ 0.001; Table 2) indicates
a close coupling between NO2

− oxidation and NO3
− reduction

in the ETSP OMZ.
Meanwhile, only sporadic and low rates of DNRA

(≤1.3 nmol l−1 d−1) were detected during our sampling period
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(Table 1). A general lack of detectable nrfA, a key functional gene
encoding for the cytochrome c nitrite reductase, corroborates
these results (Table 1). DNRA seems to exhibit a high degree
of spatio-temporal variability, with similarly low rates measured
on the Namibian shelf22, but with tenfold greater rates and nrfA
gene abundance than previously observed in the OMZs off Peru21

and Oman14. Hence, we cannot exclude DNRA as a significant
NOx

− sink for andNH4
+ source in the ETSP at other times.

Nitrogen-loss activities
At the time of our sampling, denitrification, expressed as the
production of 30N2 from 15NOx, was generally non-detectable. Low
rates of denitrification (2–5 nmol l−1 d−1) were measured in three
samples from the Peruvian shelf OMZ (Table 1 and Supplementary
Table S2). Substantially higher rates were detected in a few samples
containingmeasurable amounts of H2S (Fig. 2e and Supplementary
Tables S1 and S2), suggesting a couplingwithH2S oxidation (ref. 32;
Schunck et al. submitted.). In contrast to the conclusion drawn by
a recent study33, water-column denitrification was only of minor
importance (�1% totalN loss) for the overall N budget in the ETSP
OMZ (Supplementary Information).

N2 production attributed to anammox was detected at all
stations except the two furthest offshore, consistent with previous
studies in the ETSP (refs 13,20,34). Anammox activity was often
enhanced in the upper OMZ and markedly elevated in the bottom
waters over the shelf and upper continental slope. Rates were
highest (≤∼225 nmolN l−1 d−1) over the central shelf (10◦ S–16◦ S)
and declined by two orders of magnitude westward (Table 1). The
presence of anammox bacteria was verified by the detection of
their characteristic hydrazine (N2H4) oxidoreductase genes (hzo1
and 2) throughout the OMZ; whereas denitrifier-nirS, encoding for
the cytochrome cd1-containing nitrite reductase, was generally not
detectable (Table 1 and Supplementary Table S3).

Depth-integrated anammox rates were >10mmolNm−2 d−1
on the central shelf, similar to previous findings13, and
<1mmolNm−2 d−1 at the furthest offshore stations (Fig. 2d
and Supplementary Table S1). Altogether, anammox accounts
for an annual N loss of ∼10 Tg in an area of 1.2 × 106 km2,
which is at the lower end of earlier estimates for the ETSP
(9–26 TgN yr−1; refs 13,18,23,35).

Fluxmeasurements of dissolved inorganic nitrogen andN2 made
just before our sampling demonstrate that the sediments underlying
the OMZ are further sites of N loss16. Combined with reaction–
diffusion modelling, anammox and denitrification were shown to
be active N sinks in the Peruvian coastal sediments. On the basis
of the reported sedimentary NOx

− fluxes and NOx
− partitioning

between anammox, denitrification andDNRA (ref. 16), we estimate
a loss of 1 TgN yr−1 from sediments in contact with the OMZ
bottom waters (Fig. 3).

Conventionally, the accumulation of NO2
− in OMZ waters has

been interpreted as a sign of active N loss, and thus, is targeted
by most field-sampling campaigns17–20,23,26,29. Our data contradict
this interpretation. Unlike NO2

−, depth-integrated anammox rates
did not reveal any meridional trends, but decreased from shelf
to offshore. Whereas depth-integrated anammox rates and NO2

−

concentration were moderately correlated (Spearman R = 0.64;
P < 0.001; Table 2) significant correlations between volumetric
rates and NO2

− concentrations were observed only for the shelf
OMZ (Spearman R=0.72,P <0.001) and not offshore (Spearman,
P > 0.5). NO2

− accumulation offshore probably resulted from a
greater persistence of NO3

− reduction to NO2
− compared with

other NO2
−-consuming processes in a poorly ventilated region,

where the netNO2
− gainwas about five times higher comparedwith

the coastal OMZ (11.4 and 2.2 TgN yr−1, respectively).
Ongoing water-column N loss cannot be deduced simply from

the intensity of N∗ minima, as shown by the lack of significant

correlation (Spearman P>0.05) between anammox activity andN∗
(Table 2). Whereas the depth-integrated N deficit is largest (most
negative N∗) offshore, anammox activity is highest over the shelf
and upper continental slope. Although comprising only 10% of
the area covered and merely 4% of the sampled OMZ volume,
coastal OMZ waters contribute as much as 30% of the total N loss
(Fig. 3). Meanwhile, N deficits in coastal OMZ waters amount to
only 5% (4 TgN) of the total N deficit (71 TgN). Hence, the large
N deficit offshore most likely results from horizontal advection
of N-deficient shelf waters21 that accumulate owing to a long
residence time in the offshore OMZ (∼10 years based on N∗ and
measured N loss). This is analogous to recent observations made
in the Arabian Sea: substantial NO2

− accumulation and low N-loss
activity in the central basin, compared with the rapidN loss over the
adjacent productive Omani shelf14,15.

Sources of ammonium
N loss driven by anammox requires NH4

+, which usually does
not accumulate in OMZs. Ammonium concentrations can be
kept low by a tight coupling between NH4

+ production and
consumption processes, although the NH4

+ released at the
reported remineralization rates may already be sufficient to fuel
anammox. Major sources of NH4

+ are water-column organic
matter remineralization and sedimentaryNH4

+ release.
DNRA and organic matter ammonification are active ben-

thic NH4
+ sources off the coast of Peru. During two preced-

ing cruises (M77-1 and 2) to the ETSP (ref. 16), large NH4
+

fluxes (∼0.5–4mmolm2 d−1) from sediments into the overly-
ing OMZ waters were measured on a cross-shelf transect at
11◦ S. The often enhanced anammox activity in the coastal
OMZ bottom waters suggests a strong influence from NH4

+

diffusing out of the sediments13,36. Assuming an average benthic
NH4

+ flux of ∼2mmolm−2 d−1 and a typical anammox rate
of ∼4mmolNH4

+m−2 d−1 for the Peruvian coastal waters, the
underlying sediments could supply ∼50% of the NH4

+ needed
for the anammox rates observed. Clearly, further NH4

+ sources
are necessary to fulfil the remaining requirements for anammox,
especially in offshore OMZ waters, which are spatially decou-
pled from the sediments.

