Nitrous oxide measurements during EIFEX, the European Iron Fertilization Experiment in the subpolar South Atlantic Ocean Sylvia Walter, ¹ Ilka Peeken, ¹ Karin Lochte, ¹ Adrian Webb, ² and Hermann W. Bange ¹ Received 12 September 2005; revised 4 November 2005; accepted 10 November 2005; published 15 December 2005. [1] We measured the vertical water column distribution of nitrous oxide (N₂O) during the European Iron Fertilization Experiment (EIFEX) in the subpolar South Atlantic Ocean during February/March 2004 (R/V Polarstern cruise ANT XXI/3). Despite a huge build-up and sedimentation of a phytoplankton bloom, a comparison of the N₂O concentrations within the fertilized patch with concentrations measured outside the fertilized patch revealed no N₂O accumulation within 33 days. This is in contrast to a previous study in the Southern Ocean, where enhanced N2O accumulation occurred in the pycnocline. Thus, we conclude that Fe fertilization does not necessarily trigger additional N2O formation and we caution that a predicted radiative offset due to a Fe-induced additional release of oceanic N₂O might be overestimated. Rapid sedimentation events during EIFEX might have hindered the build-up of N₂O and suggest, that not only the production of phytoplankton biomass but also its pathway in the water column needs to be considered if N₂O radiative offset is modeled. Citation: Walter, S., I. Peeken, K. Lochte, A. Webb, and H. W. Bange (2005), Nitrous oxide measurements during EIFEX, the European Iron Fertilization Experiment in the subpolar South Atlantic Ocean, Geophys. Res. Lett., 32, L23613, doi:10.1029/2005GL024619. ## 1. Introduction - [2] Inspired by the iron (Fe) limitation hypothesis [Martin et al., 1991], several Fe fertilization experiments have been performed in high nutrient-low chlorophyll (HNLC) regions such as the Southern Ocean, and the subarctic and equatorial Pacific Ocean [see, e.g., Boyd, 2004, 2002]. Fuhrman and Capone [1991] pointed out that stimulating ocean productivity by Fe addition might result in an enhanced formation of nitrous oxide (N₂O). This point is especially important in view of the fact that N₂O is an atmospheric trace gas with a high global warming potential [Jain et al., 2000]. Thus, enhanced N₂O formation by Fe addition might counteract the climatic benefits of a drawdown of atmospheric carbon dioxide (CO₂). - [3] Fuhrman and Capone [1991] argued that enhanced productivity will lead to an enhanced nitrogen export from the euphotic zone, which in turn would result in additional N_2O formation via enhanced nitrification (NH₄⁺ \rightarrow Copyright 2005 by the American Geophysical Union. 0094-8276/05/2005GL024619 ${\rm NH_2OH} \to {\rm NO_2^-} \to {\rm NO_3^-}).$ ${\rm N_2O}$ formed via nitrification is thought to be dominating in the oxic part of the world's oceans [see, e.g., *Nevison et al.*, 2003]. The idea of a link between Fe fertilization and enhanced ${\rm N_2O}$ formation was supported by the study of *Law and Ling* [2001], who found a small but significant ${\rm N_2O}$ accumulation in the pycnocline during the Southern Ocean Iron Enrichment Experiment (SOIREE) in the Australasian sector of the Southern Ocean (61°S, 140°E) in February 1999. Recently, *Jin and Gruber* [2003] predicted the long-term effect of Fe fertilization on oceanic ${\rm N_2O}$ emissions on a global scale with a coupled physical-biogeochemical model. Based on their model results they concluded that Fe fertilization-induced ${\rm N_2O}$ emissions could offset the radiative benefits of the ${\rm CO_2}$ drawdown [*Jin and Gruber*, 2003]. [4] Here we present our measurements of N_2O during the European Iron Fertilization Experiment (EIFEX; R/V *Polarstern* cruise ANT XXI/3) in the subpolar South Atlantic Ocean from 9 February to 21 March 2004 [Smetacek and cruise participants, 2005]. # 2. The EIFEX Setting - [5] A mesoscale cyclonic eddy, embedded in a meander of the Antarctic Polar Front, was identified as suitable for the EIFEX study [Strass et al., 2005]. The eddy was centered at 49.4°S 2.25°E and extended over an area of 60×100 km. First fertilization was performed on 12-13February by releasing 6000 kg iron sulfate (FeSO₄) into the mixed layer over an area of 150 km². Since iron concentrations had been decreasing (P. Croot, personal communication, 2004), fertilization was repeated on 26-27 February by releasing 7000 kg FeSO₄ over an area of 400 km². All sampled stations were located inside the eddy; the stations within fertilized waters will be called instations and those from unfertilized waters out-stations (Table 1). Inside and outside the fertilized patch was determined by photosynthetic activity (Fv/Fm) performed by Fast-Repetition-Rate-Fluorescence (FastTracka, Chelsea, UK) [Röttgers et al., 2005]. Fv/Fm is known to be a very sensitive parameter, which increases immediately after iron fertilization. - [6] The hydrographic settings of the sampling stations were not uniform: The in-stations' hydrographic properties did not show any variability. However, the out-station 514 showed, in comparison with the in-stations, enhanced potential water temperatures in the density (σ_t) range from 27.25 to 27.7 kg m⁻³ (corresponding to a approximate depth range from 200 to 400 m). The hydrographic properties of the out-stations 546 and 587 were almost identical to the in-stations. This implies that station 514 is not a representative out-station and was therefore excluded **L23613** 1 of 4 ¹Forschungsbereich Marine Biogeochemie, Leibniz-Institut für Meereswissenschaften at University of Kiel (IFM-GEOMAR), Kiel, Germany. ²Department of Oceanography, University of Cape Town, Rondebosch, South Africa. **Table 1.** N₂O Measurements During EIFEX^a | Station
Number | Latitude.°S | Longitude,°E | Date | Days After First/
Second Fertilization | Patch Class. | N_2O ML Conc., b nmol L ⁻¹ | N ₂ O ML
Sat., ^b % | |-------------------|-------------|--------------|-----------|---|---------------|---|---| | Ivuilioci | Latitude, 5 | Longitude, L | Date | Second 1 citilization | i aten Ciass. | Conc., mnor L | 5at., 70 | | 513 | 49.59 | 2.05 | 28 Feb 04 | 16/2 | In | $13.3 \pm 0.1 (5)$ | $102 \pm 1 \ (5)$ | | 514 | 49.31 | 2.34 | 29 Feb 04 | 17/3 | Out | $13.5 \pm 0.3 (3)$ | $104 \pm 2 (3)$ | | 544 | 49.36 | 1.87 | 07 Mar 04 | 24/10 | In | 13.8 ± 0.5 (3) | $106 \pm 4 (3)$ | | 546 | 49.47 | 2.09 | 10 Mar 04 | 27/13 | Out | 13.1 (2) | 102 (2) | | 570 | 49.43 | 2.05 | 14 Mar 04 | 31/17 | In | $13.1 \pm 0.3 (5)$ | $102 \pm 3 (5)$ | | 580 | 49.12 | 2.38 | 16 Mar 04 | 33/19 | In | 12.5 ± 0.2 (3) | $97 \pm 1 \ (3)$ | | 586 | 49.50 | 2.10 | 18 Mar 04 | 35/21 | Out | 13.1 ± 0.5 (4) | $102 \pm 4 \ (4)$ | ^aClass. stands for classification and indicates whether a profile was inside or outside of the fertilized patch. ML stands for mixed layer; here defined as the depth where the temperature differs from the surface temperature by more than 0.5°C. Conc. and Sat. stand for concentration and saturation, respectively. b Given as average \pm standard deviation. Number of depths used for averaging is given in parentheses. from the comparison (see also discussion of N₂O data #### Methods 3. [7] Triplicate water samples from various depths were taken from a 24 x 12 L-bottle rosette, equipped with a CTDsensor. The analytical method applied is a modification of the method described by Bange et al. [2001]: Bubble free samples were taken immediately following oxygen (O₂) sampling in 24 mL glass vials, sealed directly with butyl rubber stoppers and crimped with aluminium caps. To prevent microbial activity, samples were poisoned with 500 μL of a saturated aqueous mercury chloride (HgCl₂) solution. The samples were stored in the dark at 4 °C until analysis in our home laboratory from June to August 2004. In a time series experiment we found that N₂O concentrations in samples treated as described above did not change significantly over 10 months (S. Walter, Nitrous oxide in the Atlantic Ocean, Ph.D. thesis, in preparation, University of Kiel, 2005). N₂O water concentrations (C_w) were calculated as follows: $$C_w \big[nmol \ L^{-1} \big] = \bigg(\beta x' P V_{wp} + \frac{x'P}{RT} V_{\mathit{hs}} \bigg) / V_{\mathit{wp}}$$ where β stands for the Bunsen solubility in nmol L⁻¹ atm⁻¹ [Weiss and Price, 1980], x' is the dry gas mole fraction of N₂O in the headspace in ppb, P is the atmospheric pressure in atm (set to1 atm), $V_{\rm wp}$ and $V_{\rm hs}$ stand for the volumes of the water (14 mL) and headspace phases (10 mL), respectively. R is the gas constant (8.2054 10⁻² L atm $\text{mol}^{-1} \text{ K}^{-1}$) and T is the temperature during equilibration. [8] For calibration we used standard gas mixtures with 311.8 ± 0.2 ppb and 346.5 ± 0.2 ppb N₂O in synthetic air (DEUSTE Steininger GmbH, Mühlhausen, Germany). The standard mixtures have been calibrated against the NOAA (National Oceanic and Atmospheric Administration, Boulder, Colorado) standard scale in the laboratories of the Air Chemistry Division of the Max Planck Institute for Chemistry, Mainz, Germany). The standard deviation of the N₂O concentration (C_w) was approximated with (C_{wmax} - C_{wmin})/1.91, where C_{wmin} and C_{wmax} stand for the minimal and maximal N2O concentrations of the triplicate samples, respectively. The factor 1.91 is derived from the statistical method by David [1951]. The overall mean analytical error was $\pm 2.7\%$ (± 0.5 nmol L⁻¹). [9] N_2O saturations (sat) in% (i.e., 100% = equilibrium) were calculated as $sat = 100 C_w/C_a$, where C_a is the equilibrium concentration of dissolved N₂O based on the N₂O atmospheric dry mole fraction, water temperature, and salinity [Weiss and Price, 1980]. For calculating C_a in the mixed layer an ambient air mole fraction of 317.8 ppb was applied, which is the average of the monthly mean N₂O dry mole fractions measured at the AGAGE (Advanced Global Atmospheric Gases Experiment [see Prinn et al., 2000]) baseline monitoring station Cape Grim (Tasmania) during February and March 2004. AGAGE data are available from the anonymous ftp site cdiac.esd.ornl.edu (subdirectory/ pub/ale gage agage/agage/gc-md/monthly) at the Carbon Dioxide Information Analysis Center in Oak Ridge, Tennessee. [10] Dissolved O₂, nitrate, and CTD data were provided by the participating working groups. Further details can be found in the cruise report by Smetacek and cruise participants [2005]. ## 4. Results and Discussion [11] An overview of the N₂O measurements during EIFEX is given in Table 1 and in Figure 1. Mixed layer N₂O saturations were comparable to surface saturations $(\sim 103\%)$ from the same region measured during the Ajax cruise leg 2 in Jan-Feb 1984 [Weiss et al., 1992]. Moreover, the overall mean N₂O deep water (>2000 m) concentration of 17.5 \pm 0.2 nmol L^{-1} is in good agreement with the N₂O deep water-water age relationship by Bange and Andreae [1999]. Both, the observed surface saturation and deepwater concentration support the view that the N_2O samples were not affected by the time lag between sampling and measurements. [12] In