Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific.

Arevalo-Martinez, Damian L. , Kock, Annette , Löscher, Carolin, Schmitz, Ruth A., Stramma, Lothar and Bange, Hermann W. (2016) Influence of mesoscale eddies on the distribution of nitrous oxide in the eastern tropical South Pacific. Open Access Biogeosciences (BG), 13 . pp. 1105-1118. DOI 10.5194/bg-13-1105-2016.

bg-13-1105-2016.pdf - Published Version
Available under License Creative Commons: Attribution 3.0.

Download (0b) | Preview
bg-13-1105-2016-supplement.pdf - Supplemental Material
Available under License Creative Commons: Attribution 3.0.

Download (0b) | Preview

Supplementary data:


Recent observations in the eastern tropical South Pacific (ETSP) have shown the key role of meso- and submesoscale processes (e.g. eddies) in shaping its hydrographic and biogeochemical properties. Off Peru, elevated primary production from coastal upwelling in combination with sluggish ventilation of subsurface waters fuels a prominent oxygen
minimum zone (OMZ). Given that nitrous oxide (N2O) production–consumption processes in the water column are sensitive to oxygen (O2) concentrations, the ETSP is a region of particular interest to investigate its source–sink dynamics. To date, no detailed surveys linking mesoscale processes and N2O distributions as well as their relevance to nitrogen (N) cycling are available. In this study, we present the first measurements of N2O across three mesoscale eddies (two mode water or anticyclonic and one cyclonic) which were identified, tracked, and sampled during two surveys carried out in the ETSP in November–December 2012. A two-peak structure was observed for N2O, wherein the two maxima coincide with the upper and lower boundaries of the OMZ, indicating active nitrification and partial denitrification. This was further supported by the abundances of the key gene for nitrification, ammonium monooxygenase (amoA), and the gene marker for N2O production during denitrification, nitrite reductase (nirS). Conversely, we found strong N2O depletion
in the core of the OMZ (O2 < 5 μmol/L) to be consistent with nitrite (NO2-) accumulation and low levels of nitrate (NO3-), thus suggesting active denitrification. N2O depletion within the OMZ’s core was substantially higher in the centre of mode water eddies, supporting the view that eddy activity enhances N-loss processes off Peru, in particular near the
shelf break where nutrient-rich, productive waters from upwelling are trapped before being transported offshore. Analysis of eddies during their propagation towards the open ocean showed that, in general, “ageing” of mesoscale eddies tends to decrease N2O concentrations through the water column in response to the reduced supply of material to fuel N loss, although the hydrographic variability might also significantly impact the pace of the production–consumption pathways for N2O. Our results evidence the relevance of mode water eddies for N2O distribution, thereby improving our understanding of the N-cycling processes, which are of crucial importance in times of climate change and ocean deoxygenation.

Document Type: Article
Funder compliance: info:eu-repo/grantAgreement/EC/FP7/284274
Additional Information: WOS:000372082200014
Keywords: Nitrous oxide; Mesoscale eddies; Oxygen minimum zones; M90; M91; R.V. Meteor
Research affiliation: OceanRep > GEOMAR > FB2 Marine Biogeochemistry > FB2-CH Chemical Oceanography
OceanRep > GEOMAR > FB1 Ocean Circulation and Climate Dynamics > FB1-PO Physical Oceanography
OceanRep > The Future Ocean - Cluster of Excellence
OceanRep > SFB 754 > B4
OceanRep > SFB 754
Kiel University
Refereed: Yes
Open Access Journal?: Yes
DOI etc.: 10.5194/bg-13-1105-2016
ISSN: 1726-4189
Related URLs:
Projects: SOPRAN, InGOS, SFB754, Future Ocean
Date Deposited: 01 Mar 2016 11:03
Last Modified: 23 Sep 2019 16:34

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...