On the basis of the measured NO3
− reduction rates, subsequent

ammonification of Redfieldian organic matter generates 65% and
73% of the NH4

+ needed for anammox in the coastal and offshore
OMZs, respectively (Fig. 3). These are probably underestimates,
considering the observed preferential degradation of N-rich organic
matter through NO3

− respiration under suboxic conditions37.
Whether the reduction of NO3

− is directly coupled to the oxidation
of organic matter, or indirectly through a recently proposed cryptic
sulphur cycle38, could not be discerned at this point.

Remineralization of sinking organic matter and subsequent
NH4

+ release is usually enhanced near the upper OMZ boundary,
and would support the high anammox and NH3 oxidation
activity observed13–15,20,21,23. On average, ∼40% of their combined
NH4

+ demands are supplied by NO3
− reduction, with the

remainder possibly coming from microaerobic organic matter
remineralization20. The activity of O2-dependent nitrification
at non-detectable O2 concentrations in OMZs indicates that
microaerobic respiration proceeds even at nanomolar O2 levels,
in accordance with an apparent half-saturation coefficient of
<20 nmol l−1 previously reported for microaerobic respiration in
these waters39. High O2 consumption rates, mainly attributable
to heterotrophic respiration, and genes encoding for terminal
respiratory oxidases with high O2 affinities were detected in the
ETSP on the same expedition (Kalvelage et al. unpublished).
Although there are suggestions that O2 is efficiently depleted down
to the limits of microaerobic respiration in the OMZ core40, regular
intrusions of more oxygenated surface waters or mixing events,
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such as those related to eddies41, may sustain aerobic microbial
activity in the upper OMZ.

Surface productivity drives sub-surface nitrogen cycling
Depth-integrated anammox rates correlated strikingly well with
NO3

− reduction, NO2
− oxidation and NH3 oxidation (Spearman

R = 0.88, 0.86 and 0.75, respectively; P ≤ 0.001), indicating a
common controlling factor for their concerted activity. Our data
suggest that N cycling processes in the OMZ are tightly coupled to
the export of organic matter.

Export of organic matter at the base of the euphotic zone was
estimated from net primary production42 (NPP) and the ratio of
export-to-total primary production (ef ratio)43. At the time of
sampling, NPP was up to ∼3 g organic C (Corg)m−2 d−1 near the
coast and decreased to <0.5 gCorg m−2 d−1 further offshore, values
typical for the Peruvian upwelling system44. Computed ef ratios
ranged from 0.16 (low-NPP sites) to 0.42 (high-NPP sites). The
resulting N-export production rates (converted from measured
C: N = 7.2 of surface particulate organic matter) were >10mmol
organic N (Norg)m−2 d−1 over the shelf and of the order of
∼1mmolNorg m−2 d−1 at the stations furthest offshore (Fig. 2f and
Supplementary Table S1). Export production was highly correlated
to depth-integrated rates of anammox, NO3

− reduction and
NO2

− oxidation (Spearman R= 0.79, 0.75 and 0.60, respectively,
P ≤ 0.001) as well as NH3 oxidation (Spearman R= 0.56, P ≤ 0.01;
Table 2). This suggests that the lateral distribution of N-cycling
activity, including anammox, is mainly determined by the export of
organic matter, which is the ultimate source of the required reactive
substrates NH4

+ and NO2
− in the OMZ.

Overall, we estimate NPP of 12 and 47 TgN yr−1 in the coastal
and offshore surface waters, respectively, which seem reasonable
at a net lateral supply of 88 Tg NO3

− yr−1 to the upwelling
region (Fig. 3). The corresponding export fluxes are 4.4 and
9.9 TgNorg yr−1. Taking organic matter sedimentation and export
to the deep ocean into account, our results show that the export
production to the OMZ is sufficient as an N source to support
the measured N fluxes.

In summary, extensive sampling and experimentation through-
out the ETSP OMZ shows that the activity of anammox and N-
linked processes is highly correlated with export production. High
productivity over the shelf and upper slope, as well as sedimentary
NH4

+ release, drive high rates of tightly coupledN cycling processes
and thus N loss through anammox in the shallow coastal OMZ
compared with the offshore OMZ.

Although the globally expanding OMZs might increase the
oceanic volume conducive to N loss, N loss would continue
to rise only as long as there is sufficient nutrient supply for
primary production in the euphotic zone, and nutrient supply
is not hampered by intensified stratification (that is, reduced
upwelling) due to ocean warming. These positive and negative
feedbacks are important considerations for biogeochemicalmodels,
which at present do not adequately reproduce the observed
spatial patterns of N loss in OMZs. In light of our results, the
activities of N loss through anammox seem to be directly linked
to export production rates in biogeochemical models using the
following empirical relationship: anammox = 0.7× Norg export
(Supplementary Fig. S4). This may facilitate a realistic assessment
of the short- and long-term impacts of ocean de-oxygenation and
changing productivity on N cycling in OMZs, as well as their effects
on neighbouring water masses.