agreement with the results from SOIREE [Law and Ling, 2001], we did not observe a difference in N₂O mixed layer saturations between in-stations and out-stations (Table 1), which implies that N₂O emissions were not significantly different either. [13] The N₂O profiles showed a pronounced maximum between 500 and 750 m which was associated with the O₂ minimum and the nitrate maximum (Figure 1) indicating that nitrification was the main N₂O formation process. Our N₂O concentrations are comparable to N₂O measurements from the South Atlantic and Southern Oceans [Butler et al., 1995; Law and Ling, 2001; Rees et al., 1997]. [14] Following the approach by Law and Ling [2001], we fitted a polynomial to the $N_2O-\sigma_t$ data of stations 546 and 587 (Figure 2). Out-station 514 was excluded because it **Figure 1.** N₂O (open circles), water temperature (solid lines), NO₃ (dashed lines), and O₂ (dashed dotted line) at the EIFEX stations listed in Table 1. O₂ data are only available for station 570 in the depth range from 0–1500 m. Please note that O₂ is given in μ mol L⁻¹ divided by 10. obviously was not representative as indicated by the data in Figure 2 (see also section EIFEX setting). A comparison of the N₂O concentrations of the in-stations with the polynomial fit based on the out stations revealed no significant differences (Figure 2). A third-order polynomial fit to the in-stations ($-52.766x^3 + 4320.7x^2 - 117,915x + 1,072,529, r^2 = 0.95, n = 67$, standard error of predicted N₂O = \pm 0.63 nmol L⁻¹) was almost identical to the outstations' fit ($-48.474x^3 + 3967.8x^2 - 108,241x + 984,148, r^2 = 0.96, n = 30$, standard error of predicted N₂O = \pm 0.56 nmol L⁻¹). Thus, we conclude that no significant changes in the N₂O concentrations occurred during EIFEX. [15] Our conclusion is in contrast to the observation by Law and Ling [2001]. They found an accumulation of N_2O up to 0.9-1 nmol L⁻¹ in the pycnocline (60-80 m water depth) within 13 days during SOIREE. Adapting a N_2O accumulation rate of 0.08 nmol L^{-1} d^{-1} (=1 nmol $^{-1}/13$ days), an increase of 2.6 nmol L⁻¹ (=0.08 nmol L^{-1} \times 33 days) would have been expected for a N_2O accumulation in the pycnocline in 100-200 m during EIFEX. This was not the case (Figure 2). It is possible that N₂O accumulation in the pycnocline was not detected because of insufficient analytical precision and/or coarse sampling of the depths profiles: A possible N2O accumulation must have been low (<0.5 nmol L⁻¹ over the duration of the experiment as implied by our mean analytical error) or must have taken place in a narrow depth range of less than 40 m (i.e., the mean depth spacing of sampling from the surface to the pycnocline in about 200 m). Moreover, in contrast to EIFEX, Fe addition during SOIREE was performed four times within a week over a much smaller area (50 km² [Law and Ling, 2001]). Therefore, the observed N₂O accumulation in the pycnocline during SOIREE may have been a fast short-term response to the intensive short-term Fe fertilization. Because we started N₂O sampling 16 days after the first Fe addition (i.e., 2 days after the second Fe addition) we might have missed this short-term signal during EIFEX. [16] During EIFEX chlorophyll *a* (chl *a*) standing stocks increased 3 fold until day 26, but remarkably decreased thereafter [*Peeken et al.