Methods
Physico-chemical and N cycling rate measurements. Large-scale distributions
of chemical and biological variables were determined during the cruises M77-3
and 4 from December 2008 to February 2009 onboard R/VMeteor. Sea water was
collected with either a conductivity–temperature–depth (CTD) rosette system

fitted with 10 l Niskin bottles or a pump–CTD system (depth range: ∼375m).
Continuous vertical profiles of chlorophyll a were obtained fluorometrically and
calibrated against discrete values derived from acetone extraction. Oxygen was
measured with a Seabird sensor, a conventional amperometric microsensor and
a highly sensitive STOX (switchable trace amount oxygen) sensor39 (detection
limit: 50 nmol l−1). Dissolved inorganic N and PO4

3− concentrations were analysed
using standard protocols45,46. Nitrogen deficits were calculated as N∗ following
ref. 47. Rates of microbial N cycling (NH3 and NO2

− oxidation, NO3
− reduction,

anammox, denitrification and DNRA) were determined in short-term, time-series
incubation experiments with various combinations of 15N-labelled and unlabelled
compounds as described in refs. 22,48. Oxygen sensitivity assays for NO2

−

oxidation were conducted as previously described22. Consistent rates for anammox
were calculated from the various 15N incubation experiments (15NH4

+
±

14NO2
−,

15NO2
−
±

14NH4
+, 15NO2

−
±

14NH4
+) for coastal OMZ stations, whereas more

variability was associated with offshore OMZ stations. Although the possibility
of substrate stimulation due to 15N/14N amendments cannot be fully eliminated,
marine microbes including anammox and nitrifying bacteria13,22 are often
associated with particles, and thus can experience substrate concentrations several
orders of magnitude greater than the ambient water49 such that our measured
rates could also be substantially underestimated. To examine whether the export
production is sufficient to support these measured rates of various subsurface
N-cycling processes and ultimately N loss, the maximum potential rates for
anammox from the various isotope amendments (Supplementary Table S2) were
used in budget calculations. On the basis of our combined rate measurements,
nutrient inventories and subsequent modelling, the N fluxes are sufficient to
support all measured rates of N transformation. Hence, the here-presented
measured rates may not be too far from reality.

Molecular ecological analyses. Water samples for nucleic-acid-based analyses
were collected onto polyethersulphone membrane filters (0.2 µm; Millipore) and
immediately frozen at −80 ◦C until further analysis. Nucleic acids were extracted
using a Qiagen DNA/RNA All prep Kit following the manufacturer’s protocol
with minor modifications50. Functional genes for archaeal and bacterial (β-/
γ-proteobacterial) NH3 oxidation (arch-amoA and β-/γ-amoA, respectively),
anammox (hzo1 and 2), denitrification (denitrifier-nirS) and DNRA (nrfA)
were PCR-amplified as described previously50. Standards for quantitative PCRs
were obtained from: Nitrosococcus oceani NC10 and Nitrosomonas marina
NM22 and NM51 (γ- and β- amoA, respectively), an environmental clone
(GenBank accession number JF796147; arch-amoA), Candidatus ‘Scalindua
profunda’ (hzo1 and 2), Pseudomonas aeruginosa PAO1 (denitrifier-nirS) and
Escherichia coli K12 (nrfA).

Modelling of export production. Export production was calculated from
estimates of NPP and the ratio of export production to total primary production
(ef ratio). NPP at the time and location of our experimental stations was
computed from measured chlorophyll a concentrations and satellite-based
(MODIS (Moderate Resolution Imaging Spectroradiometer) ocean colour data)
estimates of photosynthetic available radiation using the vertically generalized
production model42. ef ratios were calculated from NPP and measured surface
temperatures according to ref. 43.
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3 Synthesis

3.1 Phytoplankton C:N:P: acclimation vs. adaptation

The results presented in this thesis rely largely on the accurate determination of phytoplankton cell-quotas.

The ratio of subsistence and actual cell-quotas (Qnutrient
0 : Qnutrient) is the basis for the determination of

nutrient and light colimitation areas (Chapter 1), as well as the distribution of species adapted to differ-

ent light and nutrient conditions (Chapter 3). The phytoplankton N:P global pattern obtained with the

optimality-based model (Fig. 2-Chapter 1), shows in general a high N:P ratio in high latitudes and the

Equatorial Pacific, and low N:P in subtropical regions. This pattern is mainly constrained by the distri-

bution of areas of N limitation in the global ocean. N is identified as the main limiting nutrient in the

tropical and subtropical ocean (Fig. 4-Chapter 1), hence low phytoplankton N:P ratios are estimated for

these regions. This pattern does not entirely adhere to what is observed in samples of particulate organic

matter associated with autotrophic organisms, which overall suggests high N:P ratios in low latitudes and

viceversa (Martiny et al., 2013a). The difference between the model-based N:P and the N:P ratio inferred

from POM observations is reduced when the longitudinal mean is calculated across different latitudes (Fig.

3-Chapter 1).

The global phytoplankton N:P pattern predicted by the optimality-based model is a result of phytoplankton

acclimation to N and P availability and limitation. This behaviour has been observed in laboratory cultures,

where phytoplankton N:P follows the dissolved inorganic N:P ratio (Rhee, 1974, 1978). Nevertheless, in

the global ocean areas of low dissolved N:P are often believed to be associated with high phytoplankton

N:P ratios (Martiny et al., 2013a). These areas tend to be zones of intense nutrient limitation, such as the

oligotrophic gyres. Different cellular components have their own stoichiometric properties (Falkowski , 2000).

Phytoplankton is expected to have high N:P ratios in nutrient limited zones as a result of a physiological

adaptation to low nutrient conditions. The cellular nutrient-acquisition machinery, greatly conformed by

proteins, is high in N but low in P, whereas the growth machinery, composed by molecules such as ribosomal

RNA, has a lower N:P ratio (Geider and La Roche, 2002). Species adapted to low nutrient and slow growth

conditions are expected to have an inherent high N:P elemental composition, while fast growing species are

thought to have a lower N:P ratio (Arrigo, 2005). As a consequence, phytoplankton species in low latitudes

(nutrient-limited areas) are assumed to be associated with high N:P ratios, while species in high latitudes

(nutrient-rich areas) are assumed to be associated with low N:P ratios.

The hypothesis that phytoplankton stoichiometry is determined by adaptation anticipates high phytoplank-

93



Synthesis Dissertation, Lionel Arteaga

ton N:P in low latitudes and low N:P in high latitudes. On the contrary, the acclimation hypothesis predicts

low N:P in low latitudes and viceversa. The idea of a genetically determined cellular composition adapted to

certain environmental conditions is to some extent supported by global observations of phytoplankton N:P

(Martiny et al., 2013a). At the same time, the hypothesis of a dynamic optimal phytoplankton acclimation

to diverse nutrient and light regimes appears also valid, and is supported by laboratory studies as well as

global observations in phytoplankton C:P and C:N ratios (see Chapter 1 and Martiny et al., 2013b). Two

major question thus arise: What determines phytoplankton stoichiometry in the global ocean? Are changes

in stoichiometric ratios mainly driven by a pre-established adaptation or by dynamic continous acclimation

of phytoplankton to its physicochemical environment?

The optimality-based model predicts not only observed patterns of C:P and C:N, but also the expected

distribution of the global Chl:C ratio. High Chl:C is expected in high latitudes where light limitation is

important, while a low Chl:C ratio is predicted in low latitudes where light levels are constantly high (see

Chapter 1 and 3). Chl synthesis is expected to depend on photosynthetic rates, which at the same time

rely on enzyme activity and hence N availability. If the adaptation hypothesis dominates the regulation

of phytoplankton elemental composition, how can the idea of a low N:P in light-limited high latitudes be

reconciled with a high Chl:C ratio in these regions? A possible explanation is that Chl:C is not directly

related to N:P, but to the C:N ratio. The adaptation hypothesis initially predicts a low phytoplankton

N-content in high latitude fast-growth regions, and a high N-content in low latitude slow-growth regions.

This would thus imply high C:N in high latitudes and viceversa, which is against observed patterns of C:N

obtained from POM samples (Martiny et al., 2013b), and global C:N patterns predicted by the acclimation

hypothesis (Chapter 1). Hence, while the acclimation hypothesis provides a clear link between phytoplankton

elemental stoichiometry and Chl cell-quota, the relation between expected patterns of Chl:C and assumed

C:N:P ratios according to the adaptation hypothesis is not entirely clear.

A likely realistic scenario is that both hypotheses (acclimation and adaptation) complement each other to

explain the variability in phytoplankton cellular composition. Different phytoplankton species might have

a predetermined range of cellular compositions resulting from adaptation to ambient conditions. At the

same time, the internal regulation of phytoplankton composition is a dynamic process observed in culture

experiments (Pahlow and Oschlies, 2009; Pahlow et al., 2013), that likely also takes place in the ocean.

This optimal regulation probably acts on top of any preset constraints to cellular stoichiometry, altering

the cells elemental composition. A possible approach to account for both processes consists in employing a

species allocation scheme as described in Chapter 3. This approach would result in phytoplankton adapted
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to nutrient-limiting conditions in low latitudes to have a higher nutrient affinity with respect to high latitude

species. Phytoplankton in low latitudes would have higher N uptake rates, increased N cell-quota, and greater

N:P ratios, as expected from POM observations (Martiny et al., 2013a). On the other hand, phytoplankton

in high latitudes would show a lesser increase in N cell-quota, and hence lower N:P ratio with respect to

phytoplankton in lower latitudes.

3.2 Phytoplankton physiology and oceanic productivity

Bio-optical satellite models of primary productivity do not explicitly account for the effects of nutrient

limitation on phytoplankton growth. In order to assess both nutrient- and light-dependent physiological

constraints on growth and PP, a method to infer monthly nitrate concentrations in the global surface ocean

was developed in Chapter 2. One of the main conclusions of the colimitation analysis presented in Chapter

1 is that N is the main limiting nutrient in the global ocean. P seems to have only a colimiting effect. This

conclusion is derived from physiological changes in N and P cell-quotas of phytoplankton (instead of regional

patterns of dissolved inorganic N:P).

The estimation of PP described in Chapter 3 employs a physiological model to describe changes in the

relative composition of phytoplankton with respect to carbon. While the relative patterns of biomass are

inferred from satellite-Chl observations, the model predicts the Chl:C ratio resulting from photoacclimation

at each 1◦ by 1◦ grid-box. Thus, this method is in essence a C-based method, as phytoplankton C-biomas

is inferred pior to the estimation of the global production rates.

As shown in Chapter 3, C-based models of PP have also been developed from bio-optical algorithms (Behren-

feld et al., 2005; Westberry et al., 2008). These models show a distinct global latitudinal trend in oceanic

primary productivity from Chl-based models. It is remarkable that the results obtained from a mechanistic-

model able to describe phytoplankton physiological changes in Chl:C, yield global patterns and annual

PP rates very similar to an independent C-based satellite model (Chapter 3). Satellite Chl-based models

presently constitute the main reference of global PP patterns in the ocean. They are frequently used to

evaluate the performance of global circulation models (GCMs) in simulating marine primary productivity.

Most of these GCMs are calibrated in order to replicate and project the future carbon cycle. Given the ob-

served differences between C and Chl-based models, important questions emerge over what each PP pattern

represents, and which one describes more accurately the global carbon cycle.

Both bio-optical algorithms (C- and Chl-based), as well as the optimality-based model have been evaluated

against independent in situ observation of C-fixation based on 14C (see Chapter 3 and Friedrichs et al.,
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2009). Nonetheless, no substantial differences were found among the predictive skills of these models. Part

of the reason for this lack of differences between models is that all in situ observations correspond to the

same oceanographic region in the Equatorial Pacific. The most striking contrast between C- and Chl-based

models is observed when comparing global latitudinal trends in PP. Chl-based models assume that high

Chl concentrations in high latitudes represent high PP rates, whereas C-based models attribute this pattern

to high Chl:C ratios. Hence, to accurately describe differences between both types of models, a globally

distributed data set of PP observations spread across several latitudinal degrees is necessary.

An alternative approach to assess the effects of phytoplankton flexible stoichiometry on predicted PP patterns

by GCMs, is the incorporation of optimality-based dynamics in the biogeochemical compartment of such

models. At the moment, alterations derived from climate change under intensive greenhouse gas emissions

scenarios (RCP8.5, Riahi et al., 2011) are projected to decrease global net PP (NPP) rates by≈ −8.6 % (Bopp

et al., 2013). Total predicted changes in global NPP range from 0 to -16 % (Bopp et al., 2013). Regional

changes in NPP can have opposite sign and be substantially larger than global trends (Steinacher et al., 2010).