*, 2005]. The main beneficiaries of the iron fertilization were diatoms in all size classes (L. Hoffmann et al., Different reactions of Southern Ocean phytoplankton size classes to iron fertilisation, submitted to Limnology and Oceanography, 2005). Toward the end of the experiment, the diatom marker fucoxanthin and chl a could be followed down the water column to 4000 m and a low ratio of phaeopigments to chl a indicated the export of fresh material most likely originating from the iron fertilized patch [Peeken et al., 2005]. An explanation for the absence of an increase of N₂O in the deep (e.g., in the O₂ minimum zone) might be the very rapid export of the fresh phytoplankton material to the deep ocean during EIFEX [Peeken et al., 2005], which started about 23 days after the second Fe addition. Thus, we can argue that the rapid export of organic material during EIFEX might have been too rapid for the nitrifying bacteria in the deep ocean to adapt to and, thus, an additional build-up of N₂O in the deep could not take place. Nitrifying bacteria, especially ammonium-oxidizing bacteria (AOB), are known for lag phases up to several weeks after periods of low metabolic activities [Schmidt et al., 1999]. [17] The responsible process for the N_2O accumulation during SOIREE [Law and Ling, 2001] and the proposed further increase of N_2O in prolonged iron fertilization experiments could not be identified. Thus, a possible link between N_2O accumulation and Fe fertilization remains to be not a simple cause-and-effect mechanisms and the **Figure 2.** N_2O concentrations vs. density (σ_t) during EIFEX. (a) Out-stations: Triangles stand for stations 546 and 587 and crosses stand for station 514. The bold solid line represents a third-order polynomial fit based on stations 546 and 587 (see text for statistical details). The thin solid line represents a third-order polynomial fit based on station 514. (b) In-stations: 513, 544, 570, and 580 (symbols) compared with the polynomial fit based on out-stations 546 and 587 (bold line, see Figure 2a). The dashed lines indicate the standard error of the predicted N_2O . Depths intervals are indicated. magnitude of a possible radiative offset still needs to be proven. ### 5. Conclusions [18] We did not observe a N₂O accumulation during the in situ iron fertilization experiment EIFEX in the subpolar South Atlantic Ocean in February/March 2004. This is in contrast to previous measurement by Law and Ling [2001] in the Australasian sector of the Southern Ocean. We conclude that Fe fertilization does not necessarily trigger additional N₂O formation, which might depend on differences of the environmental conditions (e.g., the fate of the Fe-induced phytoplankton bloom). We caution, therefore, that predictions of a radiative offset caused by a Fe-induced additional release of oceanic N₂O [Jin and Gruber, 2003; Law and Ling, 2001] might be overestimated. In order to solve this problem further long-term experiments with particular emphasis on sedimentation processes are necessary to prove a link between Fe addition and enhancement of N₂O formation and the subsequent release of N₂O to the atmosphere. [19] Acknowledgments. We thank Katrin Bluhm, Linn Hoffmann, and Dieter Wolf-Gladrow for their help during sampling. We are grateful to B. Cisewski, H. Leach, H. Prandke, and V. Strass ("the CTD group") for making the CTD data available for us. We acknowledge the help of the chief scientist Victor Smetacek, the ANT XXI/3 participants and the officers and crew of R/V *Polarstern* for conducting a successful experiment. We especially thank R. Hoffmann for the calibration of our standards. Two anonymous reviewers provided valuable comments. The investigations were financially supported by the IFM-GEOMAR Forschungsbereich Marine Biogeochemie. # References - Bange, H. W., and M. O. Andreae (1999), Nitrous oxide in the deep waters of the world's oceans, *Global Biogeochem. Cycles*, 13, 1127–1135. - Bange, H. W., S. Rapsomanikis, and M. O. Andreae (2001), Nitrous oxide cycling in the Arabian Sea, *J. Geophys. Res.