Furthermore, alterations in the production of higher trophic levels (e.g., mesozooplankton) can be twice as

large as projected changes in NPP (Stock et al., 2014). The main environmental drivers of these projected

changes in NPP is a redistribution of nutrient and light availability as a result of strengthening surface

ocean stratification (Sarmiento et al., 2004; Schneider et al., 2008; Riebesell et al., 2009). However, all these

variations are inherently tied to the premise of phytoplankton fixed stoichiometry and lack of physiological

acclimation (i.e. fixed Chl:C ratio). The results presented in this thesis show that phytoplankton growth,

and hence PP, adjust via physiological acclimation to different nutrient and light limitation regimes. Hence,

the assessment of repercussions of climate change for marine biogeochemical cycles, and primary productivity

in particular, can yield different conclusions if physiological optimality-based formulations are employed.

Aiming to initiate the inclusion of physiological formulations of phytoplankton growth in global Earth system

models, the optimality-based model of Pahlow et al. (2013) was coupled to the University of Victoria Earth

System Climate Model (UVic ESCM) (Weaver et al., 2001). The results derived form this modelling study

are still under analysis. In the next section, the overall structure and changes made in the biogeochemical

compartment of the UVic ESCM are described, and an initial analysis of global biogeochemically relevant

results is presented.
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3.3 Coupling an optimality-based phytoplankton formulation into an Earth sys-

tem climate model

3.3.1 Model implementation

A set of formulations describing optimilaty-based growth of phytoplankton (Pahlow et al., 2013) were in-

cluded in the biogeochemical component of the UVic ESCM (version 2.9) (Weaver et al., 2001). This bio-

geochemical component was recently improved by Keller et al. (2012) in order to better reproduce seasonal

changes in marine ecosystems and the effect this has on ocean biogeochemistry.

The current version of the UVic ESCM at the time of writing, includes NO3 and PO4 as nutrients. The

change in time of each variable concentration (X) in the model is described by,

∂X

∂t
= Tr + S (1)

where Tr represents all transport terms including advection, isopycnal and diapycnal diffusion, and con-

vection, and S denotes the source minus sink terms. In the UVic ESCM, S(NO3) and S(PO4) are usually

related via a fixed stoichiometric relationship (N:P=16, Redfield , 1934). The newly included phytoplankton

model accounts for simultaneous colimitation by N and P in the cells. This translates in varying uptake rates

of NO3 and PO4 not connected by any particular stoichiometric ratio. As a result, both sources, S(NO3)

and S(PO4), are now described separately,

S(NO3) = Nremi +Nexc + PhytNmorpt − PhytNµ−DiazNµ (2)

S(PO4) = Premi + Pexc + PhytPmorpt − PhytPµ−DiazPµ (3)

where Nremi and Premi are N and P remineralization terms, Nexc and Pexc are N and P excretion terms,

PhytNmorpt and PhytPmorpt are phytoplankton mortality terms defined for N and P that contribute di-

rectly to the pools of dissolved inorganic nutrients, PhytNµ and PhytPµ are the N and P uptake rates

of non-diazotrophic (regular) phytoplankton, while DiazNµ and DiazPµ are the N and P uptake rates of

diazotrophs. The remineralization rates are temperature (T ) dependent and remain as in Keller et al. (2012):

Nremi = remi0 · bcT ·DetN (4)
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Premi = remi0 · bcT ·DetP (5)

where remi0 is an initial remineralization rate, DetN and DetP are the detritus components of N and

P respectively, and b and c are temperature sensitivity parameters. Excretion is defined as the difference

between zooplankton assimilation and growth efficiencies (γ and $ respectively). Excretion terms for C

(Cexc), N, and P are defined as,

Cexc = Cgraz · (γ −$) (6)

Nexc = γ ·Ngraz − (γ · Cgraz − Cexc) ·QN
zoo (7)

Pexc = γ · Pgraz − (γ · Cgraz − Cexc) ·QP
zoo (8)

where QN
zoo and QP

zoo are the N and P cell-quotas of zooplankton. Cgraz, Ngraz, and Pgraz are the grazing

terms for C, N, and P respectively. Each grazing term represents the sum of all grazing components: regular

and diazotrophic phytoplankton (Phyt(C,N, P )graz, Diaz(C,N, P )graz), detritus (Det(C,N, P )graz), and

zooplankton (Zoop(C,N, P )graz).

Cgraz = PhytCgraz +DiazCgraz +DetCgraz + ZoopCgraz (9)

Ngraz = PhytNgraz +DiazNgraz +DetNgraz + ZoopNgraz (10)

Pgraz = PhytPgraz +DiazPgraz +DetPgraz + ZoopPgraz (11)

Phytoplankton growth is described as the difference between carbon fixation (V C) and respiration (R), for

regular (PhytCµ) and diazotrophic phytoplankton (DiazCµ),

PhytCµ = V C
phyt −R (12)

DiazCµ = V C
diaz −R (13)
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For a thorough description of the determination of phytoplankton growth rate see Chapter 3, Supplementary

information, Eq. S.1–S.5.

Sources and sinks for regular and diazotrophic phytoplankton are determined separately for C, N, and P,

S(PhyC) = PhytCµ− PhytCgraz − PhytCmorpt − PhytCmorp (14)

S(PhyN) = PhytNµ− PhytNgraz − PhytNmorpt − PhytNmorp (15)

S(PhyP ) = PhytPµ− PhytPgraz − PhytPmorpt − PhytPmorp (16)

S(DiazC) = DiazCµ−DiazCgraz −DiazCmorpt −DiazCmorp (17)

S(DiazN) = DiazNµ−DiazNgraz −DiazNmorpt −DiazNmorp (18)

S(DiazP ) = DiazPµ−DiazPgraz −DiazPmorpt −DiazPmorp (19)

where PhytCmorpt and DiazCmorpt are the regular phytoplankton and diazotroph C mortality terms that

contribute directly to the dissolved inorganic carbon (DIC) pool. PhytCmorp, PhytNmorp, and PhytPmorp

are regular phytoplankton mortality terms that contribute to the formation of detritus C (DetC), N (DetN),

and P (DetP ). DiazCmorp, DiazNmorp, and DiazPmorp are diazotroph mortality terms that contribute to

the formation of DetC, DetN , and DetP respectively.

In order to simplify the modifications in the biogeochemistry of the UVic ESCM, zooplankton stoichiometry

is kept constant. Sources and sinks of zooplankton N (ZoopN) are calculated as:

ZoopN = γ ·Ngraz −Nexc − ZooNmor − ZoopNgraz (20)

where ZoopNmor is a zooplankton mortality term that contributes to DetN . Hence, zooplankton C (ZoopC)

and P (ZoopP ) are calculated via,

ZoopC =
ZoopN

QN
zoo

(21)
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ZoopP = ZoopC ·QP
zoo (22)

where QN
zoo = 0.15, and QN

zoo = 9 · 10−3. Finally, detritus sources and sinks for C (S(DetC)), N (S(DetN)),

and P (S(DetP )) are described by:

S(DetC) = (1−γ) ·Cgraz +PhytCmorp+DiazCmorp+ZoopCmor −Cremi−DetCgraz −Cexp+Cimpo (23)

S(DetN) = (1−γ) ·Ngraz+PhytNmorp+DiazNmorp+ZoopNmor−Nremi−DetNgraz−Nexp+Nimpo (24)

S(DetP ) = (1− γ) ·Pgraz +PhytPmorp +DiazPmorp +ZoopPmor −Premi −DetPgraz −Pexp +Pimpo (25)

Where Cexp, Nexp, Pexp and Cimpo, Nimpo, Pimpo are the vertical export and import rates of C, N, and

P respectively. ZoopCmor and ZoopPmor are zooplankton mortality terms. Cremi is C remineralization,

defined in the same way as for N and C.

Cremi = remi0 · bcT ·DetC (26)

The latest biogeochemical configuration of the UVic ESCM including regular and diazotrophic phytoplank-

ton has 6 tracer variables within its marine ecological module (Keller et al., 2012): Nitrate, phosphate,

phytoplankton, diazotrophs, zooplankton, and detritus. Phytoplankton, diazotrophs, zooplankton, and de-

tritus where calculated in terms of either N or P, and related to C via the Redfield ratio (106C:6.6N:1P).

The inclusion of the optimality-based model requires the explicit calculation of C, N, and P for regular and

diazotrophic phytoplankton, as well as detritus. This results in a total of 12 tracer variables within the

marine ecosystem compartment of the model.

3.3.2 Preliminary results

An initial simulation of 100 years was carried out to assess the initial trends of the UVic ESCM coupled

with the optimality-based phytoplankton model. The total content of carbon in the ocean stabilizes at about
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Figure 1: (a) Total oceanic carbon content (blue line) and global mean oceanic phosphate concentration
(green line) of the first 100 years simulation of the UVic ESCM coupled with the optimality-based phyto-
plankton model. (b) Global trend in mean oceanic nitrate concentration of the same model simulation.

3740.5 Pg of C, after an initial increase during the first 60 years of the simulation (Fig. 1a). The global

phosphate (PO4) concentration in the ocean also presents a slight increase over the first 60 years, reaching a

mean stable concentration at about 2.166 mmol PO4 m−3 (Fig. 1a). The major problem observed so far in

the implementation of the optimality-based formulation is a constant decrease in nitrate (NO3) in the ocean.

Over the first 100 years, the mean ocean nitrate concentration decreases about 1 % (∼ 1 mmol NO3 m−3),

from 30 to 29 mmol NO3 m−3 (Fig. 1b). The major reason for this nitrogen loss is likely a misplacement of

diazotrophic phytoplankton growth (Fig. 2), which results in very low N2 fixation rates, therefore producing

an imbalance in the oceanic nitrogen cycle.

Global vertically integrated uptake rates of C, N, and P for non-diazotrophic and diazotrophic phytoplankton

are shown in Fig. 2. Primary production by non-diazotrophic phytoplankton (i.e. C-uptake) is highest in

the tropical ocean, particularly over the Pacific and Indian ocean. This global pattern of PP is similar

to the trend of the physiological C-based model obtained from the combination of satellite observations

and optimality-based formulations (Chapter 3). The uptake rate of C is about 4 times higher than the N

uptake rate, and about 16 times larger than the uptake of P. Global growth of diazotrophic phytoplankton

occurs mainly over the Southern Ocean and northern North Atlantic. While the distribution of diazotrophic

phytoplankton growth is poorly known, the general expectation is that diazotrophs mainly grow in areas
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Figure 2: Vertically integrated uptake rates of C (i.e. primary production, g C m−2 d−1), N (g N m−2 d−1),
and P (g P m−2 d−1) for non-diazotrophic and diazotrophic phytoplankton (top and bottom panels respec-
tively), averaged for the whole duration (i.e. 100 years) of the UVic ESCM-optimality-based simulation.

where high N2 fixation rates have been identified, specifically over the tropical Atlantic, eastern tropical

Pacific, and Arabic sea (Sohm et al., 2011). This global missmatch between diazotroph growth and N2

fixation areas (Fig. 3a) results in very low and unrealistic annual N2 fixation rates (∼ 0.1 Tg C y−1),

producing a global imbalance in the nitrogen cycle (i.e. net nitrogen loss) due to much higher denitrification

rates (∼ 400 Tg C y−1).

Denitrification occurs in the eastern tropical Pacific and Indian Sea, similar as in the previous model version of

Keller et al. (2012), and as expected from observations (Codispoti , 2007) (Fig. 3b). Other two denitrification

areas also appear in the northern Pacific and in the Southern Ocean at 180◦W. The obtained annual global

denitrification rate of ∼ 400 Tg C y−1 exceeds most commonly accepted estimates (Codispoti , 2007; Gruber

and Sarmiento, 1997). This high modelled denitrification rates might be a consequence of the unusual

patterns in diazotroph growth and low N2 fixation. The simulated global oxygen (O2) concentration at ∼

300 meters shows the three major oxygen minimum zones (OMZ) over the Atlantic, Pacific and Indian Oceans

(Stramma et al., 2008) (Fig. 3c). Low oxygen concentrations are also simulated for the Southern Ocean and

northern North Pacific. High denitrification rates in OMZs are also possible due to a poor constraint of

the connection between the nitrogen and oxygen cycles, as the stoichiometric relationships between organic

matter respiration, oxygen consumption and denitrification, have not yet been adjust to the optimality-based

formulations.