*, 106, 1053–1065. - Boyd, P. W. (2002), The role of iron in the biogeochemistry of the Southern Ocean and equatorial Pacific: A comparison of in situ iron enrichments, *Deep Sea Res., Part II*, 49, 1803–1821. - Boyd, P. (2004), Ironing out algal issues in the Southern Ocean, *Science*, 304, 396–397. - Butler, J. H., J. M. Lobert, S. A. Yvon, and L. S. Geller (1995), The distribution and cycling of halogenated trace gases, *Ber. Polarforsch.*, 168, 27–40 - David, H. A. (1951), Further applications of range to analysis of variance, *Biometrika*, 38, 393–409. - Fuhrman, J. A., and D. G. Capone (1991), Possible biogeochemical consequences of ocean fertilization, *Limnol. Oceanogr.*, 36(8), 1951–1959. - Jain, A. K., B. P. Briegleb, K. Minschwaner, and D. J. Wuebbles (2000), Radiative forcing and global warming potentials of 39 greenhouse gases, J. Geophys. Res., 105, 20,773–20,790. - Jin, X., and N. Gruber (2003), Offsetting the radiative benefit of ocean iron fertilization by enhancing N₂O emissions, *Geophys. Res. Lett.*, 30(24), 2249, doi:10.1029/2003GL018458. - Law, C. S., and R. D. Ling (2001), Nitrous oxide flux and response to increased iron availability in the Antarctic Circumpolar Current, *Deep Sea Res.*, Part II, 48, 2509–2527. - Martin, J. H., R. M. Gordon, and S. E. Fitzwater (1991), The case for iron, *Limnol. Oceanogr.*, 36, 1793–1802. - Nevison, C., J. H. Butler, and J. W. Elkins (2003), Global distribution of N₂O and ΔN₂O-AOU yield in the subsurface ocean, *Global Biogeochem. Cycles*, 17(4), 1119, doi:10.1029/2003GB002068. - Peeken, I., L. Hoffmann, P. Assmy, U. Bathmann, B. Cisewski, H. Leach, K. Lochte, O. Sachs, E. Sauter, and V. Strass (2005), Export of fresh algal material during the Southern Ocean iron fertilisation experiment, EIFEX (abstract), paper presented at Summer Meeting 2005, Am. Soc. of Limnol. and Oceanogr., Santiago de Compostela, Spain. - Prinn, R. G., et al. (2000), A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, *J. Geophys. Res.*, 105, 17,751–17,792. - Rees, A. P., N. J. P. Owens, and R. C. Upstill-Goddard (1997), Nitrous oxide in the Bellingshausen Sea and Drake Passage, *J. Geophys. Res.*, 102, 3383–3391. - Röttgers, R., F. Colijn, and M. Dibbern (2005), Algal physiology and biooptics, *Ber. Polarforsch. Meeresforsch.*, 500, 82–88. - Schmidt, I., T. Gries, and T. Willuweit (1999), Nitrification—Fundamentals of the metabolism and problems at the use of ammonia oxidizers (in German with English abstract), *Acta Hydrochim. Hydrobiol.*, 27, 121–135 - Smetacek, V., and cruise participants (2005), The expedition ANT XXI/3 of R/V *Polarstern*, *Ber. Polarforsch. Meeresforsch.*, 500, 1–134. - Strass, V., B. Cisewski, S. Gonzalez, H. Leach, K.-D. Loquay, H. Prandke, H. Rohr, and M. Thomas (2005), The physical setting of the European Iron Fertilisation Experiment 'EIFEX' in the Southern Ocean, *Ber. Polarforsch. Meeresforsch.*, 500, 15–46. - Weiss, R. F., and B. A. Price (1980), Nitrous oxide solubility in water and seawater, *Mar. Chem.*, 8, 347–359. - Weiss, R. F., F. A. Van Woy, and P. K. Salameh (1992), Surface water and atmospheric carbon dioxide and nitrous oxide observations by shipboard automated gas chromatography: Results from expeditions between 1977 and 1990, report, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn. H. W. Bange, K. Lochte, I. Peeken, and S. Walter, Forschungsbereich Marine Biogeochemie, Leibniz-Institut für Meereswissenschaften at University of Kiel (IFM-GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany. (hbange@ifm-geomar.de) A. Webb, Department of Oceanography, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.