Modelled zonally averaged vertical profiles of PO4, dissolved inorganic carbon (DIC), and O2 (Fig. 4) are
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Figure 3: Vertically integrated N2 fixation (a) and denitrification (b) rates averaged for the whole duration
(i.e. 100 years) of the UVic ESCM-optimality-based simulation. (c) Mean oxygen concentrations at ∼ 300
m.

similar to previous model versions and observations from the World Ocean Atlas 2009 (WOA09) (Keller et al.,

2012). PO4 and DIC concentrations are high in the deep ocean across all shown ocean basins (Atlantic,

Pacific and Indian). PO4 and DIC present higher concentrations in southern latitudes in the Atlantic ocean,

while for the Pacific and Indian basins, the highest concentrations are found in northern latitudes. OMZs

are simulated for all three basins. In the Atlantic ocean, low oxygen concentrations are simulated in the

tropical ocean, as reported by observations (Stramma et al., 2008), but there is also a second area of low O2

in the southern part of the basin (Fig. 4). This low O2 concentrations are likely a result of high respiration

rates induced by the accumulation of organic matter, driven by the unusually high primary productivity of

diazotrophic phytoplankton in this area.

3.4 Conclusions and future directions

This thesis evaluates global physiological constraints of phytoplankton growth. A global analysis of nutrient

and light colimitation areas indicates that nutrient limitation dominates over the tropical and subtropical

ocean, while light limitation of phytoplankton growth is found in high latitudes, particularly in the Southern

Ocean (Chapter 1). Nitrogen is identified as the major limiting nutrient. As a consequence, a satellite-

and model-based method was developed to infer global nitrate concentrations in the surface ocean. Global

nitrate variations can be successfully simulated employing SST, MLD and surface-Chl data (Chapter 2).

Combining the studies above, global primary production rates and phytoplankton-C surface concentrations

are inferred using a physiological phytoplankton model. According to these estimates, C-based inferred

primary production is highest in tropical regions, particularly over the Pacific ocean. The global contribution

of phytoplankton to total POC is estimated to be ∼ 50 % in low latitudes, and ∼ 15 % in high latitudes

(Chapter 3). The role of organic matter export in driving nitrogen loss processes was estimated by employing
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Figure 4: Zonally averaged ocean basin comparisons of PO4 (top), DIC (middle), and O2 (bottom) for the
first 100 years simulation of the UVic ESCM coupled with the optimality-based phytoplankton model.
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bio-optical and satellite-based models of primary production and carbon export. Export production in the

eastern tropical South Pacific oxygen minimum zone was highly correlated to depth-integrated rates of

anammox, nitrate reduction, and nitrite oxidation. This suggests that the lateral distribution of N-cycling

activity is mainly determined by the export of organic matter, which is the ultimate source of the required

reactive substrates for N utilization in this OMZ (Chapter 4).

Optimality-based cell quota models are able to explain much of the variability in phytoplankton stoichiom-

etry. The inclusion of physiological formulations is important to better constrain biogeochemical fluxes.

However, the description of phytoplankton diversity also seems to be necessary in ecological models aiming

to monitor and project global and regional environmental changes (i.e., accounting for acclimation and adap-

tation processes). The inclusion of optimality-based formulations in Earth system models has great potential

in explaining and decoupling the cycling of carbon, nitrogen and other important biogeochemical elements.

Different hypotheses suggest that changes in phytoplankton resource utilization can drive or contribute to

alterations in the global climate system (Sigman and Boyle, 2000; Martin, 1990). Future work should be

directed to the further development and inclusion of physiological formulations in Earth system models. A

first step in this direction is presented in the Synthesis section of this thesis. Once the modelled biogeo-

chemical patterns emerging from the coupling of the UVic ESCM and the optimality-based model are better

constrained, further work will be aimed to assess changes in primary production and export rates under

varying ambient conditions derived from increased ocean surface stratification, as expected from ongoing

climate change.

In terms of model development, a key aspect that still needs to be resolved is the influence of iron limitation

on phytoplankton stoichiometry and growth. Iron has diverse constraints on phytoplankton physiology,

affecting both nutrient and light assimilation dynamics (Timmermans et al., 1994). As major regions of the

ocean are considered to be under iron limitation (Martin et al., 1990; Boyd et al., 2007), the description

of iron dynamics within phytoplankton cellular physiology is a necessary requirement to accurately assess

global patterns of phytoplankton stoichiometry. Culture studies evaluating changes in phytoplankton growth

rates as a function of iron cell-quota are a fundamental initial step to precise the effects of iron on cellular

growth. At the same time, global in situ observations of carbon:iron and iron:nitrogen ratios are necessary

for model evaluation.

Cell-quota and physiological models of phytoplankton growth are an attractive tool to further understand

the sensitivities of biogeochemical cycles to the biochemistry of marine microorganisms. The expansion of

such models is inherently tied to laboratory studies aiming to investigate individual and combined limiting
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effects of multiple nutrients and elements on cellular physiology. Without these observations, there cannot

be a mechanistic understanding of the intracellular dynamics regulating growth, and hence significative novel

model formulations cannot be expressed. The current knowledge on global biogeochemical cycles suggests

that marine ecosystems are not only affected by changing ambient conditions, but can also drive and regulate

alterations in the global climate system. Altogether, projections of the future climate system and its feedbacks

with the marine environment can be better constrained through the expansion of physiological models and

their evaluation in global Earth system models. The success of this task relies on the continous and combined

interaction of both modelling and experimental research.
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R. Séférian, J. Tjiputra, and M. Vichi (2013), Multiple stressors of ocean ecosystems in the 21st century:

projections with cmip5 models, Biogeosciences, 10 (10), 6225–6245, doi: 10.5194/bg-10-6225-2013.

Boyd, P. W., T. Jickells, C. S. Law, S. Blain, E. a. Boyle, K. O. Buesseler, K. H. Coale, J. J. Cullen,

H. J. W. de Baar, M. Follows, M. Harvey, C. Lancelot, M. Levasseur, N. P. J. Owens, R. Pollard, R. B.

Rivkin, J. Sarmiento, V. Schoemann, V. Smetacek, S. Takeda, A. Tsuda, S. Turner, and a. J. Watson

(2007), Mesoscale iron enrichment experiments 1993-2005: synthesis and future directions., Science, 315,

612–617, doi: 10.1126/science.1131669.

Codispoti, L. A. (2007), An oceanic fixed nitrogen sink exceeding 400 Tg N a−1 vs the concept of homeostasis

in the fixed-nitrogen inventory, Biogeosciences, 4 (2), 233–253, doi: 10.5194/bg-4-233-2007.

Falkowski, P. G. (2000), Rationalizing elemental ratios in unicellular algae, Jornal of Phycology, 36, 3–6.

Friedrichs, M. A., M.-E. Carr, R. T. Barber, M. Scardi, D. Antoine, R. A. Armstrong, I. Asanuma, M. J.

Behrenfeld, E. T. Buitenhuis, F. Chai, J. R. Christian, A. M. Ciotti, S. C. Doney, M. Dowell, J. Dunne,

B. Gentili, W. Gregg, N. Hoepffner, J. Ishizaka, T. Kameda, I. Lima, J. Marra, F. Mlin, J. K. Moore,

A. Morel, R. T. O’Malley, J. O’Reilly, V. S. Saba, M. Schmeltz, T. J. Smyth, J. Tjiputra, K. Waters, T. K.

106



Dissertation, Lionel Arteaga Synthesis

Westberry, and A. Winguth (2009), Assessing the uncertainties of model estimates of primary productivity

in the tropical pacific ocean, Journal of Marine Systems, 76, 113 – 133, doi: 10.1016/j.jmarsys.2008.05.010.

Geider, R., and J. La Roche (2002), Redfield revisited: variability of C:N:P in marine microalgae and its

biochemical basis, European Journal of Phycology, 37 (1), 1–17, doi: 10.1017/S0967026201003456.

Gruber, N., and J. L. Sarmiento (1997), Global patterns of marine nitrogen xation and denitrication, Global

Biogeochemical Cycles, 11 (2), 235–266.

Keller, D. P., A. Oschlies, and M. Eby (2012), A new marine ecosystem model for the university of vic-

toria earth system climate model, Geoscientific Model Development, 5 (5), 1195–1220, doi: 10.5194/

gmd-5-1195-2012.

Martin, J. (1990), Glacial-interglacial CO2 change: The iron hypothesis, Paleoceanography, 5, 1–13, doi:

10.1029/PA005i001p00001.

Martin, J., R. M. Gordon, and S. E. Fitzwater (1990), Iron in Antartic waters, Nature, 345, 156–158,

doi:10.1038/345156a0.

Martiny, A. C., C. T. a. Pham, F. W. Primeau, J. a. Vrugt, J. K. Moore, S. a. Levin, and M. W. Lomas

(2013a), Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter, Nature

Geoscience, 6, 279–283, doi: 10.1038/ngeo1757.

Martiny, A. C., J. A. Vrugt, F. W. Primeau, and M. W. Lomas (2013b), Regional variation in the particulate

organic carbon to nitrogen ratio in the surface ocean, Global Biogeochemical Cycles, 27 (3), 723–731, doi:

10.1002/gbc.20061.

Pahlow, M., and A. Oschlies (2009), Chain model of phytoplankton P, N and light colimitation, Marine

Ecology Progress Series, 376, 69–83, doi: 10.3354/meps07748.

Pahlow, M., H. Dietze, and A. Oschlies (2013), Optimality-based model of phytoplankton growth and dia-

zotrophy, Marine Ecology Progress Series, 489, 1–16, doi: 10.3354/meps10449.

Redfield, A. (1934), On the proportions of organic derivatives in sea water and their relation to the compo-

sition of plankton, James Johnstone Memorial Volume, University Press of Liverpool, 176–192.

Rhee, G. (1978), Effects of N: P atomic ratios and nitrate limitation on algal growth, cell composition, and

nitrate uptake, Limnology and Oceanography, 23 (1), 10–25.

107



Synthesis Dissertation, Lionel Arteaga

Rhee, G.-Y. (1974), Phosphate uptake under nitrate limitation by scenedesmus sp. and its ecological impli-

cations, Journal of Phycology, 10 (4), 470–475, doi: 10.1111/j.1529-8817.1974.tb02742.x.

Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj

(2011), Rcp 8.5a scenario of comparatively high greenhouse gas emissions, Climatic Change, 109 (1-2),

33–57, doi: 10.1007/s10584-011-0149-y.

Riebesell, U., A. Krtzinger, and A. Oschlies (2009), Sensitivities of marine carbon fluxes to ocean change,

Proceedings of the National Academy of Sciences, 106 (49), 20,602–20,609, doi: 10.1073/pnas.0813291106.

Sarmiento, J. L., R. Slater, R. Barber, L. Bopp, S. C. Doney, A. C. Hirst, J. Kleypas, R. Matear, U. Miko-

lajewicz, P. Monfray, S. V., S. A. Spall, and R. Stouffer (2004), Response of ocean ecosystems to climate

warming, Global Biogeochemical Cycles, 18, GB3003, doi:10.1029/2003GB002134.

Schneider, B., L. Boop, M. Gehlen, J. Segschneider, T. L. Frölicher, P. Cadule, S. C. Doney, M. J. Behrenfeld,
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on expeditions of the practical course of Ecology II, within the curriculum of the career on General
Biology.

Peer-reviewed publications

• Arteaga, L., M. Pahlow, and A. Oschlies (2015), Global monthly sea-surface nitrate fields estimated
from remotely sensed sea-surface temperature, chlorophyll, and modelled mixed layer depth, Geophys-
ical Research Letters, doi: 10.1002/2014GL062937

• Arteaga, L., M. Pahlow, and A. Oschlies (2014), Global patterns of phytoplankton nutrient and light
colimitation inferred from an optimality-based model, Global Biogeochemical Cycles, 28 (7), 648–661,
doi: 10.1002/2013GB004668

• Kalvelage, T., G. Lavik, P. Lam, S. Contreras, L. Arteaga, C. R. Löscher, A. Oschlies, A. Paulmier,
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